Unveiling the Synthetic Potential of Substituted Phenols as Fully Recyclable Organophotoredox Catalysts for the Iodosulfonylation of Olefins

Cristian Rosso, $\xlongequal{\S, \ddagger}$ Sara Cuadros, ${ }^{\square, \ddagger}$ Giorgia Barison, ${ }^{\square}$ Paolo Costa, ${ }^{\square}$ Marina Kurbasic, ${ }^{\S}$ Marcella Bonchio, ${ }^{\square}$ Maurizio Prato, ${ }^{\S}, \|, \perp$ Luca Dell'Amico, ${ }^{*}$ and Giacomo Filippini**
§Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
\square Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy. //Center for Cooperative Research in Biomaterials (CIC bio-maGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia San Sebastián, Spain. \perp Basque Fdn Sci, Ikerbasque, 48013 Bilbao, Spain.

*Correspondence to: gfilippini@units.it; luca.dellamico@unipd.it
\ddagger These authors contributed equally.

Table of contents

A. GENERAL INFORMATION 4
A.1. BATCH PHOTOCHEMICAL SET-UP 5
A.2. MICROFLUIDIC PHOTOREACTOR SETUP 5
B. GENERAL PROCEDURES FOR THE SYNTHESIS OF STARTING MATERIALS 6
B.1. PREPARATION OF TERMINAL OLEFINS (3e-f, 3h-l) 6
B.2. PREPARATION OF α-IODO SULFONES 9
B.2.1. Synthesis of 4a-d and 4f-i 9
B.2.2. Synthesis of the secondary α-iodo sulfones 4 e and 4 j 11
B.2.3 Synthesis of the phenyl α-iodo sulfone 4 k 12
B.3. PREPARATION OF THE PRE-PHOTOCATALYST 6e 13
C. GENERAL PROCEDURE FOR THE PHOTO-ORGANOCATALYTIC ATRA REACTIONS BETWEEN OLEFINS AND α-IODO SULFONES14
D. GENERAL PROCEDURE FOR THE ATRA REACTION IN MICROFLUIDIC CONDITIONS 22
E. GENERAL PROCEDURE FOR THE RECOVERY AND REUSE OF THE PRE-CATALYST 6e 23
F. SCREENING OF THE REACTION CONDITIONS 24
G. UNSUCCESFULL SUBSTRATES 27
H. PRODUCT MANIPULATIONS 27
I. MECHANISTIC INSIGHTS 30
I.1. CYCLIC VOLTAMMETRY MEASUREMENTS 30
I.2. DFT STUDIES 33
I.3. QUANTUM YIELD MEASUREMENT 33
I.4. REDOX POTENTIAL OF THE PHOTOCATALYST 7e AND POSSIBLE EDA COMPLEX FORMATION 36
I.5. STERN-VOLMER STUDIES 47
I.6. REDOX POTENTIAL OF THE EXCITED STATE PHENOLATES 7a-d 48
I.7. SOLVATOCHROMIC STUDIES OF PHENOLATES 7d-e 50
J. REFERENCES 56
K. NMR SPECTRA 59

A. GENERAL INFORMATION

NMR spectra were recorded on Bruker 400 Avance III HD equipped with a BBI-z grad probe head 5 mm and Bruker 500 Avance III equipped with a BBI-ATM-z grad probe head $5 \mathrm{~mm}\left({ }^{1} \mathrm{H}\right.$: $400 \mathrm{MHz},{ }^{13} \mathrm{C}: 100.5 \mathrm{MHz},{ }^{19} \mathrm{~F}: 376 \mathrm{MHz}$). The chemical shifts (δ) for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ are given in ppm relative to residual signals of the solvents $\left(\mathrm{CHCl}_{3} @ 7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ NMR, and @ 77.16 ppm for ${ }^{13} \mathrm{C}$ NMR; $\mathrm{CFCl}_{3} @ 0.0 \mathrm{ppm}$ for ${ }^{19} \mathrm{~F}$ NMR spectra). Coupling constants are given in Hz . The following abbreviations are used to indicate the multiplicity: s , singlet; d , doublet; t , triplet; q , quartet; m , multiplet; br, broad signal. NMR yields were calculated by using trichloroethylene as internal standard.

High-Resolution Mass Spectra (HRMS) were obtained using Bruker micrOTOF-Q (ESI-TOF).
Absorption spectroscopy studies have been performed on a Varian Cary 50 UV-Vis double beam spectrophotometer (more info at: www.varianinc.com). All the spectra were recorded at room temperature using a 10 mm path length Hellma Analytics quartz cuvettes.

All the cyclic voltammograms were recorded with a scan rate of $0.1 \mathrm{~V} / \mathrm{s}$. A typical three-electrode cell was employed, which was composed of a glassy carbon (GC) working electrode (3 mm diameter), a platinum wire as counter electrode and a saturated aqueous calomel electrode (SCE) as reference electrode. The glass electrochemical cell was kept closed with a stopper annexed to the potentiostat. Oxygen was removed by purging the solvent with high-purity Nitrogen $\left(\mathrm{N}_{2}\right)$, introduced from a line into the cell by means of a glass pipe. The potential of ferrocenium/ferrocene ($\mathrm{Fc}^{+} / \mathrm{Fc}$) couple was used as internal reference system to calibrate the potentiostat. All the results are subsequently converted in V vs SCE, in agreement with the value reported in literature $\left[\mathrm{E}_{1 / 2}\left(\mathrm{Fc}^{+} / \mathrm{Fc}\right)=+0.38 \mathrm{~V}\right.$ vs SCE $] .{ }^{1,2}$

Light source at 450 nm : The LED strips at 450 nm were purchased from eBay webpage: https://www.ebay.it/SMD2835 LUCE A LED STRISCIA 440nm-450nm.

Light source at 456 nm : The Kessil lamp PR160L-456 (50W) was purchased from Kessil webpage: https://www.kessil.com/science/PR160L.php.

The quantum yield measurement was performed with a ferrioxalate actinometer, following a procedure previously described in literature. ${ }^{3}$

General Procedures. The batch ATRA reactions were set-up under an argon atmosphere in Schlenk tubes, unless otherwise stated. The continuous flow reactions were carried out using capillary reactors made with FEP tubing (0.8 mm I.D., 1.58 mm O.D.) and fitting connections purchased from $\mathrm{BGB} ®$ (www.bgb-info.com). Chromatographic purification of products was accomplished using flash chromatography on silica gel ($\mathrm{SiO}_{2}, 0.04-0.063 \mathrm{~mm}, 60 \AA$) purchased from Machery-Nagel, with the indicated solvent system according to the standard techniques or using a Biotage Isolera automated flash chromatography system with cartridges packed with silica ($\mathrm{SiO}_{2}, 0.04-0.063 \mathrm{~mm}, 60 \AA$). Thin-layer chromatography (TLC) analysis was performed on precoated Merck TLC plates (silica gel 60 GF254, 0.25 mm). Visualization of the developed chromatography was performed by checking UV absorbance (254 nm) as well as with potassium
permanganate or ninhydrin stain solution. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator.

Materials. Commercial grade reagents and solvents were purchased at the highest commercial quality from Sigma Aldrich or FluoroChem and used as received, unless otherwise stated. Phenols $\mathbf{6 a - d}$ were commercially available. The preparation of phenol $\mathbf{6 e}$ is detailed in Section B. 3 of the SI. Olefins 3a-d, $\mathbf{3 g}$ and $\mathbf{3 m - 0}$ were commercially available. The preparation of olefins $\mathbf{3 e - f}, \mathbf{3 h}-$ \mathbf{I} and α-iodo sulfones $\mathbf{4 a - k}$ is detailed in Section B of the SI.

Computational details. All geometry optimizations were performed using M06-2X functional, ${ }^{4}$ including the integral equation formalism of the polarizable continuum model (IEFPCM) to model solvation effects. ${ }^{5}$ The def2TZVP basis set was employed. ${ }^{6}$ Frequencies were calculated in order to ensure that the structures are actual relative minima of energy. TD-DFT calculations were performed at the same level of theory on the optimized structures to compute the corresponding UV-vis absorption spectra. All the calculations were carried out using Gaussian 09 software package. ${ }^{7}$

A.1. BATCH PHOTOCHEMICAL SET-UP

Figure S1 shows a schematic representation of the batch photoreactor system employed in the present study.

Figure S1. Batch photochemical set-up.

A.2. MICROFLUIDIC PHOTOREACTOR SETUP

Figure S2 shows a schematic representation of the microfluidic circuit employed in the present study. Reaction mixtures are introduced in continuous flow into the micro-photoreactor via a double syringe pump (Syrris Atlas, see general information). The microfluidic reactor consists of a transparent TFE capillary ($\mathrm{BGB} ®$; internal diameter: $800 \mu \mathrm{~m}$; inner volume: $210 \mu \mathrm{~L}$; microreactor tubing length: 42 cm). The microreactor is then irradiated by the selected light source. The crude is collected in a vial, connected to the exit of the microreactor.

Figure S2. Schematic representation of the micro-photoreactor setup.

Figure S 3 shows the assembled microfluidic reactor (left side) and the general setup of a reaction using a Kessil lamp (right side). The lamp is placed at a fixed distance of 1 cm . Aluminum foil is used to avoid undesired irradiation of the tubing. To maintain a stable reaction temperature, a fan is placed at 3 cm from the reactor.

Figure S3. left: Assembled microfluidic photoreactor. right: Microfluidic photoreactor setup.

B. GENERAL PROCEDURES FOR THE SYNTHESIS OF STARTING MATERIALS

B.1. PREPARATION OF TERMINAL OLEFINS (3e-f, 3h-l)

Hex-5-en-1-yl acetate (3e)

3e

In a two-neck round-bottomed flask, purged under argon, a solution of 5-hexen1 -ol $\mathbf{3 g}(420 \mu \mathrm{~L}, 3.5 \mathrm{mmol}, 1$ equiv.) and 2,6-lutidine ($408 \mu \mathrm{~L}, 3.5 \mathrm{mmol}, 1$ equiv.) in dry THF (10 mL) was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes. Acetyl bromide
($260 \mu \mathrm{~L}, 3.5 \mathrm{mmol}, 1$ equiv.) was added dropwise and the solution was stirred at room temperature over 3 hours. The reaction was quenched by the addition of water $(10 \mathrm{~mL})$ and then extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$). The organic phases were combined and washed with brine (10 mL) and then dried over sodium sulfate. The solvent was removed under reduced pressure to give the corresponding alkene $\mathbf{3 e}$ as a pale-yellow oil ($363 \mathrm{mg}, 73 \%$ yield). The characterization data matched with the reported one. ${ }^{8}$

Hex-5-en-1-yl 2-(adamantan-1-yl)acetate (3f)

$3 f$

In a two-neck round-bottomed flask, purged under argon, a solution of 1 -adamantaneacetic acid ($583 \mathrm{mg}, 3 \mathrm{mmol}, 1$ equiv.), 5 -hexen-1-ol $\mathbf{3 g}(540 \mu \mathrm{~L}, 4.5 \mathrm{mmol}, 1.5$ equiv.), 4-(dimethylamino)pyridine (73 $\mathrm{mg}, 0.6 \mathrm{mmol}, 0.2$ equiv.) and N, N^{\prime}-dicyclohexylcarbodiimide ($928 \mu \mathrm{~L}, 4.5 \mathrm{mmol}, 1.5$ equiv.) in dry DCM ($6 \mathrm{~mL}, 0.5 \mathrm{M}$) was stirred at room temperature overnight. The reaction mixture was then filtered to remove the urea derivative and washed with DCM (20 mL). The filtrate was washed with $\mathrm{HCl} 1 \mathrm{M}(20 \mathrm{~mL})$, water and $\mathrm{NaHCO}_{3}(5 \% \mathrm{w} / \mathrm{v})$, respectively. The organic phase was dried over sodium sulfate and the solvent was removed under reduced pressure. The residue was then purified by flash column chromatography (cyclohexane/ethyl acetate) to give the corresponding alkene $\mathbf{3 f}$ as a pale-yellow oil ($620 \mathrm{mg}, 75 \%$ yield).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, CDCl $\left._{3}\right) \delta 5.79$ (ddt, $\left.J=16.9,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.05-4.9(\mathrm{~m}, 2 \mathrm{H}), 4.04$ (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.11-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 2 \mathrm{H}), 1.94(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.68(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.64(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.61(\mathrm{t}, J=3.0 \mathrm{~Hz}, 8 \mathrm{H}), 1.51-1.41(\mathrm{~m}$, 2H); ${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 172.04$ (s), 138.50 (s), 114.90 (s), 63.96 (s), 49.18 (s), 42.55 (s), $36.88(\mathrm{~s}), 33.40(\mathrm{~s}), 32.86(\mathrm{~s}), 28.76(\mathrm{~s}), 28.27(\mathrm{~s}), 25.44(\mathrm{~s})$; HRMS (ESI, positive mode) calculated for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 299.1982$, found: 299.1981.

1-(hex-5-en-1-yloxy)octane (3h)

3h

In a two-neck round-bottomed flask, purged under argon, a solution of 5-hexen-1-ol $3 \mathrm{~g}(420 \mu \mathrm{~L}, 3.5 \mathrm{mmol}, 1$ equiv.) and 1-bromooctane ($610 \mu \mathrm{~L}, 3.5$ mmol, 1 equiv.) in dry THF (14 mL) was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes. Sodium hydride ($170 \mathrm{mg}, 4.2 \mathrm{mmol}, 1.2$ equiv.) was added portion-wise and the solution was heated up to reflux and stirred overnight. The reaction was quenched by the addition of ammonium chloride (10 mL) and then extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The organic phases were combined and washed with brine (10 mL) and then dried over sodium sulfate. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (cyclohexane/ethyl acetate) to give the corresponding alkene $\mathbf{3 h}$ as a pale-yellow oil ($494 \mathrm{mg}, 67 \%$ yield). The characterization data matched with the reported one. ${ }^{9}$

Tert-butyl(hex-5-en-1-yloxy)dimethylsilane (3i)

$3 i$

In a two-neck round-bottomed flask, purged under argon, a solution of 5-hexen-1-ol $\mathbf{3 g}$ ($360 \mu \mathrm{~L}, 3 \mathrm{mmol}, 1$ equiv.), triethylamine ($836 \mu \mathrm{~L}, 6 \mathrm{mmol}, 2$ equiv.) in dry THF ($6 \mathrm{~mL}, 0.5 \mathrm{M}$) was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes. tert-
butyldimethylchlorosilane ($543 \mathrm{mg}, 3.6 \mathrm{mmol}, 1.2$ equiv.) was added and the solution was stirred at room temperature overnight. The reaction was quenched by the addition of water (20 mL) and then extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The organic phases were combined and washed with brine (20 mL) and then dried over sodium sulfate. The solvent was removed under reduced pressure and residue was purified by flash column chromatography (cyclohexane/ethyl acetate) to give the corresponding alkene $\mathbf{3 i}$ as a colorless oil ($643 \mathrm{mg}, 80 \%$ yield).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 5.81(\mathrm{ddt}, J=16.9,10.2,6.7,1 \mathrm{H}), 5.04-4.90(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.95-0.85(\mathrm{~m}, 9 \mathrm{H}), 0.08-$ 0.01 (m, 6H); ${ }^{13} \mathbf{C - N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right.$) $\delta 139.06$ (s), 114.50 (s), 63.12 (s), $33.70(\mathrm{~s}), 32.46$ (s), 26.13 (s), 25.32 (s), $18.52(\mathrm{~s}),-5.13(\mathrm{~s})$; it was not possible to measure the HRMS (ESI, positive mode) of compound 3 i due to its poor tendency to ionize. The characterization data matched with the reported one. ${ }^{10}$

(Hex-5-en-1-ylsulfonyl)benzene (3j)

3j

In a two-neck round-bottomed flask, purged under argon, a mixture of 6-bromo-1-hexene $\mathbf{3 m}$ ($260 \mu \mathrm{~L}, 2 \mathrm{mmol}, 1$ equiv.), sodium benzenesulfinate ($391 \mathrm{mg}, 2.4 \mathrm{mmol}, 1.2$ equiv.) tetrabutylammonium iodide ($74 \mathrm{mg}, 0.2$ mmol, 0.1 equiv.) in dry DMF (2 mL) was heated up to $60^{\circ} \mathrm{C}$ and stirred over 5 hours. The reaction was quenched by the addition of brine $(5 \mathrm{~mL})$ and then extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$). The organic phases were combined and washed with brine (5 mL) and then dried over sodium sulfate. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (cyclohexane/ethyl acetate) to give the corresponding alkene $\mathbf{3} \mathbf{j}$ as a colorless oil ($369 \mathrm{mg}, 81 \%$ yield). The characterization data matched with the reported one. ${ }^{11}$

2-(hex-5-en-1-yl)isoindoline-1,3-dione (3k)

3k

In a two-neck round-bottomed flask, purged under argon, a mixture of 6-chloro-1-hexene $3 n(400 \mu \mathrm{~L}, 3 \mathrm{mmol}, 1$ equiv.), potassium phthalimide ($610 \mathrm{mg}, 3.3 \mathrm{mmol}, 1.1$ equiv.) and potassium iodide $(50 \mathrm{mg}, 0.3 \mathrm{mmol}$, 0.1 equiv.) in dry DMF (5 mL) was heated up to $90^{\circ} \mathrm{C}$ and stirred overnight. The reaction was quenched by the addition of water (10 mL) and then extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The organic phases were combined and washed with KOH 0.2 M $(10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$ and then dried over sodium sulfate. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (cyclohexane/ethyl acetate) to give the corresponding alkene $3 \mathbf{k}$ as a pale-yellow oil (480 mg , 69% yield). The characterization data matched with the reported one. ${ }^{12}$

1-(1-(hex-5-en-1-yl)-1H-indol-3-yl)ethan-1-one (3I)

In a two-neck round-bottomed flask, purged under argon, a mixture of 3acetylindole ($478 \mathrm{mg}, 3 \mathrm{mmol}, 1$ equiv.), 6-bromo-1-hexene $\mathbf{3 m}(481 \mu \mathrm{~L}$, $3.6 \mathrm{mmol}, 1.2$ equiv.), and potassium hydroxide ($202 \mathrm{mg}, 3.6 \mathrm{mmol}, 1.2$ equiv.) in dry DMF ($6 \mathrm{~mL}, 0.5 \mathrm{M}$) was heated up to $70^{\circ} \mathrm{C}$ and stirred over

3 hours. The reaction was quenched by the addition of water (10 mL) and then extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The organic phases were combined and washed with brine $(20 \mathrm{~mL})$ and then dried over sodium sulfate. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (cyclohexane/ethyl acetate) to give the corresponding alkene 31 as a pale-yellow oil (675 mg , 93% yield).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.41-8.35(\mathrm{~m}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}$, $2 \mathrm{H}), 5.82-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.04(\mathrm{~m}$, 2H), 1.95-1.82 (m, 2H), 1.50-1.38 (m, 2H); ${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 193.04$ (s), 137.89 (s), 136.84 (s$), 134.84(\mathrm{~s}), 126.438 \mathrm{~s}), 123.27(\mathrm{~s}), 122.69(\mathrm{~s}), 122.54$ (s$), 117.02$ (s), 115.36 (s$)$, 109.90 (s), 47.03 (s), 33.23 (s), 29.33 (s), 27.69 (s), 26.15 (s); HRMS (ESI, positive mode) calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{Na}]^{+}: 264.1359$, found: 264.1358 .

B.2. PREPARATION OF α-IODO SULFONES

B.2.1. Synthesis of $\mathbf{4 a - d}$ and $4 \mathrm{f}-\mathrm{i}$

STEP 1, according to a modified literature procedure. ${ }^{13}$ A mixture of thiol $\mathbf{S 1}(10 \mathrm{mmol}, 1$ equiv.), Oxone ($25 \mathrm{mmol}, 2.5$ equiv.), $\mathrm{KCl}(10 \mathrm{mmol}, 1$ equiv.) and water (30 mL) was vigorously stirred at room temperature for 2 hours. The aqueous phase was extracted with ethyl acetate ($4 \times 50 \mathrm{~mL}$). The combined organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude product was purified by flash column chromatography (cyclohexane) affording the desired product $\mathbf{S 2}(\mathrm{R}=\mathrm{Cl}: 90 \%$ yield, $\mathrm{R}=$ cyclohexyl: 83% yield). The characterization data matched with the reported one.

STEP 2, according to a literature procedure. ${ }^{14}$ The corresponding sulfonyl chloride $\mathbf{S 2}(7 \mathrm{mmol}$, 1 equiv.) was dissolved in water (25 mL). Sodium sulfite ($11.2 \mathrm{mmol}, 1.6$ equiv.) and sodium bicarbonate ($11.2 \mathrm{mmol}, 1.6$ equiv.) were added and the reaction mixture was refluxed for 3 hours. Water was evaporated and ethanol was added to the residue. The suspension was heated for 10 minutes, cooled and filtered. This procedure was repeated twice using the residue of the filtration. The ethanol fractions were combined, and the solvent was evaporated under reduced pressure. Sodium sulfinate $\mathbf{S 3}$ was used without any further purification $(\mathrm{R}=\mathrm{F}: 93 \%, \mathrm{R}=\mathrm{Cl}: 92 \%$ yield, $\mathrm{R}=\mathrm{Br}: 88 \%$ yield, $\mathrm{R}=$ cyclohexyl: 75% yield, $\mathrm{R}=$ naphthalenyl: 72% yield). The characterization data matched with the reported one.

STEP 3, according to a literature procedure. ${ }^{14}$ A solution of sodium sulfinate $\mathbf{~ S 3 ~ (~} 5 \mathrm{mmol}, 1$ equiv.) in DMF ($20 \mathrm{~mL}, 0.25 \mathrm{M}$) was stirred at room temperature for 15 minutes. Diiodomethane ($6 \mathrm{mmol}, 1.2$ equiv.) was added dropwise, and the solution was heated up to $80^{\circ} \mathrm{C}$ and stirring was continued over 17 hours. The reaction was quenched by the addition of water (100 mL). The solution was then transferred to a separatory funnel and extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The organic phases were combined and washed with brine $(50 \mathrm{~mL})$, saturated solution of sodium thiosulfate $(50 \mathrm{~mL})$ and then dried over sodium sulfate before concentration in vacuo. The residue
was purified by flash column chromatography (cyclohexane/ethyl acetate) to afford the desired α-iodo sulfone $\mathbf{4 a} \mathbf{a}$.

Characterization Data

(Iodomethyl)sulfonyl)benzene (4a)

4a

4a was synthesized according to the general procedure B.2.1 from sodium benzenesulfinate ($821 \mathrm{mg}, 5 \mathrm{mmol}$). The final α-iodo sulfone $\mathbf{4 a}$ was obtained as a white solid ($1.24 \mathrm{~g}, 88 \%$ yield).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.98(\mathrm{dt}, J=8.5,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{dt}, J=8.0$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 136.09$ (s), 134.66 (s$), 129.47$ (s), 129.11 (s), 16.84 (s). The characterization data matched with the reported one. ${ }^{14}$

1-((Iodomethyl)sulfonyl)-4-methylbenzene (4b)

4b was synthesized according to the general procedure B.2.1 from sodium 4methylbenzenesulfinate ($891 \mathrm{mg}, 5 \mathrm{mmol}$). The final α-iodo sulfone $\mathbf{4 b}$ was obtained as a white solid ($1.20 \mathrm{~g}, 81 \%$ yield).
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$) $\delta 7.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H})$, $2.46(\mathrm{~s}, 3 \mathrm{H})$. The characterization data matched with the reported one. ${ }^{14}$

1-fluoro-4-((iodomethyl)sulfonyl)benzene (4c)

${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.04-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}$ ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 167.59$ (s), 165.02 (s), 132.07 (d), 116.85 (d), 16.58 (s); ${ }^{19}$ F-NMR (376 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta-101.70(\mathrm{~m}, 1 \mathrm{~F})$; HRMS (ESI, positive mode) calculated for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{FIO}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 322.9009$, found: 332.9010 .

1-chloro-4-((iodomethyl)sulfonyl)benzene (4d)

${ }^{1} \mathbf{H}-N M R\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 141.56$ (s), 134.47 (s), 130.64 (s), 129.82 (s), 16.51 (s); HRMS (ESI, positive mode) calculated for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{ClIO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 338.8714$, found: 338.8713 .

Iodo(methylsulfonyl)methane (4f)

4f was synthesized according to the general procedure B.2.1 from sodium methanesulfinate ($510 \mathrm{mg}, 5 \mathrm{mmol}$). The final α-iodo sulfone $\mathbf{4 f}$ was obtained as a white solid ($746 \mathrm{mg}, 68 \%$ yield).
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{\mathbf{3}}$) $\delta 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H})$. The characterization data matched with the reported one. ${ }^{14}$

((Iodomethyl)sulfonyl)cyclohexane (4g)

4 g
$\mathbf{4 g}$ was synthesized according to the general procedure B.2.1 from cyclohexanethiol ($1.22 \mathrm{~mL}, 10 \mathrm{mmol}$). The final α-iodo sulfone $\mathbf{4 g}$ was obtained as a white solid ($504 \mathrm{mg}, 35 \%$ yield).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 4.30(\mathrm{~s}, 2 \mathrm{H}), 3.35(\mathrm{tt}, J=12.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.13$ (dd, $J=19.3,14.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{qd}, J=$ $12.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.40-1.14 (m, 3H); ${ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right.$) $\delta 58.64$ (s), 25.25 (s), 24.95 (s), $10.60(\mathrm{~s})$; HRMS (ESI, positive mode) calculated for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{IO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 310.9573$, found: 310.9574. The characterization data matched with the reported one. ${ }^{15}$

1-bromo-4-((iodomethyl)sulfonyl)benzene (4h)

4h

4h was synthesized according to the general procedure B.2.1 from 4bromobenzenesulfonyl chloride ($1.79 \mathrm{~g}, 7 \mathrm{mmol}$). The final α-iodo sulfone $\mathbf{4 h}$ was obtained as a white solid ($902 \mathrm{mg}, 50 \%$ yield).
${ }^{1} \mathbf{H}-N M R\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.52(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{~s}$, 2H); ${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 135.05$ (s), 132.84 (s), 130.69 (s), 130.25 (s), 15.41 (s); HRMS (ESI, positive mode) calculated for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{BrIO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 382.8209$, found: 382.8215. The characterization data matched with the reported one. ${ }^{16}$

1-((iodomethyl)sulfonyl)naphthalene (4i)

$4 i$
$\mathbf{4 i}$ was synthesized according to the general procedure B.2.1 from naphthalene1 -sulfonyl chloride ($1.59 \mathrm{~g}, 7 \mathrm{mmol}$). The final α-iodo sulfone $\mathbf{4 i}$ was obtained as a white solid ($631 \mathrm{mg}, 38 \%$ yield).
 $\mathrm{Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=15.6,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.65$ (s, 2H); ${ }^{13} \mathbf{C}$-NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 136.11$ (s), 134.23 (s), 132.24 (s), 130.77 (s), 129.57 (s), 129.22 (s), 128.99 (s), 127.31 (s), 124.41 (s$), 123.63$ (s$), 17.27$ (s); HRMS (ESI, positive mode) calculated for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{IO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 354.9260 , found: 354.9263 .

B.2.2. Synthesis of the secondary α-iodo sulfones 4 e and 4 j

STEP 1, according to a modified literature procedure. ${ }^{14}$ To a solution of commercially available 3-chloro butanone $\mathbf{S 5}$ ($5 \mathrm{mmol}, 1$ equiv.) in DMF ($10 \mathrm{~mL}, 0.5 \mathrm{M}$) was added the sodium sulfinate $\mathbf{S 4}(5 \mathrm{mmol}, 1$ equiv.) in one portion. The reaction mixture was stirred at room temperature for 24 hours. The reaction was quenched by the addition of water $(50 \mathrm{~mL})$, the mixture was extracted with ethyl acetate ($3 \times 35 \mathrm{~mL}$), dried over sodium sulfate and the solvent was removed under
reduced pressure. The corresponding adduct $\mathbf{S 6}$ was used without any further purification $(\mathrm{R}=$ phenyl: 85% yield, $\mathrm{R}=4$-fluorophenyl: 82% yield).

STEP 2, according to a modified literature procedure. ${ }^{14}$ To a dioxane-water $(1: 1,0.5 \mathrm{M})$ solution of the starting material $\mathbf{S 6}$ ($2.5 \mathrm{mmol}, 1$ equiv.) and iodine ($10 \mathrm{mmol}, 4$ equiv.) in the presence of potassium iodide ($20 \mathrm{mmol}, 8$ equiv.), 1 M solution of NaOH is added under stirring at room temperature until discoloration of the excess of iodine occurred. After 20 minutes stirring, the reaction mixture was diluted with water and extracted with DCM ($3 \times 20 \mathrm{~mL}$). The final α-iodo sulfones $\mathbf{4 e}$ and $\mathbf{4 j}$ were used without any further purification.

Characterization Data

1-fluoro-4-((1-iodoethyl)sulfonyl)benzene (4e)

4e was synthesized according to the general procedure B.2.2 from sodium 4fluorobenzenesulfinate ($911 \mathrm{mg}, 5 \mathrm{mmol}$). The final α-iodo sulfone 4 e was obtained as a white solid ($385 \mathrm{mg}, 49 \%$ yield).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.02-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 2 \mathrm{H}), 5.00(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.10(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathbf{F}$-NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-101.96(\mathrm{~m}, 1 \mathrm{~F})$. The characterization data matched with the reported one. ${ }^{14}$

((1-iodoethyl)sulfonyl)benzene (4j)

4j
$\mathbf{4 j}$ was synthesized according to the general procedure B.2.2 from sodium benzenesulfinate ($821 \mathrm{mg}, 5 \mathrm{mmol}$). The final α-iodo sulfone $\mathbf{4 j}$ was obtained as a white solid ($376 \mathrm{mg}, 51 \%$ yield).
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.97-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.52$ $(\mathrm{m}, 2 \mathrm{H}), 5.05-4-97(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=7.1,3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(101 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 134.55(\mathrm{~s})$, 134.27 (s), 130.05 (s), 129.08 (s), 35.04 (s), 22.46 (s); HRMS (ESI, positive mode) calculated for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{IO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 318.9260$, found: 318.9259 .

B.2.3. Synthesis of the phenyl α-iodo sulfone $4 k$

STEP 1, according to a modified literature procedure. ${ }^{14}$ A solution of 4-fluorobenzenethiol $\mathbf{S 7}$ (10 mmol, 1 equiv., 1.07 mL) and benzyl bromide $\mathbf{S 8}(10.5 \mathrm{mmol}, 1.05$ equiv., 1.25 mL$)$ in toluene $(10 \mathrm{~mL})$ was added to a solution containing $\mathrm{NaOH}(17 \mathrm{mmol}, 1.7$ equiv., 680 mg$)$ and $\mathrm{Bu}_{4} \mathrm{NI}(0.3$ mmol, 0.03 equiv., 111 mg) in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The biphasic system was stirred vigorously during 16 hours at room temperature. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, the combined organic phases were washed with $\mathrm{NaOH}(20 \mathrm{~mL}, 1 \mathrm{M})$ and brine $(50 \mathrm{~mL})$ and then dried over sodium sulfate before concentration in vacuo. The residual $\mathbf{S 9}$ was used without any further purification $(2.1 \mathrm{~g}, 96 \%$ yield).

STEP 2, according to a modified literature procedure. ${ }^{14}$ A solution of the starting material $\mathbf{S 9}$ (5 mmol, 1 equiv., 1.09 g), FeCl_{3} ($0.18 \mathrm{mmol}, 0.04$ equiv., 29.2 mg), and $\mathrm{KMnO}_{4}(19 \mathrm{mmol}, 3.8$ equiv., 3 g) in acetonitrile ($20 \mathrm{~mL}, 0.25 \mathrm{M}$) was stirred at room temperature for 2 hours. The crude reaction mixture was filtered over celite before concentration in vacuo. The residue was purified by flash column chromatography (cyclohexane/ethyl acetate) affording the desired product S10 as a white solid ($725 \mathrm{mg}, 58 \%$ yield).

STEP 3, according to a modified literature procedure. ${ }^{14}$ The starting material $\mathbf{S 1 0}(2.5 \mathrm{mmol}, 1$ equiv., 625 mg) was placed in a two necked round-bottom flask and dissolved with 14 mL of dry DMF at room temperature under argon. To this solution was added sodium hydride ($10 \mathrm{mmol}, 4$ equiv., 400 mg of a 60% dispersion in mineral oil). A temperature of $25^{\circ} \mathrm{C}$ was maintained constant while stirring the solution. In the meanwhile, the color changed from colorless to yellow. After 10 minutes, the solution was transferred via cannula to a solution of iodine ($2.5 \mathrm{mmol}, 1$ equiv., 635 mg) in 4 mL of dry DMF under argon. The resulting mixture was poured into 80 mL of water and the precipitate was collected and recrystallized from acetone to give the final compound 4 k ($267 \mathrm{mg}, 28 \%$ yield).

Characterization Data

1-fluoro-4-((iodo(phenyl)methyl)sulfonyl)benzene (4k)

4k was synthesized according to the general procedure B.2.3 from 4-

4k fluorobenzenethiol ($1.07 \mathrm{~mL}, 10 \mathrm{mmol}$). The final α-iodo sulfone $\mathbf{4 k}$ was obtained as a pale-yellow solid ($267 \mathrm{mg}, 28 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.61-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.24$
$-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.00(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H})$. The characterization data matched with the reported one. ${ }^{14}$

B.3. PREPARATION OF THE PRE-PHOTOCATALYST 6e

Pre-photocatalyst 6e was prepared though the following procedure: a 20 mL Schlenk tube was charged with the α-iodo sulfone $\mathbf{4 a}(282 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv.), phenol $\mathbf{6 d}(583 \mathrm{mg}, 3 \mathrm{mmol}, 3$ equiv.), DBU ($449 \mu \mathrm{~L}, 3 \mathrm{mmol}, 3$ equiv.). To this mixture was then added acetonitrile (8 mL ; $\left.[4 a]_{0}=0.125 \mathrm{M}\right)$. The reaction mixture was thoroughly degassed via 3 cycles of freeze-pumpthaw, and the vessel was refilled with argon, sealed with parafilm, and placed into a photoreactor $(\lambda=450 \mathrm{~nm})$. The temperature was kept at around $30^{\circ} \mathrm{C}$ by using a fan. Stirring was maintained for 16 hours, and then the irradiation was stopped. The reaction mixture was then quenched with an aqueous solution of $\mathrm{HCl}(5 \mathrm{~mL}, 0.5 \mathrm{M})$. The reaction was extracted with ethyl acetate (3×10 mL). The volatiles were removed in vacuo and the residue was purified by column chromatography (hexane/EtOAc 7:3) to give the product $\mathbf{6 e}$ as a white solid ($142 \mathrm{mg}, 41 \%$ yield).

Characterization Data
 methyl 5-acetyl-2-hydroxy-3-((phenylsulfonyl)methyl)benzoate (6e)

$6 e$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 11.39(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.01(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.51$ $-7.44(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C - N M R}(\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 195.5,170.1,163.6,138.4,138.3,134.1,131.9,129.1$ (x2), 128.7 (x2), 128.6, 117.5, 112.4, 55.6, 53.1, 26.4. HRMS (ESI, positive mode) calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 349.0740$, found 349.0721.

C. GENERAL PROCEDURE FOR THE PHOTO-ORGANOCATALYTIC ATRA REACTIONS BETWEEN OLEFINS AND α-IODO SULFONES

A 10 mL Schlenk tube was charged with the α-iodo sulfone $4(0.3 \mathrm{mmol}, 1.5$ equiv.), phenol $\mathbf{6 e}$ ($0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$), sodium ascorbate ($\mathrm{NaAsc}, 0.05 \mathrm{mmol}, 25 \mathrm{~mol} \%$), DBU ($0.04 \mathrm{mmol}, 20$ $\mathrm{mol} \%$), and the appropriate olefin 3 ($0.2 \mathrm{mmol}, 1$ equiv.). To this mixture was then added acetonitrile and water in a $3: 1$ ratio $\left(300 \mu \mathrm{~L}, 100 \mu \mathrm{~L}\right.$ respectively; $\left.[3]_{0}=0.50 \mathrm{M}\right)$. The reaction mixture was thoroughly degassed via 3 cycles of freeze-pump-thaw, and the vessel was refilled with argon, sealed with parafilm, and placed into a photoreactor $(\lambda=450 \mathrm{~nm})$. The temperature was kept at around $30^{\circ} \mathrm{C}$ by using a fan. Stirring was maintained for the indicated time (generally 8-24 hours), and then the irradiation was stopped. The reaction mixture was then quenched with an aqueous solution of $\mathrm{HCl}(5 \mathrm{~mL}, 0.5 \mathrm{M})$. The reaction was extracted with ethyl acetate (3×10 mL). The volatiles were removed in vacuo and the residue was purified by column chromatography (hexane/EtOAc) to give the ATRA products 5 in the stated yield.

Characterization Data

((3-iodoheptyl)sulfonyl)benzene (5a)

5a was synthesized according to the general procedure \mathbf{C} from (iodomethyl)sulfonyl)benzene $\mathbf{4 a}(84.6 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), phenol $\mathbf{6 e}(13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, sodium ascorbate $(9.9 \mathrm{mg}, 0.05 \mathrm{mmol}$, $25 \mathrm{~mol} \%)$, DBU ($6 \mu \mathrm{l}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and 1-hexene 3a ($25.0 \mu \mathrm{l}$, $0.2 \mathrm{mmol}, 1$ equiv.). Reaction time: 8 hours. The final product $\mathbf{5 a}$ was obtained as a colorless oil ($60.0 \mathrm{mg}, 82 \%$ yield).
${ }^{1} \mathbf{H - N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.97-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 2 \mathrm{H}), 4.12-$ $4.01(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{ddd}, J=14.0,9.9,5.6,1 \mathrm{H}), 3.21(\mathrm{ddd}, J=13.9,10.0,5.7,1 \mathrm{H}), 2.28-2.09(\mathrm{~m}$, $2 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.16(\mathrm{~m}, 4 \mathrm{H}), 0.93-0.86(\mathrm{~m}$, 3H); ${ }^{13} \mathbf{C}-$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 139.19$ (s), 134.06 (s), 129.57 (s), 128.14 (s), 56.72 (s),
40.39 (s), 35.08 (s), 33.25 (s), 31.62 (s), 21.95 (s), 14.03 (s); HRMS (ESI, positive mode) calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{IO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 389.0046$, found: 389.0043 .

((3-iodoundecyl)sulfonyl)benzene (5b)

5b was synthesized according to the general procedure \mathbf{C} from (iodomethyl)sulfonyl)benzene $\mathbf{4 a}(84.6 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), phenol 6e ($13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$), sodium ascorbate ($9.9 \mathrm{mg}, 0.05 \mathrm{mmol}, 25 \mathrm{~mol} \%$), DBU ($6 \mu \mathrm{l}, 0.04 \mathrm{mmol}$, $20 \mathrm{~mol} \%$) and 1 -decene $\mathbf{3 b}$ ($38.0 \mu \mathrm{l}, 0.2 \mathrm{mmol}, 1$ equiv.). Reaction time: 8 hours. The final product $\mathbf{5 b}$ was obtained as a colorless oil ($65.8 \mathrm{mg}, 78 \%$ yield).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.97-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 2 \mathrm{H}), 4.11-$ $4.01(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{ddd}, J=13.9,10.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.90-$ $1.78(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{ddt}, J=12.3,8.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.18(\mathrm{~m}, 11 \mathrm{H}), 0.87$ ($\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 139.17$ (s), 134.04 (s), 129.55 (s$), 128.12$ (s), 56.70 (s), 40.66 (s), 35.17 (s), 33.24 (s), 31.93 (s), 29.48 (s), 29.46 (s), 29.30 (s), 29.79 (s), 22.77 (s), 14.24 (s); HRMS (ESI, positive mode) calculated for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{IO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 423.0849$, found: 423.0859 .

((4-cyclohexyl-3-iodobutyl)sulfonyl)benzene (5c)

5c was synthesized according to the general procedure \mathbf{C} from (iodomethyl)sulfonyl)benzene $\mathbf{4 a}(84.6 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), phenol $\mathbf{6 e}(13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, sodium ascorbate $(9.9 \mathrm{mg}$, $0.05 \mathrm{mmol}, 25 \mathrm{~mol} \%$), DBU ($6 \mu \mathrm{l}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and allylcyclohexane $\mathbf{3 c}(31.0 \mu \mathrm{l}, 0.2 \mathrm{mmol}, 1$ equiv.). Reaction time: 8 hours. The final product $\mathbf{5 c}$ was obtained as a colorless oil ($59.3 \mathrm{mg}, 73 \%$ yield).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.96-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{ddd}, J=8.7,2.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.56$ $(\mathrm{m}, 2 \mathrm{H}), 4.13$ (ddd, $J=13.6,8.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{ddd}, J=14.0,10.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ (ddd, $J=14.0,10.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{ddd}, J=14.3,9.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.55$ $(\mathrm{m}, 4 \mathrm{H}), 1.53-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.05(\mathrm{~m}, 4 \mathrm{H}), 1.04-0.90(\mathrm{~m}, 1 \mathrm{H}), 0.84-0.69(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 139.16$ (s), 134.04 (s), 129.55 (s), 128.13 (s), 56.67 (s), 48.15 (s$), 37.55$ (s$)$, 33.54 (s), 33.28 (s), 32.91 (s), 31.97 (s), 26.50 (s$), 26.18$ (s$), 26.00$ (s$)$; HRMS (ESI, positive mode) calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{IO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 429.0356$, found: 429.0368 .

(1-iodo-3-(phenylsulfonyl)propyl)cyclooctane (5d)

5d

5d was synthesized according to the general procedure \mathbf{C} from (iodomethyl)sulfonyl)benzene $\mathbf{4 a}(84.6 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), phenol $\mathbf{6 e}(13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, sodium ascorbate ($9.9 \mathrm{mg}, 0.05 \mathrm{mmol}$, $25 \mathrm{~mol} \%$), DBU ($6 \mu \mathrm{l}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and allylcyclohexane 3d ($30.6 \mu \mathrm{l}, 0.2 \mathrm{mmol}, 1$ equiv.). Reaction time: 8 hours. The final product 5d was obtained as a colorless oil ($37.8 \mathrm{mg}, 45 \%$ yield).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.96-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.54(\mathrm{~m}, 2 \mathrm{H}), 4.08$ (dt, $J=10.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{ddd}, J=13.9,9.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3-07(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.07(\mathrm{~m}$, 2H), 1.78-1.29 (m, 15H); ${ }^{13} \mathbf{C}-\mathbf{N M R ~ (1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 139.28$ (s), 134.04 (s), 129.56 (s),
128.07 (s), 57.03 (s), 48.58 (s), 44.33 (s), 34.35 (s), 32.01 (s), 30.68 (s), 26.69 (s), 26.55 (s), 26.50 (s), 26.02 (s), 25.92 (s); HRMS (ESI, positive mode) calculated for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{IO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 443.0512 , found: 443.0495 .

5-iodo-7-(phenylsulfonyl)heptyl acetate (5e)

5e was synthesized according to the general procedure \mathbf{C} from (iodomethyl)sulfonyl)benzene $\mathbf{4 a}(84.6 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), phenol $\mathbf{6 e}(13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$), sodium ascorbate (9.9 $\mathrm{mg}, 0.05 \mathrm{mmol}, 25 \mathrm{~mol} \%)$, $\mathrm{DBU}(6 \mu \mathrm{l}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and 5-hexenyl acetate $\mathbf{3 e}$ ($32.2 \mu 1,0.2 \mathrm{mmol}, 1$ equiv.). Reaction time: 16 hours. The final product $5 \mathbf{e}$ was obtained as a colorless oil ($72.1 \mathrm{mg}, 85 \%$ yield).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta$ 7.93-7.90 (m, 2H), 7.68 (ddd, $\left.J=6.7,3.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.62-7.56$ $(\mathrm{m}, 2 \mathrm{H}), 4.11-4.01(\mathrm{~m}, 3 \mathrm{H}), 3.43-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{ddd}, J=13.9,9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.09$ $(\mathrm{m}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.34(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(\mathbf{1 0 1}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 171.25$ (s), 139.15 (s), 134.09 (s), 129.58 (s), 128.10 (s), 64.06 (s$), 56.43$ (s$)$, 40.14 (s), 34.36 (s), 33.27 (s), 27.78 (s), 26.04 (s), 21.13 (s); HRMS (ESI, positive mode) calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{IO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 447.0097, found: 447.0097.

5-iodo-7-(phenylsulfonyl)heptyl 2-(adamantan-1-yl)acetate (5f)

$5 f$

5f was synthesized according to the general procedure
C from (iodomethyl)sulfonyl)benzene $\mathbf{4 a}(84.6 \mathrm{mg}, 0.3$ mmol, 1.5 equiv.), phenol $\mathbf{6 e}(13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20$ mol\%), sodium ascorbate ($9.9 \mathrm{mg}, 0.05 \mathrm{mmol}, 25$ $\mathrm{mol} \%)$, $\operatorname{DBU}(6 \mu \mathrm{l}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ and hex-5-en-1-yl 2-(adamantan-1-yl)acetate $\mathbf{3 f}$ (55.5 $\mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv.). Reaction time: 16 hours. The final product $\mathbf{5 f}$ was obtained as a colorless oil ($44.6 \mathrm{mg}, 43 \%$ yield).
 $3.96(\mathrm{~m}, 3 \mathrm{H}), 3.37$ (ddd, $J=14.1,9.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ (ddd, $J=14.0,9.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-$ $2.11(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.52(\mathrm{~m}, 16 \mathrm{H}), 1.48-$ $1.40(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 172.00$ (s$), 139.17$ (s$), 134.09$ (s), 129.59 (s), 128.12 (s), 63.56 (s), 56.67 (s$), 49.15$ (s$), 42.58$ (s$), 40.18$ (s), 36.88 (s$), 34.46$ (s$), 33.33$ (s$), 32.91$ (s), 28.75 (s), 27.94 (s), 26.25 (s); HRMS (ESI, positive mode) calculated for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{IO}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 581.1193$, found: 581.1193 .

5-iodo-7-(phenylsulfonyl)heptan-1-ol (5g)

5 g was synthesized according to the general procedure \mathbf{C} from (iodomethyl)sulfonyl)benzene $\mathbf{4 a}(84.6 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), phenol $6 \mathbf{6}(13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$), sodium ascorbate $(9.9 \mathrm{mg}$, $0.05 \mathrm{mmol}, 25 \mathrm{~mol} \%)$, $\mathrm{DBU}(6 \mu \mathrm{l}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ and 5 -hexen-

1 -ol $\mathbf{3 g}(24.0 \mu 1,0.2 \mathrm{mmol}, 1$ equiv.). Reaction time: 8 hours. The final product 5 g was obtained as a colorless oil ($52.0 \mathrm{mg}, 68 \%$ yield $)$.
${ }^{1} \mathbf{H}-N M R\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.94-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.55(\mathrm{~m}, 2 \mathrm{H}), 4.12-$ $4.04(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{ddd}, J=14.0,9.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{ddd}, J=13.9,9.7$,
$5.9 \mathrm{~Hz}, 1 \mathrm{H}) 2.28-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{qd}, J=9.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.52(\mathrm{~m}$, 4H), 1.50-1.39 (m, 1H); ${ }^{13} \mathbf{C - N M R ~ (1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 139.10$ (s), 134.08 (s), 129.57 (s), 128.10 (s), $62.56(\mathrm{~s}), 56.62(\mathrm{~s}), 40.32(\mathrm{~s}), 34.70(\mathrm{~s}), 33.24(\mathrm{~s}), 31.72(\mathrm{~s}), 25.88(\mathrm{~s})$; HRMS (ESI, positive mode) calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{IO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 404.9992, found: 404.9991.
((3-iodo-7-(octyloxy)heptyl)sulfonyl)benzene (5h)

3h

5h was synthesized according to the general procedure \mathbf{C} from (iodomethyl)sulfonyl)benzene $\mathbf{4 a}$ ($84.6 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), phenol $\mathbf{6 e}$ (13.9 $\mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$), sodium ascorbate (9.9 $\mathrm{mg}, 0.05 \mathrm{mmol}, 25 \mathrm{~mol} \%)$, $\mathrm{DBU}(6 \mu \mathrm{l}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and 1-(hex-5-en-1-yloxy)octane $\mathbf{3 h}$ $(43.0 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv.). Reaction time: 8 hours. The final product $\mathbf{5 h}$ was obtained as a colorless oil ($67.2 \mathrm{mg}, 68 \%$ yield).
${ }^{1} \mathbf{H}-N M R\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.94-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 4.07$ $(\mathrm{tt}, J=9.0,4.6,1 \mathrm{H}), 3.43-3.32(\mathrm{~m}, 5 \mathrm{H}), 3.21(\mathrm{ddd}, J=13.9,9.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.09(\mathrm{~m}, 2 \mathrm{H})$, $1.92-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{dd}, J=12.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.48-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{dd}, J=18.1,13.5$ $\mathrm{Hz}, 14 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 139.18$ (s), 134.06 (s), 129.58 (s$), 128.15(\mathrm{~s}), 71.26(\mathrm{~s}), 70.48(\mathrm{~s}), 56.72(\mathrm{~s}), 40.50(\mathrm{~s}), 33.27(\mathrm{~s}), 31.99(\mathrm{~s}), 29.90(\mathrm{~s}), 29.62(\mathrm{~s})$, 29.43 (s), 28.95 (s), 26.39 (s), 26.35 (s), 22.82 (s), 14.27 (s); HRMS (ESI, positive mode) calculated for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{IO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 517.1244$, found: 517.1245.

tert-butyl((5-iodo-7-(phenylsulfonyl)heptyl)oxy)dimethylsilane (5i)

$5 i$
$\mathbf{5 i}$ was synthesized according to the general procedure \mathbf{C} from (iodomethyl)sulfonyl)benzene $\mathbf{4 a}(84.6 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), phenol $6 \mathbf{e}(13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, sodium ascorbate ($9.9 \mathrm{mg}, 0.05 \mathrm{mmol}, 25 \mathrm{~mol} \%$), DBU ($6 \mu \mathrm{l}, 0.04$ mmol, $20 \mathrm{~mol} \%$) and tert-butyl(hex-5-en-1-yloxy)dimethylsilane $\mathbf{3 i}$ ($42.9 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv.). Reaction time: 16 hours. The final product $5 \mathbf{i}$ was obtained as a colorless oil (73.5 mg , 74\% yield).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.92(\mathrm{dt}, J=8.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.56(\mathrm{~m}$, $2 \mathrm{H}), 4.06(\mathrm{qd}, J=13.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{ddd}, J=14.0,9.7,5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.21$ (ddd, $J=13.9,9.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}) 2.27-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{ddd}, J=13.1,11.5,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.68(\mathrm{ddd}, J=14.2,9.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.55-1.35(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}-$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 139.18$ (s), 134.06 (s), 129.57 (s), 128.14 (s$), 62.86$ (s$), 56.73$ (s$)$, 40.46 (s), 34.98 (s), 33.31 (s), 31.92 (s), 26.12 (s), 26.05 (s), 18.48 (s), -5.12 (s); HRMS (ESI, positive mode) calculated for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{IO}_{3} \mathrm{SSi}[\mathrm{M}+\mathrm{Na}]^{+}$: 519.0857 , found: 519.0854.

(3-iodoheptane-1,7-diyldisulfonyl)dibenzene (5j)

5 j
$\mathbf{5 j}$ was synthesized according to the general procedure \mathbf{C} from (iodomethyl)sulfonyl)benzene $4 \mathbf{4 a}(84.6 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), phenol 6e ($13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$), sodium ascorbate ($9.9 \mathrm{mg}, 0.05 \mathrm{mmol}, 25 \mathrm{~mol} \%$), DBU ($6 \mu 1,0.04 \mathrm{mmol}$, $20 \mathrm{~mol} \%$) and (hex-5-en-1-ylsulfonyl)benzene $\mathbf{3 j}$ ($36.9 \mathrm{mg}, 0.2 \mathrm{mmol}$, 1 equiv.). Reaction time: 8 hours. The final product $\mathbf{5 j}$ was obtained as a colorless oil ($101.9 \mathrm{mg}, 68 \%$ yield).
${ }^{1} \mathbf{H - N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.95-7.87(\mathrm{~m}, 4 \mathrm{H}), 7.72-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 4 \mathrm{H}), 4.00$ (qd, $J=13.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{ddd}, J=14.0,9.2,6.4,1 \mathrm{H}), 3.08(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H})$ 2.24-2.00 (m, 2H), 1.87-1.59 (m, 5H), $1.45(\mathrm{ddd}, J=16.0,10.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 139.19$ (s), 139.12 (s), 134.14 (s), 133.94 (s), 129.62 (s), 129.51 (s$), 128.17$
 (ESI, positive mode) calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{IO}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 528.9975, found: 528.9975.

2-(5-iodo-7-(phenylsulfonyl)heptyl)isoindoline-1,3-dione (5k)

5k
$\mathbf{5 k}$ was synthesized according to the general procedure \mathbf{C} from (iodomethyl)sulfonyl)benzene $\mathbf{4 a}(84.6 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), phenol 6e ($13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$), sodium ascorbate ($9.9 \mathrm{mg}, 0.05 \mathrm{mmol}, 25 \mathrm{~mol} \%$), DBU ($6 \mu \mathrm{l}, 0.04$ $\mathrm{mmol}, 20 \mathrm{~mol} \%$) and 2-(hex-5-en-1-yl)isoindoline-1,3-dione $\mathbf{3 k}(45.8 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv.). Reaction time: 16 hours. The final product $\mathbf{5 k}$ was obtained as a colorless oil ($74.6 \mathrm{mg}, 73 \%$ yield).
${ }^{1} \mathbf{H}-N M R\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.94-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.66$ (dt, $J=2.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{ddd}, J=13.4,8.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 3.41-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{ddd}, J=14.0,9.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}) 2.24-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.81$ $(\mathrm{m}, 1 \mathrm{H}), 1.78-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.32(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C - N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 168.35$ (s), 138.95 (s), 133.95 (s), 133.90 (s), 132.04 (s), 129.42 (s), 127.98 (s), 123.22 (s), 56.42 (s), 39.73 (s$), 37.43(\mathrm{~s}), 34.08(\mathrm{~s}), 33.18(\mathrm{~s}), 27.55(\mathrm{~s}), 26.57(\mathrm{~s})$; HRMS (ESI, positive mode) calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{INO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 534.0206, found: 534.0207.

1-(1-(5-iodo-7-(phenylsulfonyl)heptyl)-1H-indol-3-yl)ethan-1-one (5I)

5

51 was synthesized according to the general procedure \mathbf{C} from (iodomethyl)sulfonyl)benzene $\mathbf{4 a}(84.6 \mathrm{mg}, 0.3$ mmol, 1.5 equiv.), phenol $6 \mathbf{e}(13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20$ $\mathrm{mol} \%$), sodium ascorbate ($9.9 \mathrm{mg}, 0.05 \mathrm{mmol}, 25 \mathrm{~mol} \%$), DBU ($6 \mu \mathrm{l}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and 1-(1-(hex-5-en-1-yl)1 H -indol-3-yl)ethan-1-one $31(48.3 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv.). Reaction time: 24 hours. The final product $5 \mathbf{l}$ was obtained as a colorless oil (67.0 mg , 64\% yield).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.40-8.34(\mathrm{~m}, 1 \mathrm{H}), 7.89(\mathrm{ddd}, J=7.3,3.9,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~s}$, $1 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.25(\mathrm{~m}, 3 \mathrm{H}), 4.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.02$ (ddd, $J=13.3,9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{ddd}, J=14.0,9.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H})$, 2.24-2.11 (m, 2H), 1.98-1.78 (m, 3H), 1.77-1.52 (m, 3H), $1.43(\mathrm{tdd}, J=13.1,10.1,5.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 193.10$ (s), 139.09 (s), 136.77 (s), 134.78 (s), 134.12 (s), 129.59 (s), 126.518 s), 123.44 (s), 122.86 (s), 122.70 (s$), 117.24$ (s$), 109.83$ (s$), 56.50$ (s$), 46.89$ (s$), 39.94$ (s), 34.02 (s), 33.33 (s$), 28.99(\mathrm{~s}), 27.83(\mathrm{~s}), 26.97(\mathrm{~s})$; HRMS (ESI, positive mode) calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 546.0570$, found: 524.0751.

5-iodo-7-(phenylsulfonyl)heptan-2-one (5m)

5m

5m was synthesized according to the general procedure \mathbf{C} from (iodomethyl)sulfonyl)benzene $\mathbf{4 a}(84.6 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), phenol $\mathbf{6 e}(13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, sodium ascorbate $(9.9 \mathrm{mg}$, $0.05 \mathrm{mmol}, 25 \mathrm{~mol} \%$), DBU ($6 \mu 1,0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and 5-hexen-2-one 30 (23.2μ, $0.2 \mathrm{mmol}, 1$ equiv.). Reaction time: 24 hours. The final product 5 m was obtained as a colorless oil ($45.6 \mathrm{mg}, 60 \%$ yield).
${ }^{1} \mathbf{H}-N M R\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.93-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 2 \mathrm{H})$, $4.14-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{ddd}, \mathrm{J}=15.3,10.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{ddd}, \mathrm{J}=17.1,14.3,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.73-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.91(\mathrm{~m}, 2 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{C N M R}(\mathbf{1 0 1 ~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 206.96$ (s), 139.08 (s), 134.10 (s), 129.59 (s$), 128.15$ (s$), 56.51$ (s$), 43.33$ (s$), 34.05$ (s), 33.97 (s), $33.66(\mathrm{~s}), 30.28(\mathrm{~s})$; HRMS (ESI, positive mode) calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{IO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 402.9835, found: 402.9836 .
((7-chloro-3-iodoheptyl)sulfonyl)benzene (5n)

5n

5n was synthesized according to a modified version of the general procedure \mathbf{C} from (iodomethyl)sulfonyl)benzene $\mathbf{4 a}(56.4 \mathrm{mg}, 0.2$ mmol, 1 equiv.), phenol $\mathbf{6 e}(13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, sodium ascorbate ($9.9 \mathrm{mg}, 0.05 \mathrm{mmol}, 25 \mathrm{~mol} \%$), DBU ($6 \mu \mathrm{l}, 0.04 \mathrm{mmol}, 20$ $\mathrm{mol} \%$) and 6 -chloro-1-hexene $\mathbf{3 n}(53.0 \mu \mathrm{l}, 0.4 \mathrm{mmol}, 2$ equiv.). Reaction time: 24 hours. The final product 5 n was obtained as a colorless oil $(46.1 \mathrm{mg}, 58 \%$ yield $)$.
${ }^{1} \mathbf{H}-N M R\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.95-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 2 \mathrm{H})$, $4.07(\mathrm{tt}, \mathrm{J}=8.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{ddd}, \mathrm{J}=14.0,9.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ (ddd, J = 13.9, 9.6, 5.9 Hz, 1H), 2.29-2.12 (m, 2H), $1.93-1.61$ (m, 6H). ${ }^{\mathbf{1 3}} \mathbf{C}$-NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 139.17$ (s), 134.11 (s), 129.61 (s), 128.14 (s), 56.65 (s), 44.64 (s), 39.86 (s), 34.08 (s), 33.29 (s), 31.66 (s), 26.92 (s).; HRMS (ESI, positive mode) calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ClIO}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 422.9653$, found: 422.9654.

1-((3-iodoheptyl)sulfonyl)-4-methylbenzene (5p)

5p was synthesized according to the general procedure \mathbf{C} from 1-((iodomethyl)sulfonyl)-4-methylbenzene $\mathbf{4 b}(88.8 \mathrm{mg}, 0.3 \mathrm{mmol}$, 1.5 equiv.), phenol $\mathbf{6 e}(13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, sodium ascorbate ($9.9 \mathrm{mg}, 0.05 \mathrm{mmol}, 25 \mathrm{~mol} \%$), DBU ($6 \mu \mathrm{l}, 0.04 \mathrm{mmol}$, $20 \mathrm{~mol} \%$) and 1 -hexene $\mathbf{3 a}(25.0 \mu \mathrm{l}, 0.2 \mathrm{mmol}, 1$ equiv.). Reaction time: 24 hours. The final product 5p was obtained as a colorless oil ($31.9 \mathrm{mg}, 42 \%$ yield).
 $3.34(\mathrm{ddd}, J=14.0,9.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{ddd}, J=13.9,9.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.07$ $(\mathrm{m}, 2 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{qd}, J=9.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.21(\mathrm{~m}, 3 \mathrm{H})$, $0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (101 MHz, CDCl ${ }_{3}$) $\delta 145.06$ (s), 136.21 (s), 130.16 (s$), 128.14$
 positive mode) calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{IO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 403.0199$, found: 403.0204.

1-fluoro-4-((3-iodoheptyl)sulfonyl)benzene (5q)

$\mathbf{5 q}$ was synthesized according to the general procedure \mathbf{C} from 1-fluoro-4-((iodomethyl)sulfonyl)benzene $4 \mathrm{c}(90.0 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), phenol $6 \mathbf{6 e}(13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$), sodium ascorbate ($9.9 \mathrm{mg}, 0.05 \mathrm{mmol}, 25 \mathrm{~mol} \%$), DBU ($6 \mu \mathrm{l}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and 1-hexene $\mathbf{3 a}$ ($25.0 \mu \mathrm{l}, 0.2 \mathrm{mmol}, 1$ equiv.). Reaction time: 24 hours. The final product $\mathbf{5 q}$ was obtained as a colorless oil ($49.9 \mathrm{mg}, 65 \%$ yield).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 7.97-7.90 (m, 2H), 7.30-7.23 (m, 2H), $3.37(\mathrm{tt}, J=8.9,4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.37$ (ddd, $J=14.0,9.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.21 (ddd, $J=13.9,10.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.27-2.08$ (m, 2H) 1.92-1.79 (m, 1H), 1.67 (ddd, $J=19.6,10.0,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.21(\mathrm{~m}$, 2H), 0.93-0.86 (m, 3H); ${ }^{13}$ C-NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 167.20$ (s), 164.64 (s), 135.09 (d), 130.93 (d), 116.87 (s), 116.65 (s), 56.74 (s), 40.23 (s), 34.75 (s), 33.10 (s), 31.46 (s), -21.77 (s), -13.85 (s);); ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-103.06$ (m, 1F); HRMS (ESI, positive mode) calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{FIO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 406.9948$, found: 406.9954.

1-bromo-4-((3-iodoheptyl)sulfonyl)benzene (5r)

$5 r$
$\mathbf{5 r}$ was synthesized according to the general procedure \mathbf{C} from 1-bromo-4-((iodomethyl)sulfonyl)benzene $\mathbf{4 h}(108.0 \mathrm{mg}, 0.3 \mathrm{mmol}$, 1.5 equiv.), phenol $6 \mathbf{e}(13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, sodium ascorbate ($9.9 \mathrm{mg}, 0.05 \mathrm{mmol}, 25 \mathrm{~mol} \%$), DBU ($6 \mu \mathrm{l}, 0.04 \mathrm{mmol}$, $20 \mathrm{~mol} \%$) and 1 -hexene $\mathbf{3 a}$ ($25.0 \mu \mathrm{l}, 0.2 \mathrm{mmol}, 1$ equiv.). Reaction time: 24 hours. The final product $\mathbf{5 0}$ was obtained as a colorless oil ($38.3,43 \%$ yield).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.82-7.69(\mathrm{~m}, 4 \mathrm{H}), 4.06(\mathrm{tt}, J=8.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{ddd}, J=$ $14.0,10.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.20$ (ddd, $J=14.0,10.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.08$ (m, 2H), 1.91-1.79 (m, $1 \mathrm{H}), 1.67$ (qd, $J=10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.22(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 3H); ${ }^{13}$ C-NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 138.16$ (s , 132.92 (s), 129.70 (s), 129.47 (s), 56.79 (s), 40.39 (s), $34.84(\mathrm{~s}), 33.20(\mathrm{~s}), 31.63(\mathrm{~s}), 21.94$ (s$), 14.03$ (s); HRMS (ESI, positive mode) calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{BrIO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 466.9147$, found: 466.9142 .

1-chloro-4-((3-iodoheptyl)sulfonyl)benzene (5s)

5s

5s was synthesized according to the general procedure \mathbf{C} from 1-chloro-4-((iodomethyl)sulfonyl)benzene $\mathbf{4 d}(94.5 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), phenol 6e ($13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$), sodium ascorbate ($9.9 \mathrm{mg}, 0.05 \mathrm{mmol}, 25 \mathrm{~mol} \%$), DBU ($6 \mu \mathrm{l}, 0.04 \mathrm{mmol}, 20$ $\mathrm{mol} \%$) and 1-hexene 3a ($25.0 \mu 1,0.2 \mathrm{mmol}, 1$ equiv.). Reaction time: 24 hours. The final product 5 s was obtained as a colorless oil ($36.9,46 \%$ yield).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.89-7.81 (m, 2H), 7.61-7.52 (m, 2H), 4.18-3.91 (m, 1H), 3.37 (ddd, $J=14.0,10.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.20$ (ddd, $J=14.0,10.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.04$ (m, 2H), 1.85 (dtd, $J=14.4,9.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{qd}, J=10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.20(\mathrm{~m}$, $3 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 140.88$ (s), 137.83 (s), 129.92 (s), 129.64 (s), 56.81 (s), 40.38 (s$), 34.86$ (s$), 33.21$ (s$), 31.62$ (s), 21.94 (s$), 14.02$ (s$)$; HRMS (ESI, positive mode) calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ClIO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 422.9653$, found: 422.9659 .

1-((3-iodooctyl)sulfonyl)naphthalene (5t)

$5 t$

5t was synthesized according to the general procedure \mathbf{C} from 1((iodomethyl)sulfonyl)naphthalene $\mathbf{4 i}(99.3 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), phenol 6e ($13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$), sodium ascorbate $(9.9 \mathrm{mg}$, $0.05 \mathrm{mmol}, 25 \mathrm{~mol} \%)$, $\mathrm{DBU}(6 \mu \mathrm{l}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and 1-hexene 3a ($25.0 \mu 1,0.2 \mathrm{mmol}, 1$ equiv.). Reaction time: 24 hours. The final product 5t was obtained as a colorless oil (32.7, 38\% yield).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.74(\mathrm{dd}, J=8.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{dd}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{ddd}, J=8.5,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.57$ (m, 2H), 4.11-4.01 (m, 1H), 3.62-3.51 (m, 1H), 3.43 (ddd, $J=14.0,9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.11$ $(\mathrm{m}, 2 \mathrm{H}), 1.89-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.36 .16(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right.$) $\delta 135.56$ (s), 134.41 (s), 134.16 (s), 130.76 (s$), 129.49$ (s), 129.04 (s$), 128.99$ (s), 127.29 (s$), 124.55$ (s), 124.15 (s$), 56.23$ (s$), 40.36$ (s$), 35.20$ (s$), 33.27$ (s), 31.57 (s), 21.92 (s), 14.01 (s); HRMS (ESI, positive mode) calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{IO}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 439.0199$, found: 439.0195.
((4-iodooctan-2-y))sulfonyl)benzene (5u)

$5 u$
$\mathbf{5 u}$ was synthesized according to the general procedure \mathbf{C} from ((1iodoethyl)sulfonyl)benzene $\mathbf{4 j}$ ($88.8 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), phenol $6 \mathbf{e}(13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$), sodium ascorbate $(9.9 \mathrm{mg}, 0.05$ $\mathrm{mmol}, 25 \mathrm{~mol} \%$), DBU ($6 \mu \mathrm{l}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and 1-hexene 3a ($25.0 \mu \mathrm{l}, 0.2 \mathrm{mmol}, 1$ equiv.). Reaction time: 24 hours. The final product $5 \mathbf{u}$ was obtained as a colorless oil ($70.0 \mathrm{mg}, 92 \%$ yield).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta[7.92-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 2 \mathrm{H})]$ minor + major, 4.31 (ddd, $J=13.2,9.1,4.6,1 \mathrm{H})$ minor, 3.99-3.89 ($\mathrm{m}, 1 \mathrm{H}$) major, 3.46-3-31 (m, 2 H) minor + major, 2.46 (ddd, $J=15.8,7.3,4.6,1 \mathrm{H}$) minor, 2.35 (ddd, $J=14.8,11.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}$) major, $[1.90-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{qd}, J=9.9,5.0,2 \mathrm{H}), 1.51-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.21(\mathrm{~m}, 7 \mathrm{H}), 0.88$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})]$ minor + major; ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta[137.28$ (s), 133.99 (s), 133.95 (s), $129.38(\mathrm{~s}), 129.35(\mathrm{~s}), 129.02(\mathrm{~s}), 129.00(\mathrm{~s})]$ minor + major, 60.86 (s) major, 60.34 (s) minor, 41.55 (s) minor, 41.05 (s) major, 40.28 (s) major, 39.05 (s) major, 34.49 (s$)$ minor, 31.68 (s) major, 31.45 (s) minor, [21.99 (s), 15.70 (s), 14.05 (s), 14.02 (s)] minor+major; HRMS (ESI, positive mode) calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{IO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 403.0199 , found: 403.0198.

1-fluoro-4-((4-iodooctan-2-yl)sulfonyl)benzene (5v)

5v

5v was synthesized according to the general procedure \mathbf{C} from 1-fluoro-4-((1-iodoethyl)sulfonyl)benzene $\mathbf{4 e}(94.2 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), phenol $6 \mathbf{e}(13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, sodium ascorbate ($9.9 \mathrm{mg}, 0.05 \mathrm{mmol}, 25 \mathrm{~mol} \%$), DBU ($6 \mu \mathrm{l}, 0.04 \mathrm{mmol}$, $20 \mathrm{~mol} \%$) and 1-hexene $\mathbf{3 a}(25.0 \mu 1,0.2 \mathrm{mmol}, 1$ equiv). Reaction time: 24 hours. The final product $\mathbf{5 v}$ was obtained as a colorless oil ($52.6 \mathrm{mg}, 66 \%$ yield).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta[7.95-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 2 \mathrm{H})]$ minor + major, 4.34 (ddd, $J=13.2,9.1,4.6,1 \mathrm{H})$ minor, 3.99-3.88 (m, 1H) major, 3.46-3.30 (m, 1H) minor + major, 2.45 (ddd, $J=15.8,7.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}$) minor, 2.33 (ddd, $J=14.7,11.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}$) major, $[2.00-1.96$
$(\mathrm{m}, 1 \mathrm{H}), 1.85-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.27(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{dd}, J=6.9,1.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{dt}, J=7.2$, $2.2 \mathrm{~Hz}, 3 \mathrm{H})]$ minor + major; ${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta[165.34$ (s), 164.79 (s), 133.58 (d), 133.36 (d), 131.93 (d), 131.83 (d), 116.86 (s), 116.85 (s), 116.63 (s)] minor + major, 61.08 (s) major, 60.56 (s) minor, 41.52 (s) minor, 41.08 (s) minor, 40.30 (s) major, 39.13 (s) major, 36.41 (s) minor, $34.34(\mathrm{~s})$ major, $[31.69(\mathrm{~s}), 31.49(\mathrm{~s}), 22.00(\mathrm{~s}), 15.80(\mathrm{~s}), 14.05(\mathrm{~s}), 14.03(\mathrm{~s}), 12.09$ (s)] minor + major; ${ }^{\mathbf{1 9}} \mathbf{F}$-NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-103.26 (m, 1F) minor, $-103.13(\mathrm{~m}, 1 \mathrm{~F})$ major; HRMS (ESI, positive mode) calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{FIO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 421.0105$, found: 421.0109.

3-iodo-1-(methylsulfonyl)heptane (5w)

5w was synthesized according to the general procedure \mathbf{C} from iodo(methylsulfonyl)methane $\mathbf{4 f}(66.0 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), phenol $\mathbf{6 e}(13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$), sodium ascorbate ($9.9 \mathrm{mg}, 0.05 \mathrm{mmol}$, $25 \mathrm{~mol} \%$), DBU ($6 \mu \mathrm{l}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and the 1 -hexene 3a (25.0 $\mu 1,0.2 \mathrm{mmol}, 1$ equiv.). Reaction time: 24 hours. The final product 5 w was obtained as a colorless oil ($37.1 \mathrm{mg}, 75 \%$ yield).
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 4.19-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{ddd}, J=13.9,9.9,5.7,1 \mathrm{H}), 3.19-3.07$ $(\mathrm{m}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.38-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{ddd}, J=14.8,10.1,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.58-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR (101 MHz, CDCl ${ }_{3}$) $\delta 55.28(\mathrm{~s}), 41.21$ (s), 40.47 (s$), 35.19(\mathrm{~s}), 32.87(\mathrm{~s}), 31.63(\mathrm{~s}), 21.97(\mathrm{~s}), 14.03(\mathrm{~s})$; HRMS (ESI, positive mode) calculated for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{IO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 326.9886$, found: 326.9889 .

3-iodo-1-(methylsulfonyl)heptane (5x)

5x was synthesized according to the general procedure \mathbf{C} from ((iodomethyl)sulfonyl)cyclohexane $\mathbf{4 g}(86.4 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.), phenol 6 e ($13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$), sodium ascorbate $(9.9 \mathrm{mg}$, $0.05 \mathrm{mmol}, 25 \mathrm{~mol} \%$), DBU ($6 \mu \mathrm{l}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and the $1-$ hexene 3a ($25.0 \mu 1,0.2 \mathrm{mmol}, 1$ equiv.). Reaction time: 24 hours. The final product 5x was obtained as a colorless oil ($70.5,95 \%$ yield).
${ }^{1} \mathbf{H}-N M R(400 ~ M H z, ~ C D C l ~ 3) ~ \$ 4.20-4.09(m, 1 H), 3.20(d d d, ~ J=13.5,9.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00$ (ddd, $J=13.5,10.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{tt}, J=12.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dddd}, J=28.1,22.7,9.4$, $6.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.00-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.44-1.18(\mathrm{~m}, 6 \mathrm{H}), 0.91$ ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), ${ }^{13} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathbf{C D C l}_{\mathbf{3}}\right.$) $\delta 61.52(\mathrm{~s}), 49.86(\mathrm{~s}), 40.52(\mathrm{~s}), 32.01(\mathrm{~s}), 31.62$ (s), 25.32 (s), 25.19 (s), 25.17 (s), $25.03(\mathrm{~s}), 21.95(\mathrm{~s}), 14.02$ (s); HRMS (ESI, positive mode) calculated for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{IO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 395.0512$, found: 395.0511 .

D. GENERAL PROCEDURE FOR THE ATRA REACTION IN MICROFLUIDIC CONDITIONS

The alkene (3a) ($500 \mu \mathrm{~L}, 4 \mathrm{mmol}, 1$ equiv.), the α-iodosulfone ($\mathbf{4 a}$) ($1.7 \mathrm{gr}, 6 \mathrm{mmol}, 1.5$ equiv.) and the pre-catalyst $6 \mathrm{e}(278.7 \mathrm{mg}, 0.8 \mathrm{mmol}, 0.2$ equiv, $20 \mathrm{~mol} \%)$ were introduced into a vial and dissolved in 8 mL of acetonitrile ($\mathrm{MeCN},[\mathbf{3 a}]_{0}=0.5 \mathrm{M}$). The mixture was degassed with Argon (Ar) for 5 minutes. Then, DBU ($120 \mu \mathrm{~L}, 0.8 \mathrm{mmol}, 0.2$ equiv, $20 \mathrm{~mol} \%$) was added to the vial under Ar atmosphere. The reaction mixture was connected to the flow setup (Figure S in Section A.2) and introduced in continuous-flow with a flow rate of $42 \mu \mathrm{~L} / \mathrm{min}$ (residence time, $\mathrm{t}_{\mathrm{R}}=5$ min). The crude was collected in a vial connected to the exit of the microreactor (collected volume $=8 \mathrm{~mL}$ ca.). To 7 mL of the crude were added 10 mL of a saturated solution of ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$, and the organic layer was extracted with dichloromethane (DCM) three times. The organic layer was then separated, dried over magnesium sulfate $\left(\mathrm{MgSO}_{4}\right)$ and filtered. The final residue was purified by flash column chromatography on silica gel (hexane/EtOAc 8:2) to afford the ATRA product 5a as a colorless oil (53% yield, $490 \mathrm{mg}, 1.8 \mathrm{mmol}$).

E. GENERAL PROCEDURE FOR THE RECOVERY AND REUSE OF THE PRECATALYST 6e

Benchmark reaction

All the reactions are independent runs where the pre-PC 6e has been reused after purification by extraction and filtration. The process has been developed as follow:
In the first run, 5 mL of reaction mixture composed by olefin $\mathbf{3 a}$ ($1 \mathrm{mmol}, 1$ equiv.), α-iodosulfone $4 \mathbf{a}(1.5 \mathrm{mmol}, 1.5$ equiv., 0.5 M in MeCN$)$, the pre-PC $\mathbf{6 e}(0.2 \mathrm{mmol}, 0.2$ equiv, $20 \mathrm{~mol} \%)$ and DBU ($0.2 \mathrm{mmol}, 0.2$ equiv., $20 \mathrm{~mol} \%$) was pumped into a MFP with a t_{R} of 5 min . To the crude reaction, the internal standard (trimethoxybenzene) was added, and the mixture was analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ inferring the NMR yield of the ATRA product 5a. Subsequently, the crude was basified with an aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and washed (x3) with $\mathrm{Et}_{2} \mathrm{O}$. The aqueous phase was then acidified with AcOH and extracted with EtOAc (x3). The organic phase was dried over MgSO_{4}, filtered and concentrate under vacuum. The crude 6e was then filtered on a pad of silica using a solution 6:4 hexane:EtOAc affording the pre-PC $\mathbf{6 e}$ in the stated yield (Figure S4).

Figure S4. Recovery and reuse of the pre-PC 6e in 5 independent runs.

F. SCREENING OF THE REACTION CONDITIONS

The following screening of the reaction conditions have been carried out by employing the commercially available disubstituted phenol $\mathbf{6 d}$ as pre-photocatalyst under blue light irradiation (450 nm).

Table S1. Screening of the concentration with respect to alkene 3a. Reactions were performed on 0.2

Entry	conc [M]	Yield 5a $^{\text {a }}$
$\mathbf{1}$	0.25	58%
$\mathbf{2}$	0.125	30%
$\mathbf{3}$	0.5	94%

Table S2. Screening of the role of the catalyst loading. Reactions were performed on 0.2 mmol scale. ${ }^{\text {a }}$ Yield determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis, using trichloroethylene as internal standard.

Table S3. Screening of the role of the solvent. Reactions were performed on 0.2 mmol scale. ${ }^{\text {a }}$ Yield determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis, using trichloroethylene as internal standard.

Table S4. Screening of the role of the reducing agents. Reactions were performed on 0.2 mmol scale. ${ }^{\text {a }}$ Yield determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis, using trichloroethylene as internal standard. NaAsc = sodium ascorbate.

The following screening experiments have been carried out by using a lower amount of $\mathbf{4 a}$ for being able to appreciate the different outcome in terms of reactivity.

Table S5. Screening of the role of the α-iodo sulfone amount. Reactions were performed on 0.2 mmol scale. ${ }^{\text {a Yield determined by }{ }^{1} \mathrm{H}-\mathrm{NMR} \text { analysis, using trichloroethylene as internal standard. NaAsc }=~=~=~}$ sodium ascorbate.

Entry	4a (equiv.)	NaAsc (mol\%)	Yield 5a $^{\text {a }}$
$\mathbf{1}$	2	25	$>99 \%$
$\mathbf{2}$	1.5	25	80%

Table S6. Screening of the role of the bases. Reactions were performed on 0.2 mmol scale. ${ }^{\text {a }}$ Yield determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis, using trichloroethylene as internal standard. NaAsc $=$ sodium ascorbate. $\mathrm{DBU}=1,5$-diazabiciclo(5.4.0) undec-7-ene. $\mathrm{TMG}=1,1,3,3$-tetramethylguanidine. DABCO $=1,4$-diazabicyclo[2.2.2]octane. $\mathrm{DBN}=1,5$-diazabicyclo(4.3.0)non-5-ene.

Entry	Base	NaAsc (mol\%)	Yield 5a $^{\text {a }}$
$\mathbf{1}$	DBU	25	80%
$\mathbf{2}$	TMG	25	80%
$\mathbf{3}$	DABCO	25	64%
$\mathbf{4}$	DBN	25	79%
$\mathbf{5}$	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	25	17%
$\mathbf{6}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	25	67%
$\mathbf{7}$	NaAsc	25	20%
$\mathbf{8}$	NaH	25	18%

G. UNSUCCESFULL SUBSTRATES

< 5% conversion

60% yield $^{[a]}$

< 5% conversion

$<5 \%$ conversion

< 5% conversion

< 5% conversion

complex mixture

complex mixture

complex mixture

< 5\% conversion

Figure S5. Unsuccessful substrates in the photochemical ATRA process. Conversions and yields determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis, using trichloroethylene as internal standard. [a] The corresponding product was not separable from the iodosulfone reagent 4a.

H. PRODUCT MANIPULATIONS

Azidation of 5a. STEP 1. To a round-bottom flask containing $\mathbf{5 a}$ (1 equiv) under N_{2}, it was added dry DMF (0.1 M) followed by sodium azide (2 equiv). The mixture was stirred vigorously at 70 ${ }^{\circ} \mathrm{C}$ for 16 hours. The reaction was quenched by adding an aqueous solution of $\mathrm{LiCl}(5 \% \mathrm{w} / \mathrm{v})$ and extracted with ethyl acetate (x3 times). The organic phases were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before concentration in vacuo. The mixture was purified by flash column chromatography (hexane/ethyl acetate 9:1) to give the product 8a in the stated yield.

Characterization Data

((3-azidoheptyl)sulfonyl)benzene (8a)

8a

8a was synthesized according to the abovementioned procedure from ((3-iodoheptyl)sulfonyl)benzene $\mathbf{5 a}(100 \mathrm{mg}, 0.27 \mathrm{mmol}, 1$ equiv.). The final product 8 (a was obtained as a colorless oil (74 mg, 96% yield).
${ }^{1} \mathbf{H}-N M R\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.94-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 2 \mathrm{H})$, $3.44-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.45$ (m, 2H), $1.43-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 139.13$
 (s), 14.01 (s); HRMS (ESI, positive mode) calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 304.1090, found: 304.1092.

STEP 2a. To a round-bottom flask containing $\mathbf{8 a}$ (1 equiv.) under N_{2}, it was added dry DCM (0.1 M) followed by phenylacetylene (1.1 equiv.), $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}$ (0.2 equiv.) and 2,6-lutidine (0.2 equiv). The mixture was stirred vigorously at room temperature for 16 hours. The reaction was quenched by adding water and extracted with DCM (x3 times). The organic phases were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before concentration in vacuo. The mixture was purified by flash column chromatography (hexane/ethyl acetate $8: 2$) to give the product $9 \mathbf{a}$ in the stated yield.

STEP 2 b . To a round-bottom flask containing $\mathbf{8 a}$ (1 equiv.) under N_{2}, it was added dry THF (0.1 $\mathrm{M})$ followed by triphenylphosphine (2 equiv.), and water (6 equiv.). The mixture was stirred vigorously at $50^{\circ} \mathrm{C}$ for 16 hours. The reaction mixture was concentrated in vacuo, then a saturated solution of potassium carbonate was added, and it was extracted with DCM (x3 times). The organic phases were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before concentration in vacuo. The mixture was purified by flash column chromatography (hexane/ethyl acetate 9:1) to give the product 10a in the stated yield.

Characterization Data

4-phenyl-1-(1-(phenylsulfonyl)heptan-3-yl)-1H-1,2,3-triazole (9a)

9a

9a was synthesized according to the abovementioned procedure (STEP 2a) from ((3-azidoheptyl)sulfonyl)benzene $\mathbf{8 a}(74 \mathrm{mg}, 0.26$ mmol, 1 equiv.). The final product 9 a was obtained as a white solid ($84 \mathrm{mg}, 84 \%$ yield).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.82(\mathrm{ddd}, J=7.2,2.9,1.3 \mathrm{~Hz}, 4 \mathrm{H})$, $7.78(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 1 \mathrm{H}), 4.69(\mathrm{tt}, J=9.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99$ (ddd, $J=14.2,8.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{ddd}, J=14.1,8.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.93$ (m, 1H), $1.88(\mathrm{ddd}, J=15.1,10.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.37-1.16(\mathrm{~m}, 3 \mathrm{H}), 1.14-1.00(\mathrm{~m}, 1 \mathrm{H}), 0.83(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right.$) $\delta 138.88$ (s$), 134.10$ (s$), 130.40(\mathrm{~s}), 129.55$ (s), 128.97 (s), 128.41 (s), 127.93 (s), 125.76 (s), 118.98 (s), 60.53 (s), 52.59 (s), 35.38 (s), 28.56 (s), $28.03(\mathrm{~s}), 22.19(\mathrm{~s}), 13.86(\mathrm{~s})$; HRMS (ESI, positive mode) calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 384.1740, found: 384.1744 .

4-phenyl-1-(1-(phenylsulfonyl)heptan-3-yl)-1H-1,2,3-triazole (10a)

10a

10a was synthesized according to the abovementioned procedure (STEP 2b) from ((3-azidoheptyl)sulfonyl)benzene 8a (74 mg, 0.26 mmol, 1 equiv.). The final product $\mathbf{1 0 a}$ was obtained as a colorless oil ($60 \mathrm{mg}, 88 \%$ yield).
${ }^{1} \mathbf{H}-N M R\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.93-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H})$, $3.29(\mathrm{ddd}, J=13.9,11.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{ddd}, J=13.9,11.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.72(\mathrm{~m}, 1 \mathrm{H})$, $1.93-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.34(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.20(\mathrm{~m}, 5 \mathrm{H}), 0.87(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C - N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 139.42$ (s), 133.73 (s), 129.38 (s), 128.11 (s), 53.64 (s), 50.25 (s), $38.14(\mathrm{~s}), 30.21(\mathrm{~s}), 28.25(\mathrm{~s}), 22.75(\mathrm{~s}), 14.12(\mathrm{~s})$; HRMS (ESI, positive mode) calculated for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 256.1366$, found: 256.1362 .

Thionation of 5a. In a two-neck round-bottomed flask, dried under argon, a solution of 4fluorobenzenethiol (1 equiv.) in dry THF $(0.25 \mathrm{M})$ was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes. Sodium hydride (1 equiv.) was added portion-wise, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hour. Then, $\mathbf{5 a}$ (1 equiv.) was added and the resulting solution was stirred at room temperature for 16 hours. The reaction was quenched by the addition of ammonium chloride and then extracted with ethyl acetate (x3 times). The organic phases were combined and washed with brine and then dried over sodium sulfate. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (cyclohexane/ethyl acetate) to give the corresponding thiol 11a in the stated yield.

3-((4-fluorophenyl)thio)heptyl benzenesulfinate (11a)

11a was synthesized according to the abovementioned procedure from ((3-iodoheptyl)sulfonyl)benzene $\mathbf{5 a}$ ($183 \mathrm{mg}, 0.5 \mathrm{mmol}, 1$ equiv.). The final product 11a was obtained as a colorless oil ($165 \mathrm{mg}, 90 \%$ yield).
${ }^{1} \mathbf{H}-N M R(400 ~ M H z, ~ C D C l ~ 3) ~ \delta ~ 7.90-7.86(m, 2 H), ~ 7.70-7.65(m, ~$ $1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.89(\mathrm{~m}, 2 \mathrm{H})$, $3.41-3.26(\mathrm{~m}, 2 \mathrm{H}), 2.99-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.86-$ $1.73(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.21(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{19} \mathbf{F}-\mathbf{N M R}$
($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) δ-113.36 (m, 1F); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right.$) $\delta 163.99$ (s), 161.52 (s), 139.17 (s), 136.07 (d, J = 8.2 Hz), 133.86 (s$), 129.48$ (s$), 128.21(\mathrm{~s}), 116.26(\mathrm{~d}, \mathrm{~J}=21.7 \mathrm{~Hz})$, 53.51 (s), 48.85 (s), 34.06 (s), 29.17 (s), 27.11 (s$), 22.53$ (s$), 14.07$ (s$)$; HRMS (ESI, positive mode) calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{FO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 389.1016 , found: 389.1018 .

I. MECHANISTIC INSIGHTS

I.1. CYCLIC VOLTAMMETRY MEASUREMENTS

Figure S6. Cyclic voltammogram for the phenolate $\mathbf{7 a}(5 \mathrm{mM})$, formed upon deprotonation of the phenol 6a (5 mM) with DBU (5 mM); in TBAPF_{6} in $\mathrm{CH}_{3} \mathrm{CN}(0.1 \mathrm{M})$. Scan rate: $0.1 \mathrm{~V} / \mathrm{s}$. Glassy carbon working electrode; $\mathrm{Ag} / \mathrm{AgCl}(3 \mathrm{M}, \mathrm{NaCl})$ reference electrode; Glassy carbon auxiliary electrode. Irreversible oxidation, $\mathrm{Ep}^{\mathrm{A}} \approx \mathrm{E}_{\mathrm{ox}}\left(7 \mathbf{a}^{+} / 7 \mathbf{a}\right)=+0.30 \mathrm{~V}$ vs SCE . $\mathrm{E}_{\mathrm{p}}{ }^{\mathrm{A}}$ refers to the anodic peak potential, while the $\mathrm{E}^{\text {ox }}$ value describes the electrochemical properties of $7 \mathbf{a}$.

Figure S7. Cyclic voltammogram for the phenolate 7b $(5 \mathrm{mM})$, formed upon deprotonation of the phenol $\mathbf{6 b}(5 \mathrm{mM})$ with $\mathrm{DBU}(5 \mathrm{mM})$; in TBAPF_{6} in $\mathrm{CH}_{3} \mathrm{CN}(0.1 \mathrm{M})$. Scan rate: $0.1 \mathrm{~V} / \mathrm{s}$. Glassy carbon working electrode; $\mathrm{Ag} / \mathrm{AgCl}(3 \mathrm{M}, \mathrm{NaCl})$ reference electrode; Glassy carbon auxiliary electrode. Irreversible oxidation, $\mathrm{Ep}^{\mathrm{A}} \approx \mathrm{E}_{\mathrm{ox}}\left(7 \mathbf{b}^{++} / \mathbf{7 b}\right)=+0.34 \mathrm{~V}$ vs $\mathrm{SCE} . \mathrm{E}_{\mathrm{p}}{ }^{\mathrm{A}}$ refers to the anodic peak potential, while the $\mathrm{E}^{\text {ox }}$ value describes the electrochemical properties of $7 \mathbf{b}$.

Figure S8. Cyclic voltammogram for the phenolate $\mathbf{7 c}(5 \mathrm{mM})$, formed upon deprotonation of the phenol $\mathbf{6 c}(5 \mathrm{mM})$ with DBU (5 mM); in TBAPF_{6} in $\mathrm{CH}_{3} \mathrm{CN}(0.1 \mathrm{M})$. Scan rate: $0.1 \mathrm{~V} / \mathrm{s}$. Glassy carbon working electrode; $\mathrm{Ag} / \mathrm{AgCl}(3 \mathrm{M}, \mathrm{NaCl})$ reference electrode; Glassy carbon auxiliary electrode. Irreversible oxidation, $\mathrm{Ep}^{\mathrm{A}} \approx \mathrm{E}_{\mathrm{ox}}\left(7 \mathbf{c}^{++} / 7 \mathbf{c}\right)=+0.50 \mathrm{~V}$ vs SCE. $\mathrm{E}_{\mathrm{p}}{ }^{\mathrm{A}}$ refers to the anodic peak potential, while the E^{ox} value describes the electrochemical properties of $7 \mathbf{c}$.

Figure S9. Cyclic voltammogram for the phenolate 7d $(5 \mathrm{mM})$, formed upon deprotonation of the phenol $\mathbf{6 d}(5 \mathrm{mM})$ with DBU $(5 \mathrm{mM})$; in TBAPF_{6} in $\mathrm{CH}_{3} \mathrm{CN}(0.1 \mathrm{M})$. Scan rate: $0.1 \mathrm{~V} / \mathrm{s}$. Glassy carbon working electrode; $\mathrm{Ag} / \mathrm{AgCl}(3 \mathrm{M}, \mathrm{NaCl})$ reference electrode; Glassy carbon auxiliary electrode. Irreversible oxidation, $\mathrm{Ep}^{\mathrm{A}} \approx \mathrm{E}_{\mathrm{ox}}\left(7 \mathbf{d}^{+} / 7 \mathbf{d}\right)=+0.65 \mathrm{~V}$ vs SCE. $\mathrm{E}_{\mathrm{p}}{ }^{\mathrm{A}}$ refers to the anodic peak potential, while the $\mathrm{E}^{\text {ox }}$ value describes the electrochemical properties of $\mathbf{7 d}$.

Figure S10. Cyclic voltammogram for the phenolate $\mathbf{7 e}(5 \mathrm{mM})$, formed upon deprotonation of the phenol 6e (5 mM) with DBU (5 mM); in TBAPF_{6} in $\mathrm{CH}_{3} \mathrm{CN}(0.1 \mathrm{M})$. Scan rate: $0.1 \mathrm{~V} / \mathrm{s}$. Glassy carbon working electrode; $\mathrm{Ag} / \mathrm{AgCl}(3 \mathrm{M}, \mathrm{NaCl})$ reference electrode; Glassy carbon auxiliary electrode. Irreversible oxidation, $\mathrm{Ep}^{\mathrm{A}} \approx \mathrm{E}_{\mathrm{ox}}\left(7 \mathbf{e}^{++} / 7 \mathbf{e}\right)=+0.74 \mathrm{~V}$ vs SCE. $\mathrm{E}_{\mathrm{p}}{ }^{\mathrm{A}}$ refers to the anodic peak potential, while the $\mathrm{E}^{\text {ox }}$ value describes the electrochemical properties of $\mathbf{7 e}$.

Figure S11. Cyclic voltammogram for 1,5-diazabiciclo(5.4.0)undec-7-ene (DBU, 5 mM) in TBAPF_{6} in $\mathrm{CH}_{3} \mathrm{CN}(0.1 \mathrm{M})$. Scan rate: $0.1 \mathrm{~V} / \mathrm{s}$. Glassy carbon working electrode; $\mathrm{Ag} / \mathrm{AgCl}(3 \mathrm{M}, \mathrm{NaCl})$ reference electrode; Glassy carbon auxiliary electrode. Irreversible oxidation, $\mathrm{Ep}^{\mathrm{A}} \approx \mathrm{E}_{\text {ox }}\left(\mathbf{D B U} \mathbf{U}^{+} / \mathbf{D B U}\right)=+1.19 \mathrm{~V}$ vs SCE. $\mathrm{E}_{\mathrm{p}}{ }^{\mathrm{A}}$ refers to the anodic peak potential, while the $\mathrm{E}^{\text {ox }}$ value describes the electrochemical properties of DBU.

I.2. DFT STUDIES

The DFT geometry optimizations were performed using M06-2x density functional ${ }^{17}$ in combination with the integral equation formalism of the polarizable continuum model (IEF-PCM) to take into account the effect of solvent $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$. The def2-TZVP basis set ${ }^{6}$ was used in the calculations. Frequencies were calculated in order to ensure that the species are actual relative minima of energy.
All DFT computations were carried out with the Gaussian 16 software package. ${ }^{18}$

I.3. QUANTUM YIELD MEASUREMENT

A ferrioxalate actinometry solution was prepared by following the Hammond variation of the Hatchard and Parker procedure outlined in Handbook of Photochemistry. ${ }^{19}$ Ferrioxalate actinometer solution measures the decomposition of ferric ions to ferrous ions, which are complexed by 1,10-phenanthroline (complete complexation takes about an hour), and monitored by UV/Vis absorbance at $510 \mathrm{~nm} .{ }^{20}$ The moles of iron-phenanthroline complex formed are related to moles of photons absorbed.

The following solutions were prepared and stored in the dark:

1. Potassium ferrioxalate solution: 589.5 mg of potassium ferrioxalate (commercially available from Alfa Aesar) and $278 \mu \mathrm{~L}$ of sulfuric acid (96%) were added to a 100 mL volumetric flask and filled to the mark with water (MilliQ grade).
2. Phenantroline solution: 0.2% by weight of $1,10-$ phenanthroline in water (200 mg in 100 mL volumetric flask).
3. Buffer solution: 4.94 g of NaOAc and 1 mL of sulfuric acid (96\%) were added to a 100 mL volumetric flask, and filled to the mark with water (MilliQ grade).
4. Model reaction solution: 1-hexene 3a (0.4 mmol), α-iodo sulfone $\mathbf{4 a}(0.6 \mathrm{mmol})$, the phenol catalyst $6 \mathbf{e}(0.08 \mathrm{mmol})$ and sodium ascorbate (0.1 mmol) were dissolved in acetonitrile (HPLC grade) and water (milliQ grade) in a $3: 1$ ratio ($600 \mu \mathrm{~L}$ and $200 \mu \mathrm{~L}$, respectively). Then, DBU $(0.08 \mathrm{mmol})$ was added.

The actinometry measurements were done as follows:
A. 456 nm LED: 1 mL of the actinometer solution was added to a quartz cuvette $(1=10 \mathrm{~mm})$. The actinometry solution (placed 1 cm away from the lamp) were irradiated with 3 W 456 nm LED for specified time intervals $(0,15,30,45,60)$ seconds. ${ }^{21}$
B. After irradiation all the actinometer solution was removed and placed in a 10 mL volumetric flask. 0.5 mL of 1,10 -phenanthroline solution and 2 mL of buffer solution was added to this flask and filled to the mark with water (MilliQ grade).
C. The UV-Vis spectra of actinometry samples were recorded for each time interval (Figure S13). The absorbance of the actinometry solution was monitored at 510 nm .

Figure S13. UV-Vis spectra of actinometry samples irradiated with 456 nm light for the indicated time intervals.
D. The moles of Fe^{2+} formed for each sample is determined using Beer's Law:

$$
\text { mmoles } F e^{2+}=\frac{V_{1} V_{3} \Delta A_{(510 \mathrm{~nm})}}{10^{3} V_{2} l \varepsilon_{(510 \mathrm{~nm})}}
$$

Equation S1. Lambert-Beer's law.
where V_{1} is the irradiated volume (1 mL), V_{2} is the aliquot of the irradiated solution taken for the determination of the ferrous ions (1 mL), V_{3} is the final volume after complexation with phenanthroline (10 mL), 1 is the optical path-length of the irradiation cell $(1 \mathrm{~cm}), \Delta \mathrm{A}_{(510 \mathrm{~nm})}$ the optical difference in absorbance between the irradiated solution and that taken in the dark, $\varepsilon_{(510 \mathrm{~mm})}$ is the molar extinction coefficient of the complex Fe(phen) $3^{2+}\left(11100 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$.
E. The moles of Fe^{2+} formed (N) are plotted as a function of time (t) (Figure S 14).

Figure S14. Moles of Fe^{2+} formed after irradiation with 456 nm light as a function of time.

The slope is a product of the photon flux (F) and the quantum yield for $\mathrm{Fe}^{2+}\left(\varphi \mathrm{Fe}^{2+}=1.13\right)$, since $\mathrm{F}=\mathrm{N} / \Phi \mathrm{Fe}^{2+} \mathrm{t}$. The F was determined to be $\mathbf{2 . 2 0} \cdot \mathbf{1 0}^{-8}$ einstein $\mathbf{s}^{\mathbf{- 1}}$.

Since the ferrioxalate actinometer absorbance at 456 nm is 0.12 , and inferior to 2 in both cases (if it is major than 2 at the wavelength used, it can be assumed that the entire incident light is absorbed), a correction factor (C) based on the fraction of light absorbed by the actinometer has to be considered to calculate the photon flux and the final quantum yield of the reaction (note that is also needed if the absorbance of the reaction under study at the optimized concentration is inferior to 2 at the wavelength used). Thus, according to the definition of quantum yield: ${ }^{20}$

$$
\Phi_{\mathrm{Fe}^{2+}}=\frac{\left(\frac{\delta_{\text {molesFe }}{ }^{2+}}{\delta_{\text {time }}}\right)}{F C_{\mathrm{Fe}^{2+}}} \rightarrow F=\frac{\left(\frac{\delta_{\text {molesFe }}{ }^{2+}}{\delta_{\text {time }}}\right)}{\Phi_{\mathrm{Fe}^{2+}} C_{\mathrm{Fe}^{2+}}} \quad C_{\mathrm{Fe}^{2+}}=\left[1-10^{-A(\lambda)}\right]
$$

Equation S2. Correlation between quantum yield equation and the correction factor.

The photon flux (F) previously found has to be divided by the appropriate correction factor C .
$456 \mathbf{n m}: \mathrm{C}=0.242$, calculated with $\mathrm{A}_{456 \mathrm{~nm}}=0.12$; corrected $\mathrm{F}=\mathbf{5 . 3 3} \cdot \mathbf{1 0} \mathbf{0}^{-9}$ einstein $\mathbf{s}^{\mathbf{- 1}}$.
F. The model reaction solution described at point 4 was transferred to a Schlenk tube and degassed via the freeze-pump-thaw technique (3 cycles). The degassed suspension was then transferred to a screw-cap quartz cuvette $(1=10 \mathrm{~mm})$ as a suspension, and irradiated using the same system as described in point \mathbf{A} (i.e. cuvette placed 1 cm away from the 3 W 456 nm LED). The moles of product formed were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis using trichloroethylene as internal standard. The moles of product formed per unit of time were related to the number of photons absorbed (Figure S15).

Figure S15. Moles of product formed after irradiation with 456 nm light as a function of the moles of emitted photons.

The absorbance of the reaction at the irradiation wavelength (456 nm) is $\mathrm{A}_{456 \mathrm{~mm}}=0.47$. The correction factor is $\mathrm{C}=0.66$ (see Equation S2). Therefore, by applying the correction factor (slope/C), the quantum yield (φ) is 1.7.

Note: All the components of the model reaction solution are not completely soluble in the optimized solvent system, and the formation of a biphasic system is observed during the irradiation period. This fact can result in the underestimation of the quantum yield value.

I.4. REDOX POTENTIAL OF THE PHOTOCATALYST 7e AND POSSIBLE EDA COMPLEX FORMATION

The redox potential of the excited phenolate $\left(\mathrm{E}_{7 \mathrm{Te}^{*}}\right)$ was estimated by means of the Rehm-Weller equation: ${ }^{22}$

$$
E_{7 e^{*}}^{0}=E_{6 e}^{0}-E_{00}
$$

where the redox potential of the ground state phenolate ($\mathrm{E}_{7 \mathrm{e}}{ }^{0}$) was determined by cyclic voltammetry measurements (+0.74 V vs SCE, Section I.1.). The excitation energy (E_{00}) of phenolate $7 \mathbf{e}$ was determined from the cross point between the absorption and the emission profile (378 nm , that corresponds to 3.28 eV , Figure S 16). ${ }^{23} \mathrm{As}$ a result, $\mathrm{E}_{7 \mathbf{e}^{00}}$ turned out to be $\mathbf{- 2 . 5 4 ~ V ~} \boldsymbol{v s}$ SCE. Thus, a single electron transfer (SET) between the excited phenolate 7e and iodo sulfone 4a could take place, according to the redox potential of this radical source (-1.4 V vs SCE). ${ }^{14}$

Figure S16. Normalized optical absorption spectrum (black line) and emission spectra (red line) of phenolate 7 e obtained by mixing phenol $\mathbf{6 e}$ and DBU . Recorded in $\mathrm{CH}_{3} \mathrm{CN}$ in quartz cuvettes (1 cm path). $[6 \mathrm{e}]=[\mathrm{DBU}]=5 \times 10^{-6} \mathrm{M}$.

Figure S17. Optical absorption spectrum of phenolate 7 e in the reaction conditions, obtained by mixing phenol $6 \mathbf{e}$ and DBU. Recorded in $\mathrm{CH}_{3} \mathrm{CN}$ in quartz cuvettes (1 cm path). [6e] $=[\mathrm{DBU}]=0.1 \mathrm{M}$.

Alternatively, the possible formation of an EDA complex between $7 \mathbf{e}$ and $\mathbf{4 a}$ in acetonitrile was evaluated by UV/Vis and NMR spectroscopy. In the first case, the optical absorption of the sole $\mathbf{7 e}$ resulted to be very close to that obtained from a mixture of $7 \mathbf{e}$ and $4 \mathbf{4 a}$, even in large excess of α-iodo sulfone $4 \mathbf{a}$ (Figure S 18).

Figure S18. Optical absorption spectrum of phenol $\mathbf{6 e}$ (blue line), phenolate 7 e (obtained by mixing phenol $\mathbf{6 e}$ and DBU), and various mixtures of $7 \mathbf{e}$ and $\mathbf{4 a}$ at increasing concentration of $\mathbf{4 a}$ (values in brackets within the legend). Recorded in $\mathrm{CH}_{3} \mathrm{CN}$ in quartz cuvettes (1 cm path). $[\mathbf{6 e}]=[\mathrm{DBU}]=1.5 \times 10^{-2} \mathrm{M} .[4 \mathbf{a}]=5 \mathrm{x}$ 10^{-3} to $3 \times 10^{-1} \mathrm{M}$.

Similarly, the diagnostic NMR signals of phenolate 7e resonate close to that obtained from a mixture of $\mathbf{7 e}$ and $\mathbf{4 a}$, even in large excess of iodo sulfone $\mathbf{4 a}$ (Figure S19-S35).

Figure S19. ${ }^{1} \mathrm{H}$-NMR spectrum of phenol 6 e in $\mathrm{CD}_{3} \mathrm{CN}(0.1 \mathrm{M})$.

Figure S20. ${ }^{1} \mathrm{H}$-NMR spectrum of phenolate $7 \mathbf{e}$ (obtained by mixing phenol $\mathbf{6 e}$ and DBU in $1: 1$ ratio) in $\mathrm{CD}_{3} \mathrm{CN}$ (0.1 M).

Figure S21. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of phenolate $\mathbf{7 e}$ (obtained by mixing phenol $\mathbf{6 e}$ and DBU in $1: 1$ ratio) in $\mathrm{CD}_{3} \mathrm{CN}$ (0.1 M).

Figure S22. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of iodo sulfone $\mathbf{4 a}$ in $\mathrm{CD}_{3} \mathrm{CN}(0.1 \mathrm{M})$.

Figure S23. ${ }^{13} \mathrm{C}$-NMR spectrum of iodo sulfone $\mathbf{4 a}$ in $\mathrm{CD}_{3} \mathrm{CN}(0.1 \mathrm{M})$.

Figure S24. ${ }^{1} \mathrm{H}$-NMR spectrum of a $1: 1$ mixture of phenolate $\mathbf{7 e}$ (obtained by mixing phenol $\mathbf{6 e}$ and DBU in 1:1 ratio) and iodo sulfone $4 \mathbf{a}$ in $\mathrm{CD}_{3} \mathrm{CN}\left([6 \mathrm{e}]_{0}=0.1 \mathrm{M}\right)$.

Figure S25. ${ }^{13} \mathrm{C}$-NMR spectrum of a $1: 1$ mixture of phenolate $\mathbf{7 e}$ (obtained by mixing phenol $\mathbf{6 e}$ and DBU in 1:1 ratio) and iodo sulfone $4 \mathbf{a}$ in $\mathrm{CD}_{3} \mathrm{CN}\left([6 \mathbf{e}]_{0}=0.1 \mathrm{M}\right)$.

Figure S26. Superimposed ${ }^{1} \mathrm{H}$-NMR spectra of phenolate $\mathbf{7 e}$ (red trace) and a 1:1 mixture of phenolate 7e and iodo sulfone $\mathbf{4 a}$ (blue trace) in $\mathrm{CD}_{3} \mathrm{CN}\left([6 \mathbf{e}]_{0}=0.1 \mathrm{M}\right)$.

Figure S27. Superimposed ${ }^{13} \mathrm{C}$-NMR spectra of phenolate $\mathbf{7 e}$ (red trace) and a $1: 1$ mixture of phenolate $\mathbf{7 e}$ and iodo sulfone $\mathbf{4 a}$ (blue trace) in $\mathrm{CD}_{3} \mathrm{CN}\left([6 \mathbf{e}]_{0}=0.1 \mathrm{M}\right)$.

Figure S28. ${ }^{1} \mathrm{H}$-NMR spectrum of a $1: 5$ mixture of phenolate $\mathbf{7 e}$ (obtained by mixing phenol $\mathbf{6 e}$ and DBU in 1:1 ratio) and iodo sulfone $\mathbf{4 a}$ in $\mathrm{CD}_{3} \mathrm{CN}\left([6 \mathbf{e}]_{0}=0.1 \mathrm{M}\right)$.

Figure S29. ${ }^{13}$ C-NMR spectrum of a $1: 5$ mixture of phenolate $\mathbf{7 e}$ (obtained by mixing phenol $\mathbf{6 e}$ and DBU in 1:1 ratio) and iodo sulfone $\mathbf{4 a}$ in $\mathrm{CD}_{3} \mathrm{CN}\left([6 \mathbf{e}]_{0}=0.1 \mathrm{M}\right)$.

Figure S30. Superimposed ${ }^{1} \mathrm{H}$-NMR spectra of phenolate $\mathbf{7 e}$ (red trace) and a $1: 5$ mixture of phenolate $\mathbf{7 e}$ and iodo sulfone $\mathbf{4 a}$ (blue trace) in $\mathrm{CD}_{3} \mathrm{CN}\left([6 \mathbf{e}]_{0}=0.1 \mathrm{M}\right)$.

Figure S31. Superimposed ${ }^{13} \mathrm{C}$-NMR spectra of phenolate $\mathbf{7 e}$ (red trace) and a $1: 5$ mixture of phenolate $7 \mathbf{e}$ and iodo sulfone $\mathbf{4 a}$ (blue trace) in $\mathrm{CD}_{3} \mathrm{CN}\left([6 \mathbf{e}]_{0}=0.1 \mathrm{M}\right)$.

Figure S32. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of a 1:10 mixture of phenolate $\mathbf{7 e}$ (obtained by mixing phenol $\mathbf{6 e}$ and DBU in 1:1 ratio) and iodo sulfone $4 \mathbf{a}$ in $\mathrm{CD}_{3} \mathrm{CN}\left([6 \mathbf{e}]_{0}=0.1 \mathrm{M}\right)$.

Figure S33. ${ }^{13} \mathrm{C}$-NMR spectrum of a $1: 10$ mixture of phenolate $7 \mathbf{e}$ (obtained by mixing phenol $\mathbf{6 e}$ and DBU in 1:1 ratio) and iodo sulfone $4 \mathbf{a}$ in $\mathrm{CD}_{3} \mathrm{CN}\left([6 e]_{0}=0.1 \mathrm{M}\right)$.

Figure S34. Superimposed ${ }^{1} \mathrm{H}$-NMR spectra of phenolate $\mathbf{7 e}$ (red trace) and a 1:10 mixture of phenolate $\mathbf{7 e}$ and iodo sulfone $\mathbf{4 a}$ (blue trace) in $\mathrm{CD}_{3} \mathrm{CN}\left([6 \mathbf{e}]_{0}=0.1 \mathrm{M}\right)$.

Figure S35. Superimposed ${ }^{13} \mathrm{C}$-NMR spectra of phenolate 7e (red trace) and a $1: 10$ mixture of phenolate $7 \mathbf{e}$ and iodo sulfone $\mathbf{4 a}$ (blue trace) in $\mathrm{CD}_{3} \mathrm{CN}\left([6 \mathbf{e}]_{0}=0.1 \mathrm{M}\right)$.

On the contrary, in the previously reported cases, the formation of an EDA complex between the reaction components is typically accompanied by a significant shift of the signals involved. ${ }^{24,25}$ Altogether, the possible formation of an EDA complex between $7 \mathbf{e}$ and $\mathbf{4 a}$ can be reasonably excluded.

I.5. STERN-VOLMER STUDIES

To further demonstrate the feasibility of a SET between phenolate $7 \mathbf{e}$ and α-iodo sulfone $\mathbf{4 a}$, a series of Stern-Volmer quenching studies were performed in acetonitrile. The emission spectrum, obtained upon excitation at 410 nm , showed a decreased intensity when $4 \mathbf{a}$ was added and this fluorescence quenching turned out to be linear in the range $5 \div 45 \times 10^{-3} \mathrm{M}$, with a Stern-Volmer constant of $1.57 \times 10^{-2} \mathrm{M}^{-1}$ (Figure S36 and Figure S37).

Figure S36. Emission spectra of phenolate 7e (blue line), obtained by mixing phenol $\mathbf{6 e}$ and DBU, and various mixtures of $\mathbf{7 e}$ and $\mathbf{4 a}$ at increasing concentration of $\mathbf{4 a}$ (values in brackets within the legend). Recorded in $\mathrm{CH}_{3} \mathrm{CN}$ in quartz cuvettes (1 cm path). $[\mathbf{6 e}]=[\mathrm{DBU}]=1.5 \times 10^{-2} \mathrm{M} .[4 \mathrm{a}]=5 \times 10^{-3}$ to 4.5 x $10^{-3} \mathrm{M}$.

$[\mathbf{4 a]}(\mathrm{mM})$	Intensity (I)	Initial intensity $\left(\mathrm{I}_{0}\right)$	$\mathrm{I}_{0} / \mathrm{I}$
0	47.00996399	47.00996399	1
5	41.77465057	47.00996399	1.12532
10	39.04601288	47.00996399	1.20396
15	36.19675827	47.00996399	1.29873
30	32.30458069	47.00996399	1.45521
45	28.03398514	47.00996399	1.67689

Figure S37. Stern-Volmer quenching study.

I.6. REDOX POTENTIAL OF THE EXCITED STATE PHENOLATES 7a-d

Phenolate 7a obtained by mixing phenol 6a and DBU in equimolar ratio in acetonitrile. The corresponding excitation energy $\left(\mathrm{E}_{00}\right)$ turned out to be 277 nm that corresponds to 4.48 V vs SCE (Figure S38). The ground state potential was determined by cyclic voltammetry and resulted in $+0.30 \mathrm{~V} v s$ SCE (see Section I.1). Thus, the calculated redox potential of the excited phenolate 7a was proved to be $\mathbf{- 4 . 1 8} \mathbf{V}$ vs $\mathbf{S C E}$.

Figure S38. Normalized optical absorption spectrum (black line) and emission spectra (red line) of phenolate 7a obtained by mixing phenol $\mathbf{6 a}$ and DBU . Recorded in $\mathrm{CH}_{3} \mathrm{CN}$ in quartz cuvettes (1 cm path). $[6 e]=[\mathrm{DBU}]=2 \times 10^{-5} \mathrm{M}$.

Phenolate 7b obtained by mixing 2-bromophenol $\mathbf{6 b}$ and DBU in equimolar ratio in acetonitrile. The corresponding excitation energy $\left(\mathrm{E}_{00}\right)$ turned out to be 258 nm that corresponds to $4.81 \mathrm{~V} v s$

SCE (Figure S39). The ground state potential was determined by cyclic voltammetry and resulted in +0.34 V vs SCE (see Section I.1). Thus, the calculated redox potential of phenolate 7b proved to be $\mathbf{- 4 . 4 7} \mathrm{V} \boldsymbol{v s} \mathbf{S C E}$.

Figure S39. Normalized optical absorption spectrum (black line) and emission spectra (red line) of phenolate 7b obtained by mixing 2-bromophenol $\mathbf{6 b}$ and DBU. Recorded in $\mathrm{CH}_{3} \mathrm{CN}$ in quartz cuvettes (1 cm path $) .[\mathbf{6 b}]=[\mathrm{DBU}]=2 \times 10^{-5} \mathrm{M}$.

Phenolate $7 \mathbf{c}$ obtained by mixing methyl salicylate $\mathbf{6 c}$ and DBU in equimolar ratio in acetonitrile. The corresponding excitation energy (E_{00}) turned out to be 312 nm that corresponds to $3.97 \mathrm{~V} v s$ SCE (Figure S40). The ground state potential was determined by cyclic voltammetry and resulted in +0.50 V vs SCE (see Section I.1). Thus, the calculated redox potential of phenolate 7c proved to be $\mathbf{- 3 . 4 7} \mathrm{V} \boldsymbol{v} \mathbf{S C E}$.

Figure S40. Normalized optical absorption spectrum (black line) and emission spectra (red line) of phenolate 7c obtained by mixing methyl salicylate $\mathbf{6 c}$ and DBU . Recorded in $\mathrm{CH}_{3} \mathrm{CN}$ in quartz cuvettes (1 cm path $) .[\mathbf{6 c}]=[\mathrm{DBU}]=1 \times 10^{-5} \mathrm{M}$.

Phenolate 7d obtained by mixing methyl 5-acetylsalicylate 6d and DBU in equimolar ratio in acetonitrile. The corresponding excitation energy $\left(\mathrm{E}_{00}\right)$ turned out to be 372 nm that corresponds to 3.33 V vs SCE (Figure S 41). The ground state potential was determined by cyclic voltammetry and resulted in $+0.65 \mathrm{~V} v s \mathrm{SCE}$ (see Section I.1). Thus, the calculated redox potential of phenolate 7d proved to be $\mathbf{- 2 . 6 8} \mathbf{V} \boldsymbol{v s} \mathbf{S C E}$.

Figure S41. Normalized optical absorption spectrum (black line) and emission spectra (red line) of phenolate 7d obtained by mixing methyl 5-acetylsalicylate $\mathbf{6 d}$ and DBU . Recorded in $\mathrm{CH}_{3} \mathrm{CN}$ in quartz cuvettes $(1 \mathrm{~cm}$ path $) .[\mathbf{6 d}]=[\mathrm{DBU}]=5 \times 10^{-6} \mathrm{M}$.

I.7. SOLVATOCHROMIC STUDIES OF PHENOLATES 7d-e

The Stokes shifts of phenolates 7d-e, obtained from a mixture of $\mathbf{6 d - e}$ and DBU (in a $1: 1$ ratio), were measured in solvents of growing polarity to ascertain the electronic differences between the ground and the excited state in terms of dipole moment. Specifically, four different solvents were selected: toluene, tetrahydrofuran (THF), acetonitrile, and dimethyl sulfoxide (DMSO), and the corresponding UV-Vis absorption and emission spectra were recorded (Figures S42-S45 and Figures S47-S50). An inversely proportional correlation between the Stokes shifts and the polarity of the solvent, which was expressed through their $\mathrm{E}_{\mathrm{T}}(30)$ values, ${ }^{26}$ was observed for both phenolates 7d-e (i.e. a negative solvatochromism; Tables S7 and S8 and Figures S46 and S51). These results indicate that the excited phenolates 7d-e have a lower dipole moment with respect their corresponding ground states. This reduction in the dipole moment after the electronic excitation is in agreement with the formation of a charge-transfer state. Indeed, this negative solvatochromism behavior is commonly observed for other phenolate-based dyes that generate charge-transfer states after light-excitation. ${ }^{26}$

Figure S42. Normalized optical absorption spectrum (black line) and emission spectra (red line) of phenolate $7 \mathbf{d}$ obtained by mixing methyl 5 -acetylsalicylate $\mathbf{6 d}$ and DBU in toluene. Recorded in quartz cuvettes (1 cm path). $[\mathbf{6 d}]=[\mathrm{DBU}]=2 \times 10^{-5} \mathrm{M}$.

Figure S43. Normalized optical absorption spectrum (black line) and emission spectra (red line) of phenolate 7d obtained by mixing methyl 5-acetylsalicylate 6d and DBU in THF. Recorded in quartz cuvettes (1 cm path $) .[\mathbf{6 d}]=[\mathrm{DBU}]=1.5 \times 10^{-5} \mathrm{M}$.

Figure S44. Normalized optical absorption spectrum (black line) and emission spectra (red line) of phenolate $7 \mathbf{d}$ obtained by mixing methyl 5 -acetylsalicylate $\mathbf{6 d}$ and DBU in MeCN . Recorded in quartz cuvettes (1 cm path $) .[\mathbf{6 d}]=[\mathrm{DBU}]=5 \times 10^{-6} \mathrm{M}$.

Figure S45. Normalized optical absorption spectrum (black line) and emission spectra (red line) of phenolate $7 \mathbf{d}$ obtained by mixing methyl 5 -acetylsalicylate $\mathbf{6 d}$ and DBU in DMSO. Recorded in quartz cuvettes (1 cm path $) .[\mathbf{6 d}]=[\mathrm{DBU}]=5 \times 10^{-6} \mathrm{M}$.

Table S7. Solvatochromism studies of phenolate 7d.

	Toluene	THF	MeCN	DMSO
Max. Abs (nm)	310	306	328	330
Max. Abs (eV)	3,303226	3,346405	3,121951	3,10303
Max. Em (nm)	457	402	407	407
Max Em (eV) $_{\text {EV }}$ (eV)	2,2407	2,547264	2,515971	2,515971
$\mathbf{\Delta E = \mathbf { E } _ { \text { em } } - \mathbf { E } _ { \text { Abs } } (\mathbf { e V }} \mathbf{1 , 0 6 2 5 2 6}$	0,799142	0,605981	0,58706	
$\mathbf{E}_{\mathbf{T}}(\mathbf{3 0})$	33,9	37,4	45,6	45,1

Figure S46. Stokes shifts $(\Delta \mathrm{E})$ of phenolate $\mathbf{7 d}$ vs the $\mathrm{E}_{\mathrm{T}}(30)$ value of the solvent (see Table S 7 for the list of solvents).

Figure S47. Normalized optical absorption spectrum (black line) and emission spectra (red line) of phenolate 7e obtained by mixing phenol $6 \mathbf{e}$ and DBU in toluene. Recorded in quartz cuvettes (1 cm path). $[6 \mathbf{e}]=[\mathrm{DBU}]=2 \times 10^{-5} \mathrm{M}$.

Figure S48. Normalized optical absorption spectrum (black line) and emission spectra (red line) of phenolate 7e obtained by mixing phenol $\mathbf{6 e}$ and DBU in THF. Recorded in quartz cuvettes (1 cm path). [6e] $=[\mathrm{DBU}]=1.5 \times 10^{-5} \mathrm{M}$.

Figure S49. Normalized optical absorption spectrum (black line) and emission spectra (red line) of phenolate 7e obtained by mixing phenol $6 \mathbf{e}$ and DBU in MeCN . Recorded in quartz cuvettes (1 cm path). $[6 \mathrm{e}]=[\mathrm{DBU}]=5 \times 10^{-6} \mathrm{M}$.

Figure S50. Normalized optical absorption spectrum (black line) and emission spectra (red line) of phenolate 7e obtained by mixing phenol $\mathbf{6 e}$ and DBU in DMSO. Recorded in quartz cuvettes (1 cm path). $[6 e]=[\mathrm{DBU}]=5 \times 10^{-6} \mathrm{M}$.

Table S8. Solvatochromism studies of phenolate 7e.

	Toluene	THF	MeCN	DMSO
Max. Abs (nm)	318	317	329	333
Max. Abs (eV)	3,220126	3,230284	3,112462	3,075075
Max Em (nm)	465	419	408	412
Max Em (eV)	2,202151	2,443914	2,509804	2,485437
$\Delta E=E_{\text {em }}-E_{\text {Abs }}(\mathbf{e V})$	1,017975	0,78637	0,602658	0,589638
$\mathrm{E}_{\mathrm{T}}(\mathbf{3 0})$	33,9	37,4	45,6	45,1

Figure S51. Stokes shifts (ΔE) of phenolate 7 e vs the $\mathrm{E}_{\mathrm{T}}(30)$ value of the solvent (see Table S 8 for the list of solvents).

J. REFERENCES

(1) Aranzaes, J. R.; Daniel, M. C.; Astruc, D. Metallocenes as References for the Determination of Redox Potentials by Cyclic Voltammetry - Permethylated Iron and Cobalt Sandwich Complexes, Inhibition by Polyamine Dendrimers, and the Role of Hydroxy-Containing Ferrocenes. Can. J. Chem. 2006, 84, 288-299.
(2) Pavlishchuk, V. V.; Addison, A. W. Conversion Constants for Redox Potentials Measured versus Different Reference Electrodes in Acetonitrile Solutions at $25^{\circ} \mathrm{C}$. Inorganica Chim. Acta 2000, 298, 97-102.
(3) Nappi, M.; Bergonzini, G.; Melchiorre, P. Metal-Free Photochemical Aromatic Perfluoroalkylation of α-Cyano Arylacetates. Angew. Chem. Int. Ed. 2014, 53, 4921-4925.
(4) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06Class Functionals and 12 Other Function. Theor. Chem. Acc. 2008, 120, 215-241.
(5) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models.

Chem. Rev. 2005, 105, 2999-3093.
(6) Weigend, F.; Häser, M.; Patzelt, H.; Ahlrichs, R. RI-MP2: Optimized Auxiliary Basis Sets and Demonstration of Efficiency. Chem. Phys. Lett. 1998, 294, 143-152.
(7) https://gaussian.com/g09citation/ - Revision used: E.01.
(8) Vasilikogiannaki, E.; Titilas, I.; Vassilikogiannakis, G.; Stratakis, M. CisSemihydrogenation of Alkynes with Amine Borane Complexes Catalyzed by Gold Nanoparticles under Mild Conditions. Chem. Commun. 2015, 51, 2384-2387.
(9) Rosso, C.; Filippini, G.; Cozzi, P. G.; Gualandi, A.; Prato, M. Highly Performing Iodoperfluoroalkylation of Alkenes Triggered by the Photochemical Activity of Perylene Diimides. ChemPhotoChem 2019, 3, 193-197.
(10) Lebel, H.; Paquet, V. Multicatalytic Processes Using Diverse Transition Metals for the Synthesis of Alkenes. J. Am. Chem. Soc. 2004, 126, 11152-11153.
(11) Yang, H.; Carter, R. G. Synthesis of All-Carbon, Quaternary Center-Containing Cyclohexenones through an Organocatalyzed, Multicomponent Coupling. Org. Lett. 2010, 12, 3108-3111.
(12) Wang, Y.; Wang, J.; Li, G.; He, G.; Chen, G. Halogen-Bond-Promoted Photoactivation of Perfluoroalkyl Iodides: A Photochemical Protocol for Perfluoroalkylation Reactions. Org. Lett. 2017, 19, 1442-1445.
(13) Madabhushi, S.; Jillella, R.; Sriramoju, V.; Singh, R. Oxyhalogenation of Thiols and Disulfides into Sulfonyl Chlorides/Bromides Using Oxone- $\mathrm{KX}(\mathrm{X}=\mathrm{Cl}$ or Br$)$ in Water. Green Chem. 2014, 16, 3125-3131.
(14) Filippini, G.; Silvi, M.; Melchiorre, P. Enantioselective Formal α-Methylation and α Benzylation of Aldehydes by Means of Photo-Organocatalysis. Angew. Chem. Int. Ed. 2017, 56, 4447-4451.
(15) Imamoto, T.; Koto, H. An Efficient Synthesis of α-Iodo Derivatives of Sulfones, Sulfoximines, and Phosphine Oxides. Synthesis 1985, 10, 982-983.
(16) Zhang, Y. M.; Fan, X.; Yang, S. M.; Scannevin, R. H.; Burke, S. L.; Rhodes, K. J.; Jackson, P. F. Syntheses and in Vitro Evaluation of Arylsulfone-Based MMP Inhibitors with Heterocycle-Derived Zinc-Binding Groups (ZBGs). Bioorganic Med. Chem. Lett. 2008, 18, 405-408.
(17) Zhao, Y.; Truhlar, D. G. Density Functionals with Broad Applicability in Chemistry. Acc. Chem. Res. 2008, 41, 157-167.
(18) Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
(19) Murov, S. L. Handbook of Photochemistry; Marcel Dekker, New York, 1973.
(20) Braslavsky, S. E. Glossary of Terms Used in Photochemistry. IUPAC Recommendations 2006 - Pure and Apply Chemistry; 2007.
(21) Kuhn, H. J.; Braslavsky, S. E.; Schmidt, R. Chemical Actinometry (IUPAC Technical Report). Pure Appl. Chem. 2004, 76, 2105-2146.
(22) Rehm, D.; Weller, A. Kinetics of Fluorescence Quenching by Electron and H-Atom Transfer. Isr. J. Chem. 1970, 8, 259-271.
(23) Buzzetti, L.; Crisenza, G. E. M.; Melchiorre, P. Mechanistic Studies in Photocatalysis. Angew. Chem. Int. Ed. 2019, 58, 3730-3747.
(24) Bahamonde, A.; Melchiorre, P. Mechanism of the Stereoselective α-Alkylation of Aldehydes Driven by the Photochemical Activity of Enamines. J. Am. Chem. Soc. 2016, 138, 8019-8030.
(25) Rosso, C.; Williams, J. D.; Filippini, G.; Prato, M.; Kappe, C. O. Visible-Light-Mediated Iodoperfluoroalkylation of Alkenes in Flow and Its Application to the Synthesis of a Key Fulvestrant Intermediate. Org. Lett. 2019, 21, 5341-5345.
(26) Reichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 1994, 94, 2319-2358.

K. NMR SPECTRA

4 g
${ }^{13} \mathrm{C}$ NMR
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^0]

8		
N		
\|	\| \ \	

${ }^{13} \mathrm{C}$ NMR $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

5j
${ }^{13} \mathrm{C}$ NMR
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

1	1		1		,		1		1		1									
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (ppm)										

[^1]

${ }^{13} \mathrm{C}$ NMR $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$5 t$
${ }^{13} \mathrm{C}$ NMR $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^2]
Nr

${ }^{13} \mathrm{C}$ NMR
$101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\left.\begin{array}{lllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm})\end{array}\right)$

No

[^0]: $\begin{array}{lllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^1]:

[^2]:

