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Abstract
Grid cells in the entorhinal cortex, together with head direction, place, speed and border cells, are major contributors
to the organization of spatial representations in the brain. In this work we introduce a novel theoretical and algorithmic
framework able to explain the optimality of hexagonal grid-like response patterns. We show that this pattern is a result of
minimal variance encoding of neurons together with maximal robustness to neurons’ noise and minimal number of encoding
neurons. The novelty lies in the formulation of the encoding problem considering neurons as an overcomplete basis (a
frame) where the position information is encoded. Through the modern Frame Theory language, specifically that of tight and
equiangular frames, we provide new insights about the optimality of hexagonal grid receptive fields. The proposed model is
based on the well-accepted and tested hypothesis of Hebbian learning, providing a simplified cortical-based framework that
does not require the presence of velocity-driven oscillations (oscillatory model) or translational symmetries in the synaptic
connections (attractor model). We moreover demonstrate that the proposed encoding mechanism naturally explains axis
alignment of neighbor grid cells and maps shifts, rotations and scaling of the stimuli onto the shape of grid cells’ receptive
fields, giving a straightforward explanation of the experimental evidence of grid cells remapping under transformations of
environmental cues.

Keywords Hippocampus · Grid cells · Computational model

1 Introduction

Grid cells in the entorhinal cortex efficiently represent an
animal’s spatial position using a hexagonal symmetric code
(Hafting et al. 2005; Burak and Fiete 2009). Mathematical
models have been developed to explain the emergence of
such surprisingly regular firing activity (McNaughton et al.
2006; Fuhs and Touretzky 2006; Burgess et al. 2007; Has-
selmo et al. 2007; Blair et al. 2007; Kropff and Treves 2008).
However, the problem is far from being solved, and many
questions remain open (Renart et al. 2003; Yartsev et al.
2011; Schmidt-Hieber and Häusser 2013; Heys et al. 2013).
From the modelling point of view, two main mecha-
nisms have been proposed to generate the hexagonal peri-
odic activity: oscillatory interference (Burgess et al. 2007;
Orchard et al. 2013) and continuous attractor dynamics
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(McNaughton et al. 2006; Fuhs and Touretzky 2006). First,
we address briefly the main ideas underlying these models.

In oscillatory models, grid cells’ patterns emerge from
the interference between oscillations of velocity-modulated
cells (Burgess et al. 2007; Hasselmo et al. 2007).
Experimental results in Krupic et al. (2012) have identified
a class of cells, named band cells, that fire at specific spatial
periodicity; the interference of three cells of this kind,
whose wave vectors’ orientations differ by multiples of 120
degrees, leads to hexagonal grid-type interference patterns.

The core idea of continuous attractor models explains
the regularity of the grid firing activity as an attractor state
generated by symmetrical recurrent interactions between
grid cells (McNaughton et al. 2006; Fuhs and Touretzky
2006). A major weakness of this class of models is that
it requires an unrealistically high degree of translational
symmetry in the strength of the connections among neu-
rons: neurons at equal distance should connect with equal
strength. However, real neuronal populations are affected
by noise and randomness and therefore break this symme-
try and the grid regularity (Renart et al. 2003). Alternative
models based on single-cell firing, adaptation, slowly vary-
ing spatial inputs, or, more recently, on deep reinforcement
learning have been proposed in Kropff and Treves (2008),
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Franzius et al. (2007), Banino et al. (2018), and Botvinick
et al. (2017).

The model we propose has a number of advantages with
respect to those mentioned above. For clarity we list the
novel contributions of our work:

– The model is based on the well-accepted and tested
hypothesis of Hebbian learning, (Hebb 1949), is much
simpler than interference and attractor models, and
it does not require the presence of velocity driven
oscillations or translational symmetries in the synaptic
connections.

– We explain the experimental phenomenon of the
alignment of the axes of neighboring grid cells.

– We show how shifted, rotated and scaled grid cells’
receptive fields naturally remap, given transformed
visual landmarks (Sargolini et al. 2006).

– We sketch a theoretical framework for the otherwise
puzzling experimental findings in Constantinescu et al.
(2016) where the authors show how grid cells may play
a role in the organization of “conceptual” spaces.

2 Results

2.1 Model description and predictions

The model is based on three assumptions. By analogy with
the Hubel and Wiesel simple-complex cells computation
in the primary visual cortex (Hubel and Wiesel 1965;
1968), we propose grid cells to emerge from a linear
sum of “simple cells” whose receptive fields (RFs) are
learned from a collection of neuronal inputs with stationary
second-order stimulus statistics (H1). In other words, we
assume that the encoding of the objects’ movements at the
level of the entorhinal cortex obeys a statistic that does
not differ significantly from that of natural images (which
is approximately stationary (Field 1999)). Indeed, deep
connections between visual recognition tasks and entorhinal
cortex has been suggested in Bicanski and Burgess (2019).
We also assume that each neuron computes a response that
is the scalar product between the input and its synaptic
weights i.e.

ri(x) = 〈x,wi〉 (1)

with x the input image function and wi the synaptic weights
function of neuron i. In the following, we will fix x and omit
to write the dependence on x.

Furthermore, we assume that the synaptic weights are
updated following Oja’s rule, derived as a the first order
expansion of a normalized Hebbian rule, (Oja 1992),
(H2). The normalization assumption is plausible, because
normalization mechanisms are widespread in the brain

(Carandini and Heeger 2011). The original paper of Oja
(1982) showed that the weights of a neuron updated
according to this rule will converge to the top princi-
pal component (PC) of the neuron’s past input, i.e. to an
eigenfunction of the input’s covariance. Plausible modi-
fications of the rule, involving added noise or inhibitory
connections with similar neurons, yield additional eigen-
functions (Oja 1992). Thus, this generalized Oja’s rule can
be regarded as an online algorithm to compute the princi-
pal components of incoming streams of input; in our case,
the stationary neuronal responses of simple cells. Our last
and most important assumption is that the neural popula-
tion’s goal is to encode a variation of its input, in this case
the position, with maximal precision (Deneve et al. 1999).
Neuronal responses are noisy, and thus repeated, equal stim-
uli can produce different outputs. The hypothesis tells us
that the population coding aims to minimize the variance of
the responses. We further assume that the neuronal encod-
ing of the self-position is achieved with minimal number of
neurons (H3).

The first important consequence of hypotheses (H1,H2)

is that the synaptic weights of the neuronal population are
tuned to Fourier functions i.e.

w(k, ξ) = eIkT ξ , k, ξ ∈ R
2 (2)

where I is the imaginary number, k is the two-dimensional
frequency vector and ξ is the vector of the spatial Cartesian
coordinates. This follows from the stationarity of neuronal
inputs i.e. the fact that the associated covariance matrix is
diagonalized by Fourier functions. A consequence of Oja’s
rule is that those are also the learned neuronal weights. The
relative change of position of the objects in the scene (due
to the animal navigating in the environment) is modelled in
a first approximation as covariant translations at the level of
the highly processed input of the enthorinal neurons i.e. :

Tyx(ξ) = x(ξ − y), y ∈ R
2; (3)

where Ty is the translation operator. The response of a N

neurons population encoding the position of stimulus y will
be:

r(y) = (r1(y), · · · , rN (y)) (4)

with ri(y) =
〈
Tyx, eIkT

i ξ
〉
. Upon a change in the observer

position the simple cells responses change as:

ri(y) =
〈
Tyx, eIkT

i ξ
〉
= eIkT

i yci(x)

where ci(x) are the Fourier coefficients of x with respect to
the vectors of frequencies ki . Thus, the position information
is encoded in the phase factors eIkT

i y, due to the translation
covariance of the Fourier transform. Simple cells could be
identified with band cells in Krupic et al. (2012), although
their origin in our work is of a completely different nature.
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In the following, we will focus on the emergence of
grid cells’ receptive fields, in particular on how they can
be derived from optimality of the position information
contained in the phase factors of the simple cells’ responses.

The simplest model of a “complex” grid cell aggregates
the responses of simple cells by summation:

r(y) =
N∑

i=1

ri(y) =
〈
Tyx,

N∑
i=1

wi

〉
=

N∑
i=1

ci(x)eIkT
i y (5)

The phases, as in Orchard et al. (2013), encode the
information about the observer position.

In general, each single simple cell’s response can be
considered as a random variable subject to noise. In this
work, we analyze the case of constant pairwise noise i.e. the
noise covariance matrix has the form

C = σ 2
1 I + σ 2

2 11
T , σ1,2 > 0 (6)

with 1 the vector of all ones.
Assuming (H2) and (H3), the question that follows is:

which set of frequencies {ki} are best to encode the animal’s
position y with maximal precision, given the noise and a
fixed, N , number of encoding neurons?

A lower bound on any possible unbiased estimator of the
random variable y is given by the Cramer-Rao bound ((Kay
1993), see Materials and Methods 4.1 for more details). The
bound reads:

‖Cov(y)‖ ≥
∥∥∥F−1(y)

∥∥∥ (7)

where F is the so-called Fisher information matrix, Cov is
the covariance matrix of the neuronal responses, and ‖·‖
is a matrix norm. Intuitively, F measures the amount of
information that the encoding population carries about the
random variable y. The main theoretical result of the paper
is that, in dimension two, the lower bound for the right
hand side of Eq. (7) is achieved, for any fixed N , when
the frequency vectors are a tight frame. These are frames
that maximize the angle among each pair of frame elements
and have been proven to have various beneficial properties
in signal processing, including robustness to noise. In
particular, we prove that if we require a minimal number of
neurons, the only frame which is robust to neuronal pairwise
constant noise and which has minimal associated covariance
is the so-called Mercedes-Benz frame, composed by
vectors, {ki}, whose orientations differ by 120◦ degrees
(see Fig. 1). The set of frequency vectors form a so-called
Equiangular frame:

kT
pkq = cos(α), ∀ p, q; α ∈ [0, 2π ], α constant. (8)

It is quite biologically implausible that grid cells receive
input from so few simple cells. Thus, we consider the
activity of one simple cell unit in our model as summarizing
that of a whole population of cells with the same
preferential orientation ki. Summing over multiple simple

Fig. 1 Mercedes-Benz frame in dimension two. Note how the vectors
are separated by 120◦ one from the other

cells’ responses sensitive to the same orientation maintains
the value of Eq. (5) unchanged up to an overall constant
factor.

More formally we can prove (see Materials and
methods):

Theorem 1 Given the hypotheses H(1, 2, 3), the minimum
variance position encoded by a set of N neurons is achieved
when the frequency vectors form a tight frame. If we further
require the encoding to be done with minimum number of
neurons and to be maximally robust to constant pairwise
correlated noise, we have a unique solution for the set of
frequency vectors:

f = {k1, k2, k3}= {(cos(2πj/3), sin(2πj/3)), j = 1, 2, 3}
the Mercedes Benz frame.

Our result states that the best encoding of position robust
to noise, with minimal number of neurons, is achieved when
the “complex” grid-like cell is aggregating the responses of
three neurons (or similarly-tuned neural populations) whose
neuronal weights are Fourier functions with equiangular
frequencies in the frequency space. Suppose now the
neurons’ weights have been learned. The response in Eq. (5)
produces output in terms of an interference pattern of three
planar waves that is consistent with a hexagonal grid (see
Fig. 2). Before proceeding, we discuss the novelty of our
contribution with regard to the existing literature in the
following remarks.

– Our model may resemble the interference model of
Burgess et al. (2007). However, it is important to point
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Fig. 2 The image shows how a grid-like cell’s pattern arises from the
interference of planar waves responses. a The Mercedes-Benz frame
is constituted by the equiangular vectors k1, k2, k3, whose directions
are along the angles θ = π/2, −π/6, −5π/6. b Three neurons with

input stimulus x, translated by a vector y, Tyx and their receptive fields
w1, w2, w3 i.e. three planar waves in equiangular directions. c Linear
sum of the three neurons’ responses (indicated in B as �) resulting in
the grid-like hexagonal pattern

out one crucial difference. The oscillations interference
pattern in our model is due to the shape of the learned
receptive fields of the simple cells and not to the
oscillations in the hippocampal circuit. Therefore, our
simple cells can be identified with band cells in Krupic
et al. (2012), although their emergence is explained in
our work without the need of those oscillations.

– In the same vein, although PCA is used in our model
to derive the shape of the simple cells’ receptive fields,
its role is completely different from the one described
in Dordek et al. (2016) or Castro and Aguiar (2014) or
Stachenfeld et al. (2017), where PCA is used to derive
the shape of the grid cells’ responses from place cells.

– Optimality of grid cells’ hexagonal receptive field is
here derived in a novel way with regard to that in Fiete
et al. (2008), Mathis et al. (2012), Vágó and Ujfalussy
(2018), and Domı́nguez and Caplan (2018). In fact,
we use concepts and properties from Frame theory; in
particular those of the so-called Mercedes-Benz frame
(see e.g. Kovacevic and Chebira (2007)).

– Strip cells in Mhatre et al. (2012) can be identified
with the phase of our simple cells that give information
about the animal’s movement in a particular direction.
However, the principle we use to derive the grid cells’
receptive fields is different. We minimize the position
response covariance using the Cramer Rao bound and
Fisher Information. The authors in Mhatre et al. (2012)

give a geometrical reasoning for the maximization of
the stripe cells response. In our derivation of the Fisher
information, the phase factors cancel (see Materials and
Methods) and only the frequency vectors’ directions
play a role in the minimization.

2.2 Two-phase application of Oja’s learning rule

In this section we explain how hexagonal grid receptive
fields emerge from a two-phase learning process.

2.2.1 First phase:simple cells learning

A collection of cyclical translations in the cartesian direc-
tions of natural images is used as input stimuli to compute
the “simple” cell profile of activation. Next, the princi-
pal components of these activation profiles are extracted,
diagonalizing the covariance matrix of the input data. The
second order statistic of the input, i.e. the covariance matrix,
is clearly stationary. Note that the stationarity is inde-
pendent from the nature of the stimulus and it crucially
depends on the more abstract notion of transformation (in
this case translations). Under the assumption of Oja’s rule,
this mechanism simulates the learning phase of a simple
cell.

An example of the learned receptive fields is shown in
Fig. 3a. As expected, they are Fourier components.
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Fig. 3 a Example of simple cells’ receptive fields, obtained through
the first phase learning, from stationary stimuli. b Simple cells’ recep-
tive fields, selected through variance minimization of the estimated

position together with minimum number of neurons constraint. c
Superposition of equiangular patterns selected from figure (b)

2.2.2 Second phase: ”complex” grid cell learning.

The second step entails aggregating the responses of simple
cells. A collection of cyclical translations of a test image
is used to calculate the aggregation vector J according
to the minimization problem (see Materials and Methods,
Algorithmic formulation for the algorithm details). The
results displayed in Fig. 3 show that, as a result of variance
minimization of the position estimate, waves with 120◦
angular distance are selected (b). Their superposition have
a grid-like shape (c). Although the algorithm provides,
approximately, the angular directions predicted by the
theorem, not all superpositions produce grid-like patterns.
This is due to the different frequencies of the Fourier
receptive fields. For a fixed frequency, the selected receptive
fields sum to produce a grid-like interference pattern.

The mechanism underpinning the combination of recep-
tive fields of the same frequency relies on the nature of prin-
cipal component decomposition: the first eigen-component

is an oscillating wave whose frequency depends on the
strongest oscillating component in the stimuli (see Aapo
et al. (2009), pg 120). Thus, since neighborhood cells
have approximately the same dendritic extension, the RF
will be tuned, to similar frequencies. Moreover, cells in
the same spatial neighbourhood, receiving the same input,
will be tuned to similar wave orientations vectors. This
explains a salient aspect of grid cells phenomenological
behavior: neighboring grids cells have aligned orientations
of their axes (i.e. the same orientations of the hexagonal
axes).

2.2.3 Grid remapping by changing environmental cues

Experimental evidence shows that changes in environmental
cues are matched by a transformation in the animal’s
grid cell responses (Sargolini et al. 2006). For example, a
rotation of the main visual cues in the environment results
in a rotation of the grid cells’ orientation fields.
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This aspect can be readily explained by our model. For
example, if an environmental cue is rotated by an angle θ

the grid rotates accordingly, since

ri(Rθx) = 〈Rθx,wi〉 = 〈x,R−θwi〉
where x is the input of the simple cells. In this case, the
frequency vectors {ki} will be all rotated by the opposite
angle R−θki , with a resulting rotation of the hexagonal grid.
Similarly, for a scale transformation, the frequency vectors
will be rescaled by the scaling factor.

3 Discussion

We successfully showed how hexagonal receptive fields,
resembling those of grid cells, emerge naturally in the
spatial encoding framework by requiring minimal variance
(maximal precision) of the population encoding together
with Oja’s learning rule and minimal number of neurons
involved in the encoding.

The assumption of a 2-phase simple-complex cell type
learning adapts properties typically found in the early visual
cortex (V1) to those characterizing the entorhinal cortex. We
contend that similarity in the types of learning is plausible,
given that the entorhinal cortex integrates visual information
while also determining the relative position of the observer
navigating the spatial environment.

Importantly, the presented model provides a theoretical
framework capable of explaining the experimental evidence
that grid cells encode an abstract notion of space, decoupled
from the specificity of the sensory inputs. The notion
indeed emerges from the mathematical group properties
of the objects’ transformations, rather than the objects
themselves. More generally, our model would indicate that
grid-like coding should manifest whenever the statistics of
the neuronal inputs is stationary. Indeed, the model detailed
here provides a mathematical framework able to mimic
the emergence of grid-like patterns not only in a spatial
encoding scheme (where the considered transformations of
the space are translations), but also in a more conceptual
encoding scheme (where the transformations are dilations,
e.g. Constantinescu et al. (2016)).

3.1 “Conceptual” encoding schemes

The idea that grid-like cells could provide a model to
understand “cognitive”, in addition to sensory-related, brain
functions is not new (Moser and Moser 2013; Moser et al.
2014). However, it was not before the work in Constan-
tinescu et al. (2016) that the first experimental evidence
was provided. Interestingly, our findings can be applied to
outline a theoretical framework for investigating a possible
computational model of their experimental evidence.

The stimuli in Constantinescu et al. (2016) are described
in a two-dimensional conceptual bird space, where the posi-
tion coordinates are the lengths of both the neck and legs
of the bird. In Constantinescu et al. (2016) the authors
show an hexagonal grid-like pattern, while testing con-
ceptual associations with functional Magnetic Resonance
Imaging (fMRI). For simplicity, we model the input space
by using the shear group in 2D (composed of transforma-
tions dilating an image in the x, y directions). Instead of
the ratio between the legs of the birds and their necks we
can think about the ratio between the base and height of a
rectangle that scale in the directions x and y, respectively,
according to the parameters (l1, l2) = l ∈ R

2 (see Fig. 4c).
The transformation corresponds to Eq. (3) where instead

of the translation operator the shear operator was used:

Dlx(ξ) = x
(

ξ

l

)
, (9)

where Dl indicates the shear operator. The main idea
is to apply our spatial encoding to assess whether the
model allows to represent the grid-like conceptual patterns
observed in Constantinescu et al. (2016). We stress that,
similarly to the bird space (where the direction of motion
in the abstract “bird space” was determined by the ratio
between the neck and the leg lengths), the direction of
motion (in our abstract “scale space”) is determined by the
ratio between the base and height of the rectangle. It is sim-
ple to demonstrate that also in this case the second order
statistic of the input is stationary, since it again depends
only on the nature of the transformation. Therefore, the
synaptic weights of the neuronal population are tuned to the
eigenfunctions of the shear operator as they were before
in the translation case. These eigenfunctions are a general-
ization of Fourier components to the shear group and have
the same form, but in the log-scale coordinates log(l) =
(log(l1), log(l2)), where l1, l2 are the scaling factors in the
x and y directions (see e.g. Eagleson (1992)) :

s(l, k) = eIkT log(l). (10)

The key observation is that in this new coordinate frame
(provided by the response of the “simple cells”), the shear
transformations reduce to translations in the log(l)-space
since:

log(ll′) = log(l) + log(l′). (11)

In this space the eigenfunctions are planar waves as in Fig. 2
A, applying Theorem 1. We can then prove that also in this
case the set of frequency vectors {ki} is the Mercedes-Benz
frame. This will produce a square or hexagonal grid in the
shear space, where the coordinates, instead of the spatial
ones, are the scale coordinates l = (l1, l2) as in Fig. 4, (E).

A couple of remarks are in order. The results in
Theorem 1 can be generalized to any Abelian group; the
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Fig. 4 Translations of a bird in space (a). Transformations of a bird (b) and associated points in the ‘bird space”(from Constantinescu et al.
(2016)). Transformations of a rectangle (d) that simplify the bird transformations in (c). The associated points in the “rectangle space” (e)

eigenfunctions of the group transformations are the group
characters (Eagleson 1992). It can be used to predict grid-
like cell geometries in higher dimensions.

In dimension three, a possible solution corresponds to
the vectors associated to the vertices of a tetrahedron. More
generally, in dimension d we will end up with the vectors
associated to the vertices of a Platonic Solid. However, it
should be noted that many other solution configurations
might exist that are distinct from the case of d = 2 analyzed
in this paper.

3.2 Conclusions and outlook

We detailed a computational model able to account for
the emergence of hexagonal grid-like response patterns that
derives from simple cells’ responses and neural sensitivity
to the statistics of the input stimuli (i.e. minimal variance
encoding). Using results from Frame Theory, we provided
a novel formulation of the encoding problem within the
framework of tight and equiangular frames. We were able
to demonstrate that grid-like receptive field patterns persist
despite transformations of the environmental cues as well
as when more “conceptual” features are considered as input
stimuli. Further work will be required to extend our findings
to reproduce the experimental evidence showing that the
regular pattern of the grid receptive field adapts to different
geometries of the environment, distorting its hexagonal
regularity (Krupic et al. 2014; Urdapilleta et al. 2015;
Keinath et al. 2018). Our main result in Theorem 1 predicts
the same hexagonal grid for the 3D space of rotations of an
object, leading to a series of experiments in the same spirit
of Cheng (2018), Kim (2019), and Jacobs (2013) (for spatial

encoding) and of Constantinescu et al. (2016) for conceptual
encoding possibly tested using electroencephalography or
magnetoencephalography (Staudigl et al. 2018).

4Materials andmethods

4.1 Fisher information

The Cramer-Rao bound (CRB) sets a lower bound on the
norm of the covariance operator of any random variable y
unbiased estimator. It says:

‖Cov(y)‖ ≤
∥∥∥F−1(y)

∥∥∥ (12)

where F is the Fisher information defined as:

(F (y))k,l = −E

(
∂2 log L(y)

∂yk∂yl

)
(13)

and L(y) is the likelihood function and the average is over of
the measurements of y. In our case the likelihood function
is, Yoon and Sompolinsky (1998):

L(y) = N exp

⎛
⎝−1

2

N∑
i,j=1

(yi − ri(y))C
−1
ij (yj − rj (y))

⎞
⎠

(14)

where N is a normalization constant, C is the correlation
matrix of the noise and ri is the response of the ith neuron
(also dependent on x, that we omit for simplicity). Under
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the hypothesis of uncorrelated gaussian equal noise, i.e.
C−1 = (1/σ 2)I, a direct calculation of Eq. (14) gives:

F(y) = −E

{(
∂r(y)
∂y

)†

C−1 ∂r(y)
∂y

}

= − 1

σ 2
E

{(
∂F(Tyx)

∂y

)† ∂F(Tyx)
∂y

}
,

where F is the Fourier transform. Starting from the
following identity:

∂Fi (Tyx)
∂y

= IeIki
T ykici(x), c(x) = F(x),

we have:

F = 1

σ 2
E

{
N∑

i=1

kiki
T |ci(x)|2

}

= 1

σ 2

N∑
i=1

kiki
T
E(|ci(x)|2)

= 1

σ 2

N∑
i=1

kiki
T

‖ki‖2
2

= 1

σ 2

N∑
i=1

gigi
T

= 1

σ 2
GGT (15)

where we used the fact that the averaged power spectrum
E(|ci(x)|2) ≈ ‖ki‖−2

2 , we define the unit norm vector gi =
ki/ ‖ki‖ and we defined G as the matrix with gi as columns.

The question we address in the next paragraphs is: for
which set of ki is the CRB achieved? In other words, we
are looking for the values of ki for which the neuronal
population is providing an estimate of the variable y with
minimal variance. In particular we consider the following
minimization problem:

arg min
{ki }Ni=1

∥∥∥F−1
∥∥∥

2

Frob
. (16)

Before we add a result that take into account the presence of
pairwise constant correlated noise in the encoding.

4.1.1 The case of constant pairwise noise correlation

In the case of constant pairwise noise correlation the
covariance matrix C reads as:

C = σ 2
1 I + σ 2

2 11
T . (17)

Its inverse can be written, thanks to the Woodbury’s identity
as:

C−1 = (σ 2
1 I+σ 2

2 11
T )−1 = 1

σ 2
1

(
I − σ 2

2

σ 2
1 + dσ 2

2

11T

)
(18)

with σ1,2 > 0, d = 2. Repeating the same calculations
done in the previous section we have that in the case of

pairwise constant correlation noise the Fisher information
gains an extra term of the form:

σ 2
2

σ 2
1 + 2σ 2

2

G11T GT = const ‖G1‖2
2 . (19)

Note that G1 is the vector whose components are the sum
of the frame element coordinates. Interestingly, for balanced
frames (those whose sum of the elements is zero) this
contribution is null.

4.2 Optimal estimator and connection with frame
theory

In this section we derive the proof of the main result of the
paper.

Theorem 1 Under the hypotheses H(1, 2, 3) the minimal
variance position encoded by a set of N neurons is achieved
when the set of frequency vectors form a tight frame.
Further, if we ask for robustness to pairwise constant
neuronal noise together with minimal number of neurons the
set of frequency vectors is uniquely determined and is:

f ={k1, k2, k3}={(cos(2πj/3), sin(2πj/3)), j =1, 2, 3}.
the so called Mercedes Benz frame.

Proof Using the fact that F is semi-positive definite we
can decompose it as F = VT 	V where V is unitary and
	 is diagonal. According to the Cramer-Rao bound, the
variance is bounded from below by the inverse of the Fisher
Information. Calculating the Frobenius norm of the Fisher
matrix inverse, we have:

∥∥∥F−1
∥∥∥

2 = T r(VT (	−1)2V) = T r((	−1)2) =
N∑

i=1

1

λ2
i

(20)

where λi are the eigenvalues of F.
It is easy to prove that the minimum of Eq. (20) is reached

when all the eigenvalues are equal i.e.

F = λI (21)

i.e. the set ki form a tight frame. Considering solutions with
minimal number of neurons, i.e. N = 2, 3 we have (see
Goyal and Kovacevic (2001), pg 210): for N = 2, the
orthogonal frame, for N = 3 the so called Mercedes-Benz
frame (or any rotated version of them):

kj =
(

cos

(
2πj

3

)
, sin

(
2πj

3

))
j = 1, · · · , 3.

But the orthogonal frame is not balanced. So the solution
with minimal number of neurons is the Mercedes Benz
frame.

8



4.3 Algorithmic formulation

In this article we suppose a 2-phases learning process:

(1) Learning of the Fourier components by simple cells
using Oja’s synaptic updating rule;

(2) Learning of the selection of simple cells, performed
by the complex cell that minimize, according to the
Cramer-Rao bound, the norm of the inverse of the
Fisher Information.

Solving phase 1 simply corresponds to the extraction of the
principal components of neural input. As for phase 2 the
minimization problem for the complex cell is:

arg min
{ki}Ni=1

∥∥∥F−1
∥∥∥

2
with N minimal.

As we saw in Eq. (15), the minimization of
∥∥F−1

∥∥2
is

achieved when the set {gi} forms a tight frame. Tight frames
are minima of the so called frame potential (see Casazza
et al. (2006)), calculated as:

FP({gi}) =
N∑

ij=1

|gT
i gj |2.

Let us calculate the frame potential in our case. Here, we
denote with W the matrix whose columns are the vectors
wi , simple cells receptive fields. Hence the response matrix
(i.e. the simple cells output) will be A = XT W where X is
the dataset corresponding to the initial stimuli. The complex
grid cells will then aggregate some of the responses, i.e.
they will calculate AJ where J is a vector of zeros and
ones selecting which simple cells are meant to aggregate
(we will have a zero whether the simple cell is not selected
in the aggregation process and one elsewhere). We can
now use this notation to write the Fisher information as
follows:

F = −
(

∂r(y)
∂y

)†
∂r(y)
∂y

= J T ȦT ȦJ = J T RJ .

with the dot indicating the derivative and R = ȦT Ȧ.
In order to minimize the number of simple cells pooled
by the complex cell, we add a sparsifying term in ‖J‖0
or its relaxation ‖J‖1. Given the above reasoning, our
minimization problem boils down to:

argmin
J

∥∥∥J T 7RJ

∥∥∥
2 + λ ‖J‖1 .

To find the solution we adopt a gradient descent strategy
with shrinkage; a calculation shows that the update rule for
J is:

J → thr(J − λ RJJT RJ )

where the thr threshold is enforcing the sparsity constraint.

Simulations showed weak dependence of the λ parame-
ter. On the contrary we observed that the hexagonality of the
grid cell RF critically depends on the initialization of the J

vector. Further investigation is needed to fully understand
this behaviour.
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