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Abstract
We discuss a method to compute the microcanonical entropy at fixed magnetization without
direct counting. Our approach is based on the evaluation of a saddle-point leading to an
optimization problem. The method is applied to a benchmark Ising model with simultaneous
presence ofmean-field and nearest-neighbour interactions for which direct counting is indeed
possible, thus allowing a comparison. Moreover, we apply the method to an Ising model
with mean-field, nearest-neighbour and next-nearest-neighbour interactions, for which direct
counting is not straightforward. For this model, we compare the solution obtained by our
method with the one obtained from the formula for the entropy in terms of all correlation
functions.This example shows that for general couplings ourmethod ismuchmore convenient
than direct counting methods to compute the microcanonical entropy at fixed magnetization.

1 Introduction

The determination of the entropy of a physical system is a major task in any thermodynamic
calculation [1]. To compute the entropy, as notoriously carved on the Boltzmann tombstone,
one has to compute the number of microscopic states consistent with the macroscopic quan-
tities characterizing the system. The central problem is then the counting of the number of
such states. When the system is simple, by means of combinatoric tools one can perform
explicitly this calculation for any finite number N of the constituents of the system. In other
cases one does not have the access to the exact number at finite N , but the correct limit
for large N can be found by neglecting subleading contributions. We refer to the possibility
of directly determining the number of states—in an exact or approximate form—as direct
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counting or enumeration, as it is also referred to in [2]. We stress that the problem of the
difficulty of computing the entropy by direct counting is particularly relevant when dealing
with non-additive systems, like systems with long-range interactions, since these systems
present, most of the times, ensemble inequivalence, and thus the microcanical entropy is in
general different from the canonical entropy [3].

When direct counting is not easy or possible, due to the difficulty of carrying out the cor-
responding full or approximate combinatoric calculation, one can anyway aim at calculating
the entropy in the limit of large N resorting to other accessible thermodynamic quantities or
using information from the equation of state of the system under consideration. A problem
that is often encountered is represented by the difficulty of getting the needed expressions
in presence of additional conserved quantities, consequence of specific physical constraints
acting on the system. This issue is present, e.g., when, working in the microcanonical ensem-
ble, the entropy at a given energy has to be determined in presence of other constraints. In
this case the entropy, and therefore the number of states, has to be known as a function not
only of the energy, but also of other macroscopic observables, such as order parameters and
other correlation functions, characterizing the thermodynamic state.

Among the various physical systems in which the previous general considerations apply,
a special attention is devoted to magnetic and spin systems, where the issue of determining
the entropy from the counting of states is ubiquitously present [4]. The order parameter
characterizing these systems is the magnetization. Then there are situations in which it could
be necessary to compute the entropy as a function of the energy andmagnetization, or, in other
words, to find the entropy in presence of the constraint of fixed magnetization. Generally the
natural physical setting of amagnetic system is one in which the fixed control parameter is the
externalmagnetic field,with the (average)magnetization obtained as a derived quantity by the
usual thermodynamic relation; also the spontaneous magnetization in absence of an external
field in ferromagnetic systems falls into this scheme. However, there are cases in which the
Hamiltonian of a magnetic system can be used to describe another type of system, meaning
that it is possible to map the original system into a magnetic one; the magnetization would
then represent, under this mapping, a control parameter of the original system. For example,
the spin value could be associated to the presence or absence of a charged particle in the
corresponding site, and the magnetization would be related to the density of the system [5]. It
is clear that in such cases the magnetization is a natural control parameter. When ensembles
are equivalent, the computation of the entropy could be done in the canonical ensemble,
which is generally easier to deal with. But if equivalence does not hold, as in most non-
additive systems, in particular those with long-range interactions, if one wants to study the
system at given energy (and magnetization), it is necessary to compute the microcanonical
partition function, i.e., to compute the number of states. In this circumstance, the interest
of this computation is present also when the Hamiltonian represents a genuine magnetic
system; in fact, inequivalence would be associated to a possible negative susceptibility in
the microcanonical ensemble. To determine if this property occurs, one has to compute the
microcanonical entropy at fixed magnetization.

Another typical situation in which one works at a fixedmagnetization in magnetic systems
is provided by spin models obtained in the strong coupling limit from lattice fermionic or
bosonic systems, such as theHubbardmodel [6] or its bosonic counterpart [7]. In that case, for
large interactions one naturally obtains spinmodels [8] since in that limit the part of theHilbert
space contributing to the effective Hamiltonian for each lattice site is finite dimensional.
When the number of particles in the original lattice model is fixed, the magnetization in
the spin model is in turn fixed and therefore one is interested to work in sectors at a fixed
magnetization.
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Since the calculation of entropy at fixedmagnetizationwithout resorting to direct counting
is in general a challenging problem, in this paper we aim at presenting a method that, starting
from the canonical partition function, is able to give a useful expression for the microcanon-
ical entropy at fixed magnetization. As a benchmark, we first apply the presented method
to a model in which there is a long-range, mean-field coupling between all the spins of an
Ising chain in presence of a nearest-neighbour term [9–11]. The rationale for this choice is
that it may exhibit ensemble inequivalence when the long-range coupling is ferromagnetic
and the short-range is antiferromagnetic, and one can study and compare both the canonical
and microcanonical phase diagrams. Even more importantly for our purposes, in this model
the direct counting is possible and one can compare the results obtained from the method
presented here and direct counting findings. Moreover, the model has the merit that it is eas-
ily generalizable, and one can study the effect of additional couplings, such as finite-range
terms. In a recent paper [12] the addition of a next-nearest-neighbour term was considered
and the canonical phase diagram shown to exhibit a rich structure, with a large variety of
different critical points. Since the direct counting in such a model is rather involved and
cumbersome, it provides an ideal case study to give results for the microcanonical entropy
at fixed magnetization in a case in which direct counting is not known in the literature.

The plan of the paper is the following. In Sect. 2 we derive formal expressions for the
canonical and microcanonical partition functions at fixed magnetization. In Sect. 3 these
expressions are used to obtain the procedure to compute the canonical and microcanonical
entropies at fixed magnetization for a general spin system in which there are both long-range
mean-field and short-range interactions. In this section we also discuss the issue of ensemble
inequivalence. In Sect. 4 we apply the procedure to specific models; in particular we consider
a model where the short-range interaction is only between nearest-neighbours and another
model where also a next-nearest-neighbour interaction is present. We choose these models
since they allow (with difficulty for the second case) a direct counting evaluation, and thus
a comparison with the results of our procedure provides a test for it. In Sect. 5 a discussion
and the conclusions are given. Some additional material is in the appendices.

2 Formal Expressions for the Partition Functions at Fixed
Magnetization

In this paperwe consider spin systems, forwhich the dynamical variables take discrete values;
correspondingly, the sum over the configurations is denoted by a sum over the discrete values
of the spins Si . The constraint of fixed magnetization is a constraint on the sum of the Si .
However, the general expressions that we obtain in this section and in the following one
are independent from the structure of the configuration space of the system. In particular,
they are valid also for continuous dynamical variables (in that case the constraint would be,
e.g., on the position of the center of mass of the system): in the derivation of the general
expressions one would substitute the sum over the spin configurations {Si } with the integral
over the continuous dynamical variables, obtaining at the end the same expressions.

As explained above, we focus on the entropy at fixed magnetization, which is defined by:

m̂ = 1

N

N∑

i=1

Si . (1)

The use of the hat in the notation is justified by the necessity to distinguish the magnetization
m̂ as a function of the spin configuration from its fixed valuem on which the thermodynamic
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quantities defined in the following will depend. Before proceeding, we find it convenient to
begin by writing down the known expressions for the usual entropy and the free energy, i.e.,
for the case when there is no such constraint of fixed magnetization. In a system of N spins,
the number of states (i.e., the microcanonical partition function) Ω(ε, N ) with fixed energy
per particle equal to ε and the associated microcanonical entropy smicr(ε) are given by:

Ω(ε, N ) ≡ exp [Nsmicr(ε)] =
∑

{Si }
δ (Nε − H({Si })) . (2)

On the other hand, the partition function Z(β, N ) and the associated (rescaled) free energy
φ(β) per particle are expressed by:

Z(β, N ) ≡ exp [−Nφ(β)] =
∑

{Si }
exp [−βH({Si })]

=
∫

d(Nε) exp {−N [βε − smicr(ε)]} , (3)

where β = 1/kBT is proportional to the inverse of the temperature T , with kB the Boltzmann
constant. The last expression shows that in the thermodynamic limit, where the saddle-
point approximation becomes exact, the rescaled free energy φ(β) is the Legendre-Fenchel
transform of the microcanonical entropy smicr(ε):

φ(β) = min
ε

[βε − smicr(ε)] . (4)

To consider now the magnetization constraint, we need to modify the above expressions
by adding a proper δ function. Precisely, the number of states (or microcanonical partition
function) Ω̃(ε,m, N ) with fixed energy per particle equal to ε and fixed magnetization per
particle equal to m, and the associated microcanonical entropy per particle s̃micr(ε,m) are
obtained by:

Ω̃(ε,m, N ) ≡ exp [Ns̃micr(ε,m)] =
∑

{Si }
δ (Nε − H({Si })) δ

(
∑

i

Si − Nm

)
. (5)

Analogously, the partition function Z̃(β,m, N ) and the associated rescaled free energy
φ̃(β,m) per particle at fixed magnetization m are given by:

Z̃(β,m, N ) ≡ exp
[−N φ̃(β,m)

] =
∑

{Si }
exp [−βH({Si })] δ

(
∑

i

Si − Nm

)

=
∫

d(Nε) exp {−N [βε − s̃micr(ε,m)]} . (6)

As in the case of Eq. (4), the last expression shows that in the thermodynamic limit the
rescaled free energy φ̃(β,m) is the Legendre-Fenchel transform of the microcanonical
entropy s̃micr(ε,m):

φ̃(β,m) = min
ε

[βε − s̃micr(ε,m)] , (7)

(for brevity in the following we do not specify any more that the entropy and the free energy
are to be intended per particle).

The above expressions can be transformed by using the representation of the δ function.
Since the partition functions are given by sums over spin configurations that assume discrete
values, in principle the δ functions should not be interpreted as Dirac δ, but as Kronecker
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δ. This should be reflected in the corresponding representation. However, the distinction
between Dirac and Kronecker δ is not relevant for the final expression, as will be clear in the
following (besides, in the thermodynamic limit both ε and m become parameters assuming
continuous values). We can therefore use the representation of the Dirac δ function. For the
microcanonical partition function we thus have:

Ω̃(ε,m, N )

=
∑

{Si }

(
1

2π

)2∫ +∞

−∞
dλ

∫ +∞

−∞
dϕ exp

{
iλ [Nε − H({Si })] + iϕ

[
∑

i

Si − Nm

]}

=
∑

{Si }

(
1

2π i

)2∫ +i∞

−i∞
dλ

∫ +i∞

−i∞
dϕ exp

{
λ [Nε − H({Si })] + ϕ

[
∑

i

Si − Nm

]}
. (8)

For the canonical partition function we similarly have:

Z̃(β,m, N ) =
∑

{Si }

1

2π i

∫ +i∞

−i∞
dϕ exp

{
−βH({Si }) + ϕ

[
∑

i

Si − Nm

]}
. (9)

The microcanonical entropy and the rescaled free energy, as shown in the defining equiva-
lences at the beginning of Eqs. (5) and (6), are then obtained from the logarithm of Eqs. (8)
and (9), respectively. We note that in both expressions (8) and (9) the sum over the config-
urations is the canonical partition function of the system with an added external magnetic
field, in which ϕ is equal to the magnetic field multiplied by the inverse temperature.

In the next section we apply these general expressions to the case where long-range
interactions are present.

3 Models with Long- and Short-Range Terms

Weare interested inmodels that can exhibit ensemble inequivalence, arising from the presence
of long-range interactions. In this framework and considering spin systems, the latter are
defined as those in which the coupling constant between two spins has a decaying behaviour
with distance as Ji, j ∼ 1/|i − j |α , with α smaller than the spatial dimension of the system.
When α = 0 we have the case of mean-field terms.When long-range interactions are present,
thermodynamic quantities are no more additive and ensemble inequivalence can arise. In
particular, this generally occurs in presence of first order phase transitions in the canonical
ensemble, so that the function φ(β) is not everywhere differentiable; it is known, in fact, that
if φ(β) is everywhere differentiable, then Eq. (4) can be inverted [3], so that s(ε) is concave
and ensembles are equivalent1.

To have a concrete case of study, we consider models having general finite-range inter-
actions plus long-range terms of the mean-field form. These models generally present first
order phase transitions, due to the combined effect of the mean-field terms and of the short-
range terms. We will derive our expressions by assuming a system with two mean-field terms
plus unspecified short-range interactions. The dimensionality d of the lattice will also be left
unspecified. Of course, as in any computational method, the computations in concrete models
are easier for one-dimensional systems. In the following section, where we show the appli-
cation to a specific model, we will then consider, as an example, a one-dimensional model

1 We remind that the Legendre–Fenchel transform of any function is automatically concave.
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that we have already studied within the framework of the canonical ensemble [12] and that,
even with only one mean-field term, presents a very rich thermodynamic phase diagrams,
with first and second order phase transitions, critical and tricritical points, and critical end
points.

As a preliminary step, we recall that, dealing with systems with long-range interactions,
one often obtains an expression of the canonical partition function Z(β, N ) in the form

Z(β, N ) =
∫ +∞

−∞
dx exp [−Nψ(β, x)] , (10)

where x ≡ (x1, . . . , xM ) is a M-dimensional auxiliary variable, and where ψ(β, x) is a
real analytic function of β and x. This form is a multidimensional generalization [13] of an
expression previously considered only for M = 1 [14]. As we will see shortly, one obtains
an expression of this sort by using a Hubbard-Stratonovich transformation to perform the
computation of the canonical partition function in presence of mean-field terms. Using a
saddle-point evaluation, valid in the thermodynamic limit, one finds that the microcanonical
entropy smicr(ε) is given by [3,13,14]:

smicr(ε) = max
x

{
min

β
[βε − ψ(β, x)]

}
. (11)

On the other hand, the canonical entropy, computed from the rescaled free energy φ(β), is
obtained from

scan(ε) = min
β

{
max
x

[βε − ψ(β, x)]
}

. (12)

These two min-max expressions can give different results [3,13,14], and when this happens
ensemble inequivalence occurs.

In this section we will consider the case with two auxiliary variables (i.e., M = 2), thus
an expression of the form

Z(β, N ) =
∫ +∞

−∞
dx

∫ +∞

−∞
dy exp [−Nψ(β, x, y)] . (13)

Let us then introduce the kind of models we consider. As mentioned above, we will work
with a system with two mean-field terms, more precisely with a Hamiltonian given by:

H({Si }) = − J

2N

(
N∑

i=1

Si

)2

− K

2N

(
N∑

i=1

S2i

)2

+
N∑

i=1

U ([Si ]) , (14)

with positive coupling constants, J > 0, K > 0. We see that the first mean-field term
is proportional to −Nm̂2, with the magnetization m̂ defined in Eq. (1), while the second
mean-field term is proportional to −Nq̂2, with q̂ equal to the quadrupole moment

q̂ = 1

N

N∑

i=1

S2i . (15)

As usual with mean-field terms, the coupling constants are normalized with the number
N of spins. In the final term of the Hamiltonian the notation U ([Si ]) denotes a func-
tion of the i-th spin Si and its neighbours. Namely, U ([Si ]) is a short-range term that
could contain the interaction of the i-th spin with its nearest-neighbours, next-nearest-
neighbours, next-to-next-nearest-neighbours, and so on. If the lattice is not one-dimensional,
of course the index i stands for the set of indices used to identify the lattice point. In the
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implementation of the method to an one-dimensional lattice in section 4 we consider in
detail Ising spins with U ([Si ]) = −(K1/2)Si Si+1 (only nearest-neighbour couplings) and
U ([Si ]) = −(K1/2)Si Si+1−(K2/2)Si Si+2 (including a next-nearest-neighbour term).How-
ever, the general expressions that wewill derive are independent on the spin value. As amatter
of fact, in order to have a nontrivial contribution to the Hamiltonian in correspondence of the
quadrupole mean-field term, one has to consider non Ising spins2.

We now make use of the Hubbard-Stratonovich transformation

exp(ab2) =
√

a

π

∫ +∞

−∞
dx exp(−ax2 + 2abx) (a > 0) , (16)

applied, for positive β, once to the case where a = β J N/2 and b = (∑
i Si/N

) = m̂, and
once to the case where a = βK N/2 and b = (∑

i S
2
i /N

) = q̂. We then obtain:

exp [−βH({Si })]
= βN

√
J K

2π

∫ +∞

−∞
dx

∫ +∞

−∞
dy exp

[
− N

2
β J x2 − N

2
βKy2

+β J x
N∑

i=1

Si + βKy
N∑

i=1

S2i − β

N∑

i=1

U ([Si ])
]
. (17)

Inserting in Eq. (9) and performing the sum over the spin configurations we get

Z̃(β,m, N )

= 1

2π i

βN
√
J K

2π

∫ +∞

−∞
dx

∫ +∞

−∞
dy

∫ +i∞

−i∞
dϕ exp

{
− N

[β J

2
x2 + βK

2
y2

+ψ̂(β, β J x + ϕ, βKy) + mϕ
]}

, (18)

where the function ψ̂(β, β J x + ϕ, βKy) is defined by:

exp
[
−N ψ̂(β, β J x + ϕ, βKy)

]

=
∑

{Si }
exp

[
(β J x + ϕ)

N∑

i=1

Si + βKy
N∑

i=1

S2i − β

N∑

i=1

U ([Si ])
]

. (19)

Then, we have an expression of the canonical partition function Z(β,m, N ) in which, besides
the two auxiliary variables x and y, the other auxiliary variable ϕ, coming from the Fourier
representation of the δ function that implements the constraint of fixed magnetization m,
appears. We see that ψ̂ is a real analytic function of its arguments. Thus, the dependence of
ψ̂ on β J x + ϕ comes from the combination of the third term in the exponent of Eq. (17)
and the second term in the exponent of Eq. (9), the dependence on βKy comes from the
fourth term in the exponent of Eq. (17), while the extra dependence on β comes from the
short-range term, the last term in the exponent of Eq. (17). It might be difficult to obtain
ψ̂ , for example the use of a transfer matrix evaluation could be necessary. Here we do not
specify any particular form. Clearly, if d > 1 the determination of ψ̂ becomes considerably
more involved (one may resort to approximations for it), but for the purposes of the present
discussion there are no changes in the argument. We remark that these difficulties would be

2 For Si = −1, 0, 1 and a function U ([Si ]) given by just a term proportional to S2i we would obtain the
Hamiltonian of the Blume-Emery-Griffithsmodel; however, in this computationwe are not assuming a specific
spin model and a specific function U ([Si ]).
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present already in the calculation of the canonical partition function. Moreover, so far we
did not explicitly use the values taken by the spins Si . As remarked above, in the implemen-
tation we will consider Ising spins, Si = ±1, but the application to more general cases is
straightforward.

Furthermore, for the moment we consider only positive temperatures, i.e. β ≥ 0, post-
poning the treatment of negative temperatures. In spin systems, where the energy is upper
bounded, the latter are possible in the microcanonical ensemble. They occur for energies
where the derivative of the entropy with respect to the energy is negative. Although physi-
cally we do not envisage a thermal bath at negative temperatures, it is possible to formally
define a canonical partition function at negative temperatures, since the upper boundedness
of the energy implies that this partition function is well defined. We remind that, thinking to
the thermodynamic situations in which it is sensible to talk of negative temperatures, we are
forced to consider them as “hotter” than the positive temperatures. More precisely, T = +∞
and T = −∞ coincide, while any negative temperature is “hotter” than T = ∞. Moreover,
if T1 < T2 < 0, then T2 is “hotter” than T1. Finally, the “hottest” temperature is T = 0−,
although numerically it is infinitesimally close to the coldest temperature T = 0+.

Before writing the expression for the microcanonical partition function (8) we remark the
following. In (8) the integrals on λ and ϕ are made on the imaginary axis; however, we can
perform the integration on a line parallel to the imaginary axis, adding a real part to both λ

and ϕ, since this is allowed by the definition of the Dirac δ. Furthermore, as discussed in [3],
the integrals in λ and ϕ can be limited to a finite segment parallel to the imaginary axis3.

We then obtain:

Ω̃(ε,m, N ) =
(

1

2π i

)2
βN

√
J K

2π

×
∫ +∞

−∞
dx

∫ +∞

−∞
dy

∫ σ+iη

σ−iη
dλ

∫ μ+iν

μ−iν
dϕ exp

{
N

[
λε − λJ

2
x2 − βK

2
y2

−ψ̂(λ, λJ x + ϕ, λKy) − mϕ
]}

, (20)

where σ and μ are the fixed real parts of λ and ϕ, respectively, while η and ν denote the
respective limits of integration along the segments parallel to the imaginary axis.Analogously,
the integration limits ofϕ in Eq. (18) can be changed in (μ−iν, μ+iν).We note that, since Eq.
(17) is valid for positive β, then the fixed real part σ in the integral in λ must be nonnegative.

From Eqs. (18) and (20) one can derive the expressions giving the rescaled free energy
φ̃(β,m) and the microcanonical entropy s̃(ε,m). The integrals can be evaluated with the
saddle point approximation. It can be shown [3] that the relevant saddle points in the variables
λ and ϕ lie on the real axis. Let us first consider φ̃(β,m). Since the real part of the exponent
in Eq. (18) has a minimum on the real axis when ϕ varies on the line parallel to the imaginary
axis, then it has a maximum, on the same point of the real axis, when ϕ varies along the real
axis. We therefore have:

φ̃(β,m) = min
x,y

[
max

ϕ

(
β J

2
x2 + βK

2
y2 + ψ̂(β, β J x + ϕ, βKy) + mϕ

)]
. (21)

From this one can obtain the expression for the canonical entropy s̃can(ε,m)

s̃can(ε,m)

3 This also shows why, as noted above, the use of the representation of the Dirac δ, instead of that of the
Kronecker δ, has no importance in this computation.
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= min
β≥0

{
max
x,y

[
min

ϕ

(
βε − β J

2
x2 − βK

2
y2 − ψ̂(β, β J x + ϕ, βKy) − mϕ

)]}
.(22)

An analogous saddle point evaluation of Eq. (20) allows to find the expression of the micro-
canonical entropy s̃micr(ε,m), obtaining:

s̃micr(ε,m)

= max
x,y

{
min
β≥0

[
min

ϕ

(
βε − β J

2
x2 − βK

2
y2 − ψ̂(β, β J x + ϕ, βKy) − mϕ

)]}
.(23)

FromEqs. (22) and (23) one can obtain the (β, x, y, ϕ)point satisfying the extremal problems.
As in the case of smicr(ε) and scan(ε), given respectively in Eqs. (11) and (12), the different
order in which minimization with respect to β and maximization with respect to x and
y is performed can lead to different results, i.e., to different extremal points, and then to
ensemble inequivalence. From the properties of min-max extremal problems [3] it follows
that in general we will have s̃micr(ε,m) ≤ s̃can(ε,m).

We note that in Eqs. (22) and (23) it is possible to include β = 0. In fact, for β = 0
the partition function (9) reduces to the number of states with given magnetization, and no
Hubbard-Stratonovich transformation is necessary. However, the function in round brackets
in Eqs. (22) and (23) becomes equal to (−ψ̂(0, ϕ, 0) − mϕ), and it is easy to see that this
value4 is reached continuously when β → 0+. Therefore, the two extremal problems (22)
and (23) can be extended to β = 0, for which no maximization with respect to x and y has
to be performed.

The study of the extremal problems (22) and (23) is performed by determining the station-
arity and stability conditions that have to be satisfied by the (β, x, y, ϕ) point in each case.
We emphasize that the relations we are going to derive have the purpose to find analytical
expressions for the points, but in an actual computation concerning a given concrete model
the most rapid way to proceed will be to numerically solve the extremization problems (22)
and (23). Therefore, the somewhat cumbersome appearance of the expressions that we will
obtain are not a hindrance for the applications. To ease the notation it is convenient to denote
with u, v and w the three arguments (β, β J x + ϕ and βKy) of ψ̂ , and, as customary, to use
subscripts to denote partial derivatives with respect to an argument.

Wewill proceed step by step for each of the two extremal problems, since this is convenient
to determine the stability conditions, expressed by inequalities to be satisfied at the extremal
points (β, x, y, ϕ). On the other hand, the stationarity conditions can be easily written all
together, and they are the same for both problems, and we anticipate them here. They are
given by:

ψ̂v + m = 0 (24)

ψ̂v + x = 0 (25)

ψ̂w + y = 0 (26)

ε − J

2
x2 − ψ̂u − J xψ̂v − Kyψ̂w = 0 . (27)

The first three equations are also those that must be verified in the extremal problem (21).
The first two equations imply that at the extremal points we have x = m. The fact that at the
extremal point one has x = m is consistent with what obtained in the study of the uncon-
strained problem, i.e., in the computation of φ(β) and s(ε) (canonical or microcanonical),

4 It is also not difficult to realize from Eq. (19) that exp
[
−N ψ̂(0, ϕ)

]
is equal to the partition function of N

independent spins subject to a magnetic field h with ϕ playing the role of βh.
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where one derives the equilibrium magnetization and finds that it is equal to the extremal
value of x [3].

Let us know complete the analysis, obtaining for each one of the stationarity conditions
summarized in Eqs. (24–27) the corresponding stability condition.We beginwith the problem
(22). Minimizing with respect to ϕ one has:

ψ̂v + m = 0 (28)

ψ̂vv < 0 . (29)

Eq. (28) gives ϕ as a function of (β, x, y,m), and one obtains the following relations:

ϕx = −β J (30)

ϕy = −βK
ψ̂vw

ψ̂vv

(31)

ϕβ = − ψ̂uv

ψ̂vv

− J x − Ky
ψ̂vw

ψ̂vv

, (32)

useful for the successive steps. Then we have now:

s̃can(ε,m) = min
β≥0

{
max
x,y

[
βε − β J

2
x2 − βK

2
y2

−ψ̂(β, β J x + ϕ(β, x, y,m), βKy) − mϕ(β, x, y,m)
]}

. (33)

The maximization with respect to x and y leads to the following stationarity and stability
conditions:

ψ̂v + x = 0 (34)

ψ̂w + y = 0 (35)

1 + βK

(
ψ̂ww − ψ̂2

vw

ψ̂vv

)
> 0 , (36)

where use has been made of Eqs. (30) and (31). Equation (36) will be compared with the
corresponding one obtained below in the study of s̃micr(ε,m), to see how inequivalence
can arise. Eqs. (34) and (35) define in principle x and y as a function of (β,m). However,
the former one, taken together with Eq. (28), shows that at the extremum one has x = m.
Consistently, computing the derivative of x and y with respect to β, used in the following
step, we find, with the help of (32):

xβ = 0 (37)

yβ = −
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv
+ Ky

(
ψ̂ww − ψ̂2

vw

ψ̂vv

)

1 + βK
(
ψ̂ww − ψ̂2

vw

ψ̂vv

) . (38)

Then we are left with:

s̃can(ε,m) = min
β≥0

{
βε − β J

2
x2(β,m) − βK

2
y2(β,m)

−ψ̂(β, β J x(β,m) + ϕ(β, x(β,m), y(β,m),m), βKy(β,m))

−mϕ(β, x(β,m), y(β,m),m)
}

, (39)

10



where in this expression we have left the formal dependence of x and y on (β,m). Without
writing explicitly anymore this dependence, minimization with respect to β leads to the
stationarity condition:

ε − J

2
x2 − K

2
y2 − ψ̂u − J xψ̂v − Kyψ̂w = 0 , (40)

where use has been made of Eqs. (28), (37) and (38). This equation gives β as a function of ε

andm. The stability condition requires some algebra. Using Eq. (32) the stability is obtained
as:

ψ̂uuψ̂vv − ψ̂2
uv + 2Ky

(
ψ̂uwψ̂vv − ψ̂uvψ̂vw

)
+ (Ky)2

(
ψ̂vvψ̂ww − ψ̂2

vw

)

+βK ψ̂vv

[
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv

+ Ky

(
ψ̂ww − ψ̂2

vw

ψ̂vv

)]
yβ > 0 . (41)

Substituting the expression of yβ given by Eq. (38) we have:

ψ̂uuψ̂vv − ψ̂2
uv + 2Ky

(
ψ̂uwψ̂vv − ψ̂uvψ̂vw

)
+ (Ky)2

(
ψ̂vvψ̂ww − ψ̂2

vw

)

−βK ψ̂vv

[
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv
+ Ky

(
ψ̂ww − ψ̂2

vw

ψ̂vv

)]2

1 + βK
(
ψ̂ww − ψ̂2

vw

ψ̂vv

) > 0 . (42)

From Eqs. (29) and (36) it follows that the second line of Eq. (42) (including the minus sign)
is positive. This is to be taken into account in the comparison with the corresponding stability
condition in the following study of s̃micr(ε,m).

It is convenient to summarize the stability conditions of the problem (22). They are:

ψ̂vv < 0 (43)

1 + βK

(
ψ̂ww − ψ̂2

vw

ψ̂vv

)
> 0 (44)

ψ̂uuψ̂vv − ψ̂2
uv + 2Ky

(
ψ̂uwψ̂vv − ψ̂uvψ̂vw

)
+ (Ky)2

(
ψ̂vvψ̂ww − ψ̂2

vw

)

−βK ψ̂vv

[
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv
+ Ky

(
ψ̂ww − ψ̂2

vw

ψ̂vv

)]2

1 + βK
(
ψ̂ww − ψ̂2

vw

ψ̂vv

) > 0 . (45)

We now consider the extremal problem (23), concerning the microcanonical entropy. The
first step is the same of the canonical case, so that the corresponding stationarity and stability
conditions are given by (28) and (29), respectively, and also Eqs. (30), (31) and (32) are the
same. Then we have:

s̃micr(ε,m) = max
x,y

{
min
β≥0

[
βε − β J

2
x2 − βK

2
y2

−ψ̂(β, β J x + ϕ(β, x, y,m), βKy) − mϕ(β, x, y,m)
]}

. (46)

The minimization with respect to β gives the stationarity condition:

ε − J

2
x2 − K

2
y2 − ψ̂u − J xψ̂v − Kyψ̂w = 0 , (47)
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where Eq. (28) has been used. As we know, it is the same as that of the other extremal
problem. It gives β as a function of (ε, x, y,m). From this function we obtain, using (32):

βx = 0 (48)

βy = −βK
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv
+ Ky

(
ψ̂ww − ψ̂2

vw

ψ̂vv

)

ψ̂uu − ψ̂2
uv

ψ̂vv
+ 2Ky

(
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv

)
+ (Ky)2

(
ψ̂ww − ψ̂2

vw

ψ̂vv

) . (49)

We point out that in writing the last expressions we have also used the stationarity conditions
that are obtained in the following and last step, the maximization with respect to x and y.
Making use of Eq. (32), we find that the stability condition is given by:

ψ̂uuψ̂vv − ψ̂2
uv + 2Ky

(
ψ̂uwψ̂vv − ψ̂uvψ̂vw

)
+ (Ky)2

(
ψ̂vvψ̂ww − ψ̂2

vw

)
> 0 . (50)

We see that this is different from the corresponding stability condition (42). The latter requires
the positivity of an expression given by the left hand side of (50) plus the second line of (42),
that we have noted is always positive at the extremal point. We come back to this later. The
final step is given by:

s̃micr(ε,m) = max
x,y

{
β(ε, x, y,m)ε − β(ε, x, y,m)J

2
x2 − β(ε, x, y,m)K

2
y2

−ψ̂(β(ε, x, y,m), β(ε, x, y,m)J x + ϕ(β(ε, x, y,m), x, y,m), β(ε, x, y,m)

×Ky) − mϕ(β(ε, x, y,m), x, y,m)
}

. (51)

The stationarity conditions are:

ψ̂v + x = 0 (52)

ψ̂w + y = 0 , (53)

equal respectively to (34) and (35), as expected. But the stability condition is not equal to
(36), being instead given by, using (30) and (31):

1 + βK

[
ψ̂ww − ψ̂2

vw

ψ̂vv

]

+
[
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv

+ Ky

(
ψ̂ww − ψ̂2

vw

ψ̂vv

)]
βy > 0 . (54)

Substituting βy from Eq. (49) we obtain:

1 + βK

[
ψ̂ww − ψ̂2

vw

ψ̂vv

]

−βK

[
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv
+ Ky

(
ψ̂ww − ψ̂2

vw

ψ̂vv

)]2

ψ̂uu − ψ̂2
uv

ψ̂vv
+ 2Ky

(
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv

)
+ (Ky)2

(
ψ̂ww − ψ̂2

vw

ψ̂vv

) > 0 . (55)

Furthermore, from Eqs. (29) and (50) we have that the denominator in the fraction in the
second line is negative; therefore the second line (including the minus sign) is positive. On
the other hand, we had noted, in the study of the canonical problem, that the corresponding
stability condition [see Eq. (36)] required that the first line alone be positive. After treating
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the case of negative temperatures we come back to the differences between the stability
conditions and the associated possibility of ensemble inequivalence.

The summary of the stability conditions of the problem (23) is:

ψ̂vv < 0 (56)

ψ̂uuψ̂vv − ψ̂2
uv + 2Ky

(
ψ̂uwψ̂vv − ψ̂uvψ̂vw

)

+ (Ky)2
(
ψ̂vvψ̂ww − ψ̂2

vw

)
> 0 (57)

1 + βK

[
ψ̂ww − ψ̂2

vw

ψ̂vv

]

−βK

[
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv
+ Ky

(
ψ̂ww − ψ̂2

vw

ψ̂vv

)]2

ψ̂uu − ψ̂2
uv

ψ̂vv
+ 2Ky

(
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv

)
+ (Ky)2

(
ψ̂ww − ψ̂2

vw

ψ̂vv

) > 0 . (58)

3.1 Negative Temperatures

We noted above that spin systems can have negative temperatures, since the energy is upper
bounded. As a consequence, we should expect that, if in Eqs. (22) or (23) we choose values of
ε andm for which the corresponding temperature is negative, then the extremal problemswill
not be satisfied for any β ≥ 0. Then we have to extend the analysis to negative values of β.
The treatment of negative temperatures requires some changes in the expressions. However,
we will see below that, considering the two cases together, we can obtain a procedure that
has the double advantage to be shorter and to include at the same time temperatures of both
signs.

When β < 0 we have to use a different form of the Hubbard-Stratonovich transformation,
i.e.

exp(ab2) =
√−a

π

∫ +∞

−∞
dx exp(ax2 + 2iabx) , (59)

which is valid for a < 0. For the following analysis it is useful to note that this equality
is valid also if we add fixed imaginary parts to x and to y , i.e., if we perform the x and y
integral on a line parallel to the real x axis and the real y axis, respectively. The expression
for the canonical partition function that replaces (18) is then

Z̃(β,m, N )

= 1

2π i

|β|N√
J K

2π

∫ +∞

−∞
dx

∫ +∞

−∞
dy

∫ μ+iν

μ−iν
dϕ exp

{
− N

[
− β J

2
x2 − βK

2
y2

+ψ̂(β, iβ J x + ϕ, iβKy) + mϕ
]}

, (60)

where we have already taken into account that the integral over ϕ can be on a line parallel
to the imaginary axis, with real part equal to μ, and that the integration limits of ϕ can be
changed in (μ − iν, μ + iν). The function ψ̂(β, iβ J x + ϕ, iβKy) is defined as in Eq. (19),
therefore by the right hand side of that expression with β substituted by iβ. In the same way,
the expression of the microcanonical partition function replacing (20) is
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Ω̃(ε,m, N ) =
(

1

2π i

)2 |β|N√
J K

2π

×
∫ +∞

−∞
dx

∫ +∞

−∞
dy

∫ σ+iη

σ−iη
dλ

∫ μ+iν

μ−iν
dϕ exp

{
N

[
λε + λJ

2
x2 + βK

2
y2

−ψ̂(λ, iλJ x + ϕ, iλKy) − mϕ
]}

, (61)

where σ is the fixed real parts of λ, and we have taken into account that the integration limits
of λ can be taken as (σ − iη, σ + iη). We note that, since Eq. (59) is valid for negative β,
then the fixed real part σ in the integral in λ must be nonpositive.

Then, we obtain the following expressions replacing Eqs. (21), (22) and (23):

φ̃(β,m) = min
x,y

[
max

ϕ

(
−β J

2
x2 − βK

2
y2 + ψ̂(β, iβ J x + ϕ, iβKy) + mϕ

)]
, (62)

for the rescaled free energy,

s̃can(ε,m)

= min
β≤0

{
max
x,y

[
min

ϕ

(
βε + β J

2
x2 + βK

2
y2 − ψ̂(β, iβ J x + ϕ, iβKy) − mϕ

)]}
,

(63)

for the canonical entropy, and

s̃micr(ε,m)

= max
x,y

{
min
β≤0

[
min

ϕ

(
βε + β J

2
x2 + βK

2
y2 − ψ̂(β, iβ J x + ϕ, iβKy) − mϕ

)]}
,

(64)

for the microcanonical entropy. For the same argument given before, the value β = 0 can be
included in the analysis. Depending on the values of ε and m we expect that it is possible to
satisfy either the extremal problem (22) or the extremal problem (63), but not both (except
when they are both satisfied for β = 0); the same for the couple of problems (23) and (64).

We can now follow the same steps as above to obtain the stationarity and stability condi-
tions of the problems (63) and (64).Wewill make a shorter presentation than for positive β, in
particular we will not mention explicitly the equations used to obtain the stability conditions.
In both cases the first step, i.e., the minimization with respect to ϕ, is the same as before. We
then have the same stationarity and stability conditions, namely

ψ̂v + m = 0 (65)

ψ̂vv < 0 . (66)

In writing, here and in the following, an inequality like (66) for a quantity that in principle
is complex, we are assuming that it is actually real. In fact, as it can be verified a posteriori,
both ix and iy at the extremal points are real quantities. Eq. (65), defining ϕ as a function of
(β, x, y,m), now gives:

ϕx = −iβ J (67)

ϕy = −iβK
ψ̂vw

ψ̂vv

(68)
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ϕβ = − ψ̂uv

ψ̂vv

− iJ x − iKy
ψ̂vw

ψ̂vv

. (69)

Thus, in the second step for the canonical case we have

s̃can(ε,m) = min
β≤0

{
max
x,y

[
βε + β J

2
x2 + βK

2
y2

−ψ̂(β, iβ J x + ϕ(β, x, y,m), iβKy) − mϕ(β, x, y,m)
]}

. (70)

The maximization with respect to x and y leads to the following stationarity and stability
conditions:

− iψ̂v + x = 0 (71)

−iψ̂w + y = 0 (72)

1 + βK

(
ψ̂ww − ψ̂2

vw

ψ̂vv

)
> 0 . (73)

This stationarity condition (71), defining x as a function of (β,m), shows, together with Eq.
(65), that ix = m, that we substitute in the next and final step. Then, as before, xβ = 0. We
note that the application of the saddle point requires that the integral in x be performed on
a line parallel to the real axis with imaginary part equal to −im. Furthermore, as mentioned
above, Eq. (72) shows that at the stationary point iy is real, and, as for the integration in x ,
the saddle point application requires that the integral in y be performed on a line parallel to
the real axis. The third and final step for the canonical case is:

s̃can(ε,m) = min
β≤0

{
βε − β J

2
m2 + βK

2
y2

−ψ̂(β, β Jm + ϕ(β, y(β,m),m)) − mϕ(β, y(β,m),m)
}

. (74)

The stationarity and stability conditions are given by

ε − J

2
m2 + K

2
y2 − ψ̂u − Jmψ̂v − iKyψ̂w = 0 (75)

ψ̂uuψ̂vv − ψ̂2
uv + 2iKy

(
ψ̂uwψ̂vv − ψ̂uvψ̂vw

)
− (Ky)2

(
ψ̂vvψ̂ww − ψ̂2

vw

)

−βK ψ̂vv

[
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv
+ iKy

(
ψ̂ww − ψ̂2

vw

ψ̂vv

)]2

1 + βK
(
ψ̂ww − ψ̂2

vw

ψ̂vv

) > 0 . (76)

We write for convenience, as before, the stability conditions of the problem (63). They
are:

ψ̂vv < 0 (77)

1 + βK

(
ψ̂ww − ψ̂2

vw

ψ̂vv

)
> 0 (78)

ψ̂uuψ̂vv − ψ̂2
uv + 2iKy

(
ψ̂uwψ̂vv − ψ̂uvψ̂vw

)
− (Ky)2

(
ψ̂vvψ̂ww − ψ̂2

vw

)

−βK ψ̂vv

[
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv
+ iKy

(
ψ̂ww − ψ̂2

vw

ψ̂vv

)]2

1 + βK
(
ψ̂ww − ψ̂2

vw

ψ̂vv

) > 0 . (79)
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Going now to the microcanonical entropy, the second step for the problem (64) is:

s̃micr(ε,m) = max
x,y

{
min
β≤0

[
βε + β J

2
x2 + βK

2
y2

−ψ̂(β, iβ J x + ϕ(β, x, y,m), iβKy) − mϕ(β, x, y,m)
]}

. (80)

Minimization with respect to β leads to the following stationarity and stability conditions:

ε + J

2
x2 + K

2
y2 − ψ̂u − iJ xψ̂v − iKyψ̂w = 0 (81)

ψ̂uuψ̂vv − ψ̂2
uv + 2iKy

(
ψ̂uwψ̂vv − ψ̂uvψ̂vw

)
− (Ky)2

(
ψ̂vvψ̂ww − ψ̂2

vw

)
> 0 . (82)

As we know, the stationarity condition is the same of the other extremal problem, and it gives
β as a function of (ε, x, y,m). On the other hand, as for β > 0 the stability condition is
different. From the stationarity condition we obtain, in particular:

βy = −iβK
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv
+ iKy

(
ψ̂ww − ψ̂2

vw

ψ̂vv

)

ψ̂uu − ψ̂2
uv

ψ̂vv
+ 2iKy

(
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv

)
− (Ky)2

(
ψ̂ww − ψ̂2

vw

ψ̂vv

) . (83)

We can now write the final step, given by:

s̃micr(ε,m) = max
x,y

{
β(ε, x, y,m)ε + β(ε, x, y,m)J

2
x2 + β(ε, x, y,m)K

2
y2

−ψ̂(β(ε, x, y,m), iβ(ε, x, y,m)J x

+ϕ(β(ε, x, y,m), x, y,m), iβ(ε, x, y,m)Ky)

−mϕ(β(ε, x, y,m), x, y,m)
}

. (84)

The stationarity conditions are:

− iψ̂v + x = 0 (85)

−iψ̂w + y = 0 , (86)

equal respectively to (71) and (72), as expected. But the stability condition is not equal to
(73), being instead given by:

1 + βK

[
ψ̂ww − ψ̂2

vw

ψ̂vv

]

−βK

[
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv
+ iKy

(
ψ̂ww − ψ̂2

vw

ψ̂vv

)]2

ψ̂uu − ψ̂2
uv

ψ̂vv
+ 2iKy

(
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv

)
− (Ky)2

(
ψ̂ww − ψ̂2

vw

ψ̂vv

) > 0 . (87)

The summary of the stability conditions of the problem (64) is:

ψ̂vv < 0 (88)

ψ̂uuψ̂vv − ψ̂2
uv + 2iKy

(
ψ̂uwψ̂vv − ψ̂uvψ̂vw

)

− (Ky)2
(
ψ̂vvψ̂ww − ψ̂2

vw

)
> 0 (89)

16



1 + βK

[
ψ̂ww − ψ̂2

vw

ψ̂vv

]

−βK

[
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv
+ iKy

(
ψ̂ww − ψ̂2

vw

ψ̂vv

)]2

ψ̂uu − ψ̂2
uv

ψ̂vv
+ 2iKy

(
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv

)
+ (Ky)2

(
ψ̂ww − ψ̂2

vw

ψ̂vv

) > 0 . (90)

3.2 Unified Treatment of Temperatures of Both Signs

From the above computations we see that it is possible to treat at the same time both positive
and negative temperatures. It is sufficient to put from the start x = m for β > 0 and ix = m
for β < 0, and identifying y for β > 0 with iy for β < 0. Since in this way it is not necessary
to optimize with respect to x , the numerical procedure would be shorter. Thus, the extremal
problems to study would be:

φ̃(β,m) = min
y

[
max

ϕ

(
β J

2
m2 + βK

2
y2 + ψ̂(β, β Jm + ϕ, βKy) + mϕ

)]
, (91)

for the rescaled free energy,

s̃can(ε,m)

= min
β

{
max
y

[
min

ϕ

(
βε − β J

2
m2 − βK

2
y2 − ψ̂(β, β Jm + ϕ, βKy) − mϕ

)]}
,

(92)

for the canonical entropy, and

s̃micr(ε,m)

= max
y

{
min

β

[
min

ϕ

(
βε − β J

2
m2 − βK

2
y2 − ψ̂(β, β Jm + ϕ, βKy) − mϕ

)]}
,

(93)

for the microcanonical entropy. The search for the extremal points would proceed as before,
with the stationary conditions summarized by:

ψ̂v + m = 0 (94)

ψ̂w + y = 0 (95)

ε − J

2
m2 − ψ̂u − Jmψ̂v − Kyψ̂w = 0 , (96)

while the stability conditions would be

ψ̂vv < 0 (97)

1 + βK

(
ψ̂ww − ψ̂2

vw

ψ̂vv

)
> 0 (98)

ψ̂uuψ̂vv − ψ̂2
uv + 2Ky

(
ψ̂uwψ̂vv − ψ̂uvψ̂vw

)
+ (Ky)2

(
ψ̂vvψ̂ww − ψ̂2

vw

)

−βK ψ̂vv

[
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv
+ Ky

(
ψ̂ww − ψ̂2

vw

ψ̂vv

)]2

1 + βK
(
ψ̂ww − ψ̂2

vw

ψ̂vv

) > 0 , (99)
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for the canonical problem (92), and

ψ̂vv < 0 (100)

ψ̂uuψ̂vv − ψ̂2
uv + 2Ky

(
ψ̂uwψ̂vv − ψ̂uvψ̂vw

)

+ (Ky)2
(
ψ̂vvψ̂ww − ψ̂2

vw

)
> 0 (101)

1 + βK

[
ψ̂ww − ψ̂2

vw

ψ̂vv

]

−βK

[
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv
+ Ky

(
ψ̂ww − ψ̂2

vw

ψ̂vv

)]2

ψ̂uu − ψ̂2
uv

ψ̂vv
+ 2Ky

(
ψ̂uw − ψ̂uvψ̂vw

ψ̂vv

)
+ (Ky)2

(
ψ̂ww − ψ̂2

vw

ψ̂vv

) > 0 , (102)

for the microcanonical problem (93). However, now the search could be extended also to
β < 0.

At this point we can discuss the issue of ensemble inequivalence, on the basis of the
comparison between the stability conditions of the two problems. We start by noting what
can be deduced from the expression of ψ̂(β, β J x + ϕ, βKy) given in Eq. (19). In fact,
ψ̂(β, β J x + ϕ, βKy) is proportional to minus the logarithm of the right hand side of that
equation, and then it is easy to see that for any x , y and ϕ the total second derivative of ψ̂

with respect to β is negative. From this, in turn, one obtains that the left hand side of Eq.
(101) is always positive, i.e., it is a stability condition of the microcanonical problem that
is always satisfied. The consequences are the following, taking into account that for both
problems the first stability condition is ψ̂vv < 0. Let us first suppose to have a solution of
the canonical problem, i.e., to have a stationary point where the three stability conditions
(97)-(99) are satisfied5. Then also the microcanonical stability condition (102) is satisfied.
This can be seen, e.g., in the following way: the left hand side of (102) is equal to the left
hand side of (99) multiplied by the ratio of the left hand side of (98) and the left hand side
of (101); since this ratio is positive, this implies that (102) is satisfied. In other words, any
stable canonical equilibrium state is also a stable microcanonical equilibrium state. This is
consistent with a general result obtained, e.g., through large deviation techniques [3]. On the
other hand, it is possible to satisfy the stability condition (102) of themicrocanonical problem
without satisfying the stability condition (98) of the canonical problem (and then, for what
we have seen, neither (99) would be satisfied); namely, there can be stable microcanonical
equilibrium states that are not stable canonical equilibrium states. Nevertheless, although
for the values of (ε,m) where the latter situation is verified there are not stable canonical
equilibrium states, still the extremal problem (92) can be satisfied. This occurs since in that
case the function y(β) defined by the stationarity condition (95) has a point of discontinuity in
its derivative with respect to β, given by Eq. (38), and for a range of ε values theminimization
problem (92) is satisfied by the β value of the point of discontinuity. This is associated with
the occurrence of a first order phase transition in the canonical ensemble: there are not stable
canonical equilibrium states for the ε values in that range (but only for the two values at the
extremes of the range), and the computed canonical entropy s̃can(ε,m) has a straight line
segment for that ε range. In that range we have strictly s̃micr(ε,m) < s̃can(ε,m)6.

5 It is not difficult to see that for β > 0 the conditions (97) and (98), taken together, imply the condition (99);
this is not true for β < 0.
6 In a system with only short-range interactions, where ensembles are equivalent and the two entropies are
always equal, s̃micr(ε,m)would have the same straight line segment, and for the values of ε inside the range of
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In Appendix A we provide an alternative derivation of the expression of the maximization
problem (93) for the microcanonical entropy, using a procedure based on large deviation
techniques.

3.3 The Limit J → 0 and K → 0

We want to show that in the limit J → 0 and K → 0 our expressions go continuously
to those one would expect for the Hamiltonian (14) in absence of mean-field terms, i.e.,
when the system becomes a short-range one. We first note that the Hubbard-Stratonovich
equality (16) is valid also in the limit a → 0, as it can be easily checked. This implies that
for J → 0 and K → 0 the expressions (18) and (20) remain valid by simply removing, on
the right hand side, the integrations over x and y with the corresponding prefactors, and by
putting J = 0 and K = 0 in the integrand. In particular, now the function ψ̂ would appear as

ψ̂(β, ϕ, 0), with exp
[
−N ψ̂(β, ϕ, 0)

]
being equal to the partition function of the short-range

system subject to a magnetic field h with ϕ playing the role of βh. Correspondingly, in the
expressions (21), (22) and (23) for the rescaled free energy and the entropy, the variables x
and y would disappear, and we would get:

φ̃(β,m) = max
ϕ

(
ψ̂(β, ϕ, 0) + mϕ

)
(103)

and

s̃(ε,m) = min
β

[
min

ϕ

(
βε − ψ̂(β, ϕ, 0) − mϕ

)]
. (104)

The latter equation holds for both the canonical and microcanonical cases.
Then, we can conclude this subsection by observing that the method presented in this

paper works then both for short-range interactions (when both J and K are equal to 0) and
for long-range interactions. For the former the problem of determining the entropy at fixed
magnetization is solved once that the partition function in a magnetic field is known, as
expected. However, in short-range models there is not the issue whether the microcanonical
entropy and the canonical one are different: they are the same in the thermodynamical limit
[15]. Similarly, one can see that microcanonical and canonical entropies at fixed magnetiza-
tion are also the same in short-range models. For this reason, we devote the section of the
implementation to models with J 	= 0, where ensemble inequivalence can occur and it is
interesting to compute and compare canonical and microcanonical entropies at fixed magne-
tization. As anticipated, in the implementation we consider systems with only one mean-field
term, thus with K = 0.

3.4 TheModel with Only OneMean-Field Term

In the next section we will implement the method in a model where the Hamiltonian contains
only one mean-field term, the one proportional to −Nm̂2. The corresponding expressions
would be obtained by the ones derived above by putting K = 0 and in which there would be
no integration over the y auxiliary variable and the corresponding optimization with respect
to it.

(Footnote 6 continued)
the segment the equilibrium states, in both ensembles, would be realized with a phase separation, something
that does not occur in long-range systems.
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However, we write in the following the optimizations problems and the corresponding
stationarity and stability conditions, since an interesting issue arises. From Eq. (91) with
K = 0 and with no optimization with respect to y, we obtain

φ̃(β,m) = max
ϕ

(
β J

2
m2 + ψ̂(β, β Jm + ϕ, 0) + mϕ

)
. (105)

In the same way, for the entropies, from Eqs. (92) and (93) we obtain in both cases

s̃(ε,m) = min
β

[
min

ϕ

(
βε − β J

2
m2 − ψ̂(β, β Jm + ϕ, 0) − mϕ

)]
, (106)

expression which is then valid for both ensembles. The stationarity and stability conditions
of the latter problem are

ψ̂v + m = 0 ψ̂vv < 0 (107)

ε − J

2
m2 − ψ̂u − Jmψ̂v = 0 ψ̂uuψ̂vv − ψ̂2

uv > 0 . (108)

The fact that now we have the same optimization problem for both ensembles, allows
to make the following interesting observation. For the class of systems where the long-
range interaction is given only by a term proportional to −Nm̂2, the entropy at fixed
magnetization is the same for the canonical and the microcanonical case. From the equal-
ity s̃micr(ε,m) = s̃can(ε,m), one might superficially conclude that there is ensemble
equivalence. However, equivalence occurs when we have smicr(ε) = scan(ε), and it is
not automatically guaranteed that this latter equality is verified when the former equality,
s̃micr(ε,m) = s̃can(ε,m), holds. In a moment we provide a concrete example of this fact,
but first we describe the mathematical reason that can explain why it is possible to have
smicr(ε) < scan(ε) for one or more ranges of the energy7 even when s̃micr(ε,m) = s̃can(ε,m).
The microcanonical entropy smicr(ε) is obtained by maximizing s̃micr(ε,m) with respect
to m, i.e., smicr(ε) = maxm [̃smicr(ε,m)]; however, the canonical entropy scan(ε) is not
obtained performing the analogous maximization of s̃can(ε,m). In fact, scan(ε) is given
by the general thermodynamic relation scan(ε) = minβ [βε − φ(β)], where, in our case,
φ(β) = minm φ̃(β,m), with the latter function obtained in turn from s̃micr(ε,m) through the
minimization problem in Eq. (7). These different extremization procedures to obtain smicr(ε)

and scan(ε) can thus lead to different functions. An example can be found in the Blume-Capel
model. It is a simplified version of the model cited in footnote 2, and in which the general
Hamiltonian (14) has K = 0 (i.e., the only mean-field term is the one proportional to−Nm̂2)
and the functionU ([Si ]) simply given by ΔS2i (Δ is a positive parameter); the spins take the
values −1, 0, 1. For this simple model direct counting can easily be performed, and in Ref.
[16] it is shown that ensemble inequivalence occurs, since there are ranges of the energywhere
smicr(ε) < scan(ε). However, it is also easy to see explicitly that s̃micr(ε,m) = s̃can(ε,m). In
fact, a direct computation allows to obtain

s̃micr(ε,m) = − [1 − b(ε,m)] ln [1 − b(ε,m)] − 1

2
[b(ε,m) + m] ln [b(ε,m) + m]

−1

2
[b(ε,m) − m] ln [b(ε,m) − m] + b(ε,m) ln 2 , (109)

where b(ε,m) ≡ ε
Δ

+ m2

2Δ . Obviously, ε and m can vary in ranges for which the argument of
all the logarithms in (109) are non-negative. For any allowed value of ε and m, this function

7 We remind that, because of the properties of min–max extremal problems [3], in general one has smicr(ε) ≤
scan(ε).
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is concave in ε. Therefore the Legendre-Fenchel transform (7) is invertible, assuring that
s̃micr(ε,m) = s̃can(ε,m), in agreement with the general result of this section, i.e., that in
models with only the mean-field term proportional to −Nm̂2 we have, for both ensembles,
the same entropy s̃(ε,m) given in Eq. (106).

In conclusion, ensemble inequivalence can occur even when s̃micr(ε,m) and s̃can(ε,m) are
equal; evenwhen s̃micr(ε,m) is concave in ε for anym, so that theLegendre-Fenchel transform
(7) is invertible, smicr(ε) can be non-concave, so that the Legendre-Fenchel transform (4) is
not invertible.

4 Implementation of theMethod

As anticipated above, we implement here our computational method to an Ising spin model
(Si = ±1) on a one-dimensional lattice, described by a Hamiltonian of the type (14) in which
the short-range term is given by U ([Si ]) = −(K1/2)Si Si+1 − (K2/2)Si Si+2. Furthermore,
the coefficient of the quadrupole term, K , is set equal to zero (in any case, the quadrupole
term for Ising spins would give a constant trivial contribution). Therefore, we are going to
treat a system with only the mean-field term proportional to −Nm̂2. For convenience, we
write the explicit form of the Hamiltonian, i.e.:

H = − J

2N

(
N∑

i=1

Si

)2

− K1

2

N∑

i=1

Si Si+1 − K2

2

N∑

i=1

Si Si+2 , (110)

where periodic boundary conditions are assumed. Thus, the short-range part of this
Hamiltonian has a nearest-neighbour interaction term (with coefficient K1) and next-nearest-
neighbour interaction term (with coefficient K2). It is the simplest Hamiltonian having a
long-range interaction term and a short-range part with an internal structure, with the K1 and
K2 parts of the model possibly competing.

To show the intricacies of the calculation ofmicrocanonical entropy at fixedmagnetization
using direct counting, also in relatively simple models like this one, and the convenience of
the implementation of the method presented in this work, we adopt the following strategy.
Using the results given in Ref. [17], we will first describe, in Sect. 4.1, what would be the
procedure to follow to obtain a direct counting evaluation of s̃micr(ε,m). From this description
and the expressions to use in such a procedure (the interested reader can find in Appendix B
a summary of the results of Ref. [17] and of the relevant expressions), it will be evident that
the actual numerical computations are quite cumbersome, so that the optimization method
introduced in Sect. 3 has to be preferred. Then, in Sect. 4.2 we will show the evaluation of
s̃micr(ε,m) with the method of this work. This will be done first for the case with K2 = 0; in
this case, the direct counting is simple, and it was done in Ref. [11], a work that was primarily
devoted to the study of ensemble inequivalence. Thus, we will also show the comparison of
our computationwith that obtainedwith direct counting. Afterwords, wewill show our results
for some selected values of K2 	= 0. In this case the direct counting becomes rather involved,
and has not been done up to now. In order to provide a comparison, we have performed the
direct counting evaluation; this is shown in Appendix C.
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4.1 The Procedure for the Direct Counting Evaluation

Reference [17] gives a general procedure for a computation of the microcanonical entropy of
translationally invariant one-dimensional Ising spin systems with short-range interactions.
Restricting to models with only two-spin interactions, a short-range Hamiltonian should have
the form:

HSR = −1

2

R∑

r=1

Kr

∑

i

Si Si+r . (111)

The subscript (SR) denotes that the Hamiltonian describes a short-range system. The pro-
cedure can be extended to models where also a long-range interaction, like the first term in
the Hamiltonian (110), is present. For convenience we will denote this long-range part of the
Hamiltonian with HLR . Therefore in (110) we have H = HLR + HSR , where in this case
HSR is a particular form of (111) having R = 2. Despite the simplicity of the model (110),
it displays a remarkably rich phase diagrams in the canonical ensemble [12].

While more details for the case with generic R are given in Appendix B, let us here
consider the direct counting procedure for the Hamiltonian (110). We begin with the simple
case in which K2 = 0.

4.1.1 K2 = 0

It is possible to compute the number of spin configurations that have given values m and g1
of, respectively, the magnetization m̂ and the nearest-neighbour correlation function ĝ1:

m̂ = 1

N

N∑

i=1

Si (112)

ĝ1 = 1

N

N∑

i=1

Si Si+1 . (113)

The logarithm, divided by N , of such number of spin configurations can be denoted with
s(m, g1), and called the entropy as a function of m and g1. In the thermodynamic limit it is
given by [17]:

s(m, g1) = −1 + 2m + g1
4

ln
1 + 2m + g1

4
− 1 − 2m + g1

4
ln

1 − 2m + g1
4

− 1 − g1
2

ln
1 − g1

4
+ 1 + m

2
ln

1 + m

2
+ 1 − m

2
ln

1 − m

2
. (114)

It follows that s(m, g1) is defined within the convex polytope (polygon) defined by the
following constraints:

1 + 2m + g1 > 0, 1 − 2m + g1 > 0, 1 − g1 > 0 . (115)

As noted above, the expression for s(m, g1) was obtained already in Ref. [11]. It must
be emphasized that, although s(m, g1) is naturally called an entropy, being given by the
logarithm of a number of configurations, it is not the usual thermodynamic entropy, that has
to depend on the energy ε, like the function of our interest, s̃micr(ε,m). To obtain the latter
from s(m, g1), one has to express the energy as a function of m and of the correlation g1,
as we now explain (obviously the same remark is valid also for the more complex case with
K2 	= 0, discussed below).
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From the Hamiltonian (110) with K2 = 0 one obatins the energy per spin at fixed values
m and g1. It is given by:

e(m, g1) = − J

2
m2 − K1

2
g1 . (116)

To find s̃micr(ε,m) one has to fix e(m, g1) ≡ ε, express from (116) g1 as a function of ε and
m, and then substitute g1(ε,m) in Eq. (114). This can be done producing results in agreement
with those presented in [11].

We now go to the model with K2 	= 0, i.e., the complete Hamiltonian (110); the direct
counting procedure becomes much more involved.

4.1.2 K2 �= 0

Using the procedure described in Appendix B, one finds the number of spin configurations
having given values m, g1, g2 and t of, respectively, the already defined magnetization m̂
and nearest-neighbour correlation function ĝ1, and of the other correlation functions ĝ2 and
t̂ ; they are given by:

m̂ = 1

N

N∑

i=1

Si ĝ1 = 1

N

N∑

i=1

Si Si+1 (117)

ĝ2 = 1

N

N∑

i=1

Si Si+2 t̂ = 1

N

N∑

i=1

Si Si+1Si+2 . (118)

The fixed value of one of this quantity can conveniently be denoted with the average of the
corresponding spin correlation, e.g., g2 = 〈Si Si+2〉, where translational invariance assures
that the average actually does not depend on i . The logarithm, divided by N , of the number
of the configurations at fixed (m, g1, g2, t), i.e., the entropy as a function of these variables,
in the thermodynamic limit is obtained as the following long expression:

s(m, g1, g2, t) = −1 + m − g2 − t

4
ln

1 + m − g2 − t

8
− 1 + m − 2g1 + g2 − t

8

× ln
1 + m − 2g1 + g2 − t

8
− 1 − 3m + 2g1 + g2 − t

8

× ln
1 − 3m + 2g1 + g2 − t

8
− 1 − m − g2 + t

4
ln

1 − m − g2 + t

8

− 1 − m − 2g1 + g2 + t

8
ln

1 − m − 2g1 + g2 + t

8

− 1 + 3m + 2g1 + g2 + t

8
ln

1 + 3m + 2g1 + g2 + t

8
+ 1 + 2m + g1

4

× ln
1 + 2m + g1

4
+ 1 − 2m + g1

4
ln

1 − 2m + g1
4

+ 1 − g1
2

ln
1 − g1

4
.

(119)

From this entropy, which is a function of the four quantities (m, g1, g2, t), we can obtain the
entropy as a function of (m, g1, g2) by maximizing s(m, g1, g2, t) with respect to t , i.e.

s(m, g1, g2) = s(m, g1, g2, t0)

∂s(m, g1, g2, t)

∂t
= 0

∣∣∣∣
t=t0

. (120)
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An explicit expression for this entropy is still obtainable, involving the real solution of the
third order equation in t0:

t30 − m(2g1 + g2)t
2
0 + [(1 − 2g21 + 2g21g2 − g22) + m2(−3 + 4g1 + 2g2)]t0

+ m[−2g1 + 2g21 − g2 + 4g1g2 − 2g21g2 − 2g1g
2
2 + g32 + m2(2 − 2g1 − g2)] = 0 ,

(121)

maximizing s(m, g1, g2, t).
One finds from (119) that s(m, g1, g2) is defined within the convex polytope (polyhedron)

defined by the following constraints:

1 + 2m + g1 > 0 1 − 2m + g1 > 0 1 − g1 > 0 (122)

1 + 2m + g2 > 0 1 − 2m + g2 > 0 1 − g2 > 0 (123)

1 + 2g1 + g2 > 0 1 − 2g1 + g2 > 0 . (124)

Notice that for certain ranges of the parameters m, g1, g2 there are three real roots of (121),
but in these ranges direct inspection shows that for only one of these three roots the entropy
is defined – i.e., all arguments of the logarithms in (119) are positive.

The energy per spin at fixed values of m, g1, g2 and t is given by:

e(m, g1, g2, t) = − J

2
m2 − K1

2
g1 − K2

2
g2 , (125)

that actually does not depend on t , since the Hamiltonian (110) has no contribution coming
from three spin terms ∝ Si Si+1Si+2 (the extension to this case is straightforward). At this
point, to find s̃micr(ε,m) one has to fix e ≡ ε where e = e(m, g1, g2, t = t0). Then from
(125) one has to express, say, g2 [or, if one wants so, g1] as a function of ε, m and g1 [or,
respectively, as a function of ε, m and g2]. Then one has to substitute g2(ε,m; g1) in Eq.
(119). The entropy will now depend on ε,m and g1: maximizing with respect to g1 will give
s̃micr(ε,m).

It is then clear that, despite the expression of the entropy is known, already in this simple
case one can (painfully) realize that the computations from expression (119) is quite cumber-
some. The analysis also clearly shows how difficult is to generalize it to more complicated
forms of coupling, where the equations fixing the further correlation functions and the expres-
sion of the entropy become rapidly very involved, e.g. when a next-to-next-nearest-neighbour
coupling is added. For example, assuming an Hamiltonian of the form

H = − J

2N

∑

i, j

Si S j − K1

2

∑

i

Si Si+1 − K2

2

∑

i

Si Si+2 − K3

2

∑

i

Si Si+3 ,

one has an energy e = e(m, g1, g2, g3) with g3 = 〈Si Si+3〉. The entropy s =
s(m, g1, g2, g3, t, q1, q2, q3) is a function of the already introduced quantities m, g1, g2,
g3 and t , and of the other quantities q1 = 〈Si Si+1Si+3〉, q2 = 〈Si Si+2Si+3〉, and
q3 = 〈Si Si+1Si+2Si+3〉, Despite having a quite convoluted expression, it can be determined
using the method of Appendix B. Now, to arrive at s̃micr(ε,m), one has first to fix t, q1, q2, q3
by maximizing s(m, g1, g2, g3, t, q1, q2, q3) with respect to these variables from the con-
ditions ∂s/∂t = ∂s/∂q1 = ∂s/∂q2 = ∂s/∂q3 = 0. Then fixing the energy to a certain
value ε, from ε = e(m, g1, g2, g3) one gets, say, g3 = g3(m, g1, g2) and then an entropy
s as a function of (m, g1, g2). Maximizing with respect to g1 and g2 one finally obtains
the microcanonical entropy at fixed magnetization, s̃micr(ε,m). So, one sees that increasing
the range of the couplings and/or adding multi-spin interactions, one has first to eliminate
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Fig. 1 s̃micr(ε,m) vs. m at the
fixed value of the energy
ε = −0.12 (in units of J = 1) for
K1 = −0.4 and K2 = 0. We plot
the results from the minimization
procedure discussed in Sects. 2
and 3 and from the direct
counting [11] (see as well
Sect. 4.1.1)

the couplings not present in the Hamiltonian, and then – after using the expression of the
energy – maximize over the remaining, which is of course a complicated task. This can be
seen as a “direct counting”, since the explicit expression of the entropy is used; but one
concludes that the method presented in the Sect. 3 is more practical, since it involves only the
extremization with respect to a given number of variables (depending on the number of aux-
iliary variables), independent from the range of the short-range interactions. What is actually
increasing when more couplings are included is the size of the transfer matrix, whose only
the largest eigenvalue is needed. Of course, the use of the transfer matrix would be present
also in the computation of only canonical quantities. At variance, in the direct counting one
has to maximize with respect to a growing number of variables, as the example now dis-
cussed shows. We have however to observe that the direct counting, as shown in Appendix
B, gives not only the microcanonical entropy at fixed magnetization but also the values – at
given energy and magnetization – of all independent correlation functions in the unit cell,
e.g., in the considered case with K1, K2, the correlation functions g1(ε,m) = 〈Si Si+1〉,
g2(ε,m) = 〈Si Si+2〉, and t(ε,m) = 〈Si Si+1Si+2〉.

After this exposition of the reasons that make the method presented in in Sect. 3 much
more preferable with respect to a direct counting, already for a simple Hamiltonian like (110),
in the next subsection we give the results obtainable with our method for this Hamiltonian.
We find it useful to begin with the simple case with K2 = 0, and then to proceed with the
results obtained for selected values of K2 	= 0. The comparison with the direct counting
evaluation will also be shown, although, as anticipated above, for K2 	= 0 the comparison is
deferred to Appendix C.

4.2 Results for theMicrocanonical Entropy s̃micr(�,m)

As a first benchmark, in Fig. 1 we plot the microcanonical entropy for the model with K2 = 0
discussed in Sect. 4.1.1. The comparison of the method presented in Sect. 3 with the findings
obtained by direct counting confirms the validity of our results. Notice that in this section
for simplicity we will set J = 1. Indeed, our interest as previously discussed is on the case
J 	= 0 and moreover we remind that the model (110) does not exhibit magnetic order at finite
temperature if J is negative (see [12] and references therein).

Let us pass now to the model with K2 	= 0. First, we remind that as a consequence of the
nonadditivity of systems with long-range interactions, intermediate values of the extensive
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Fig. 2 Accessible region in the
m − ε plane for K1 = −0.4 and
K2 = −0.08. Blue dashed line
shows the value of the energy at
which the first-order transition
takes place (ε  −0.100)

Fig. 3 Entropy from Eq. (106) as a function of β after minimizing only with respect to ϕ at K1 = −0.4,
K2 = −0.08 andm = 0.5 for different values of ε. The left and right panels show that for values of the energy
outside the allowed range for this value of m (see Fig. 2), the entropy function has no minimum as a function
of β

variablesmay be not accessible. So a first important information is to determine the accessible
region in the m − ε plane. This is done in Fig. 2 for fixed values of K1 and K2, chosen to be
K1 = −0.4, K2 = −0.08. Note that this pair of values corresponds in the K1-K2 plane to
a point in a region which, despite the presence of a non-vanishing K2, has a phase diagram
in the canonical ensemble in the space K1 − T at fixed K2 qualitatively similar to the phase
diagram in the space K1 − T with K2 = 0. Since for K1 = −0.4, K2 = −0.08 one knows
that in the canonical ensemble there is a first order phase transition line, as one can see from
Fig. 2(left) of [12], we also plot in Fig. 2 the value of the energy at which the first-order phase
transition occurs.More details on the behaviour of the entropy function at fixedmagnetization
after the minimization on the variable ϕ are given in Fig. 3, where the same values of K1,
K2 of Fig. 2 are chosen. As seen in Fig. 2, for m = 0.5 the possible energy values are in
the range [−0.125, 0.115]. Correspondingly, in Fig. 3 we see that for energy values outside
this range, i.e., 0.135 in the left panel and −0.135 in the right panel, the entropy function
(precisely, the function of β obtained from Eq. (106) after minimizing only with respect to
ϕ) does not have a minimum as a function of β, i.e., the microcanonical extremal problem
has no solution.

To illustrate the effectiveness of our method, let us consider a pair of values of K1, K2 for
which themodel (110) is known to have both a first-order and a second-order phase transitions
in the canonical phase diagram. For this reason we consider K1 = −0.4, K2 = −0.16. As
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Fig. 4 Accessible region in the
m − ε plane at K1 = −0.4 and
K2 = −0.16. Red (blue) dashed
lines show the value of the
energies at which the first-order
(second-order) transition takes
place: they are given respectively
by ε  −0.109 (ε  −0.082)

one can see from Fig. 3(left) of [12], when the temperature T is increased at these particular
values of K1, K2, one meets a first-order transition at a certain temperature, and then at a
larger temperature a second-order transition. It is then very interesting to see what happens
in the microcanonical ensemble when the energy is varied. Our main results are summarized
in Figs. 4, 5, and 6. In Fig. 4 we plot the accessible region in them−ε plane, and wemark the
energies at which the first- and second-order transitions occur. One observes that the shape
of the accessible region acquires further structure at low energies. Details on the behaviour of
the microcanonical entropy near the first- and second-order transitions are given respectively
in Figs. 5 and 6, from which one sees that the proposed method could be used to work out the
phase diagram in the microcanonical ensemble. In order to have a comparison, in Appendix
C we provide an explicit example of the determination of the microcanonical entropy at fixed
magnetization corresponding to a particular point in Fig. 5 using direct counting, i.e. the
expression of the entropy as a function of (m, g1, g2) for a given energy. Agreement is found
with the results of Fig. 5.

5 Conclusions

In this paper we presented a method to determine the microcanonical entropy at fixed mag-
netization starting from the canonical partition function. We applied our results to the case
of systems having long- and short-range (possibly competing) interactions. The rationale
behind this choice is that for models with only short-range interactions the canonical and
microcanonical entropies, and in particular the canonical and microcanonical entropies at
fixed magnetization, do coincide, while this is not the case for models with long-range
interactions, as our construction explicitly shows. We also discussed in the Appendix A the
connection with large-deviation theory.

The presented method is based on the introduction of one (or more) auxiliary variables
and on a min-max procedure, where the minimization is performed on the variable β, which
can be both positive or negative. We emphasized that the method can be very useful where
direct counting is not applicable or very difficult/convoluted.

We studied amodel inwhich there is a long-range, all-to-all term in the presence of nearest-
neighbour (K1) and next-nearest-neighbour (K2) couplings. Results for the microcanonical
entropy at fixed magnetization of this model were presented, including a case in which the
canonical phase diagram exhibits first- and second-order phase transitions. The discussion
clearly shows that increasing the range of couplings (or including multi-spin interactions),
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Fig. 5 s̃micr(ε,m) vs. m at the fixed value of the K1 = −0.4, K2 = −0.16 and few different values of ε near
the first-order transition

Fig. 6 s̃(ε,m) vs. m at the fixed value of the K1 = −0.4, K2 = −0.16 and few different values of ε near the
second-order transition

even though an expression for the entropy in terms of all possible couplings can be derived,
the determination of the microcanonical entropy at fixed magnetization by direct counting
requires the maximization over a number of variables increasing with the range of the short-
range interaction, while the method presented in Sect. 3—once that one has determined the
partition function, which can be done by determining the largest eigenvalue of the transfer
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matrix—requires the extremization on a given number of variables equal to one plus the
number of auxiliary variables, which, e.g., is just one for the model (110), independently
form the range of the short-range interaction. A discussion of advantages and disadvantages
of the presented method with the direct counting has been provided and a comparison with
direct counting both with K2 = 0 and K2 	= 0 for illustration purposes has also been
presented.

In the considered model the long-range interaction is of mean-field form, and it would be
interesting as a future work to study the model in which the interaction decays in space as a
power-law. One could also consider more complicated short-range terms, such as involving
more than two spin interactions or couplings between spins up to a finite general R larger
than 2. Moreover, our results show that the presented scheme can be used to determine the
phase diagram in themicrocanonical ensemble, and a deserving application would be to work
out in detail the microcanonical phase diagram of Hamiltonian (110) in the whole K1 − K2

space, and compare it with the corresponding results in the canonical ensemble determined
in [12].
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Appendix A: Derivation Using Large Deviation Techniques

The basic expressions of this paper, i.e., Eqs. (21), (22) and (23), or equivalently Eqs. (91),
(92) and (93), for the rescaled free energy and the canonical and microcanonical entropies,
respectively, have been obtained starting from the formal expressions (8) and (9). The latter
have been adapted to the models with Hamiltonian of the type (14) obtaining the expressions
(18) and (20). In this Appendix we show how one can arrive at the basic expressions by
using an approach based on large deviation techniques. Of course, since one arrives at the
same basic expressions for the rescaled free energy and the entropies, the analysis presented
in section 3 remains identical. Here, for brevity, we show the procedure by starting directly
from models with Hamiltonian of the type (14), therefore, without writing the more general
expressions and then adapting them to that kind of Hamiltonian.

Using the definitions (1) and (15) of the magnetization m̂ and the quadrupole moment q̂,
respectively, and introducing the definition

r̂ = 1

N

N∑

i=1

U ([Si ]) (126)

29



the Hamiltonian (14) can be written as

H({Si }) = N

[
− J

2
m̂2 − K

2
q̂2 + r̂

]
. (127)

At this point one formally defines

Ω̂(m, q, r , N ) ≡ exp [Nŝmicr(m, q, r)]

=
∑

{Si }
δ
(
Nm̂ − Nm

)
δ
(
Nq̂ − Nq

)
δ
(
Nr̂ − Nr

)
. (128)

One also defines the following kind of partition function

Ẑ(λ1, λ2, λ3, N ) ≡ exp
[−N φ̂(λ1, λ2, λ3)

]

=
∑

{Si }
exp

[−λ1m̂ − λ2q̂ − λ3r̂
]

. (129)

In analogy with what we have noted for β in the main text, the fact that the energy is upper
bounded allows to consider both signs for the parameters λ1, λ2 and λ3. It is not difficult to
see that in the thermodynamic limit the function ŝmicr(m, q, r) and φ̂(λ1, λ2, λ3) are related
by the Legendre-Fenchel transformation

φ̂(λ1, λ2, λ3) = min
m,q,r

[λ1m + λ2q + λ3r − ŝmicr(m, q, r)] . (130)

In principle this transformation is not invertible. However, if φ̂ is everywhere differentiable,
the inversion is possible, so to have

ŝmicr(m, q, r) = min
λ1,λ2,λ3

[
λ1m + λ2q + λ3r − φ̂(λ1, λ2, λ3)

]
. (131)

It can be seen, in analogy with the function ψ̂ defined in Eq. (19), that the function
φ̂(λ1, λ2, λ3) is differentiable (basically, this is assured from the fact that the expressions
in the exponent in the right hand side of Eq. (129) are sums of one-particle functions). Then,
Eq. (131) is verified. Once ŝmicr(m, q, r) is given, our function of interest, s̃micr(ε,m) is
obtained from

s̃micr(ε,m) = max[
q,r |− J

2 m
2− K

2 q
2+r=ε

] ŝmicr(m, q, r) . (132)

It remains to see that from the last expression we can derive Eq. (93). Substituting Eq.
(131) and expressing r as a function of ε, m and q, we have

s̃micr(ε,m)

= max
q

{
min

λ1,λ2,λ3

[
λ1m + λ2q + λ3

(
ε + J

2
m2 + K

2
q2

)
− φ̂(λ1, λ2, λ3)

]}
.

(133)

The four stationarity conditions of this problem are:

m − ∂φ̂

∂λ1
= 0 (134)

q − ∂φ̂

∂λ2
= 0 (135)

ε + J

2
m2 + K

2
q2 − ∂φ̂

∂λ3
= 0 (136)

30



λ2 + λ3Kq = 0 . (137)

Eliminatingλ2 from the problemby implementing immediately the last stationarity condition,
we have

s̃micr(ε,m)

= max
q

{
min
λ1,λ3

[
λ1m + λ3

(
ε + J

2
m2 − K

2
q2

)
− φ̂(λ1,−λ3Kq, λ3)

]}
. (138)

After the notation changes λ3 → β and q → y, and defining ϕ by λ1 = −β Jm −ϕ, the last
expression becomes

s̃micr(ε,m)

= max
y

{
min
β,ϕ

[
λ1m + βε − β

J

2
m2 − β

K

2
q2 − φ̂(−β Jm − ϕ, −βKy, β)

]}
.

(139)

This is recognized to be the same as Eq. (93), once one realizes from the definitions (19) and
(129) that φ̂(−β Jm − ϕ, −βKy, β) = ψ̂(β, β Jm + ϕ, βKy).

Appendix B: General Expressions for the Entropy Obtained with Direct
Counting

In thisAppendixweprovide a summaryof the general expressions, obtainedwith direct count-
ing, for the entropy of one-dimensional Ising spin models having the form H = HLR +HSR ,
where HLR = − J

2N

(∑
i Si

)2 is the long-range, mean-field term, and HSR is the short-range
part of the Hamiltonian. The interested reader can find full details in Ref. [17]. We emphasize
that we are referring to the expressions of the entropy defined as the logarithm of the number
of configurations for given values of the magnetization and of the spin correlations, like, e.g.,
the function s(m, g1, g2, t) in (119). From these expressions one can obtain the microcanon-
ical entropy s̃micr(ε,m) with the long optimization procedure described in Sect. 4.1.

In the main text we confined ourselves to the form (111), where only two-spin terms are
included. The short-range Hamiltonian (111) is a sub-case of the general one-dimensional
short-range Ising model with multispin interactions defined by

HSR = −
∑

i

j (1)i Si −
∑

i, j

j (2)i, j Si S j −
∑

i, j,k

j (3)i, j,k Si S j Sk

−
∑

i, j,k,l

j (4)i, j,k,l Si S j Sk Sl − . . . (140)

where the sums run over distinct couples, triples, quartets and so on up to a certain finite
range. Periodic boundary conditions are assumed and the couplings j (n) are assumed to be
invariant under translation by ρ spins:

j (n)
i1,i2,...,in

= j (n)
i1+ρ,i2+ρ,...,in+ρ. (141)

As in the main text, N denotes the number of sites and R the finite-range of the interaction.
For example, the Hamiltonian HSR = −(K1/2)

∑
i Si Si+1 has ρ = 1 and R = 2, while

HSR = −(K1/2)
∑

i Si Si+1 − (K2/2)
∑

i Si Si+2 has ρ = 1 and R = 3. In the general case,
for simplicity we assume N/ρ is an integer.
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Following the notation and the procedure presented in [17], let us start from the case
J = 0, for which H = HSR . To simplify the notation let us rewrite (140) as

HSR ≡ −
′∑

Rg(μ)≤R

N/ρ∑

n=1

jμOμ+nρ({Si }) , (142)

where μ is a subset of {1, . . . , R}. The notation Rg(μ) ≤ R, stands for “the range of the
interaction is less than or equal to R”. Moreover, Oμ+nρ is an operator associated to the
subset μ ≡ {n1, n2, . . . n|μ|}, where |μ| is the number of elements of μ, and translated by
nρ so that it acts on the spins as

Oμ+nρ({Si }) = Sn1+nρ Sn2+nρ . . . Sn|μ|+nρ. (143)

For the null subset ∅ we define O∅ = 1 and the prime ′ in the sum over μ in (142) denotes
that the null subset is not included and that the terms related by a translation of a multiple of
ρ are counted only once. The correlation functions are denoted by gμ. They are associated
to the operator Oμ and defined according to

gμ = 〈Oμ({Si })〉 = 〈Sn1 Sn2 . . . Sn|μ| 〉 (144)

(by definition, g∅ = 1). For example, for the Hamiltonian considered in Sect. 4.1 we would
have the correlation functions g{1}, g{1,2}, g{1,3} and g{1,2,3}, that in the lighter notation of the
main text were denoted, respectively, with m, g1, g2 and t .

The main result of Ref. [17] concerns the entropy s({gμ}) for the model with interactions
up to range R; it is given by:

s({gμ}) = s(R)({gμ}) − s(R−ρ)({gμ}) , (145)

where in the left side and in the first term in the right hand side {gμ} stands for the set of all
possible correlations of range up to R, while in the seond term in the right hand side it stands
for all correlations of range up to (R − ρ). It is written in terms of the functions s(Q)({gμ}).
The quantity s(Q) can be seen as the “entropy at range Q”, and is given by

s(Q)({gμ}) = −
∑

τQ

p(τQ) ln p(τQ) , (146)

where
p(τQ) = 2−Q

∑

Rg(μ)≤Q

gμOμ(τQ) , (147)

and τQ ≡ {t1, t2, . . . , tQ} denotes the configuration of Q Ising spins, with the sum over μ is
on every subset (including the null one). Finally, from (142) one gets the energy per unit cell
as:

e({gμ}) = −
∑

1≤Rg(μ)≤R

gμ jμ . (148)

When the mean-field term HLR is turned on, only the energy e is affected, while the
dependence of the entropy s({gμ}) on the correlations gμ is not. One then has to add the
corresponding contribution to e. In this way one finds the results (114) and (116), respectively
for s and for e, for the model (110) with K2 = 0; and the results (119) and (125) for the same
model with K2 	= 0. In particular, specializing (145) to our model with K2 = 0 one has that
Eq. (114) is obtained from s(m, g1) = s(2)(m, g1) − s(1)(m), while Eq. (119) for the model
with K2 	= 0 is obtained from s(m, g1, g2, t) = s(3)(m, g1, g2, t) − s(2)(m, g1).
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Appendix C: Comparison of the Microcanonical Entropy at Fixed Mag-
netization for K2 �= 0

In this Appendix we consider an example of explicit determination of the microcanonical
entropy at fixed magnetization directly from the entropy s = s(m, g1, g2, t), given in Eq.
(119), for the model (110). To compare the findings with the results obtained with the method
presented in section 3, we choose the same values of K1 and K2 used in Fig. 5: K1 = −0.4,
K2 = −0.16 (with J = 1). The energy is chosen as ε = −0.107, as in the bottom right panel
of Fig. 5.

As discussed in the main text, one has to determine t via Eqs. (120)–(121). Once this is
done, one has to express g2 as a function of m, g1 using the energy expression (125). One
has then s as a function of m and g1 and it is possible to plot in the m − g1 plane the allowed
regions. Of course the same procedure can be performed by studying the entropy in them−g2
plane. The final point in both cases is to find the maximum of the microcanonical entropy
maximizing with respect to, respectively, g1 or g2.

Notice that in this procedure finding the maximumwith respect to g1, g2 and t is the easier
part since the entropy is concave along these directions on the constant energy surface. In the
remaining variable m instead, within the constant energy surface, the entropy is not concave
and many entropy maxima can and do appear and compete resulting in the emergence of the
different phases and transitions among them. This is obviously to be traced to the special
role of m in the Hamiltonian, in which it appears nonlinearly and thus can spontaneously
break the m → −m symmetry. Restricting to fixed magnetization indeed relieves many of
the difficulties. The procedure is described in Figs. 7 and 8, where we consider the value
m = 0.55, and one finds that the maximum entropy is s  0.47828, in agreement with the
results presented in the bottom right panel of Fig. 5, obtained with the procedure described
in section 3. Note that in the course of the process we also determine the macroscopic
observables fully characterizing the thermodynamic state. Fig. 9 also shows that if we decide
to eliminate g2 in favour of (m, g1) or, alternatively, g1 in favour of (m, g2), we obtain the
same result for the microcanonical entropy at fixed magnetization when the maximum in,
respectively, g1 or g2 is taken, as of course it has to be. For completeness we also plot the

g1

m

−g2

g1

m

−g2

Fig. 7 Three-dimensional plot of the allowed region in the (m, g1, g2) space (left). On the right the allowed
region has been cut with the constant energy surface (a parabolic cylinder) given by ε = − 1

2 (Jm2 + K1g1 +
K2g2). The green surface is thus the accessible region in the microcanonical ensemble. The chosen values
are ε = −0.107, K1 = −0.4 and K2 = −0.16. Please note that in order to improve visibility the g2 axis has
been reversed (Color figure online)
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Fig. 8 Entropy as a function of m and g1 (left) and m and g2 (right) for the parameter values ε = −0.107,
K1 = −0.4 and K2 = −0.16. The line with magnetization m = 0.55 (chosen to have an example of
comparison with Fig. 5) is denoted with a black line. Themaximum of the entropy s in this fixedmagnetization
sector is denotedwith a blackdot. It is characterised by the observablesm = 0.55, g1  0.13235, g2  0.22226
and t  −0.16384. The global maxima of s are also shown with a red dot. These points are characterized by
the following observables: m  ±0.39839, g1  −0.15375, g2  0.03885, and t  −0.46475 (Color figure
online)

Fig. 9 Entropy in the fixed energy
(ε = −0.107) and magnetization
(m = 0.55) sector as a function
of the three independent
correlations g1 (blue), g2 (green)
and t (red) when the other two
are eliminated. Parameter values
are K1 = −0.4 and K2 = −0.16.
The maximum s̃micr is denoted
with a dashed line and it occurs at
g1  0.13235, g2  0.22226,
and t  −0.16384. The value of
the maximum, s̃micr  0.47828,
corresponds to the value of
s̃micr(ε,m) at m = 0.55 in the
right bottom panel of Fig. 5
(Color figure online)
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entropy as a function of the correlation t after maximizing with respect to one among g1 and
g2.

The direct counting method outlined shows some technical difficulties due to the already
moderately large number of variables over which the entropy has to be optimized. Of course
these extra variables are interesting in their own right being macroscopic observables fully
characterising the thermodynamic state. On the other hand direct counting possesses the
virtue of making very clear the geometric origin of (microcanonical) phase transitions in
long-range systems as the study of the maxima of the entropy restricted on the nonlinear
energy surface. This makes interesting also short-range one-dimensional systems, whose
entropy is concave in all variables, yielding normally no phase transition. The gained insight
could prove useful in the understanding of and the hunt for the many exotic critical points
expected in the microcanonical ensemble [18].
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