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Abstract

In this paper we study the motion of a surface gravity wave with viscosity. In particular we prove two
well-posedness results. On the one hand, we establish the local solvability in Sobolev spaces for arbitrary
dissipation. On the other hand, we establish the global well-posedness in Wiener spaces for a sufficiently
large viscosity. These results are the first rigorous proofs of well-posedness for the Dias, Dyachenko &
Zakharov system (Physics Letters A 2008) modeling gravity waves with viscosity when surface tension
is not taken into account.

1. Introduction

The motion of water waves is a classical research topic that has attracted a lot of attention from
many different researchers in Mathematics, Physics and Engineering. For most applications, a
gravity surface wave in deep water is described by the following free boundary problem

p@Qu+Ww-Vu)y+Vp+Gpex =0 xeQ(t),te(0,T] (1)
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hp+u-Vp=0 xeQ(),tel0,T] 2)

V-u=0 xeQ(),tel0,T] 3)

Vxu=0 xeQ(),tel0,T], “)

where, Q(t) C R2 is the moving spatial domain, 7 > 0 and u = (u1,u2), p, p and G denote
the incompressible velocity field, the density of the fluid, the pressure and the acceleration due

to gravity, respectively. The previous system can also be equivalently written in terms of the
velocity potential u = V&:

AD=0 in (t) x [0, T],
Iim V&=0 Vxi,
X2—>—00

| (%)
P (q;t + §|VCI>|2 + Gh) =0 onI(t) x[0,T],

hy =V®.(-01h,1) onI'(¢+) x [0, T].

Here water is assumed to be incompressible, irrotational and inviscid. Usually, these assumptions
are enough to describe the main part of the dynamics of real water waves. However, sometimes
viscosity needs to be taken into account. For instance, Bona, Pritchard & Scott [2] wrote that

For these five experiments it was found that the inclusion of a dissipative term was much more
important than the inclusion of the nonlinear term, although the inclusion of the nonlinear term
was undoubtedly beneficial in describing the observations.

We refer to [12] for more examples of the necessity of the viscosity effects in experiments.

When viscosity is considered, the free boundary Euler equations (1) need to be replaced by
the free boundary Navier-Stokes equations and the irrotationality assumption should be removed.
This will lead to a fairly complicated free boundary problem. However, under certain hypotheses,
it is well-known that vorticity only plays a role in a layer near the free boundary. The observation
of this fact dates back at least to the classical works of Lamb [17] and Boussinesq [3] in the XIX
century. Thus, it would be desirable to add dissipative effects to (1) (equivalently (5)) without
going all the way to the Navier-Stokes equations and the subsequent removal of the irrotationality
assumption.

In a recent paper, Dias, Dyachenko & Zakharov [7] proposed a system to solve that ques-
tion. These authors started with the linearized Navier-Stokes equations and derived the following
system for the motion of a surface wave under gravity and viscous effects

AP =0 in Q1) x [0, T1,
lim V&=0 Vxi,
X2—>—00

1 2 2 (DDZ)
p( @+ IVOP+Gh ) =-20330 onT(®) x [0.T],

hi=V® - (—dih, 1) +2-08%h on I'(t) x [0, T,
P



where

Q)= [(xl,xz) eR? ‘ —Lmt <x;<Lm,—00<xy<h(x1,t), te]0, T]} , (6)

r) ={ b n) e R? ‘ ~Lw <xi <Lx, 1€[0.T1}, )
and 2 L is the characteristic wavelength of the wave. In the previous system (that we call DDZ
system) v denote the dynamic viscosity of the fluid. In this system, the free surface experiments
dissipative effects and the fluid is assumed to be irrotational. In other words, the velocity field is
given by

u=VvVo.

The previous system has to be supplemented with zero mean initial data

h(x1,0) = ho(x1),

D(x1, h(x1,0),0) =& (x1).

It is useful to write (DDZ) in dimensionless form. Following [12], we denote by H and L
the typical amplitude and wavelength of the water wave. We change to dimensionless variables

(denoted with *)
- [L .
x=Lx, t=,—t,
G

h(x1,t) = H h(%1,1),  ®(x1,x2,1) = HYGL® (%1, %2, 1),

with the dimensionless fluid domain

~ H -
Q(t):{()?l,fcz) ‘—n <X <mw,—00 <iz<fh()?1,t), te[O,T]},

~ . H-~. _
') = {(xl, Zh(}q,t)) , t €0, T]}

We define the following dimensionless parameters:

H 2v
—, 0=—"7.
L p/GL?

Dropping the tildes in order to simplify the notation, and using the notation

®)

E(x1, 1) = P (x1, h(x1, 1), 1),

we find the dimensionless form of the damped water waves problem (DDZ):



AD=0 in (t) x [0, T], (9a)
d=£ onI'(t) x [0, T], (9b)
lim V&=0 onT %[0, T], (9¢)

X2—>—0Q0

&
£ =—=|VO>—h—ad;d

2

+ 20, ® (Vcb (—edih, 1) +aa%h) on I'(¢) x [0, T1, (9d)
hy =V® - (—edih, 1) +ad?h on I'(t) x [0, T1, (9e)
§=%& onT, (9f)
h=ho onT. %2

This formulation of the water waves with viscosity problem recovers the Zakharov/Craig-Sulem
[21,6] formulation of the water wave problem when o = 0. The closely related problem of finding
asymptotic models that describe the motion of water waves with viscosity has been considered by
many different researchers. For instance, Dutykh & Dias [10] obtain a nonlocal (in time) Boussi-
nesq system (see also [8,9] and the references therein), Kakleas & Nicholls [16] derived the
viscous analog of the classical Craig-Sulem WW2 model (see also [1]) and the authors derived a
single nonlocal wave equation in [12] (see also [13]).

To the best of the authors knowledge, the only mathematical result addressing the well-
posedness of the water waves with viscosity free boundary problem (in the spirit of the Dias,
Dyachenko & Zakharov model) is the recent paper by Ngom & Nicholls [20]. In such work the
authors proved that given an initial data € (hg (x1),&p (x1)), 0 < € < 1 and a non-vanishing
surface tension o # 0 the system (9) admit a unique global solution which moreover becomes
instantaneously analytic in the amplitude parameter in the sense that

(h(x1,0), & (x1, 1) =€ € (hy (x1,1), & (x1,1))
n=0

for any ¢t > 0. We would like to remark that in the present manuscript we restrict ourselves
to the case of vanishing surface tension o = 0 and, as a consequence, our results are outside
the framework of [20]. In addition in Theorem 1.2 we prove as well that the solution becomes
instantaneously analytic in the fangential direction to the interface, which is again another dif-
ference when compared to [20]. Furthermore, the regularity required for the initial data is almost
sharp in the sense that the initial data belongs to a functional space which enjoys the same scal-
ing invariance as W1 (see Appendix A for the detailed description of the functional spaces
considered in the manuscript). This regularity threshold is required for the interface in order the
strong solution to elliptic problem can be found.

Let us now introduce a detailed statement of the results proved in the present work, first
we prove the local existence of classical solution in Sobolev class for arbitrary o, & > 0 (see
Appendix A for the definition of the functional spaces that we use in this work):

Theorem 1.1. There exist small enough constants 0 < y, T, < 0o such that if the initial data
(ho, &) € H3(T) x H3(T) satisfy



max{lhol2, [§ol2} < ¥

then there exists a smooth solution

heC(0,T,], H(T)) N L*©, T; H*(T)),
£ e C([0,T.], H*(T)) N L*(0, T; HY(T)),

to the damped water wave problem (DDZ).

Although it seems that the DDZ system reduces to a viscous regularization of the hyperbolic
nonlocal problem (5), the fact that we are dealing with a free boundary problem makes the pre-
vious statement (at least) unaccurate. Actually (DDZ) is a cross diffusion system and this fact
makes necessary the size restriction on the initial data. Let us try to motivate the requirement of
the size constraint in the initial data. In order to do that we consider the following toy problem

£ =aAEITh — h+ adlE,
hy = —01hd1& + A& +adth,

where A = (—812)1/ 2 Then we see that in order the contributions from the term ozAEalzh can be
absorbed by the parabolic term aalzh we need a smallness condition in A£.

Let us explain the methodology behind the proof of Theorem 1.1. First we fixed the domain
using a diffeomorphism with optimal Sobolev regularity. This is known in the literature as using
the Arbitrary Lagrangian-Eulerian formulation [4,15]. This formulation allows us to control the
velocity potential @ in the bulk of the fluid while keeping track of the regularity of the interface &
and the trace of the velocity potential £. Then we regularize appropriately the problem in such a
way the energy estimates are independent of the parameter of regularization. As it is well-known,
this is a rather challenging issue when dealing with free boundary problems. Finally we perform
L? based energy estimates in order we have the required estimates that allow us to pass to the
limit in the regularization parameter.

After establishing the local well-posedness for arbitrary parameter «, we prove the global
existence and instantaneous gain of analyticity for small initial data in Wiener spaces if « is
beyond a threshold value (see Appendix A for the definition of the functional spaces that we use
in this work):

Theorem 1.2. Let a > 2 and & > 0 be two fixed constants. There exists a constant C(«, €) such
that if hg € A}, & € A(l) are the zero mean initial data satisfying

lholy +150l; <C K 1, (10)

then there exists a global solution of (DDZ). Furthermore, this solution becomes instantaneously
analytic in a growing strip in the complex plane. In particular, for any

n€l0,a/2),

the solution lies in the energy space



h ec([o, T];A}u) nL! ([o, T];Afu) V0 <T < oo.
In addition, the solution decays

(1€ 1y + 1Rl ) < e (€oly + lholy)

for certain 0 <8 =6(a, ¢) K 1.
We would like to emphasize that the condition

o>2

is not optimal. We can improve it to

a>1

but the proof will be more technical without leading to a great improvement in the result. Let
us explain the reason behind the assumption on «. To do that we consider the linear problem in
Fourier variables

ét = —fl - ak2§,
hy = |k|E — ak’h.

Then we see that the £' norm evolves according to (see Appendix A for the definition of the
Wiener spaces)

d - ~ 22
Nl < Wl — el
iuﬁnel = |I[kIE o1 — allk>hl .
dt

Then, in order the contributions from the a-independent terms can be absorbed into the dissipa-
tive part of the linear problem, we need o > 1. Let us try to further elaborate on the methodology
of the proof of Theorem 1.2. In order to establish this result, we use the Wiener-Sobolev spaces
introduced by the authors in collaboration with Gancedo in [11] (we refer to Appendix A for
the precise definition). These non-standard spaces are anisotropic in the sense that they measure
differently the x; and the x; variables. In particular, they measure x; akin to a Wiener space and
x2 as a W51 Sobolev space. However, this makes them very useful when dealing with a free
boundary problem because it allows us to control the interface in a certain Wiener spaces while
keeping track of the regularity in the bulk of the fluid in a Sobolev sense.

1.1. Notation

All along the manuscript T = R /27 Z, which alternatively can be thought as the interval
[—7, ] endowed with periodic boundary conditions. Given a matrix A € R”*"™ we denote with
Al the entry of A at row i and column j, and we use Einstein convention for the summation of
repeated indexes from this point onwards. We write



) d
%f—4L fF?%

ax j
for the space derivative in the j-th direction and for a time derivative, respectively. We also write

_

- ’
3Xj

f?j
and
D% = 8?1820‘214, o] +ap =a.

Let v(x;) denote a L? functionon T (as usually, identified with the interval [—, 7] with periodic
boundary conditions). We recall its Fourier series representation:

v(n) = —n_/v(x) eIy,
T

where n € Z. Then we have that

v(x)= Z b (n) €.

nez

We define the Calderon operator A as
Av(n) = |n|d®).
Similarly, for sufficiently smooth functions f
F v =f () ().

We define

Hie(x1)
as the periodic heat kernel at time # = «, and we denote

f“=Hc* f and f“ =H,x (Hex f) .

We write C for a constant that may change from line to line. This constant may depend on
the norm of the initial interface and the initial velocity at the free boundary in lower norms C =
C(lhol2, 1&0l2). We write P for a polynomial that may change from line to line. For the definition
and some properties of the functional spaces used in this paper we refer to the Appendix A



2. The arbitrary Lagrangian-Eulerian formulation of the damped water waves system
2.1. A family of diffeomorphisms

Our analysis of the damped water waves problem (DDZ) is based on a time-dependent change-
of-variables ¥ (x1, x2, t). This family of diffeomorphisms flattens the domain and changes the
free boundary problem to one set on the smooth reference domain

Q=T x (—00,0).
The reference boundary is then given by
=T x {0}.

We let N = e, denote the outward pointing unit normal on I". We observe that we are dealing
with a parabolic problem with cross-diffusion. Thus our analysis relies on obtaining a parabolic
gain of regularity. To do so, we need a reference domain €2 with smooth boundary.

In this section we construct a family of diffeomorphism with optimal Sobolev regularity. To
do that we follow the ideas in [4]. The main point of this construction is to solve appropriate
Poisson problems to find 1 (x1, x2, ¢). Then, an application of the inverse function theorem to-
gether with standard elliptic estimates will show that these mappings ¥ (x1, x2, ¢) are a family
of diffeomorphisms with the desired smoothness (see [11] for more details). Given a function
h € C(0, T; H?) with initial data h(x;,0) = ho(x;), we define (8v) as the solution of the fol-
lowing elliptic system:

ASY =0 in Qx[0,T],
Sy=h on I'x[0,T].

Due to elliptic estimates, we have the bound

VW (1) ly—05 < Clh(®)], for all r > 0.5. (12)

Then we define the mapping

Y(x1,x2,1) = e+ (0,8¢) = (x1, x2 + 8¢ (x1, x2, 1)).

We observe that, if & is small enough in certain sense, then v is a diffeomorphism. To see that
we use that its distance from the identity map, e(x), is small (see [4,11]).

As this paper consider the case where the initial domain lies in Sobolev and Wiener spaces, we
need to show that v is a diffeomorphism in both functional settings. Indeed, let us first assume
that % is small in certain Sobolev norms, namely

|y <« 1.

Then,



¥ —eller < I8¢ ller < CIVEYliias < Clhlizs K 1.
Thus, we have that

v () =¥ Mlico = llx = yllco = 18Y (x) = 8% (y)llgo = (1 = Clhl175)[Ix — yllco,

which ensures that v is injective if 4 is small enough in H?(T). As a consequence of the inverse
function theorem v is a (global) diffeomorphism such that

IV () —1d|l2.5 < oo.

2.2. The matrix A

We write
J=det(Vp) =yl yto—vlavla =1+ 800,
We have the bound
[(#) = 125 = 118¥,2 1125 < ClA(t)]1.75. (13)
We write

V2, —1/f1,2> 1 <1+3¢,2 o>'

_ -1 _ 5-1 _
A=y =J (—1/f2,1 vla )T 148y, \ =Sy 1

Using the fact that
ALY, =8,
we obtain the useful identities
(A)i = —AL(W)" AL D’A=—-2D'AVD'yA — AD>VyA. (14)
We will also make use of the Piola’s identity:
(JAH) p=0.
2.3. The ALE problem in the fixed domain
We can now define the pull-back of the scalar potential ® as
p=>o.
We compute that

(VO oy =A" Vo =Al..



and

(Ag) oYy = A (A5G 1),
Then, defining

—eh,1,1 -
n:¥ g:1+(5h’1)27 n:ﬁn:(—Sh,l,l)’

V14 (eh,)?

the problem (9) can be written as

Aj (A i) =0 inQx[0.T], (152
p=E£ onI'x[0,T], (15b)
lim V¢=0 onT x [0, T], (15¢)
Xp2— —00
&
& == A Aok —h — AR (RSP ).
+ e i (Abgoiii +an ) onT x[0,T],  (15d)
hy=ASp.iiij+ah, onT x[0,T], (15¢)
ASY =0 in Q x [0, 71, (15f)
Sy =nh onI'x[0,T], (15g)
Y =e+8y inQx[0,7],  (15h)

with the initial data

§=25& on T x {0},
h=hy onT x {0}.

3. Proof of Theorem 1.1: local well-posedness in Sobolev spaces
3.1. A smooth approximation of the ALE formulation of the damped water waves
We consider «, § > 0 two positive constants. The system (15) has a very fine structure that our

regularizing procedure has to maintain in order energy estimates can be performed. We define
the following smooth approximation of (9)

AL (ASp.1)e =0 inQ x [0, 7], (16a)

¢ =E&" onT" x[0,7T], (16b)

lim V¢=0 onT x[0,T], (16¢)
Xp—>—00

&
£ =He * (— SRS Ak —h

10



—aAS (AL )

+ A5k (A§¢,kﬁj +06hK,11)> onT x [0, 7], (16d)

he = Ho o (Akoiiy ) + a1 on T x [0, T, (16¢)
ASY =0 in 2 x [0, T, (16f)
5y = h* onTx[0.T].  (l6g)
V=ct8y in 2 x [0, T, (16h)

where
£E=§ on T x {0},
h=h) onT x {0},
are the initial data and
;l = (_8hK5l ) 1)'
We observe that we mollify twice in order we have a symmetric regularizing operator. First we
need to regularize the trace of the diffeomorphism i and also the velocity potential ¢. After this

regularizing procedure, we are able to solve the elliptic problems associated to the velocity and
the diffeomorphism. Furthermore, due to these mollifiers, the high order term in the equation for

&is
A%(A%¢,2 ),2 ~ £“,11 + nonlinear terms.

Then the parabolic gain of regularity translates into a negative contribution of the type

—f(é“,nzdx.
T

Then, in order the structure of the system remains unchanged and the energy estimates can be
performed, we have to mollify also the high order terms 4%, present in the equation for 4 and
&. This is due to the fact that the system (15) is of cross-diffusion type and, without considering
smoothing operators, we will have to bound terms akin to

/sA’§¢,kh,udx.
T

Thus, we need to have 4““,|; in order we can use the previous negative contribution to avoid
loss of derivatives.

11



3.2. Existence for the regularized damped water waves system

To prove the existence of local solution for the system (16), we use a standard fixed point
scheme (see [4]). We define the Banach space

X =C([0,T], H*(T)) x C([0, T], H3(T))
and consider a pair
(h,€) € X.

Then we define the following linear problem:

AL(ASp.1).e =0 in Q x [0, 7], (17a)

¢ =E" onT x [0, T], (17b)

Iim V¢=0 onT x [0, T], (17¢)
Xp—>—00

fo _
& =M, * (— SAj9 e Njg ok —h

+ Al (Rt +ahK,n)) on['x[0.7],  (17d)
b= Mo (RS iiiy) +ah, onT x [0, 7], (17¢)
ASyr =0 inQ x[0,T], (17f)
8y = h* onI x[0,T], (17g)
v =e+8Y in 2 x[0,T], (17h)
with initial data
Ezég onT x {0},

h=h} onT x {0}.

Now we consider the mapping

S[h,&]=(h,§)

It is easy to see that
S: X—> X,

and, for a short enough time interval T = T (k), the mapping is contractive. Thus, there exists a
fixed point that is our approximate solution for (16).

12



3.3. The energy functional
We observe that the solution to the approximate problem satisfies
(h,&) € C([0,T1, H*) x C([0, T, H?).
Furthermore,
h e L?(0,T; HY), €< e L*(0, T; H).
The purpose of this section is to provide with «-independent estimates that ensure a lower bound
0<T, <T (k).

In particular, we want to bound the following energy

t
60 = max (1065 +1E0R) + [ 199013 s
o 0

By restricting T (k) if necessary, we can ensure that
1.
&) <z*, forall0 <t <T(k),

for

2 =28(0) = 2(1hol3 + 15013),

max{|h(t)[2, [E(D)]2} <y <1, forall0 <7 < T(x),
3. forafixed0 < B« 1,
IA(#) —Id|| L < B, forall 0 <t < T(x), (18)
where Id = 8,’; denotes the identity matrix.
We want to find a polynomial estimate of the form
E(t) < Mo +17Q(&(1)),

for certain polynomial Q and positive constants M and o. Such an inequality implies the exis-
tence of the desired T, and the uniform-in-« bound (see [5] for further details)

&) <2Mgpforall0 <t < T,.

13



We take 7 (k) small enough so
QUOEONT (0)!/* < 4, (19)
for certain A < 8 « 1 fixed such that
0 <A <y —max{lhol2, [5ol2}-
3.4. k-independent estimates
Estimates for the diffeomorphism ¢  Using standard elliptic estimates, we find that
VY (D)ll2s < Clh(t)]3.
We also have
VY (@) —Idll2s < Clh(t)]3.
In general,
VY —1d|l, < Clh*|,405. Y0 <r <2.5. (20)
Smallness in lower norms for the interface Using the equation for 4, we have the bound
|hil2 < ClAIL=|Vlroe (1 + |R1) + |hl2,
so, using Sobolev embedding

HY(T)c L>®(T),

together with
1771 = SR
1+8Y,2|~ 1=Cl|h¥|z
the estimate
JA|[
|A]| o0 = |J_IJA|Loo < % <C|VY¥y —Id+1d|p~ < C(1 + |VY —1d|1~),
- 2

and the Trace theorem for H*(I"), we find that

t t
/ ()25 < C / (U + 199 () — TI2 IV 51+ 1762 + 1h(s)Bds
0 0

<CED(1+EM)) +1CEW).

14



As a consequence, we obtain that

1/2

t
() — Bl2 < Vi / e (s) 2. ds
0

5VG(C£QXL+50»2+rC£00QS
2
<vi(cra+oy +ch*)” .

Taking a sufficiently small time 7 (k) as in (19), we find that

1/6
o) = gl = 1h0) = K15 1) = mE7 <10 (2 +297) ey <,

for a small enough A. Taking
0 <2 <y —max{|hol2, |ol2},
small enough, this smallness property has the following important consequence
h(D)]2 < Ihgla+ 2 <y, @n

in the «-dependent time interval [0, T (k)].
Then, we also estimate

1@ — s <IVSYllis < [h ],
which implies that
0<C<J(@)<C™!
in the «-dependent time interval [0, T (k)].

Smallness in lower norms for the trace of the potential Using now the equation for &; together
with the fact that A% =0, we find that

& 1,2 < C(|A|ioc|V¢|%oo + 1Rl g2 + Al A2 |21Vl + A |V, |2

+ AL | VLo (|A[Le |V Lo (1 + |h]1) + Ihlz))-
Since

A2 172 < ClA 21025 < ClIA2 llo.7s < ClIA2 1,

15



and invoking the Trace Theorem together with Sobolev embedding, we have that

&2 = C<(1 +HIVY —1d[15)° VN7 5 + [kl 2 + (L + VY —1dIs) IV (12 Vol s
+(L+IVY —1d[15)* V2 (22)

+ A+ IVY —1d[[1.5)IVllrs (A + [IVY —Id[[1.5)IVll1s(1 + |hl1) + |h|2)>-

As a consequence

t
/ () [2.ds < IP(E()),
0

for certain (explicit) polynomial P. Thus, we find that

1/2

t
E() — E01,2 < Vi / &) Pads | < VEPEW).
0

Taking a sufficiently small time 7 (k) as in (19), we find that

1/3 2/3

E(t) — &3> = 1E(1) — £)1,516(1) — §515 <,
for a small enough A. Taking A = A(hg, ) small enough as before, we conclude
EOL < &L+ A <y, Y1 €0, T()]. (23)

Estimates for the velocity potential Using Piola’s identity, we have that the velocity potential
satisfies

(JA‘;’.A’J<.¢,,<),(=0 inQx[0,T], (24a)

¢ =E&€ onl x[0,T], (24b)

Iim V¢=0 onT x [0, T]. (24¢)
Xp—>—00

Equivalently, we can write the previous system as

Ap=—V - (JAAT —1d)V¢) inQ x[0,T]. (25a)

¢ =¢£" onI %[0, 7], (25b)

lim V¢ =0 onT x [0,T]. (25¢)
Xp—>—00

Let us decompose ¢ as

16



¢ =1+ 2,
where
APy =0, inQ x][0,T],
{¢1=$K, onTI x [0, T],
and

Agp ==V -[(JAAT —1d) V($1 +¢2)], inQx[0,T],
$2=0, onT x [0, T].

We compute

T 81/[32 _8‘(//11
JAAT =1 o Gua)? oy
R 2

We observe that
¢1 (1,22, 1) = 206" (x1, 1),
contains the linear contribution while ¢, is purely nonlinear. We have that

Vo1l < Cl&¥|,+05, Y0 <r <2.5.

(26)

@7

(28)

(29)

(30)

€19}

Let us first consider the estimate for a lower order norm of ¢;. Elliptic estimates (see [18,4,14]
for further details on similar problems), the Banach Algebra property of the Sobolev spaces with

enough regularity, (20) and (29) then give us

IV2lis < Il (JAAT —1d) V(o1 + ¢2) 1.5
<[ (JAAT —1d) Vo1 [l1.5 + || (JAAT —1d) V|1 5

<CIJAAT —1d[l15IVeillis + CIJAAT —1d[l 151 Veallis

= CIVsYlislE 2+ CIVEYllisIVerllis
< Clh* 121" 12 + CIh* |2 V21 5.

Using the smallness of |2|,, we can absorb the last term into the left hand side and we find that

IV2llis < CIE“ .

The higher order norm can be bounded similarly,
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IV2ll2s < || (JAAT —1d) V(g1 + ¢2) 25
<[ (JAAT —1d) Vo125 + || (JAAT —1d) V|25
< C(IJAAT —1d|l25 Vo1l + | JAAT —1d| 1< | V1 125
+ [IJAAT —Id| L[| V2ll25 + [ JAAT —1d[l25( Vel L) -
Then, using the Sobolev embedding together with the previous bounds for ||Vga|l1.5, [Vo1llr
and ||V38y ||, we find that
[Veallas < C (IJAAT —Id[25/Voillis + ITAAT —1d|l1.5] Vi ll2s
+ IJAAT —1dl1 5 Vallas + [ JAAT —Id|l251| Valli.5)
< C (|31 12 + IR 12163 4+ W 12 V2 ll25) -

Thus, using again the smallness of |£€¥|, and |A¥|,, we conclude that

IVgllas < C (Ih I3+ 1£°13) - (33)

Finally, we also have that

IVo2llzs < Il (JAAT —1d) V(1 + ¢2) 135
< (JAAT —1d) Vg1 i35 + || (JAAT —1d) Ve 135
< C(I[JAAT —1d|I35]I Vil + | JAAT —1d|| .~ Véi 135
+ IJAAT —Id|| 1|V ll3.5+ [ JAAT —1d|35] Va | L)
<C(IJAAT —1dl351Veill15 + IJAAT —Id||1 511 V1 ll3.5
+ [ JAAT —1d1.5Ve2lls.s + IIJAAT —1d|135/ V2 ll15)
<C(IV8¥ a5l + IVEY (15164
+ IV8Y ll151IVe2llzs + VY l1351612)
< C (W 141E€ 12 + R 121" |4
+ R 12 Vallzs + B 141€]2) .

Using the smallness of |%|>, we conclude that

IVg2ll3s5 < C (IR 1alE ]2 + [A* 121€" |4 + 17" 1415"12) . (34)

Estimates for the interface We observe that the mean is preserved by the equation for 4. In
other words,

/h(xl, t)dx; =0V0<rt.
T

18



AS a COnsequence,
|hl3 < Clh,111 2.

Testing the equation for the interface against A°%, using the symmetry of the smoothing operator
and integrating by parts, we find that

1d -
Ealh,lu 7, = fAljfb,knjAéthxl — | 1 17
T
—— [ Wouijathdn — i i
T
== [ Wit dn = i o
T
Using
V.2 (x1,0,1) = ARS,
we compute
Algoiiij = —Ajd.h* | +ASP = —E 1 h¥, + #1)° bt —22
J sk J 1 sk 51 2 sk 51 51 1+AhK 52 1+AhK
We note that, using the smallness of & in H> (21),
1 1 1
< < <
L+ AR | oo = T— AR | — T — Al —

Using the Sobolev embedding and interpolation, we have that
(S kil < C (18Il + 1121kl + AB16.2 |2 + hl21g.2 [ 1kl + 6.2 |2 + [#2 1Al

Invoking the elliptic estimates of the previous section (31) and (33), together with the Trace
theorem, we find that

19,212 = ClIVllas = C(h]3 + 1§]3).

As a consequence,

ASp.iiijl < CVE®).

Then, using Young’s inequality, we conclude that

d
72 < CE@ = 1 I 35)

19



Estimates for the trace of the velocity potential Since (22), the mean satisfies the following
ordinary differential inequality

<an /HMJMM f&@umhﬁqﬂu<P%WD

Now we have that

El3 <15 =)+ (&3 =15 — (E)3+ ()2 < 16 — (E)I3 + CI(EN < |&,111 L2 +1P(E ().

Thus, it is enough to estimate |§,111 ;2.

Let us now consider the term A3, (A39,¢), which is the higher-order nonlinear term in the
equation for £. We want to extract the linear contribution. This linear contribution has a sign and
the consequent dissipative effect will play an important role in the estimates. We have that

1 V.2
)2 ¢»22 -

2 2
A5 <A2¢92) 2= m

Atovar

3¢,
—— = (1 +
FIFVAE (A1 +¢2) 2.

1
=———— (1 +¢) .-
1 1o0) (1 +¢2) .22 a

Using the explicit expression of ¢ and ¥, we compute

8V, (x1,0,1) = —h" 11,
¢1,2 (x1,0,1) = A",

o1,22 (x1,0,1) ==&,

1 8,2 11 h* 1
(1+6¢.,2) (1+8wz) x2=0 (14 AR? (1 + AR©)’
2ARS + (ARY)? B0
(1+ AR) (1 + Ahx)
As a consequence
—AS(ASp. k)| =—A5(A3.2).0
x2=0 x2=0
-1 " h*, 11 4
== ¢, ——— P2
(14 Ah<)? o (1+ Ah<)3 =0
2AR + (AR)? h* .11
HE s S AR 36
£1 (15 AR £51 TEUNGE 3 (36)

Thus, the equation for &; reads

20



$2.220 Ko

1
=Hex | — AP Alp . —h — +&°,

2ARY + (ARF)? e h* 11 AEX
REN G Y 5t
¢a2 k ~

+1+—AhK<Aj¢,knj+h",“> on T x [0, T7.
Then we have that
$2220 Ko

d 2 K 2 / K ( k

1S = - ) - ’ __A A -

g7 &l ==l . £, 11 PRk AL A2 (1t AR
T

2AR* + (AR©)? ge AL .2
A+ Ar)2 " T A AR T T AR
==+ h+h+h+ L+ Is+1s+ I+ I,

(A';¢,kflj +hK,11)>,11dx

with

I = /E ,1111< ¢6A¢k),11dX,
12=/EK,1111h,11dx,
2,22
I3 = /E ’““((l—i—AhK) ),de,
h",11¢22>
I = N ) dxs
4= /S 1111<(I+Ah") 1

2AR* + (AR¥)?
Is= [ & 1n (1 AR ———— &1 J.udx,

16—/5 1111( Do A ) 1dx
) (1+AhK) ) b
k
/5 S <1+Ah" (A Ny ))mdx,
¢.2
— « — " dx.
/5 ’““<1+Ah'< ,11>,11 x
T

Using the elliptic estimates (31) and (33), we find the bound
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I < |E%, 1111 |2 C(h3 + €13).

Similarly, using again the elliptic estimates (31) and (33) together with the smallness of |A|2 +
||, we obtain that

I < CIE“ 111 |2 (1115 + 1E13).

Applying Cauchy-Schwarz inequality we obtain that

L <& 1111 | p21hl2.

To bound the terms Iy, Is, Ig and Is we need to use the smallness of |h|> 4+ |£]>. This is due to
the cross-diffusion character of the system. It is easy to observe that

, 11¢>22
14<fs“,1 (I:Ah 2 ax o €I L2 + 16

< CIE“, 1111 2R 1111 2 IVl e + CIES 1111 2 (1B13 + 1€13)
< CIE 1111 |2 1h 11 12 V2l 4+ CIE 111 12 (1h13 + 1€13)
< CIEX i 2P 1nnn 218 2+ CIES a1 12 (RIS + €13,

where we have used (32). We can proceed analogously for the terms I5, I and Ig. Then we
obtain that

Is < CIE¥ 1111 1721 [ 4+ CIE i 12 (1R 15 + 613D,

Is < CIE“ 1111 |2 1h* 1111 12185 12 + CIE 1 12 (1R15 + 1E13),

I < CIE° 111 2 W i 12 1 V@l + CIES 111 12 (h15 + E13)
< CIEX i L2 1h* 111 21V lls + CIES i 12 (1h13 + €13)
< CIEX i 2P 1ann 2182+ CIES 111 12 (1R 13 + E13).

We are left with /3. The term I3 is challenging because there is a term with four derivatives of
¢>. We have that

=J1+ /o,

with

J= /5,(,1 $2,1122 AT,
END

Jo < CIES 1111 12(1h13 + [E13).

Using (34) together with the Trace Theorem, we find that
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J1<1E 111 1221IVe2,2 ll2s
<111 2IVe2ll3s

< CIE“ 1t 12 (1A 10nn 12152 + 1R 121 1111 12 + 1R 1111 [ 21612) -

Collecting the previous estimates we find that

1

8
1) = 5185 nn I3+ CEW) + CEW + CIE 1 12 (8 i |2
=1

J

+ 1A 11 122 (ES 12 + 1h* [2),

and then,

d
priRtl 7, <CA+EM) = 1 72 + CIE 1111 1208 |2

+ A1 122 (ES |2 + 1A  12). 37

We observe that the higher order terms on the right hand side of the previous inequality can be
absorbed by the parabolic smoothing as long as |k|2 + |§]> is small enough.

The uniform time of existence Summing (37) and (35), using the smallness of |i|2 + |£]2 and
integrating we find the following inequality

€15+ 1115 < 18015 + 1hgl5 + 1 (1 + £@)°.
Integrating (31) and (33) and adding them, we conclude the desired bound

t

1
EW+3 / IR 1111 12+ 161111 2ds < 1803 + [hol3 +1C(1 + & (1))*.
0

This bound provides us with a uniform-in-« time of existence 7. Furthermore, in this time of
existence we have that

E(t) <2(1&l5 + lhol3),

and
max{|&|2, |h]2} < y.
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3.5. Passing to the limit and uniqueness

We have obtained uniform bounds

h e L®(0, Ty; H(T)),

£ L®(0, T H(T)),

h* e L*0, T,; HY(T)),

£ e L*(0,T,; HY(T)),
V¢ € L0, Ty H(2)) N L*(0, Ty: H(Q)),
V8w € L0, Ty; H>()) N L0, Ty; H>S(Q)).

With this regularity we can pass to the limit in « (as in [19]) and conclude the existence of a
solution to

AL (AT k). =0 in Q x [0, 77,

p=¢& onI' x[0,T],

lim V¢=0 onT x [0, T],
Xp——00

&
S[ == _EA§¢1€A];¢7/( _h — OtAg(Aé(b,k),[

+eASp i <A§¢7kﬁj +ah,11> onT x [0, T],
ht=A];¢akﬁj +ah, 1 onT x[0,T],
£=£) on T x {0},
h=h8 onT x {0},

ASy =0 in Q2 x[0,T],
Sy =h onl'x[0,T],
v =e+dy inQx[0,T].

As everything is independent of §, we can repeat the previous estimates and pass to the limit in §
in order to conclude the existence of solutions enjoying the following regularity
he L%, Ty; HY(T) N L*(0, Ty; H(T)),
§ € L0, T; H(T) N L*(0, T HY(T)),
Vo € L0, Ti; H*>(Q)) N L*(0, To; H(Q)),
VY € L®(0, Ty; H*(R2)) N L*(0, Ty; H(RQ)).

The continuity in time in the highest norm is obtained in a standard way due to the parabolic
effect present for 7 and .
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Due to the regularity of the solution, the uniqueness follows the standard contradiction argu-
ment and thus, for the sake of brevity, we omit it.

4. Proof of Theorem 1.2: global well-posedness in Wiener spaces

In this section we provide appropriate estimates for the solution in Wiener spaces. Further-
more, we prove that the solution becomes analytic for positive times. In what follow we fix ¢ =1
to simplify the exposition.
4.1. Estimates for the velocity potential

The first ingredient in our proof of the appropriate energy estimates in Wiener and Wiener-

Sobolev spaces is a set of sharp enough estimates for the velocity potential. In particular, our
goal is to prove the following estimates for r, A, s > 0

A"V, HAj’l SCr ) O]+ 18 Ol,5) UAHISO)L W ‘Ath(t)‘S A] ’ oo
||V¢2||A§:2 SCEUh Oy 5+ 1E D)]1.) |:‘A2h(t)‘s . + ‘Azé(t)‘s A:| ’ 39)
‘A’szaiw - < H Ar&faid)l HAi,l S ‘Arﬂﬂé s o

These estimates require the suitable smallness for 4 and &. In what follows we assume that the
following smallness condition holds

lh O]y + 18 @)1, < Cla,8). (41)

In the subsequent sections we will prove that, if the initial data is small enough is certain spaces,
the previous smallness condition is automatically satisfied. Equipped with these estimates for
the velocity potential we can, later on, establish the bona fide estimates for the interface and the
trace of the velocity potential and, as a consequence, we can conclude the estimates leading to
the global well-posedness in Wiener spaces.

We recall the decomposition (26) for the velocity potential. Then, applying Lemmas A.5 and
A.6, we find that, forany r, s, >0, j e Nandi =1, 2,

‘Ara{aﬂpl

<|arefaien |, <|artitie
A

A;\’l s,h

S,

Now we have to find appropriate estimates for ¢, solving the equation (28). This equation
contains the nonlinear contributions and, as a consequence, it is more challenging to estimate.
We start invoking Proposition in B.1 and applying it to (28) in order to ensure that

V2l o1 <12 [ (JAAT = )(V1 + V) | o -

Using Lemma A.5, we find that
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IVall o1 <24 [ JAAT — I o IV1ll o1 +24 [ TAAT = I]| o IV 2l 4o

< 24| JAAT = 1| o1 IV ll o + 2401 Ahlo,; V2] o

Thus,

24[|JAAT — I o1 IVl qo1

\Y < 42
IVl 1 < —— 220 2h0 ) “2)

We apply Proposition in B.1 to (28) obtaining the estimate
A7 Va] o < 12 A7 [(IAAT = 1) (61 +6)] o @

where s > 1and r, A > 0.
Let us now apply the product rule stated in Lemma A.5 to deduce

79| 1 <24 ;c,;cs[ 88T = 1] o (1A7V1 | s + [ 479 1)

+||A” (JAAT — 1)

ot (1901101 + 19921 A)} (44)

At this point it is easy to find (see also [11] for more details) that if |a]; ; < (16ICrICs(»3)_l
then the following bound holds true

[ A7 (JAAT = 1] o1 < 10[ A7

(45)

S,A

We are finally now able to bound the right hand side of (43).
Using (45) in order to deduce that

24 KKy | JAAT — IHAQ,I A"V <240 K, Ky |hly 5 | A"V

” s, 1 ” s, 1.
Ak A)L

We have that (43) together with the previous inequality leads to

(1 =240 K, Ky |hly ) | A"V ”Ai"
2K [[TART = 1] o A7V [ o + [ A7 (JAAT = )] s V1] g0 ]
+ |A” (JAAT — I)”Ai" Vg2l g0 } (46)

We apply now (40), (42) and (45) to (46) in order to obtain an inequality which involves norms
of ¢, and h only
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(1 =240 K, K 1]y ) [ A7 Vo | o1 < C(r,s>[|h|u A g| A IAg,

|A&lo s [ATR| AR,
1 —240|hl; ’

where C(r, s) is a (computable) constant that only depends on r and s and may change from line
to line. Using hence the smallness of &, we prove that

|87 V2] g1 < Clrs) [um ate| At |s|u] . )

The estimate (47) allow us to control all terms appearing in (36) with the exception of 822¢2. It
is in this context that we use the higher order elliptic estimates proved in the Proposition in B.1.
Thus applying Proposition in B.1 we recover the inequality

IVall 52 S 12[A[(TAAT = 1) (@1 + §2)]| go1 +4 [ (JAAT = 1) ($1 + )| 42
=" 4 I, (48)

which holds for s, A > 0.
The term / f ** is easier to control. To estimate this term we apply Lemma A.5 with r =1 in
order to deduce

rt< 24/@[ [ACAAT = D) e (||V¢1|| 01+ 1Vl A(_m)

JAAT — [ (AV o +IAV ) . 4
e s (1AT811Lgs + 1AVG2l . } (49)

Recalling (45), we obtain that
AAT — [ <101hl, 5, |AUAAT =D e glO‘Azh‘ . 50
Il ) o1 <1011, [AG ) gz o (50)

Similarly, using the formula of ¢; and (40), we find that

Vorill o1 <21€l s, 1AVl o <2‘A2 ‘ . 51
IVl go1 <2181 IAVEL o1 EM (51

We use the smallness hypothesis together with (42), (47), (50), (50) in (49) in order to obtain

IF<CG, o) [A%h| (V4 1hl) 18+ hl (T4 1AL, (A28 +21E], |A%h :
S,A S,A S,A

which after algebraic manipulation gives us

1 < Cs ) Ol + 1€ O ) [(AZh\s A% J . (52)
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Before starting to prove a suitable bound for the term I; * we need appropriate estimates for
AT (JAAT — D g5
[A7( )| A2
First, let us remark that

|A"(JAAT — D) | a2 = | A" 3, (JAAT — )|

‘Ai,l .
Now, we compute
38y —0120Y
B (JAAT — 1) = _— —3289 + 2018y 3128y (—8Y + (318Y)?) 338y |-
2 1+ 0289 (1 + 8,892
and we use the identities
o0
A+x0)7"'=> " (—x0)"
n=0
and
o0
A+0)72=> (D" (n+1Dx",
n=0
both valid for |x| < 1 in order to express it as
o0
HIAAT =) =" O,
n=0
with
- 38y —0128Y
Qo) = 5 N )
—01280Y  —078Y + 20189 9128Y — (— 0289 + (018%)%) 978v

- 0 0
OQmw = <o (—a%sw +2316W3]281ﬂ) (—8289)" — (n+ 1) ((—azaw + (alaw)z) 3225w) (—3251,0)") , onzl

We can apply Lemma A.5 together with the inequality

’

Arakala H < ‘Ar+k+lh
H 172 w Ai’l S,

which stems from the explicit definition of §¢ and Lemma A.6. Applying the product rules of
A.5 it is possible to produce the bound
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[ a7 (o597 (=328 + 20180 6128v) )|

5,1
’A)L

<C ] a7 (@289)")] 4 [H 0300 |

Jor H1013% 11 192891 Ag,l}

+ | @28u)" | oo [HA’agaw‘

s, 1
'A)»

(17 018w | o1 191281 gor + 1018w 1 gor [ A" 01289 | o) ] |

<€ a8 1) [A78259 | [H 9369

0,1
A)L

o IOV 130 |

Ry HA’828 ‘
+ 192 1/f||Ag,1|: X% A

+ (17 018w | o1 1912601 gor + 1018wl yor [ A" 01289 | o1 )] .

< Cosy ™ Iangyst A

Azh‘ Ah )A%‘
s U O,A+| lo.1 0,

+ AR, [(A”’h

+ ‘Al-H‘h
s,

Azh’() Akl (A2+’h

s, ‘

M)] } (53)

since h preserve its (zero) average we interpolate and use Poincaré inequality in order to deduce
the bound

)Al-i-rh

‘Azh) < ‘A“’h
S,A 0,1

A'AMO’}” s>0, r>1. (54)
s,

This estimate applied to (53) gives

HAr ((—8261#)” (3228w +20,89 alz(sw)) H_A‘f’l

<Crs)™ Il { (14 1ARlg,) + (14 [ARl) } ‘A2+’h

; (55)

S,A

<CO )™ Al (14 1Ry ,) ’A2+rh

s,

We perform now similar computations as the ones carried out in (53) in order to deduce the
following bound

a7 (o8 (0280 + @i0w)?) 8dsv) )| .

<C )" G 1+ 1Ay, (A2+rh

(56)
s,

At this point we can combine (55) and (56) in order to deduce that if

|h|1,)» < C(V,S),
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then

bl

|27 00] . <4farn
A

s,A
Since
|A7(TAAT = D) o2 = | A7 02 (JAAT = D) o1 < Xn: g 1 S5 A% N

we conclude the following estimate

|A7(TAAT = D] 4oz <5[A7h
A

S, A

We focus now on the term I‘; * We apply Lemma A.5 in order to obtain

s,A
1< c<s>[ [(TAAT = D) o2 (19011 g1 + 1921 o1 )

+ | (JAAT — 1)||A2,. (IIV¢1|IA;2 + ||V¢z||A;,z)

+ | AAT = D] g1 (19611 02 + IV 21| g02)
+ | AT = D] o2 (1911 g1 + IV A)} (57)

The term ||V || 402 is a high order term that we have to contro in terms of well-behaved quan-
A

tities that we know how to bound. Let us hence apply again Proposition in B.1 in order to obtain
\Y <12 |A[(JAAT — )V 1+ 4| (JAAT — )V 2,
V2l o2 < 12[| A[C IV (1 + )] o1 +4 ¢ WV (1 + )] o2
and we use the product rules of A.5 in order to deduce the bound
T_ T_
[(JAAT = DV (91 +¢2)| o2 = C[ [(TAAT = D) o2 (111 01 + 196211 go1)

+ [(JAAT = D 4o (||V¢>1 | g2+ Vo2l Ag.z) ]

and

| A [(TAAT = DV @1+ 92)] | o1 < € [[ACART = D] o1 (V1] o1 + IV 2 o0 )

AAT — (Av LAY )]
+ | )HAg.l l ¢1|IA21+II ‘7’2”,421

30



from which we deduce that

C
1- AAT — 1
I )00

IVe2ll yo2 <

{ |A(JAAT — 1)||Ag,. (||v¢1||Ag,1 + IIV¢2||A%1)
+ | AT = D) o1 1AVl o1 + 1AVE2 ] 01 )
+2[[(JAAT = D) o2 (I9611l o1 +19@21 01 ) + [(JAAT = D o1 IVl g2 ] } (58)

Using the smallness hypothesis (41) together with the estimates (40) and (45), we obtain the
bounds

| A7 (AAT = D) 1 < 10[A

9
S,

[A7Ven | s <2|a78

| g o (59)

| A7 2] ys1 < C (1015 + 111 5) (]A”’s T \A“’h

9
s,k)

where r, 5,1 > 0 and j € N. We use now (59) in (58) and after suitable simplification we find
the estimate

19631 o2 < € (ks + [€) (\Azhjm + \Azs\m) . (60)

We use the inequality (A.4) to obtain

1
(\A%]O A%, A) (IAEl s + 1AMl 2) <2175 (€l + 1A ) (‘Azs\s A%

S,A) '

We use now the estimates (41), (45), (59) and (60) together with the previous inequality to
conclude that

1% <o) (18115 + 1l ) (\Azs(s A% A) +101h]1 [Vl g2
Thus, rearranging the terms in (48) and using the smallness hypothesis (41), we find that
19621l 4oz < CWOUR Ol + 1 Oly.2) [\Azhm) +|a%0) }
A s, s,

as desired. Furthermore, we use the trace estimates of A.5 in order to obtain

e, <[oiee]

5 ot SNVl g2 < COUR D1 +1 W]12) []Azhm\s +|a%o| A].
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Equipped with these estimates we can now perform the analysis of the equations for /# and &.
4.2. Estimates for the evolution equations

We define

e [0, %) 61)

We compute that

d o0
5|f(r>|1,,u=< > A+ In e,

n=—0o0

f(n,t)\) +u< > (Al fnfer

f(n,t))) ,

< ( S (1 Infyernla, f(n,r)\) wuar|

Now we perform an A }” energy estimate on the evolution equation of & in (15). Thus, we find
that

d 2 1 £ k
el = [A%] <+ 5 A A |

b2
14+ Ah

1,ut

+’ (A]}¢,kﬁj+ah,n>

1t
A%h

to|——s

1t (1+ Ah)

‘ $2,22
ol %222
(1+ Ah)?

2+ Ah) Ah
o | e A AR

A2
(1+ Ah)? 5

Ag

1t

(62)

+ ’ Nk,
o ——= )
1+ Ak 22

1t 1, et

Similarly, we find that

d
Tl @ = A% = Al @i g k| M@ +en)| o ©3)
t 1,ut 1,ut 1,ut

Before starting to compute suitable bounds for the nonlinear energy contributions in (62) and
(63) we need the analog of estimate (45) in Wiener spaces. To prove such estimate, we observe
that, from the explicit definition of A given in section 2.2 and the definition of the function G
given in (A.3), we can rewrite the trace of A in xp =0 as

Aly,—o =1 +A,

N 0 0
A= .
(81h(G(Ah)— 1) —G(Ah))

We can now use Lemma A.2
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B3] < [onhls s (1G (Al + 1) +101klo 1 1G (AR ;]

R <ie@ml,,.

and control the contributions provided by G with Lemma A.3

~ 1 1
A2’ <K, |141n + ARl .
&, [ | |M<1—/C0|h|1,x TR R
)xg < ———— |Ahly,.

s,A I—K:_, |I/l|1’)L ’

Using now the smallness assumption (4 1), we find that
A1) =I5 S C() [AR (D)l - (64)
4.3. Estimates for the trace of the velocity potential

Let us start by considering the energy contributions arising in (62). We use the product law of
Lemma A.2 and the fact that for any s, A > 0 the space Aj is an algebra in order to obtain that

ATVl | <2|ATV @1+, ATV @1+,

<20A = 1o+ D (IVhilo s + 1920210,10)
X (IA=TIl1 u+ D (IV1l1 u + 1026211 ) -

We combine the above bound with the estimates (38), (39) and the estimate (64) in order to
deduce the inequality

1ATVO | <C (1l + 1) Il 1A 148
+ (1Al e 1AE L s + 1 1 ur |AR T )] (65)

Invoking the assumption (41), then we can simplify (65) into
2
IATVOL| < CIMMIL (18R +1AE]L0)-

The next term we want to bound is
2+ Ah) Ah
o ‘ % A% )
(1+ Ah) 1t
First of all we remark that
24 Ah) Ah

Ve A%E =2+ Ah) (1 — G(Ah))> Ah A%€,
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where the function G is defined in (A.3). We iterate the product rule (A.2) and we obtain
2+ Ah) (1 — G(Ah))> Ah A%€ ‘1
St

2
< 32[(2 1) (141G AR, r) [ [ A% y

2 Vhl1) (1418 A lo) AR [A%]

(66)
2
(118 ARl ) [l AR A%
+2(2+ Al ) (141G (ADo,pur) 1G (AR 1 \Azs\w}.
We invoke A.3 in order to produce the bound
Ah|g
IG (AR g e < M =0, 1. (67)
L—|hly e

Combining the above estimate with the smallness hypothesis (4 1) for £, inequality (66) becomes

Q2+ AR (1 — G (AR)2 Ak Azg(] L =CIARIL, <‘A2§‘1 n )Azg‘o w) . (68)

Thus, we conclude that

2+ Ah) Ah
o | e A AR

A2
(1+ Ah)? 5

fOlClAhh,p,t
1,ut

A2 )1 " (69)

Using A.2, A.3 and A.5, (38), (39), (40), (41) and (67) we estimate

¢,
511 = 52 - 0,ut 151111, put o 52 - 1t 151110, ut
o h <alg,2(1 =G Ao u A1 1w T2 (1 —G (AR s 111
ran M,
< Calh Ol + I Ol ) [\Azhm\l Aol m] . a0
The term
¢72 k ~
A' ) j )
'1+Ah LA L

is a lower order contribution and thus, it can be estimated as before. Using interpolation, we find
that
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'—4”2 A i)

2
1+Ah j SC(|Ah|l,,ut+|AE|1,ut)

1t

< C (111 + €1 ) (\Azh\l |, W) .an

We estimate now the term

A%h

“laran ™t

1t

As before, we consider the identity

A2%h

FYYS AE = (1 —G(Ah))> AE A2h.

We apply the product rules of Lemma A.2 and we obtain that

‘(1 —G(Ah))} AE Azh‘w

Azh‘ A
Lt + | ‘i:|1,p,l

= C (141G M) | (141G WMo ) <|5|1,m A%|, m)

2
1B AR €0 (%],

Recalling (67) we further compute that

‘(1 — G (AW} Ay Azh‘
1t

| ARy )2{< |ARlg )(
<Cll14+ —— 14+ —r €]
( 1= |kl 1= Al bt

Azh‘ A
Lt + | S'],;u

A2h’ )
0, ut

LI |AR|? } (72)

+ 1t
1 — |l H

We apply the estimate (A.4) and Young inequality to find that

2 2
IARLE < 81Rl [A%R]

2 2
A& 1ALy <2 (1] + VBl r) (]A el Tla h\w).
These inequalities applied to (72) together with (41) lead us to

A2%h

“lazan

<aC +1h ][] ) "
» (|$|1,y,t | |1,Iﬂ)< 1Lut é:1,/41 7
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The next term in (62) that we have to estimate is

‘ 2,22
o ———= .
(T+ ARy e
We observe that
2,22 5
—— —=(1-G(Ah )22,
TEDVIE ( (AR))” ¢2,22

so that we can apply repeatedly the product law of A.2 in order to obtain

(1 -G @) \1 B
<8 [(1 +1G (Ao ) 16222 11 +2 (141G (AR o) 1G (AR s 102,22 |o,m] . (74

We apply the result in A.3, the estimates (A.4), the smallness hypothesis (4 1), the bounds (38),
(39) and (67) in order to transform (74) into

$2,22
ol %222
(1+ Ah)?

—a|(-G AR ¢ |
1t 1t

< aCAR Ol + I Ol ) [\Azhm(l o) m} )

The last term to estimate in (62) is

A2h 5
o\ ——= )
1+ Ak 22

1t
As usual, we remark that
Ah $r.0=(1—G(Ah)> A%h ¢

Thus using Lemma A.2

3
(=G Ahgra| <32 [(1 +1G (AMlo.ur)” 162,20,

A%

1t
3

(118 AMo,)' [A%R] 162211

2
+3(1+1G(AR)g ) 1G (AR

Azh‘ 22 lor |-
0, ut |¢ |0’W

We invoke (47), (67) and the smallness hypothesis (41), in an analogous way as what has been
done for the previous terms. Then we obtain the bound
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‘ A%h ”
ol B
1+ Ak 27

sozcuh(t)h,w+|f§<r>|1,m>[\Azhm\1 + |2 } (76)
1,ut st 1,ut

We insert the estimates (65), (69), (70) (73), (75) and (76) in (62) and use interpolation in
Wiener spaces to obtain the energy inequality

d al s
G €l 5 A%<l CR O]
+1g (t)h,,n)[ A%h)| o+ [a%0)|  bige]
Lt 1, ut

+ CURO 1 + 1§11 ) (\Azhm\] TSl w) :
an

4.4. Estimates for the interface

We provide now suitable nonlinear bounds for (63). We start studying the term

[A39.2

l,ut'

1

We use now the fact that the space A uts

t > 0is an algebra and we get
’A%¢,2 )1 N <(A- I|l,ut +1 (|¢172 |1,M[ + |¢272 |1,/u) .
We apply the estimates (64) and (38), (39) and (40) and we obtain that

3.2

L S C1ARTL (INEN s+ (121100 INE N + (AR g 1)) 4 TAE D -

We combine the above estimate with the interpolation inequality (A.4) and the smallness hypoth-
esis (41) and we deduce the bound

)A%¢,2

<C(h ‘Azh‘ ‘AZ ‘ AElL - 78
L =€ |1,m+|s|1,,u)< L TN IAg L (78)
The last term we have to deal with is
k
‘Alfﬁ»k 81}1‘ .
1t

Applying Lemma A.2, we obtain that

Akp ath|  <2||Akp i
1t

k
0t + [

orh .
0.t | |1,;,Lt

. 8, >0, is an algebra and we find that

We use now the fact that the space Ay,
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(A 1] < COA= L1y D (V11 1020211) 1l
+ CUA = Tlo e+ D) (IV1lou0 + 18260210, 1911 s

We use the estimates (38), (39), (40), (64) together with the smallness hypothesis (41) to conclude

Sk o1 §c<|h|1,m+|5|1,m>(\Azh( +|a%| ) (79)
1t 1,ut 1t

We use now the nonlinear bounds (78) and (79) in (63) in order to obtain

d o
Sn —‘Azh‘ <C(h ‘Azh‘ ‘AZ ‘ AEl, . (80
dr | |1,;L + D) Vot = (l |1,;Lt + |E|1,ut) |t + S Lt +| S'l,p.t ( )

4.5. Closing the estimates

We combine (77) and (80) obtaining the following differential inequality

d h 2 (a2 A2h <|h A
a(|§|1,m+| |1,;u)+§ El,m+ ™ <Al + 1AE L
+c<1+a>(|h|1,m+|§|1,M,><)A2h\ +|a%]| )
1t 1,ut
Now we see that, if

> 1,

N[ R

and

(Iholy 4 180l1) = Cla) K1
an application of Poincaré and Gronwall inequalities allows us to deduce the estimate

t

€Ol + 10O +5 [ [2% (1)

0

+|a% ()

dt’ < |l + lholy
1,ut’ 1,ut’

for any ¢ > 0 and a sufficiently small § = §(«). This ensures the global in time existence and
decay. Furthermore, as ut > 0 for ¢ > 0, we conclude the instantaneous gain of analyticity for
the solution. Equipped with this regularity the uniqueness follows from a standard contradiction
argument.
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Appendix A. Functional spaces

We consider the reference interface

r=T
(understood as the interval [—, 7] with periodic boundary conditions) and the reference domain
Q=T x (—00,0).

We write N = (0, 1) the outward pointing normal to €2.

A.l1. Sobolev spaces

The LP-based Sobolev spaces (also known as Sobolev-Slobodeckij spaces), W* 7 (£2), are
defined as

$,p — p P
WP (Q)=]ueLP(Q)s.t. ||M||Ws,p(g'2)

D%u(x) — D%u(y)|?

_uplsl, P |

=D ), + Zf ety dady <
|0‘\=L5JQQ

We write H*(2) = W*2(Q2). Equivalently, we have that H*(T) is the usual L2-based Sobolev
spaces defined using the Fourier series as

H*(T)={he L*(T) s.t. |h|%_1x(ql-)=|h|§=2(1+|n|s)2|fz(n)|2<oo .
n

We remark that we will write

llls = llull s -

During the whole work we will make extensive use of the following version of the Trace Theorem
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Lemma A.1. Let s > 0.5 be fixed. Then the trace operator
T HY(Q) — H 795
is bounded
luls—0.5 < Cllulls.
Furthermore, the trace operator is surjective.
A.2. Wiener spaces
Let us define the Wiener space as

A3 (T) = {v e L*(T) s.t. vl a3 (1) = Vlsa = Z(l + ) o (m)] < 0o}
neZ

We denote Aj = A*. We observe that if A > 0, then this space is formed by analytic functions.
Moreover the Wiener spaces A$, s, A > 0 satisfy the following properties:

Lemma A.2 ([/1]). Let 0 < s; <83, A >0 and let v € Aiz. Let us define, for any 6 € [0, 1],
sg =0s1+ (1 —0)sy, then

[4 1-6
|U|Sg,)»§|v|x|,)\|v|szy)hf (Al)
moreover for any 0 < s1 < s we have
§2 S1
AP EA.

Define

o B A (UR
1729 if g>1

andlet f, g € Ag be such that A" f, A"g € A3, s,r,A >0, then
A7 (fo,, <K (1flo |87l + A £, 18l0s) (A2)
When s = 0 the following improved product rule holds
[ fgloa <I1floxlglox-

Furthermore, for any r,s,A >0, n € N, n > 2 let us define
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n (r,s) €[0,11%,

Krsn = K Ks (KK = 1) . Ksn = Kosn-
K. —1 (r,s) € (1,00),

Then for any v € A3

|Ar (vn)|s,k = Krvxvn |U|8;1 }Arv|s,k :

The previous Lemma can also be applied to the composition with an analytic function. For
instance, we have that

Lemma A.3 ([11]). Let us define the function

X
1+x°

G(x) = (A.3)

Given v € A3, s, A > 0 such that vy ; < min {1, IC;l}, then

|Govlg) ST [vlsa-
’ I_ICS|U|O,)» '

Finally, let us state an interpolation estimate

Lemma A.4. Let f be a zero-mean smooth function. Then the following interpolation inequality
holds true

1 1

s ST 1737
[Flos 25T A1 IA S, T (A4)

Proof. The proof is a rather standard interpolation argument that we omit for the sake of
brevity. O

A.3. Wiener-Sobolev spaces

We need to define functional spaces in the horizontally periodic open half-plane 2. Let s, A >
0, p €1, 00] and k € N. We define the Wiener-Sobolev space

0
A @ = Jusi flul gx =Y (L Inl)* e / ‘agﬁ (n,xz))dxz < oo (A.5)
n

—00

These Banach spaces were first introduced in [11] to study a related free boundary problem
focusing on the motion of an interface in a porous medium. We denote A** = Aé’k.

For the sake of readability, some properties of these spaces are collected in the following
Lemma:
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Lemma A.5 ([11]). The map v — vy,—¢ is continuous from Ai’] onto A3 and the following
estimate holds

| v|xZ:0|S’)\ S ”v”A;vl .
In addition, if f, g € A‘Y’l, s >0, r, A >0, the following product rule holds true

|87 (o) ot = 2665 (187 £ o gl o + 17100 [A7g] ) (A6)

and

[A7 (") g = 2" K 17101 [ A 7|

At
where K, s , was defined in Lemma A.2. If r =5 =0
<2 .
£l o1 <21F 1401 llgll o

Furthermore, if f, g € As’z, then

[A7 (F9)]| gp < 2K K (||A’f|| a2 gl or + 11 o1 [A"g ] g2
r r
I A7 g+ 1AL B lg2)
Finally we provide optimal elliptic estimates for pseudo-differential operators in the strip €2:
Lemma A.6 ([11]). Let 5, >0 f R — R be W' (R), j e N\ {0} and u € A7/ ™", Let

Fe Wll;cl (R) be the primitive of | fu )| and suppose there exists C ¢ a strictly positive constant
depending on f only such that

F(0)—F(=Inl) =Cy,
uniformly in n € Z. Then one has

1f G2myull g < Cr [ AT

S, A )

We observe that constant C is independent of n.
Appendix B. Elliptic estimates in Wiener-Sobolev spaces

In the present section we prove elliptic estimates in Wiener-Sobolev spaces for the following
Poisson problem for a given regular g = (g1, g2)7:
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Aq):vg, inS,
¢ (x1,0)=0, onI" (B.1)

o (x1,x2) =0, asx, — —oo.

This result is similar to the one in [11] (see also [12]). This proposition is used in the nonlinear
energy estimates below.

Proposition B.1. Ler g € Ai"’l, so > 1, A >0 and let ¢ be the solution to (B.1). Then V¢ can
be recovered from g as integral operator and, furthermore, it satisfies the estimates

|7V o < 12]278] g
IIprIIA.;,z <12 IIAgIIA;.l +4 IIgIIA;.z
foranyr,s > 0.

Proof. For the sake of readability we divide the proof in several steps.
Step 1: derivation of the explicit solution of (B.1) We write

b=V.g.

We have that b € A4%0~1.0 and since so — 1 > 0 for any fixed x; € (—1,0), we can define its
(horizontal) Fourier transform

().,

The Fourier transform in x; transforms (B.1) in the sequence of ODE
—I2 ¢ (k,x2) + 03¢ (k,x2) =b (k,x2), ke,
which is explicitly solvable, and its general solution is given by
X2 A
¢ (k, x2) = Cy (k) elklx2 C, (k) e lklxa _ / bk, y2) [elkl(yz—)cz) _ e—|k|()’2—xz)] dy,.

2 |k
0

Using now the first boundary condition we deduce that

Cr=—-Cj.
Next we compute
x2
| Y , ,
¢ (k, x2) = Cy (k) |k| <e\k\x2 + e—llifz) + 5 f bk, y2) I:elkl(}z—xz) + e\kl(xz—)z)] dy,,
0

43



which combined with the condition d¢ (x1, —o0) = 0 imply that

0
Lol |
€10 =50 f B (k, y2)edys.
—00

From the previous considerations we find that the unique solution is given by

S
~~
=
NS
v
N

m_

=
=
)

o
<
v

A~
m4
=
=
[ o)
|
0
1
=
=
)
~—~—

| 0

5 ) = ——

@ (k, x2) 2|k|/
o

0 .
+/ bk, y2) [elkl()'z—X2) _e—lkl(yz—m)]dyz. (B.2)

Let us remark that if we define

Iy (k| , y2, x2) = /1% sinh (Jk| x2) y2 € (—00,x2),

) (B.3)
Iy (Ikl, y2, x2) = P2 sinh (k| x2) 4 sinh (|k| (y2 — x2)),  y2 € [x2,0],
then ¢ in (B.2) can be rewritten as

X2 0

. 1 A -
w(k,X2)=m /Hl(Ikl,yz,n)b(k,yz)dyz+/Hz(|k|,yz,xz)b(k,yz)dyz . (B4)

—00 X7

We can now use the explicit form of the forcing b =V - g to obtain

X2
. 1 A .
¢(k,X2)=m / Iy (K|, y2, x2) (k@1 (k, y2) + 9y, 82 (k, y2)) dy2
—00

0

1 o o
+ 7 o (1K, y2, x2) (kg1 (k, y2) + 3y, 82 (k, y2)) dya.

X2
We decompose
Y =91+ @2,

with
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X2 0

@1 (k, x2) = isgn (k) /Hl(lkl,Y2,X2)§1 (k,)’2)dy2+/1'12(|k|,)’2,X2)§1 (k, y2)dy2 |,

—00 X2
(B.5)
1 X2 0
%) (k,X2)=m /1'11(Ikl,yz,xz)ayzgz(k,yz)dyz+/H2(|k|,y2,X2) dy,82 (k, y2) dy»
—00 X2
(B.6)

Step 2: Computation of Vo and Vo,,

Our first goal is to write Vg as a function of g. We use the explicit definition of ¢; and
@2, computed in the previous step and provided respectively in (B.5) and (B.6) together with
integration by parts in y; and the explicit form of IT; (B.3) in order to obtain

X2

9201 (k. x2) = isgn () / 9Ty (K], 2, x2) 81 (k, y2) dya

—00

0
+ f 32, TTa (K] y2.32) 81 (k. y2) dya |«

X2

0292 (k, x2) = — g2 (k, x2) (B.7)
1 F
+ %l 82 (k, ¥2)0x, 0y, IT1 (Ik|, y2, x2) dy2
—0o0

0
1 A
+ m / 82 (ka y2)3xzayz 1_[2 (lk' s yz’ X2) dy2

X2

Similarly, we deduce

X2 0
g1 (k, x2) =i [k / Iy (k| , y2,x2) &1 (k,yz)dyz-i-/Hz(lkl,yz,xz)ﬁl (k,y2)dy> |,
—00 X2

X

19 (k, x2) = isgn (k) / Ay, [Ty (k| , y2, x2) &2 (k, y2)dy»

—00

0
+ / 8, L (K] y2. x2) 82 (k. y2) dya | - (B.8)

X2
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Using the explicit form of IT; (B.3), we can write

X2
R isgn (k) R
@1 (k, x2) = idz / 33,05, 11 (IK|, y2, x2) 81 (k, y2) dy2

0
+/3§23XZH2(|/<|,)’2,x2)§1 (k, y2)dy> |,
X2
1 o (B.9)
@2 (k,x2) = =22 (k,x2)+m f 82 (k, y2)0x, 0y, 11 (Ik|, y2, x2) dy2
—00
0
R 82 (k, y2)dx, 9y, o (K1, y2, x2) dy2,
x2
. -x2
— i .
Do (kox2) = o /832111<|k|,yz,xz>g1<k,yz)dyz
—0Q
0
+/8§2H2(|k|,Y2,x2)§1 (k,y2)dyz |,
X2
o (B.10)
312 (k, x2) = isgn (k) / 3y, I11 (1|, y2,x2) &2 (k, y2)dy>
—00
0
+/3y21'12(|k|,y2,X2)§2 (k, y2)dy>
X2

Thus, we have obtained an expression for V¢ in terms of g instead of derivatives of g.

Before taking an extra derivative in x, we have to rearrange the previous expressions. We
can integrate by parts in order to commute the operator dy, onto g. This gives an equivalent
expression for V¢. We find that

X2

. isgn (k) . .
01 (k, x2) = ’f]dz k1> 28y (k, 0) + / 3y, 00, T (1K1, 2, X2) 9y, 81 (K, y2) dy2
—00
0
T / Bys BTl (K1, y2, 12) By, 81 (6, y2) dys |
X2

0292 (k, x2) = — 282 (k, x2)
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X2
1 n
‘o / 8,1y (K] y2, x2) 3y 82 (ky y2)dy2
—0o0

0
1 n
o / 80 TT2 (K|, v2, 32) 9,2 (K, y2)dya. (B.11)

X2

Similarly, we derive

g1 (k,x2) = —ig1 (k, x2) +ie"*2g; (k,0)
. xz
l A
+ m[ / ayznl (|k| ’ )’2,352) ayzgl (ka }’Z)d)’Z
—00
0
+ / 3y, Ty (k| , y2, X2) By, 81 <k,yz>dyz} (B.12)
X2

X2

3/1.52(k,X2)=ngn(k)[/ dy,82 (k, y2) Ty (I, y2, x2) dy>

— 00
0
+ / dy,82 (k, y2) T2 (Ik[, y2, x2) dy2:|~ (B.13)
X2

Taking an x, derivative of (B.11) and (B.12) and using (B.3), we find that

X2

. isgn (k) . .
31 (k,x2) = |gk|2 k| e*2gy (k. 0) + / 3y, 02, T (1Kl y2. x2) By, 81 (k, y2) dy2
—0Q
0
+ / 34,02 Ty (k| 2. x2) 3y, 81 (k. y2) dy2 |, (B.14)

X2

X2

R , 1 ,
9342 (k, x2) =282 (k, x2) + T 92Ty (K|, y2,x2) 8y, 82 (k, y2)dya
—00

0

1 ~
i 305, Ty (k| 2, x2) By, 82 (k. y2)dy2, (B.15)

X2

Bovgr (k, x2) = —2i0081 (k, x2) +i k| e*2 2y (k, 0)

X2

i ~
+ m[ / Ox, 0y, 1 (1k|, y2, x2) 0y, 81 (k, ¥2) dy>

—00
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0

+/3x23y2H2(|k|,yz,xz) 3y, 81 (k,yz)dyz} (B.16)
X2
X2
38192 (k, x2) = isgn (k) [ / O, 11 (K[, y2, Xx2) 9y, 82 (k, y2) dy2
—00
0
+/3x2r12(|k|,y2,x2) dy, 82 (k, yz)dyz}- (B.17)
X2

Step 3: Elliptic estimates We take the absolute value of (B.14) and (B.22) and integrate in x;
to find

0
1 5 A
/ {W 1) 81, 82,T01 (K], ""”HLg; Jonadr (k.

0
/ ‘322@ (k,xz)‘ dxy <
—00
1 A
+— [t 0,08 T (kx| 8081 G,
k| L »

+ [k e*72 |8y (&, 0)] } dxz,

0 0
[ |32 ] < [ {2|azgvz<k,xz)|
£ E

1 A
o [t OB KL )| o2 ko]
k| L )

1 N
+ o [l Q032 (kx| Jané2 k)] }dJQ-
|k| LS 2

(B.18)
Thus, we have to find appropriate estimates for the previous terms. From (B.3) we deduce that
for any (j,/) € N2

X27y2

2 3/ 9! I (k| , y2,x2) = |k|j+l I:elk\(y2+X2) _ (_1)j elkl(yzfn)] . yr€(—00,x2),
(B.19)

2 9,00, T (k| y2, x2) = [k | K020 — ()l o= KI02=x) | -y e [y, 0].
2

Since we have the constraint y, € (—o0, x3), we need to compute

0
1 1
[kl (y2—x2) — [kl y2 —lkly2
e dx)=——¢e (1—e )5—.
f Ld Ld
y2
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We can integrate (B.19) in x» as done above from which we obtain

0
/ 01,33, Ty (k1 y2, xz)) dxy < [k[/HT, Y2 € (=00, x2),
Y2
y2
[ fehal, bt v ans < WL vae a0,
—0o0

Thus, we conclude the following bounds valid for any (j, /) € N2

0
| TSSO PReS) A T
y2
—00

B.20
. (B.20)
[ CE R, RTINS e,
—00 2
We can use the bounds (B.20) together with
0
210 = [ [0 Gy arz
—00
in (B.18) to find that
0 0
/ ‘3229??1 (k,xz)‘dxz <2 / 0281 (k. y2)| dy2 + |81 (k,0)],
—00 —00
0
<3 [ foadn ko3 (B21)
—00
0 0
/ ‘322@ (k,xz)‘ dxy <4 / 3282 (k. y2)| dy».
—00 —00
We can argue similarly as above in order to obtain that
0 0
/ 320101 (k22| < / { k22 (g1 (k, 0] + 2|1 (K, x2)|
—00 —00
1 R
7 Mmoo O 095 T (KL - x| o (9280 )]y

Ik
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1

+
Ik|

i 16 o 91,

0 0
/ s (kx| s < / {Hl[oo,m(-)amnl(|k|,.,xz)||Lgg s )],

—0o0 —00

+ || 1ay.00 () 0y T2 (K], -, x2) ||L$; |8y, 82 (&, ->|!L1,2 }dxz, (B.22)

and we use (B.20) to find the estimate

0 0
[ @06 k| ane < o o] +2 [ fonda kx| e,
—00 —00
0
<3 / |21 (k. x2)| dxa. (B.23)
-0
0 0
/\az/a\m(k,xz)\dngzf 18285 (k, x2)| dxa.
—0o0 —0Q

We can now combine the results in (B.21) and (B.23) together with the remark that

[a%8] agr = A4781 ] g + 4782 o

and we finally conclude the desired bound

[A"Vel

= 12||Arg||Ai,1.

Step 5: Higher order estimates First we have to compute 822V<p: To do this we take an x;
derivative of (B.14) and (B.16) and use the explicit form of IT; given by (B.3) obtaining

N isgn (k) . .
305391 (k, x2) = ng|2 [|k|4e"”2g1 (k. 0) — [k[* 8281 (k. x2)
X2
+/8}’28)?21_[1(|k|7y27x2)8}’2§1 (k,YZ)dYZ
—00
0
- / 8y, 03, Ty (k| . y2. x2) By, 81 (k. y2) dy | . (B.24)
X2
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392 (k, x2) =283 8> (k, x2)

X2

+— [ 83Ty (kI y2, x2) 8y, 82 (k. y2)dy2

+— | 93 Ta (kI y2,x2) 3y,82 (K, y2)dya,

and

o —

R (k,x2) = —2id381 (k, x2) +i [k|* 28y (k, 0)
X2

|:/ 32 L0y, T (Ikl, y2, x2) 0y, 81 (k, y2) dy2
—00

0
+/3328y21'12(|k|,y2,x2) dy,81 (k, yz)dm},
x2
o (B.25)
320192 (k, x2) =ikdr &2 (k, x2)

i
Ikl

X2

+ngn(k)[f 32,11 (k| y2. x2) By, 82 (k. y2) dys

— 00
0
+/3§2H2(|k|,y2,m) dy,82 (k,m)dn}.

X2

Integrating (B.24) and (B.25) in x7, we deduce that

0 0

/‘ai&n (k. x2)| dxs = / {|k|2 111 ) 8,03 T (KL ,)Q)H ||ay2g1 k)|,
—0o0 —

|k|2 100,00 ) 8,03 1o (1K1 ,xz)H Ha)zgl )y,
+ |k|2 elklx2 ]521 (k,0)| + |k| |§] (k,xz)’}dxz,

0 0

/‘Bgéz(k,m)‘dns / {2’822§2(k,x2)‘
e J

1 ~
Sl | TERRTO TR IRC TN ] I Y (IBT
k] Ly b
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1 A
+ [t OO k)| o k0], }dxz.
k| L$g ¥

(B.26)
0 0
[ e tex|an < [ {|k|2e"'” &1 k. 0)] +2 |31 (k. x2)|
—0o0 —00
1 5 R
o 1ot O 93,05, (K] x2)| i 1 Gy
1 A
o o 020, Ma Gk )| o ko], e,
k| L$s »
0 0
[ [Eoe kefan < [ {|k||azgrz(k,xz)|
0 —00

[LIENPRTOTEA FYUTRRSES] I NPT Y
Y2 .

S EOTOL A SIS YT Y }dxz.
»

(B.27)
We apply (B.20) to get
0 0
f\a&bl (k,xz>\dx253|k|/!azgl (k. y2)| dy2 + Ikl |81 . 0)]
—0oQ —00
0
§4|k|f 0281 (k. y2)| dy2.
-0
0 0 0
[ 302w ] <2t [ forte oyl ava+2 [ [a3ea kv
—0oQ —0o0 —0o0
0 0 0
[ [Z0rer Geoxm|ara = 10 .0 +2 [ (032 o] dva 200 [ [0 ko) e
—00 —0 —00
0 0
§3|k|f|32§1 (k,X2)|dX2+2/ 322§2(k,)’2)‘d)’2,
—00 —00
0 0
[ [oren x| ara <3181 [ fosta x| an.
0 —o0
(B.28)
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Collecting the previous bounds we conclude the desired estimate
Vol ys2 < 12|Ag|| 451 +4 52 -
IVoll g2 < 1211Agl g1 +4llgll 2. O
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