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Chapter 1

Introduction

The von Neumann collapse formulation gives an unsatisfactory and an inconsistent account of the
quantum measurement problem. It assumes that if no measurement is made on a physical system,
its state evolves in a linear and deterministic manner. If, however, a measurement is made, the
system is asserted to jump randomly, instantaneously and non-linearly onto an eigenstate of the
observable being measured. It thus supposes two unrelated dynamical laws, one of which must
be applied depending on whether or not a measurement is being made, but without specifying
what constitutes a measurement.

Hugh Everett III provided a logically consistent resolution to the problem by lifting the arti-
ficial divide between the measuring apparatus and the system being observed and postulating
the existence of the universal system-apparatus wavefunction. At the time of the measurement,
following the rules of standard linear quantum dynamics, the system and the apparatus become
correlated to each other such that the universal wavefunction goes into a superposition of differ-
ent states, each of which represents the apparatus being fully correlated to a given value of the
system observable. Everett simply assumed that the universal wavefunction always evolves lin-
early, in accordance with standard quantum mechanics, and never undergoes a von Neumann like
collapse. Nevertheless, in each of the configurations that it remains to be in a superposition of, the
measuring apparatus records a definitive outcome.

While Everett may have been content with the fact that each of these branches of the wave-
function can consistently model the subjective experience of having a definitive outcome in an ex-
periment, the desire to ask more from the quantum theory or to assign a specific physical meaning
to each of these branches has resulted in the many worlds interpretation of quantum mechanics.
The discontent with the simultaneous co-existence of several possible measurement records (that
Everett’s view predicts) while having access to only one, may lead one towards the direction of
dynamical collapse models. In these models, a non-linear and stochastic time evolution of the
wavefunction is considered as an alternative to the Schrödinger equation, such that the localiza-
tion of the universal wavefunction, around a unique measurement record, is achieved continu-
ously and asymptotically in time. Further, these models also lead to certain predictions that are
different from those of standard quantum mechanics. It is then natural to ask whether or not col-
lapse models are consistent with observations and for what values of the free parameters that they
introduce. Besides several laboratory experiments, the possibility to constrain these models via
the measurements of the cosmic microwave background (CMB) has been recently discussed in the
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literature. Cosmological inflation, constraining the models of wavefunction collapse via the CMB
observations and investigating the possibility of decoherence due to vacuum fluctuations (which
has been previously argued in the literature to be a fundamental and an unavoidable source of
decoherence), are the subjects of this thesis.

Cosmological inflation is widely regarded to be a part of standard cosmology. Not only does it
solve several cosmological puzzles, the quantum fluctuations of the inflaton field are also believed
to seed the formation of stars, galaxies and the temperature anisotropy of the CMB radiation. The
same perturbations, when amplified on a certain length scale, can also trigger the formation of
primordial black holes that may further account for the observed cold dark matter content in the
universe. However, there is still no general consensus on the nature of the scalar field driving
inflation. Two of the simplest candidates, Starobinsky inflation and non-minimal Higgs inflation,
are also among the most successful ones. In the first part of the thesis, a combination of the two
models is constructed which is not only consistent with the CMB observations but also offers the
possibility to account for the observed cold dark matter content in the universe by triggering the
formation of primordial black holes.

While the quantum perturbations offer to account for the structure in the universe, they also
pose conceptual problems concerning its apparent classicality. Several works have sought a pos-
sible resolution by considering the continuous spontaneous localization (CSL) models. The non-
linear evolution of the wavefunction that these models introduce, leads to a continuous localiza-
tion of the wavefunction within the time intervals which scale inversely with the size (the to-
tal mass or the number of particles) of the system so that the quantum-to-classical transition is
achieved continuously. In the second part of the thesis, working within the framework of standard
cosmological perturbation theory, a possible generalization of the mass proportional CSL model
to a cosmological setting is proposed which is found to be compatible with the CMB constraints.

The suppression of quantum superpositions does not necessarily require modifications to the
Schrödinger equation. It can also be achieved within the framework of standard quantum me-
chanics due to decoherence. The phenomenon of decoherence or the suppression of the quantum
superpositions is inevitable at the level of the system being observed, as soon as one realizes the
practical impossibility of completely isolating the system from its environment. Nevertheless, one
may still wonder what happens to macroscopic superpositions inside an ideal vacuum? Some
works have even argued for the possibility that even the environment of the fundamentally un-
avoidable vacuum fluctuations can lead to decoherence. In order to address this question, in the
third and final part of the thesis, the interaction of a non-relativistic electron with the electromag-
netic vacuum is studied within the framework of open quantum systems. It is found that for an
electron at rest, the vacuum fluctuations do not behave as an ordinary environment, such as that
comprising of thermal photons or air molecules, and that it does not lead to irreversible loss of co-
herence. In addition, when the same mathematical formalism is applied to study the phenomenon
of radiation emission by an accelerated non-relativistic electron, the resulting equation of motion
appears to be free of the problems associated with the equation that is derived within classical
electrodynamics: the run-away solution of the Abraham-Lorentz formula. While there has been a
general expectation that these issues should not persist at a quantum mechanical level, it has not
been shown clearly how they can be overcome. The discussion presented in the final part of the
thesis offers to do so.

The thesis is organized as follows. Chapters 2, 3 and 4 provide a brief overview of stochastic
calculus, models of wavefunction collapse and inflationary cosmology respectively, with a focus
on the concepts that were central to the research. Then, in chapter 5, the work related to primor-
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dial black holes is presented. Chapter 6 discusses a possible generalization of the CSL dynamics
to inflationary cosmology. Chapter 7 concerns the interaction of a non-relativistic electron with
the vacuum fluctuations and a possible resolution of the problems associated with the Abraham-
Lorentz formula. The discussion concludes with chapter 8 in which the results obtained in the
thesis are summarized.

The research presented in the thesis has resulted in the following publications:

1 Publication I. Anirudh Gundhi, Sergei V. Ketov, and Christian F. Steinwachs. Primordial
black hole dark matter in dilaton-extended two-field Starobinsky inflation. Phys. Rev. D,
103(8):083518, 2021.

2 Publication II. Anirudh Gundhi and Christian F. Steinwachs. Scalaron–Higgs inflation reloaded:
Higgs-dependent scalaron mass and primordial black hole dark matter. Eur. Phys. J. C,
81(5):460, 2021.

3 Publication III. Anirudh Gundhi, José Luis Gaona-Reyes, Matteo Carlesso, and Angelo
Bassi. Impact of Dynamical Collapse Models on Inflationary Cosmology. Phys. Rev. Lett.,
127(9):091302, 2021.

4 Preprint. Anirudh Gundhi, Angelo Bassi. On the motion of an electron through vacuum
fluctuations. arXiv:2301.11946.

5

https://link.aps.org/doi/10.1103/PhysRevD.103.083518
https://link.aps.org/doi/10.1103/PhysRevD.103.083518
https://doi.org/10.1140/epjc/s10052-021-09225-2
https://doi.org/10.1140/epjc/s10052-021-09225-2
https://link.aps.org/doi/10.1103/PhysRevLett.127.091302
https://link.aps.org/doi/10.1103/PhysRevLett.127.091302
https://doi.org/10.48550/arXiv.2301.11946 


Chapter 2

Stochastic calculus

The goal of this chapter is to provide a brief introduction to the Fokker-Planck equation, the Wiener
processes and Ito calculus. They are needed to formulate some of the concepts that are to follow
in the subsequent chapters. The discussion is based on chapters three and four of the textbook by
C.W. Gardiner [54].

2.1 Markov processes

Stochastic processes evolve probabilistically in time, as they involve a time dependent random
variable X(t). Let x0, x2, ..., xN be N measurements of X(t), at times t0, t2, ..., tN respectively, in
one particular run of an ‘experiment’. The mathematical description of such a process requires the
knowledge of all the joint probability densities p(xN , tN ; xN−1, tN−1; ...; x0, t0), or equivalently, the
conditional probability distributions which can be defined in terms of the joint distributions

p(xN , tN ; xN−1, tN−1; ...; x0, t0|yN , τN ; yN−1, τN−1; ...; y0, τ0) :=
p(xN , tN ; xN−1, tN−1; ...; y0, τ0)

p(yN , τN ; yN−1, τN−1; ...; y0, τ0)
.

(2.1)

Markov processes belong to a special class of stochastic processes which satisfy the Markovian
assumption

p(xN , tN ; xN−1, tN−1; ...; x0, t0|yN , τN ; yN−1, τN−1; ...; y0, τ0) = p(xN , tN ; xN−1, tN−1; ...; x0, t0|yN , τN) .
(2.2)

Thus, for Markov processes, the conditional probability is determined completely by the latest
condition. Using the property

p(xN , tN ; xN−1, tN−1; ...; x0, t0) = p(xN , tN |xN−1, tN−1; ...; x0, t0)× p(xN−1, tN−1; ...; x0, t0) (2.3)

and applying the Markovian assumption iteratively, we get

p(xN , tN ; xN−1, tN−1; ...; x0, t0) =

= p(xN , tN |xN−1, tN−1)× p(xN−1, tN−1|xN−2, tN−2)× ...× p(x1, t1|x0, t0)× p(x0, t0) . (2.4)
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From the properties of the joint probability distribution, we have p(x1, t1) =
´

dx2 p(x1, t1; x2, t2).
Also, since p(x1, t1|x3, t3) =

´
dx2 p(x1, t1; x2, t2|x3, t3) =

´
dx2 p(x1, t1|x2, t2; x3, t3)p(x2, t2|x3, t3),

using Markovianity we get the Chapman-Kolmogorov equation

p(x1, t1|x3, t3) =

ˆ
dx2 p(x1, t1|x2, t2)p(x2, t2|x3, t3) . (2.5)

In the next section the differential version of Eq. (2.5) will be derived, as both the Fokker-Planck
equation and the Wiener process are nothing but a special case of the differential Chapman-
Kolmogorov equation.

2.2 Chapman-Kolmogorov equation

A Markov sample path is a continuous function of time, if we have for ever ε with probability one

lim
∆t→0

1
∆t

ˆ
|x−z|>ε

dxp(x, t + ∆t|z, t) = 0 . (2.6)

We will include, for the time being, also the more general, non-continuous, jump processes in which
the right hand side of Eq. (2.6) is non-zero. The following conditions are assumed to be true for all
ε > 0

lim
∆t→0

1
∆t

p(x, t + ∆t|z, t) = J(x|z, t) , |x− z| ≥ ε , (2.7)

lim
∆t→0

1
∆t

ˆ
|x−z|<ε

dx(x− z)p(x, t + ∆t|z, t) = A(z, t) , (2.8)

lim
∆t→0

1
∆t

ˆ
|x−z|<ε

dx(x− z)2 p(x, t + ∆t|z, t) = B(z, t) . (2.9)

Here, J is the jump coefficient, while A and B are the drift and the diffusion coefficients respec-
tively. All the higher order coefficients of the form similar to Eqs. (2.8) and (2.9) can be shown to
vanish [54].

The derivation begins by considering the time evolution of the expectation value of a generic
function f (x)

∂t〈 f 〉 =
´

dx f (x)p(x, t + ∆t|y, t′)−
´

dx f (x)p(x, t|y, t′)
∆t

=

´ ´
dxdz f (x)p(x, t + ∆t|z, t)p(z, t|y, t′)−

´
dz f (z)p(z, t|y, t′)

∆t
, (2.10)

where the Chapman-Kolmogorov equation (2.5) is used in the second line. The spatial integral
can be split into the two regions |x − z| < ε and |x − z| ≥ ε. Since the higher moments vanish,

it is sufficient to expand f (x) to second order f (x) = f (z) + ∂ f
∂z (x − z) + 1

2
∂2 f
∂z2 (x − z)2. The time

evolution then becomes

∂t〈 f 〉 =

´ ´
|x−z|<ε dzp(z, t|y, t′)dx

(
f (z) + f ′(z)(x− z) + f ′′(z) (x−z)2

2

)
p(x, t + ∆t|z, t)

∆t
+

+

´ ´
|x−z|≥ε dxdz f (x)p(x, t + ∆t|z, t)p(z, t|y, t′)−

´ ´
dxdz f (z)p(x, t + ∆t|z, t)p(z, t|y, t′)

∆t
. (2.11)
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A few comments are in order here. The split into the two regions |x − z| < ε and |x − z| ≥ ε is
only made for the positive term in the second line of Eq. (2.10). Moreover, for the negative term,
we just multiplied the original term with 1 =

´
dxp(x, t + ∆t|z, t). The Taylor expansion of f (x)

was only performed for the positive term and only in the region |x− z| < ε. Grouping the various
terms together, we get

∂t〈 f 〉 =
ˆ

dz
(

f ′(z)A(z, t)p(z, t|y, t′) +
1
2

f ′′(z)B(z, t)p(z, t|y, t′)
)

+

´ ´
|x−z|<ε dxdz f (z)p(x, t + ∆t|z, t)p(z, t|y, t′)−

´ ´
dxdz f (z)p(x, t + ∆t|z, t)p(z, t|y, t′)

∆t

+

´ ´
|x−z|≥ε dxdz f (x)p(x, t + ∆t|z, t)p(z, t|y, t′)

∆t
(2.12)

The second line in Eq. (2.12) is just −
´ ´
|x−z|≥ε dxdz f (z)p(x,t+∆t|z,t)p(z,t|y,t′)

∆t . Using the definition of the
jump coefficient we get

∂t〈 f 〉 =
ˆ

dz
(

f ′(z)A(z, t)p(z, t|y, t′) +
1
2

f ′′(z)B(z, t)p(z, t|y, t′)
)

+

ˆ ˆ
|x−z|≥ε

dzdx f (z)
(

J(z|x, t)p(x, t|y, t′)− J(x|z, t)p(z, t|y, t′)
)

=

ˆ
dz f (z)

(
− ∂

∂z
(

A(z, t)p(z, t|y, t′)
)
+

1
2

∂2

∂z2 (B(z, t)p(z, t|y, t′))

+

 
dx
(

J(z|x, t)p(x, t|y, t′)− J(x|z, t)p(z, t|y, t′)
))

. (2.13)

Here, integration by parts has been performed for the terms involving the drift and the diffusion
coefficients and the notation

´
|x−z|≥ε dxg(x, z) :=

ffl
dxg(x, z) has also been introduced. Recalling

that
´

dz f (z)∂t p(z, t|y, t′) := ∂t〈 f 〉, the differential form of the Chapman-Kolmogorov equation is
obtained to be

∂t p(z, t|y, t′) = − ∂

∂z
(

A(z, t)p(z, t|y, t′)
)
+

1
2

∂2

∂z2

(
B(z, t)p(z, t|y, t′)

)
+

 
dx
(

J(z|x, t)p(x, t|y, t′)− J(x|z, t)p(z, t|y, t′)
)

. (2.14)

2.3 The Wiener process

A particular case of interest is when the jump coefficient is zero, the drift coefficient is zero and the
diffusion coefficient is set to one. This special case is that of the standard Wiener process whose
probability distribution is obtained by solving

∂t p(w, t|w0, t0) =
1
2

∂2

∂w2 p(w, t|w0, t0) . (2.15)
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In the Fourier space, q(s, t) = 1√
2π

´
dweiws p(w, t|w0, t0), the solution is obtained to be

q(s, t) = exp
[
−1

2
s2(t− t0)

]
q(s, t0) , (2.16)

which is determined completely after assuming the initial condition

p(w, t0|w0, t0) = δ(w− w0) =⇒ q(s, t0) =
1√
2π

exp(isw0) . (2.17)

The solution p(w, t|w0, t0) is obtained by taking the inverse Fourier transform of q(s, t) to be

p(w, t|w0, t0) =
1√

(2π(t− t0))
exp

[
−1

2
(w− w0)

2

(t− t0)

]
. (2.18)

An important property of the Wiener process is the statistical independence of the increment ∆wi.
Since the Wiener process is Markovian (c.f. Eq. (2.4)), the joint probability density of a given
realization of the process can be written as

p(wn, tn; wn−1, tn−1; ...; w0, t0) =
n−1

∏
i=0

p(wi+1, ti+1|wi, ti)p(w0, t0) . (2.19)

Using the probability distribution (2.18) we get

p(wn, tn; wn−1, tn−1; ...; w0, t0) =
n−1

∏
i=0

exp
[
−1

2
(wi+1 − wi)

2

(ti+1 − ti)

]
p(w0, t0) . (2.20)

Defining ∆wi := wi+1 − wi and ∆ti := ti+1 − ti, one obtains the factored product

p(∆wn; ∆wn−1; ...; w0) =
n−1

∏
i=0

exp

[
−1

2
∆w2

i
∆ti

]
p(w0, t0) . (2.21)

This shows that the increments ∆wi are statistically independent to each other and to w0. Using
this property, one can further deduce the auto-correlation functions of the Wiener process W(t) =
(wn, tn; wn−1, tn−1; ...; w0, t0), defined as

〈W(t)W(s)|[w0, t0]〉 =
ˆ

dw1dw2w1w2 p(w1, t; w2, s|w0, t0). (2.22)

Without loss of generality one can assume t > s. Then

〈W(t)W(s)|[w0, t0]〉 = 〈[W(t)−W(s)]W(s)〉+ 〈[W(s)]2〉 . (2.23)

The first term on the RHS vanishes. This is because W(t) −W(s) is statistically independent to
W(s). Therefore, their averages can be factored out which are zero. Computing the remaining
second term we get

〈W(t)W(s)|[w0, t0]〉 = s− t0 + w2
0. (2.24)

The result is obtained by remembering that the variance of the Gaussian (2.18) is the time difference
s− t0 and that at t = t0 we were at w0 with probability one. In the other case when s > t, we get
t− t0 + w2

0. The two cases can be combined as

〈W(t)W(s)|[w0, t0]〉 = min(t− t0, s− t0) + w2
0 . (2.25)

This result will play a central role in the study of stochastic differential equations (SDE).
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2.4 Stochastic differential equations

The goal is to study the Langevin equation for the variable x(t) of the form

dx
dt

= a(x, t) + b(x, t)ξ(t) . (2.26)

Here, a(x, t) and b(x, t) are known functions and ξ(t) is the stochastic term with

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t− t′). (2.27)

Note that any non-zero mean of 〈ξ(t)〉 can be absorbed in the definition of a(x, t). However, the
infinite variance of this idealized noise raises technical difficulties. The integration of Eq. (2.26)
implies the existence u(t) =

´ t
0 dt′ξ(t′). It can be shown that u(t′) = limε→0

[´ t′−ε
0 dsξ(s)

]
and

u(t)− u(t′) =
´ t

t′ dsξ(s) are statistically independent to each other. This implies that u(t) must be
Markovian. It can further be shown that the drift and the diffusion coefficients are obtained to be

A(u0, t) = lim
∆t→0

〈u(t + ∆t)− u0|[u0, t]〉
∆t

= 0 ,

B(u0, t) = lim
∆t→0

〈(u(t + ∆t)− u0)
2 |[u0, t]〉

∆t
= 1 . (2.28)

Thus, u(t) =
´ t

0 dsξ(s) = W(t) is a Wiener process. But now we have a paradox. On one hand
we know that the sample paths of the Wiener processes are non-differentiable. On the other hand,
by definition, it is the differential of u(t) that gives back ξ(t). The solution to the paradox lies in
realizing that, strictly speaking, the differential Langevin equation (2.26) does not exist. However,
the corresponding integral equation

x(t)− x(0) =
ˆ t

0
a[x(s), s]ds +

ˆ t

0
b[x(s), s]dW(s) (2.29)

does. The precise way of defining and evaluating the stochastic integral
´ t

0 b[x(s), s]dW(s) leads
to two main representations of the Langevin equation. The Ito equation and the Stratonovich
equation.

2.4.1 Ito representation

The stochastic integral
´ t

t0
dt′G(t′)dW(t′) is first defined as a limit of sums

Sn =
n

∑
i=1

G(τi)[W(ti)−W(ti−1)]. (2.30)

In general, τi can lie anywhere within the interval ti − ti−1. The Ito integral is obtained by taking
τi = ti−1. The stochastic integral of the function G(t) is defined as the mean-squared limit

ˆ t

t0

G(t′)dW(t′) = mslimn→∞

{
n

∑
i=1

G(ti−1) [W(ti)−W(ti−1)]

}
, (2.31)
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where the sequence of a random variable Xm is said to converge to X in the mean squared limit
when

lim
m→∞

ˆ
dωp(ω) [Xm(ω)− X(ω)]2 = 0 . (2.32)

In what follows, we will assume the function G(t) to be nonanticipating. That is, ∀ t and ∀ s with
t < s, G(t) is assumed to be statistically independent of W(s) −W(t). Note that with the Ito
prescription, this will always be the case inside the summation if G(t) is some function F(W(t)) of
the Wiener process.

Evaluating the stochastic integrals, with the Ito prescription, requires proving that effectively
dW(t)2 = dt and dW(t)2+N = 0. The equality is again understood in the sense of the mean-
squared limit. For the first statement, we need to evaluate

I = lim
n→∞

〈[
∑

i
Gi−1

(
∆W2

i − ∆ti

)]2〉
. (2.33)

Simply expanding the square of the sum, we get

I = lim
n→∞

〈
∑

i
G2

i−1

(
∆W2

i − ∆ti

)2
〉
+ lim

n→∞

〈
∑
i<j

2Gi−1Gj−1

(
∆W2

i − ∆ti

) (
∆W2

j − ∆tj

)〉
. (2.34)

In the first term, G is a non-anticipating function and therefore Gi−1 is statistically independent to
∆Wi. Thus, their means can be factorized. In the second term for i < j, Gi−1Gj−1

(
∆W2

i − ∆ti
)

is

statistically independent to
(

∆W2
j − ∆tj

)
and the means of these two terms can also be factorized.

Due to the Gaussian nature of the Wiener process, we have 〈∆W2
i 〉 = ∆ti and 〈(∆W2

i − ∆ti)
2〉 =

2∆t2
i . The integral reduces to I = 2 ∑i〈G2

i−1〉∆t2
i which is equal to zero for most functions G. Thus,

for all practical purposes, ∆W2
i can be replaced with ∆ti for the evaluation of the Ito integrals.

While the second statement dW(t)2+N = 0 can also be proven formally, one can instead take an
intuitive stance. Higher powers of dW will give higher powers of dt (for example dW3 ≈ dt3/2)
which are set to zero in ordinary calculus. Only the terms upto dW2 must be retained in stochastic
calculus in the same spirit as only the terms upto first order in dt are retained in ordinary calculus.
With this intuition, the derivative of Wn can be calculated easily as

d[W(t)]n = [W(t) + dW(t)]n −W(t)n =
n

∑
r=0

n!
r! (n− r)!

Wn−rdWr −Wn

= Wn + n Wn−1dW +
n(n− 1)

2
Wn−2dW2 −Wn

= n Wn−1dW +
n(n− 1)

2
Wn−2dt . (2.35)

Using the relation above, the stochastic integral for an arbitrary polynomial of W can be evaluated
as

ˆ
WndW =

W(t)n+1 −W(t0)
n+1

n + 1
− n

2

ˆ t

t0

W(t′)n−1dt′ . (2.36)
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Another useful expression, along the same line of reasoning, is obtained for a function of the
stochastic variable W and time t

d f [W(t), t] =
∂ f
∂t

dt +
∂ f
∂W

dW +
1
2

∂2 f
∂W2 dW2

=

(
∂ f
∂t

+
1
2

∂2 f
∂W2

)
dt +

∂ f
∂W

dW . (2.37)

Therefore, for a function f [x(t)], with x(t) satisfying the Langevin equation (2.26) we obtain

d f [x(t)] =
[

a[x(t)]
∂ f
∂x

+
1
2

b[x(t)]2
∂2 f
∂x2

]
dt + b[x(t)]

∂ f
∂x

dW(t) . (2.38)

The basic identities that have been presented provide a brief overview of how differentiation and
integration can be performed for functions of stochastic variables. The Ito convention (2.30) is
one of the two main conventions found in the literature. The discussion ends with the following
section in which a transformation law is derived which allows one to express a given Ito SDE in
the Stratonovich representation such that both the SDEs have the same solution.

2.4.2 Stratonovich representation

The Stratonovich integral is defined as

S
ˆ t

t0

G[x(t′), t′]dW(t′) = mslim
n→∞

n

∑
i=1

G
{

x(ti) + x(ti−1)

2
, ti−1

}
[W(ti)−W(ti−1)] . (2.39)

Because of the differences between the Ito and the Stratonovich prescriptions of computing in-
tegrals, the same solution x(t) obeys different looking SDEs in the two representations. In the
Stratonovich representation, let

x(t) = x(t0) +

ˆ t

t0

dt′α[x(t′), t′] + S
ˆ t

t0

dW(t′)β[x(t′), t′] (2.40)

be the same solution as that for the Ito SDE

dx(t) = a[x(t), t]dt + b[x(t), t]dW(t) . (2.41)

The relationship between α[x(t)] and a[x(t)] (and β[x(t)] and b[x(t)]) remains to be determined.

S
ˆ t

t0

β[x(t′), t′]dW(t′) = ∑
i=1

β

[
x(ti) + x(ti−1)

2
, ti−1

]
[W(ti)−W(ti−1)] . (2.42)

Since x(ti) = x(ti−1) + ∆x, using Eq. (2.41)

x(ti)− x(ti−1) = ∆x(ti) = a[ti−1]∆ti + b[ti−1]∆W(ti) , (2.43)

we get

β

[
x(ti−1) +

∆x
2

, ti−1

]
= β[ti−1] +

(
∆ti
2

a[ti−1]∂xβ[ti−1] +
∆ti
4

1
2

b2[ti−1]∂
2
xβ[ti−1]

)
+ b[ti−1]∂xβ[ti−1]

(W(ti)−W(ti−1))

2
. (2.44)
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Plugging this back in the Stratonovich sum (2.42) and retaining terms only upto order dW2 = dt
we get

S
ˆ t

t0

βdW =

ˆ t

t0

βdW +
1
2

ˆ t

t0

b∂xβdt′ . (2.45)

In Eq. (2.45) the Stratonovich sum (LHS) has been expressed in terms of the Ito sum (RHS). Us-
ing this result in Eq. (2.40), identifying b = β, we get α = a − 1

2 b∂xb. Thus the solution to the
differential equation

dx = adt + bdW , (2.46)

in which the solution is obtained by performing integration following the Ito prescription, is same
as the solution to the differential equation

dx =

(
a− 1

2
b∂xb

)
dt + bdW , (2.47)

in which the integral is performed following the Stratonovich prescription.
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Chapter 3

Models of wavefunction collapse

If a system is prepared to be in a superposition of two different states, standard quantum mechan-
ics governed by the Schrödinger equation predicts that it remains to be in such a configuration
indefinitely. The difficulty then arises in explaining why in the double-slit experiment do we see
the photon at a definite location on the screen. Moreover, all systems, irrespective of their sizes, are
predicted to sustain this superposition on all length scales at all times. This seems to be in conflict
with the observation that macroscopic objects are never perceived to be in such de-localized states.
While the phenomenon of decoherence [114] addresses the question at a practical level, one may
find such an explanation unsatisfactory as it still does not establish a clear relationship between
the wavefunction, which is at the heart of the Schrödinger equation, and the observed outcome
in an experiment. Such a connection is offered by the models of wavefunction collapse [9]. Dy-
namical reduction models introduce non-linearity and stochasticity into the Schrödinger equation
such that if the wavefunction is initially prepared to be in a superposition, it randomly localizes
around one of the possible outcomes. The wavepacket reduction typically occurs on time scales
which are inversely proportional to the size of the system. In this way, macroscopic objects are
guaranteed a definite position in space and the quantum-to-classical transition is achieved contin-
uously. This chapter provides a brief overview of how this modified dynamics is constructed. A
comprehensive review of the subject can be found in [9].

3.1 The modified dynamics

In dynamical collapse models, the wavefunction is assumed to satisfy the Ito stochastic differential
equation

d |ψ〉 =
[
Âdt + B̂dW

]
|ψ〉 , (3.1)

where, W(t) is a real Wiener process and Â and B̂ are generic operators. For simplicity, it will be
assumed in this chapter that

B̂† = B̂ (3.2)

E(dW) = 0 , E(dW2) = γdt . (3.3)
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The stochastic element that enters the modified equation is introduced in order to respect the
statistical nature of quantum dynamics. Collapse models associate the detection of the particle at
a definite location on the screen to the localization of the initial wavefunction around that spatial
location. Nevertheless, such a localization must occur stochastically and must be consistent with
the Born rule. Because of this reason, between the time interval t0 + dt and t0, the Wiener process
is assumed to be realized with the probability

Pcooked(dW ′) = Praw(dW) · 〈ψ(t0 + dt)|ψ(t0 + dt)〉 . (3.4)

Here, Praw is the original normalized probability distribution of the Wiener process that appears
in the raw process (3.1) and Pcooked is the assumed physical probability distribution with which it
would be realized in a physical process. If the wavefunction is initially normalised at time t0, then
we get

Pcooked(dW ′) = Praw(dW) · (1 + d (〈ψ|ψ〉)) . (3.5)

Using Eq. (3.5), normalization of the cooked probability gives the constraint E(d 〈ψ|ψ〉) = 0. The
raw process (3.1) does not preserve the norm such that d (〈ψ|ψ〉) is in general non-zero and from
Eq. (3.1) is obtained to be

d 〈ψ|ψ〉 = 〈dψ|ψ〉+ 〈ψ|dψ〉+ 〈dψ|dψ〉 = dt 〈ψ| (Â + Â†) |ψ〉+ 2dW 〈ψ| B̂ |ψ〉+ 〈ψ| B̂2 |ψ〉 dW2 .
(3.6)

The normalization constraint on Pcooked thus yields a constraint on the operators Â and B̂ given by

Â + Â† = −γB̂2 . (3.7)

Writing Â as the sum of the purely Hermitian part (−γB̂2/2) and a purely non-Hermitian part
(:= −iĤ), Eq. (3.1) becomes

d |ψ〉 =
[
−iĤdt− γdt

2
B̂2 + B̂dW

]
|ψ〉 . (3.8)

For |ψ〉 to represent the physical statevector, it must be normalized. However, for all practical
purposes we can still work with the raw process (3.8). We can simply solve the differential equa-
tion (3.8) and compute the physical probabilities by using the normalized wavevector and remem-
bering that the physical stochastic process (dW ′) is realized with the cooked probability and not
Praw.

Alternatively, we can also write down the equation for the physical process which preserves
the norm and in which the stochastic process is realized with Praw without resorting to the cooked
prescription. The non-linear stochastic differential equation (SDE) governing the dynamics of the
normalized physical statevector is given by [9]

d |φ(t)〉 =
[
−iĤdt− γdt

2
(

B̂− 〈B̂〉1
)2

+ (B̂− 〈B̂〉1)dW
]
|φ〉 . (3.9)

where 〈·〉 := 〈φ| · |φ〉.
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3.2 The master equation

The differences in predictions arising due to the modified dynamics can be calculated from the
time evolution of the density matrix. Since the functional form of the linear SDE is similar to
the non-linear one, one can work with Eq. (3.8) and substitute B̂ → B̂ − 〈B̂〉1 at the end. After
taking an additional average over the different realizations of the raw Wiener process, the master
equation is obtained from Eq. (3.8) to be

dρ̂ = E [(d |ψ〉) 〈ψ|+ |ψ〉 d 〈ψ|+ (d |ψ〉)d 〈ψ|] = −i
[
Ĥ, ρ̂

]
− γdt

2

{
B̂2, ρ̂

}
+ γdtB̂ρ̂B̂ . (3.10)

The last two terms involving the operator B̂ can be written as a double commutator such that

dρ̂ = −i
[
Ĥ, ρ̂

]
dt− γdt

2
[
B̂,
[
B̂, ρ̂
]]

. (3.11)

First, we notice that the equation remains unchanged for the physical density matrix correspond-
ing to the statevector |φ〉 in the physical process (3.9). This is because 〈B̂〉1 does not contribute to
the double commutator. More directly, in going from the raw process (3.8) to a physical one, the
extra factor of 〈ψ|ψ〉 that would appear in the expression for the normalized physical density ma-
trix in the denominator would be cancelled by the same factor that would appear in the numerator
when the stochastic averages are computed using the cooked prescription.

Second, and more importantly, we notice that the same master equation (3.11) would be ob-
tained if we consider the Schrödinger equation to be governed by a stochastic Hamiltonian [1]. If
we identify the full Hamiltonian with 1

Hfull = Ĥ + B̂ξ(t) , (3.12)

where ξ(t) = dW/dt, then

|ψ(t, W)〉 = exp
{
−i
(ˆ

Ĥdt +
ˆ

B̂dW
)}
|ψ(t0)〉 . (3.13)

The density matrix ρ̂ becomes a function t and the stochastic process W. In Eq. (2.37) of chap-
ter (2), for a generic function of the stochastic variable W and the time t, the following identity was
derived

〈d f [W(t), t]〉 =
(

∂ f
∂t

+
γ

2
∂2 f
∂W2

)
dt . (3.14)

The additional factor of γ appearing in Eq. (3.14) is a due to the modified normalization of the
Wiener process compared to the one in chapter 2.

We know from standard quantum mechanics that a single derivative of the density matrix
yields a single commutator with the Hamiltonian, and a double derivative would give a double
commutator term. Identifying f in Eq. (3.14) with ρ̂, the double commutator in Eq. (3.11) would
come from the stochastic Hamiltonian (due to the double partial derivative with respect to W in

1Note that the stochastic differential equation corresponding to the solution (3.13) does not look like the Schrödinger
in the Ito representation. It does so in the Stratonovich representation. Thus, when we consider a stochastic Hamiltonian
what we have in mind is the formal solution (3.13).
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Eq. (3.14)) and the single commutator from the original Hamiltonian as in the standard dynamics.
Therefore, the modified predictions for the non-linear SDE (3.9) can be computed using standard
perturbation theory by identifying the stochastic perturbation Ĥst

Ĥst = B̂ξ(t) . (3.15)

It is also easy to see how the collapse operator leads to decoherence. Projecting the master equa-
tion (3.11) in the position basis, ignoring the standard Liouville-von Neuman term and choosing
B̂ to be the position operator x̂ [46] we get

dρ(x′, x, t) = −γdt
2

(x′ − x)2ρ(x′, x, t) . (3.16)

We see that a suitable choice of the collapse operator indeed leads to decoherence. An impor-
tant point to notice is that the suppression of the off-diagonal elements does not guarantee the
reduction of the statevector. As it has already been argued, one would arrive at the same master
equation (3.11) simply due to the presence of a stochastic term in the full Hamiltonian. However,
if this was actually the source of the decoherence term, the evolution of the statevector would
remain linear. Identifying the stochastic perturbation is only for the practical ease of performing
calculations. Within the framework of collapse models, one always has Eq. (3.9) in mind such that
the observed definitive outcomes are associated to the localization of the wavefunction.

3.3 Mass proportional collapse dynamics

In the mass proportional Continuous Spontaneous Localization (CSL) model, the collapse operator
is chosen to be the smoothed mass density operator such that the rate of the collapse increases
with the number of particles in the system [58, 57]. In this section, the amplification of the collapse
mechanism for a macroscopic system is first illustrated by simpler considerations. It will then be
used as a motivation to write down the equation defining the mass proportional CSL model.

To begin, the physical space is considered to be divided into cells of size ∝ r3
C . We can imag-

ine that a set of collapse operators {B̂i} and a set of Wiener processes {Wi} with E(dWidW j) =
γdtδij/r3

C , corresponding to the different spatial cells, govern the stochastic evolution of the stat-
evector. That is,

d |ψ〉 =
[

Âdt + r3
C ∑

i
B̂idWi

]
|ψ〉 . (3.17)

The same reasoning starting from Eq. (3.1) upto Eq. (3.9) leads to the following master equation
corresponding to the raw process in Eq. (3.17) :

dρ̂ = ∑
i

r3
C

(
−γdt

2

{
B̂2

i , ρ̂
}
+ γdtB̂i ρ̂B̂i

)
= −∑

i

γr3
C dt
2

[
B̂i,
[
B̂i, ρ̂

]]
, (3.18)

where the Liouville-von Neuman term has been omitted for simplicity. Next, we take the set
of collapse operators to be the number density operators {N̂i}/r3

C , where N̂i counts the number
of particles in the ith cell. Then, projecting the master equation equation onto the basis states
|n1, n2, ..., nN〉 and |m1, m2, ..., mN〉, where |ni〉 and |mi〉 denote two possible states of the system
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in which there are ni and mi particles in the ith cell respectively, the off-diagonal elements of the
density matrix decay as

dρmn = −∑
i

γdt(ni −mi)
2

2r3
C

ρmn . (3.19)

It can now be seen how a definitive outcome is achieved on time scales that is governed by the
parameter λ ∝ γ/r3

C and the number of particles in the system. For a given value of λ, the rate of
collapse is greatly enhanced as the number of particles increase, thereby leading to the quantum-
to-classical transition.

The mass proportional CSL model can be regarded as a generalization of the toy model con-
sidered above. It is defined through the following stochastic differential equation

d |φ〉 =
[
−iĤdt +

√
γ

m0

ˆ
dx
[
M̂(x)− 〈M̂(x)〉

]
dWt(x) (3.20)

− γ

2m2
0

ˆ
dxdy

[
M̂(x)− 〈M̂(x)〉

]
G(x− y)

[
M̂(y)− 〈M̂(y)〉

]
dt

]
|φ〉 , (3.21)

where Ĥ is the Hamiltonian of the system, γ is a phenomenological parameter of the model en-
coding the strength of the collapse process, m0 is the reference mass taken to be that of a proton
and 〈·〉 denotes the expectation value on the physical state |φ〉. The noise Wt(x) defined at each
point in space is characterized through the correlation

E [ξt(x)ξt′(y)] = G(x− y)δ(t− t′), where G(x− y) =
1

(4πr2
C)

3/2 e
− (x−y)2

4r2
C , (3.22)

with ξt(x) = dWt(x)/dt and rC denoting the second phenomenological parameter of the model.
Finally, the operator M̂(x) in Eq. (3.21) is the mass density operator, given by

M̂(x) = ∑
j

mj â†
j (x)âj(x), (3.23)

where the operators â†
j (x) and âj(x) are the creation and annihilation operators of a particle of type

j in the space point x.

3.4 Discussion

CSL models can be regarded as phenomenological models which solve the measurement prob-
lem in quantum mechanics. In particular, the models are agnostic to the physical origin of the
stochastic noise. The modified dynamics also introduces new parameters into the statevector evo-
lution which draw the line between the microscopic and the macroscopic world. Nevertheless, the
modifications induced by these models can be experimentally falsified as shown in Fig. 3.1. The
parameter λ in Fig. 3.1 is related to γ as λ = γ/

(
4πr2

C

)3/2 with rC being the same as in Eq. (3.22).
The different colored regions depict the disallowed region of the rC-λ parameter space by different
laboratory experiments. The white and the light grey areas are not probed by experiments. Still,
the light grey area is excluded since in this region the collapse dynamics would be too weak and
would not suppress macroscopic superpositions: a central motivation behind the collapse models.
Further details related to Fig. 3.1 can be found in [26].
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Figure 3.1: Figure taken from [26] depicting the various experimental bounds on the free parame-
ters of the CSL model.
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Chapter 4

Inflation

The Cosmic Microwave Background radiation exhibits a blackbody spectrum at a temperature of
2.725K [89, 90] which is observed to be the same for light coming from different directions with a
deviation on the order of 10−5K [117]. Most of the different spatial points from which this light
was emitted in the remote past and has only reached us now, would paradoxically seem to remain
causally disconnected to each other, even up until the time at which this light was emitted, and yet
lead to the observed blackbody spectrum, unless the early universe went through a phase of accel-
erated expansion (c.f. [103] for a discussion on the horizon problem). Cosmological inflation refers
to this phase of the early universe preceding the radiation dominated era. Inflationary models not
only explain the accelerated expansion of the background spacetime, but also predict the existence
of the small temperature anisotropy in the CMB radiation due to the quantum fluctuations of the
scalar field that drove inflation. A brief overview of the key concepts involved is provided in this
chapter, while a more pedagogical discussion can be found in [103, 109].

4.1 Background dynamics

The action governing the inflationary dynamics is given by

S =

ˆ
d4x

√
−g

[
M2

P
2

R− 1
2

gµν∂µ ϕ∂ν ϕ−V(ϕ)

]
, (4.1)

where R denotes the Ricci scalar corresponding to a background spacetime metric gµν, g denotes
the metric determinant and ϕ denotes an arbitrary scalar field with the scalar potential V(ϕ). The
action is written within the reduced Planck units where h̄ = c = 1 and MP := 1/

√
8πG where G

denotes the Newton’s constant.
The dynamics is studied by writing the metric and the scalar field as the sum of the homoge-

neous background and the inhomogeneous perturbations such that

gµν(η, x) = gµν(η) + δgµν(η, x) , ϕ(η, x) = ϕ(η) + δϕ(η, x) . (4.2)

We first focus on the background dynamics which, generally, can be determined independently of
the perturbations. The background metric is taken to be the flat Friedmann-Lemaı̂tre-Robertson-
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Figure 4.1: Inflationary potential featuring a flat plateau for large values of ϕ.

Walker metric 1

ds2 = a2(η)(−dη2 + dx2) , (4.3)

where a(η) is the scale factor and η is the conformal time. The time evolution of the background
quantities is obtained by solving for the equation of motion for the background scalar field ϕ(η)

ϕ̈ + 2hϕ̇ + a2V,ϕ = 0 , (4.4)

together with the two Friedmann equations

3M2
Ph2 =

ϕ̇2

2
+ a2V (ϕ) , (4.5)

h2 − ḣ =
ϕ̇2

2M2
P

. (4.6)

In Eqs. (4.4)-(4.6) the overdot denotes the derivative with respect to the conformal time and h :=
ȧ/a. In this chapter we reserve the overdot for the derivative taken with respect to the conformal
time η and not for the cosmic time t. Note that the parameter h is not the same as the Hubble
parameter H, which is instead defined in terms of the cosmic time dt = a(η)dη as

H :=
1
a

da
dt

. (4.7)

Thus, H and h are related by h = aH. For the ease of comparison with the discussion presented in

1Even if one starts from a more general metric including a non-zero uniform spatial curvature, the additional contribu-
tion coming from the curvature term to the dynamics is subdominant with respect to the contribution from the scalar field
and can therfore be neglected [103].
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chapter 5, Eqs. (4.4)-(4.6) are also presented in terms of the cosmic time t below

d2

dt2 ϕ = − 3H ϕ̇ + V,ϕ , (4.8)

3M2
PH2 =

1
2

(
dϕ

dt

)2
+ V (ϕ) , (4.9)

dH
dt

= −
M−2

P
2

(
dϕ

dt

)2
. (4.10)

Once the inflationary potential has been specified, the time evolution of the background quantities
(a(η), ϕ(η)) can be determined completely subject to initial conditions. For a given inflationary
potential, such as the one depicted in Fig. 4.1, the background dynamics is actually fully deter-
mined by Eqs. (4.4) and (4.5). For instance, using Eq. (4.9), one can express H completely in terms
of the field ϕ and its time derivative. Doing that in Eq. (4.8), we get a closed equation for ϕ which
can then be solved exactly (at least numerically). The initial conditions determine the amount of
inflation that the universe goes through [103, 109, 10]. By choosing a certain amount which is large
enough to solve the horizon problem, one can fix the initial conditions and obtain the background
dynamics.

Due to the presence of the friction term in Eq. (4.4) and the flat plateau of the inflationary
potential where (V,ϕ )2 � V2(ϕ)/M2

P, any initial field velocities would converge to smaller values
such that ϕ̇2 � a2V(ϕ). In such a situation, 3M2

PH2 ≈ V(ϕ). Since the inflationary dynamics
predominantly occurs along the flat plateau of the scalar potential, the Hubble parameter assumes
an almost constant value. From Eq. (4.7) this implies a(t) ≈ a(t0) exp{H(t− t0)} thereby resulting
in an exponential expansion of the universe.

However, this phase of rapid expansion does not last forever. This is because the value of
the Hubble parameter keeps on decreasing slowly during inflation due to the small but a non-
zero slope of the potential. This decrease is parameterized by the slow-roll parameter εH which is
defined as

εH := − 1
H

d ln H
dt

. (4.11)

The slow-roll parameter takes small positive values during inflation such that εH � 1. Its value
typically increases monotonically during inflation as the scalar field rolls down towards the min-
imum of the potential. From Eqs. (4.7) and (4.11) we see that εH = 1 when d2a/dt2 = 0. The
condition εH = 1 thus marks the end of inflation. After the end of inflation, the inflaton oscillates
along the minimum of the scalar potential at ϕ = 0 and the energy content of the inflaton field is
transferred to radiation by a process called reheating. A discussion on reheating can be found in
[103, 109] and the references therein.

Having reviewed how the inflationary background dynamics governed by a scalar field leads
to a finite period of exponential expansion of the universe, we now study the evolution of pertur-
bations.

4.2 Perturbations

In addition to the accelerated expansion of the homogeneous background spacetime (ϕ(η), a(η)),
inflation also predicts the existence of inhomogeneous perturbations (δϕ (η, x), δgµν (η, x)) which
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are of quantum mechanical origin. To take them into account, one needs to go beyond the FLRW
metric which makes the computation slightly more involved. However, a simplification occurs
owing to the fact that to first order in perturbations, δϕ(η, x) only couples to the scalar perturba-
tions of the metric δgµν(η, x) [91, 103, 109]. The discussion here will be restricted to the dynamics
of the scalar perturbations only, as it is the most relevant for the work presented in the thesis. The
general metric including all the scalar degrees of freedom is given by

ds2 = a2(η)
[
− (1 + 2A)dη2 + 2B,i dxidη +

(
(1 + 2ψ)δij + 2E,ij

)
dxidxj

]
. (4.12)

The metric in Eq. (4.12) is thus parameterized by only four scalar functions (A, B, ψ, E). For in-
stance, any vector Bi can be written as the gradient of a scalar and the curl of a vector. Thus, we
see that only the gradient term (B,i := ∂xi B) is retained in the g0i components, where B is a general
scalar function.

To obtain the equation governing the dynamics of δϕ, we write down the Klein-Gordon equa-
tion for the full scalar field ϕf(η, x) = ϕ(η) + δϕ (η, x), which is given by

∂µ

[√
−ggµν∂ν ϕf

]
−
√
−gV,ϕf = 0 . (4.13)

Having already determined the evolution of the background, the dynamics of the perturbation δϕ
can then be filtered out as 2

∂µ

[(
δ
√
−g
)

gµν∂ν ϕ +
√
−g (δgµν) ∂ν ϕ +

√
−ggµν∂ν (δϕ)

]
−
(
δ
√
−g
)

V,ϕ−
√
−gV,ϕϕ δϕ = 0 .

(4.14)

We see that the dynamics of δϕ is coupled to that of δgµν. To simplify the calculations, we fix a
specific gauge such that two out of the four scalar functions are eliminated from the perturbed
metric. This is due to the fact that by choosing appropriately δx0 and δxi = ∂i f in an infinitesimal
coordinate transformation xµ → xµ + δxµ, one can induce perturbations in the metric which cancel
out two of the four scalar functions (A, B, ψ, E) in Eq. (4.12). We choose the gauge in which ψ =
B = 0 [97], as the calculations are easier to perform. In this gauge, the Fourier modes δgµν(η, k)
become

δgµν(η, k) =
(
−2Aka2(η) 0

0
(
−2kik jEk

)
a2(η)

)
. (4.15)

Making use of the background equations of motion, Eq. (4.14) can be expressed in the Fourier
space as

¨δϕk + 2h ˙δϕk + (k2 + a2V,ϕϕ )δϕk + 2Aka2V,ϕ−ϕ̇(Ȧk + k2Ėk) = 0 , (4.16)

where k2 := k · k. Further, using the Einstein’s equations for the perturbations δGµν = δTµν/M2
P

which are given by [97]

2Ak =
˙̄ϕδϕk

M2
Ph

, (4.17)

Ȧk + k2Ėk =
δϕk

M2
P

d
dη

( ˙̄ϕ
h

)
, (4.18)

2The entities appearing without a δ are understood to be the ones corresponding to the homogeneous background.
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the metric perturbations Ak and Ek can be expressed in terms of δϕk. This yields a closed equation
for δϕk

¨δϕk + 2h ˙δϕk +

[
k2 + a2V,ϕϕ−

1
M2

Pa2
d

dη

(
a2 ϕ̇2

h

)]
δϕk = 0 . (4.19)

To be able to compare more explicitly with the discussion presented in chapter 5, Eq. (4.19) is also
expressed in terms of the cosmic time t below

d2

dt2 δϕk + 3H
d
dt

δϕk +

[
k2 + V,ϕϕ−

1
M2

Pa3
d
dt

(
a3(dϕ/dt)2

H

)]
δϕk = 0 . (4.20)

In terms of u(η, x) and z(η) defined as

u(η, x) := aδϕ(η, x) , z := aMP
√

2εH , (4.21)

Eq. (4.19) takes the compact form

ük(η) +

(
k2 − z̈

z

)
uk (η) = 0 . (4.22)

We note that Eq. (4.22) can also be obtained from the action

δS(2) =
1
2

ˆ
dη

ˆ
d3x

[
u̇2 − δij∂iu∂ju +

z̈
z

u2
]

. (4.23)

We see from the discussion presented in this section that the dynamics of all the scalar degrees
of freedom, and hence any physical quantity of interest that is a function of the scalar perturba-
tions only, can be determined by δϕ. However, one needs to be careful as the calculations were
performed in a specific gauge. While it makes the calculations simpler, working within a specific
gauge has the disadvantage of including unphysical gauge artifacts. To eliminate this possibility,
one can instead construct and work with quantities which remain invariant under infinitesimal
coordinate transformations. One such quantity is the Mukhanov-Sasaki variable [111, 93]

δϕg := δϕ− ϕ̇
ψ

h
. (4.24)

Working with the gauge-invariant variables from the very beginning instead of choosing a specific
gauge, one arrives at the gauge-invariant version of the action (4.23) in which u → ug := aδϕg
[111, 93, 92]. From now onwards it will be implicitly assumed that the perturbations correspond
to their gauge-invariant versions as defined in Eq. (4.24), but without explicitly retaining the index
g in the subscript.

4.3 Quantization

From the action (4.23), the Lagrangian in the Fourier space can be identified as

L =

ˆ
d3kL(k) = 1

2

ˆ
d3k

(
|u̇k(η)|2 −ω2

k(η)|uk(η)|2
)

, ω2
k(η) := k · k− z̈

z
. (4.25)
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Identifying the conjugate momentum

πk(η) =
∂L(k)
∂u̇∗k(η)

(4.26)

for the complex field uk(η), the Hamiltonian is obtained to be

H =
1
2

ˆ
d3k

(
πk(η)π

∗
k(η) + ω2

k(η)uk(η)u∗k(η)
)

. (4.27)

Its clear that the real (uR
k (η)) and the imaginary (uI

k(η)) parts form independent degrees of free-
dom. Quantization is performed by imposing the commutation relations[

ûR
k1
(η), π̂R

k2
(η)
]
=
[
ûI

k1
(η), π̂ I

k2
(η)
]
= ih̄δ(k1 − k2) . (4.28)

The probability for the perturbations to have a configuration u(η, x) is given by the wavefunctional
Ψ[u(η, x)], which can be written as [88]

Ψ[η, u(x)] = ∏
k

ΨR
k

[
η, uR

k

]
ΨI

k

[
η, uI

k

]
. (4.29)

The individual elements of the product on the right hand side satisfy the Schrödinger equation

i
∂

∂η
ΨR,I

k

[
η, uR,I

k

]
=

1
2

( −iδ
δuR,I

k

)2

+
(

ωk(η)u
R,I
k

)2
ΨR,I

k

[
η, uR,I

k

]
. (4.30)

Eq. (4.30) can be solved with the Gaussian ansatz

ΨR,I
k

[
η, uR,I

k

]
= Nk(η)e

−Ωk(η)(uR,I
k )

2

, (4.31)

with the constraints

Ṅk
Nk

= −iΩk(η) , Ω̇k = −2iΩ2
k(η) +

i
2

ω2
k(η) , (4.32)

imposed by the Schrödinger equation. It is clear that only the real part of Ωk influences the prob-
ability distribution P[uk], whose normalization gives an additional constraint

P
[
uR

k

]
= |Nk(η)|2e−2σ(η)(uR

k)
2

, σ := Re{Ωk} , |Nk| =
(

2σ

π

)1/4
. (4.33)

The solution to the second equation in (4.32) reads [88]

Ωk(η) = −
i
2

ḟk(η)

fk(η)
, (4.34)

25



where fk(η) is the solution to the differential equation (4.22). Using the first equality in Eq. (4.32)
we get Nk = 1/

√
fk such that

P
[
uR

k

]
=

1
| fk(η)|

exp

{
−

π(uR
k )

2

| fk(η)|2

}
, P

[
uR

k , uI
k

]
= P

[
uR

k

]
P
[
uI

k

]
=

1
| fk(η)|2

exp
{
− π|uk|2
| fk(η)|2

}
.

(4.35)

Since the perturbations in the real space are a linear combination of the different modes δϕk, we
infer that the underlying probability distribution for the perturbations in the real space must also
be a Gaussian. This remains true as long as we are interested in the regime where the perturbations
predominantly evolve linearly [103] 3. Nevertheless, within this regime, to determine the statis-
tical properties of the perturbations, it is sufficient to calculate the two-point correlation. This is
parametrized by the power spectrum of the inflationary perturbations which is then constrained
by observations.

4.4 The power spectrum

Upon quantization (back in the Heisenberg picture), the status of the classical perturbation u(η, x)
is raised to that of a field operator û(η, x) such that

û(η, x) =
ˆ

d3k

(2π)3/2 exp(ik · x)ûk(η) . (4.36)

Further, the operator ûk(η) can be written in terms of the creation and annihilation operators as

ûk(η) = vk(η)âk + v∗k (η)â†
−k. (4.37)

The power spectrum Pu (to be defined later) of the operator û(η, x) is related to the two-point
correlation function Cu(x, x′) [103, 109, 10] which is given by

Cu(x, x′, η) = 〈0| û(η, x′)û(η, x) |0〉 . (4.38)

Using Eqs. (4.36) and (4.37) we get

Cu(x, x′, η) =

ˆ
d3kd3k′

(2π)3 〈0| âk â†
−k′ |0〉 vk(η)v∗k′(η)e

i(k·x+k′ ·x′) . (4.39)

From the standard commutation relations of the creation and annihilation operators and integrat-
ing over k′, Eq. (4.39) becomes

Cu(x, x′, η) =

ˆ
d3k

(2π)3 |vk(η)|2eik·(x−x′) . (4.40)

Next we complete the angular integrals in the reciprocal space to obtain

Cu(x, x′, η) =

ˆ ∞

0

dkk2

2π2 |vk(η)|2
sin(kr)

kr
, r := |x− x′| . (4.41)

3A discussion on non-Gaussianity can be found in [7].
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We see that the Copernican principle holds at a statistical level because the correlation depends
only on r, making it invariant under both translations and rotations [103]. The power spectrum
can be defined in terms of the starting two-point correlation such that

Cu(x, x′, η) :=
ˆ ∞

0
d ln(k)Pu(k, η)

sin(kr)
kr

, (4.42)

which implies

Pu(k, η) =
k3

2π2 |vk(η)|2. (4.43)

From the discussion in Sec. 4.3, we see that for a given inflationary model, the power spectrum
encodes the predictions for the observed statistical properties of the cosmological perturbations.
One such quantity of interest which is observationally constrained is the comoving curvature per-
turbation R̂. It is related to û as

R̂ := û/z =
δϕg√
2εH MP

=
1√

2εH MP

(
δϕ− dϕ

dt
ψ

H

)
. (4.44)

In the last equation, while it was implicit, the subscript g has been re-introduced to emphasize
thatR is the gauge-invariant version of the metric perturbation ψ, which is related to the intrinsic
spatial curvature on hypersurfaces of constant conformal time η. It is thus called the comoving
curvature perturbation as the comoving gauge is defined by the condition δϕ = 0 [109].

The power spectrum PR of R̂ can be obtained from the power spectrum of Pu as PR = Pu/z2.
The modes vk(η), that enter the expression of the power spectrum, are the solutions to differential
equation (4.22). In the perfect de Sitter limit, in which one ignores the contributions coming from
the slow-roll parameter (Eq. (4.11)), the Hubble parameter can be treated as a constant and we
have the relations

a(η) ≈ −1/(Hη) ,
z̈
z
≈ ä

a
≈ 2

η2 . (4.45)

In this limit, the solution to Eq. (4.22) for the modes vk(η) gives

vk(η) =
A(− cos(kη)

kη − sin(kη))
√

2k
+

B
(
− cos(kη) +

sin(kη)
kη

)
√

2k
. (4.46)

To fix the free parameters A and B, one imposes the Bunch-Davies vacuum condition [103, 109, 10].
Such a condition demands the system to be in the ground state |0〉 of the Hamiltonian correspond-
ing to the action functional for u [cf. Eq. (4.23)] at η → −∞. The differential equation satisfied by
the modes in this limit is identical to that of a simple harmonic oscillator. For the simple harmonic
oscillator, the time evolution of the creation and annihilation operators in the Heisenberg picture
yields the following constraint for û in Eq. (4.37)

vk(η)|η→−∞ =
exp(−ikη)√

2k
. (4.47)
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This gives B = −1 and A = i. In the perfect de Sitter limit, the full solution vk(η) then reads [103]

vk(η) =
e−iηk

(
1− i

ηk

)
√

2k
. (4.48)

In the superhorizon limit kη � 1, that is, when we consider a cosmological perturbation of wave-
length a/k much larger than the length scale 1/H, the expression for the modes in Eq. (4.48) sim-
plifies to [103]

vk(η)
kη�1
≈ − i√

2
1

ηk3/2 . (4.49)

Using this result, we obtain the power spectrum PR in the superhorizon limit to be

PR =
Pu(k, η)

2a2εH M2
P
≈ 1

2εH M2
P

(
H
2π

)2
. (4.50)

We see that for a perfect de Sitter solution of the modes (c.f. Eq. (4.48)), the power spectrum is
independent of both the conformal time η and the scale k. In a more general treatment in which the
slow-roll dependence is taken into account, the power spectrum acquires a mild scale dependence.
The power spectrum is then parametrized as [109, 103]

PR = A∗R

(
k
k∗

)n∗R−1
. (4.51)

In the power law parameterization of the power spectrum in Eq. (4.51), the amplitude AR denotes
the strength of the power spectrum at a certain wavenumber, while the parameter nR is the mea-
sure of the deviation of the power spectrum from perfect scale invariance. The closer nR is to
unity, the weaker is the scale dependence.

4.5 Discussion

The Planck CMB anisotropy measurements constrain the values of A∗R and n∗R, at the pivot scale
k∗ = 0.05 Mpc−1, to be

A∗R = (2.099± 0.014)× 10−9 and n∗R = 0.9649± 0.0042 , (4.52)

at the 68% confidence level. In the following chapters the inflationary dynamics is studied in two
different contexts. In chapter 5, a model of inflation is considered that leads to the production of
small Primordial Black Holes (PBHs) after the end of inflation. If the number of PBHs produced
are just right, the model would then offer a possible explanation for the observed cold dark matter
content in the universe. PBHs sourced by the inflationary perturbations require the amplitude of
the perturbations to be significantly higher on certain length scales which are much smaller com-
pared to the ones probed by the CMB measurements. The model constructed must be such that it
respects the constraints mentioned in Eq. (4.52), while at the same time, leads to an amplification
of the power spectrum on a smaller length scale, say kPBH. An increased value of the power spec-
trum at kPBH essentially implies a larger variance of the underlying Gaussian probability density
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corresponding to the same length scale. This makes it more likely to generate a large amplitude
perturbation and thus more primordial black holes with a mass that is related to the value of kPBH.

Then, in chapter 6, we investigate if the models of wavefunction collapse, as presented in chap-
ter 3, can be generalized to a cosmological setting such that they are consistent with the CMB
constraints. The derivation of the power spectrum here was presented within the standard quan-
tization scheme. When the Schrödinger equation is modified as in collapse models, there will be
corrections induced to the power spectrum whose numerical value would depend upon the free
parameters of the models of wavefunction collapse. Via the power spectrum, the CMB observa-
tions therefore offer the possibility to constrain the parameters of the collapse models, apart from
the constrains that are already imposed from the standard laboratory experiments.
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Chapter 5

Primordial black holes from
inflationary dynamics

Primordial Black Holes (PBHs) may provide an explanation of the origin of Cold Dark Matter
(CDM) without assuming new particles. Their formation can be triggered by the large density
fluctuations generated during inflation. In addition to the relevance of PBHs in explaining the ob-
served CDM, they also provide constraints on inflationary models complementary to those coming
from the observations of the Cosmic Microwave Background (CMB). Therefore, they offer the pos-
sibility to break the degeneracy between a number of different inflationary models which are all
compatible with the CMB observations. A review of the topic and the various cosmological and
astrophysical constraints that have been put on PBHs can be found in [30, 80, 27, 28] and the refer-
ences therein. As mentioned in chapter 4, PBH generation requires the amplification of the power
spectrum on a certain length scale. The inflationary power spectrum is in turn completely deter-
mined by the potential of the scalar field driving inflaton. The challenge then becomes to come up
with a suitable model of inflation that results in such an amplification of the power spectrum, while
being compatible with all the observational constraints. In the next section, inspired from Starobin-
sky’s quadratic model of f (R) gravity [118], such a two-field model of inflation is constructed. The
model is found to be compatible with the CMB observations and offers the possibility to account
for the observed CDM content. The discussion presented here is based on publication I [68] and
publication II [70].

5.1 The model

We begin with Starobinsky’s model which is defined by the action [118]

SStar[g] =
M2

P
2

ˆ
d4x

√
−g

(
R +

1
6m2

0
R2

)
. (5.1)

It contains two dimensionful parameters: the reduced Planck mass MP = 1/
√

8πGN and the
scalaron mass m0. As in chapter 4, we adopt the reduced Planck units.
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For large curvatures R/m2
0 � 1, the R2 term in Eq. (5.1) dominates. In this regime, the action

is rendered invariant under the global scale transformations g̃µν = α−2gµν, where α is a constant.
This is because, under these transformations, the Ricci scalar transforms as R̃ = α2R and there-
fore

√−gR2 =
√
−g̃R̃2. At high curvatures/energies, action (5.1) is thus asymptotically scale

invariant. This symmetry is desirable to have for the realization of the (almost) scale invariant
inflationary power spectrum. Indeed, the predictions of the Starobinsky model are found to be in
perfect agreement with the recent Planck data [3].

However, it might still not be apparent how action (5.1) is related to the discussion presented
in chapter 4, in which inflation was driven by a scalar field with a corresponding scalar potential.
We shall see in the next section that the modified gravity terms, such as the R2 term, contain an
additional scalar propagating degree of freedom, the scalaron [120, 118], which plays the role of
the inflaton driving inflation.

5.1.1 Inflation from modified gravity

Action (5.1) belongs to the more general class of models for which the action reads

S[g, ϕ] =

ˆ
d4x

√
−g
{

f (R, ϕ)− 1
2

gµν∂µ ϕ∂ν ϕ

}
. (5.2)

Eq. (5.2), in addition to action (5.1), includes a scalar field ϕ with a generic scalar potential V(ϕ)
and a generic coupling to gravity. To extract the additional scalar degree of freedom, we see that
Eq. (5.2) can be equivalently written as

S[g, ϕ, ψ] =

ˆ
d4x

√
−g
[

f (ψ, ϕ) + (R− ψ) f,ψ(ψ, ϕ)− 1
2

∂µ ϕ∂µ ϕ
]

. (5.3)

In Eq. (5.3), an additional scalar field ψ has been introduced which functionally replaces R in the
function f . The equation of motion for ψ is given by

f,ψψ(R− ψ) = 0. (5.4)

Since we are interested in a modified gravity action such that f (R, ϕ) contains also second or
higher powers of R, we have f,ψψ 6= 0. The EOM (5.4) then implies ψ = R. Therefore, on-shell, we
see that action (5.3) is equivalent to the original action (5.2). Next, we define the scalaron χ by

χ2 := f,ψ(ψ, ϕ) . (5.5)

The explicit functional form of f (ψ, ϕ) (or equivalently f (R, ϕ)), together with the condition f,ψψ 6=
0, allows one to invert Eq. (5.5) and to express ψ = ψ(χ, ϕ) as a function of χ and ϕ. In particular,
we can write action (5.3) in terms of the scalaron χ as

S[g, ϕ, χ] =

ˆ
d4x

√
−g
[

χ2R− 1
2

∂µ ϕ∂µ ϕ−W(χ, ϕ)

]
. (5.6)

Here, the two-field scalar potential has been identified to be

W(χ, ϕ) = χ2ψ(χ, ϕ)− f (ψ(χ, ϕ), ϕ). (5.7)

The action in Eq. (5.2) has now been brought into a more familiar form. In chapter 4 the inflationary
dynamics was considered to be driven by a single scalar field ϕ, minimally coupled to gravity1.

1Minimal coupling implies that the only coupling between the gravity sector and the scalar field is through the presence
of
√−g.
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Instead, when one considers f (R, ϕ) models of gravity, the additional scalar degree of freedom
which is extracted from the modified gravity sector, turns out to be non-minimally coupled to
gravity. With a conformal transformation, however, even this non-minimal coupling can be made
to disappear. As presented in more detail in [69], under the conformal transformation

gµν = Ωĝµν, Ω :=
1
2

M2
P

χ2 , (5.8)

action (5.6) becomes

S[ĝ, ϕ, χ̂] =

ˆ
d4x

√
−ĝ

[
M2

P
2

R̂− 1
2

e−
√

2
3

χ̂
MP ∂µ ϕ∂µ ϕ− 1

2
∂µχ̂∂µχ̂− Ŵ(χ̂, ϕ)

]
, (5.9)

with,

χ̂ =
√

6MP ln

(√
2χ

MP

)
, Ŵ(ϕ, χ̂) :=

M4
P

4χ4 W(ϕ, χ)

∣∣∣∣∣
χ=χ̂

= e−2
√

2
3

χ̂
MP W(χ̂, ϕ) . (5.10)

We see that starting from a generic f (R, ϕ) model, an inflationary potential can be algorithmically
extracted. For Starobinsky’s model (5.1), in which ϕ = 0, one gets the single-field potential

ŴStar(χ̂) := Ŵ(χ̂, ϕ)|ϕ=0 =
3
4

m2
0M2

P

(
1− exp

(
−
√

2
3

χ̂

MP

))2

. (5.11)

The potential features the desirable constant plateau for large values of χ̂. In fact, Fig. 4.1 depicting
the typical inflationary potential in chapter 4 was obtained for the Starobinsky potential itself.

5.1.2 Generalization of Starobinsky’s model

In the new model that is proposed in the thesis, Starobinsky’s model is considered in the presence
of a scalar field. In addition, the dimensionful constants (M2

P, m2
0) in Eq. (5.1) are replaced with

general functions of ϕ such that

f (R, ϕ) =
U(ϕ)

2

(
R +

1
6 M2(ϕ)

R2
)
−V(ϕ). (5.12)

Following the same algorithm as before, the scalar two-field potential extracted from Eq. (5.12)
reads

Ŵ(ϕ, χ̂) =
V(ϕ)

F2(χ̂)
+

3
4

m2(ϕ) M2
P

(
1− U(ϕ)

M2
PF(χ̂)

)2

, F(χ̂) := exp

(√
2
3

χ̂

MP

)
, (5.13)

where m2(ϕ) is defined to be

m2(ϕ) := M2(ϕ)
M2

P
U(ϕ)

. (5.14)
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In order to specify the model completely, the following assumptions are made

U(ϕ) = M2
P + ξϕ2, (5.15)

m2(ϕ) = m2
0 + ζϕ2, (5.16)

V(ϕ) =
λ

4
ϕ4. (5.17)

For (5.15)-(5.17), the two-field potential Ŵ(ϕ, χ̂) in Eq. (5.13) reduces to

Ŵ(χ̂, ϕ) =

λϕ4 + 3M2
P
(
m2

0 + ζϕ2) (1 + ξ
ϕ2

M2
P
− F

)2

4F2 . (5.18)

We see that in addition to the two mass parameters MP and m0 present in Starobinsky’s model
(5.1), the new two-field potential depends also on the three dimensionless parameters ξ, ζ, and λ.

The assumptions (5.15)-(5.17) are motivated by the following considerations. The First motiva-
tion is that Starobinsky’s model (5.1) is recovered in the limit ϕ → 0 so that its compatibility with
the CMB constraints can be inherited. Then, an additional ϕ→ −ϕ symmetry is assumed leaving
only ϕ-even terms. Finally, higher powers of ϕ in Eqs. (5.15) and (5.16) are also assumed to be
un-important for inflationary dynamics. A term of the form m2

D ϕ2 in (5.17), in the view of the EF
potential (5.18), is also neglected since it would be irrelevant as long as m2

D � ζM2
P or m2

D � ξm2
0.

Moreover, as we shall see later, since a significant PBH production requires ξ � 1, the term m2
D ϕ2

can be neglected as long as m2
D . m2

0. It would be interesting to study the impact of a large mass
m2

D & m2
0, which, however, goes beyond the scope of the work presented here.

5.2 Covariant multi-field formalism

5.2.1 Background dynamics

In the new model we have two scalar fields. The field ϕ and the scalaron χ̂ extracted from the mod-
ified gravity sector. To compare the dynamics with single-field inflation, this extra dimensionality
of the field-space is most elegantly captured by recasting Eq. (5.9) in the form

S[ĝ, Φ] =

ˆ
d4x

√
−ĝ

[
M2

P
2

R̂− ĝµν

2
GI JΦI

,µΦJ
,ν − Ŵ

]
. (5.19)

Here, the scalars ΦI(x) are regarded as local coordinates of the scalar field-space with the metric
GI J , such that

ΦI =

(
χ̂
ϕ

)
, GI J(Φ) =

(
1 0
0 F−1 (χ̂)

)
. (5.20)

We see that the field-space metric GI J is not flat. That is, there does not exist a transformation
(χ̂, ϕ) → (χ̂′, ϕ′) for which G′I J = diag(1, 1). Alternatively, one can also compute the Ricci scalar

33



for the metric GI J and see that it is non-zero. This observation calls for the introduction of the
covariant time derivative Dt

DtV I := V̇ I + Φ̇JΓI
JK(Φ)VK , (5.21)

where the Christoffel connection ΓI
JK is defined with respect to the field-space metric (5.20). In

terms of Dt, the background Friedmann equations and the Klein-Gordon equations for the homo-
geneous scalar fields ΦI(t) read

H2 =
M−2

P
3

[
1
2

GI JΦ̇IΦ̇J + Ŵ(Φ)

]
, (5.22)

Ḣ = −
M−2

P
2

GI JΦ̇IΦ̇J , (5.23)

DtΦ̇I = − 3HΦ̇I − GI JŴ,J . (5.24)

As in chapter 4, the homogeneous and the isotropic background dynamics of the metric is deter-
mined by the flat Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) line element

ds2 = −dt2 + a2δijdxidxj , H =
ȧ
a

. (5.25)

Here, t is the cosmic Friedmann time, a(t) is the scale factor, the indices (i, j) denote spatial in-
dices and take values from 1 to 3 and δij = diag(1, 1, 1). The calculations in this chapter make no
reference to the conformal time η. The overdot in this chapter represents a derivative taken with
respect to the cosmic time t and not the conformal time as in chapter 4.

Coming back to the background dynamics, further simplification occurs in introducing the unit
vector σ̂I which is tangential to the inflationary trajectory such that

σ̂I :=
Φ̇I

σ̇
, GI J σ̂

I σ̂J = 1, σ̇ :=
√

GI JΦ̇IΦ̇J . (5.26)

Since the field-space is two dimensional, the two-field background dynamics is decomposed into
a direction along σ̂I and a direction along the unit vector ŝI orthogonal to σ̂I ,

GI J ŝI ŝJ = 1 , GI J ŝI σ̂J = 0. (5.27)

The two conditions in Eq. (5.27) completely determine the two components of ŝI upto a sign. For
that, we adopt the convention in which ŝI is proportional to the acceleration vector ω I

ω I = Dtσ̂
I , ŝI :=

ω I

ω
, ω :=

√
GI Jω Iω J . (5.28)

Since the field-space (χ̂, ϕ) is two dimensional, it is completely spanned by the unit vectors (σ̂I , ŝI).
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Projecting (5.22)-(5.24) along σ̂I and ŝI yields

H2 =
M−2

P
3

(
1
2

σ̇2 + Ŵ
)

, (5.29)

Ḣ = −
M−2

P
2

σ̇2 , (5.30)

σ̈ = − 3Hσ̇− Ŵ,σ , (5.31)

ω = − Ŵ,s
σ̇

, (5.32)

where, the derivatives of Ŵ along σ̂I and ŝI are defined by

Ŵ,σ :=
∂Ŵ
∂ΦI σ̂I , Ŵ,s :=

∂Ŵ
∂ΦI ŝI . (5.33)

We see that Eqs. (5.29)-(5.31) resemble closely the background equations (4.8)-(4.10), obtained for
single-field inflation in chapter (4). The same resemblance also holds at the level of perturbations.
The additional parameter ω in Eq. (5.32), which is absent in single-field inflation, plays a crucial
role in the amplification of PR as we shall see next.

5.2.2 Perturbations

As we have seen in chapter 4, the perturbed FLRW line element (including only the scalar degrees
of freedom) reads

ds2 = − (1 + 2A)dt2 + 2aB,idxidt + a2 (δij + 2Eij
)

dxidxj. (5.34)

Here Eij := ψδij + E,ij. The only difference is that instead of a single matter-field perturbation δφ,
we have a two dimensional column vector of perturbations

δΦI =

(
δχ̂
δϕ

)
. (5.35)

Like in single-field inflation, the gauge-invariant multi-field Mukhanov-Sasaki variables can be
constructed as [63]

δΦI
g := δΦI +

Φ̇I

H
ψ. (5.36)

Projecting Eq. (5.36) along σ̂I and ŝI we get

Qσ = σ̂JGI JδΦI
g, Qs = ŝJGI JδΦI

g . (5.37)

The comoving curvature perturbationR is related to Qσ as [103]

R(t, k) =
H
σ̇

Qσ(t, k) , (5.38)
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which is identical to its relationship with δϕ in single-field models of inflation (c.f. Eq. (4.44)).
There is, however, a crucial difference. WhileR depends explicitly only on Qσ, the time evolu-

tion of Qσ is coupled to that of Qs. In single-field inflationary models there is no additional matter
scalar field that can influence the dynamics of δφ. This coupling between Qσ and Qs is essentially
what would lead to the amplification ofR as we desire for the production of PBHs. To see this, we
look at the equations of motion for Qσ and Qs. Eq. (4.20) in chapter 4 governs the time evolution of
δϕ in single-field models of inflation. In two-field models of inflation one derives the EOM for the
column vector of perturbations δΦI

g [112, 97, 63]. Projecting it along σ̂I and ŝI yields the coupled
EOMs for Qσ and Qs. They are given by

Q̈σ(t, k) + 3HQ̇σ(t, k) + Ωσσ(t, k)Qσ(t, k) = f (d/dt)(ωQs), (5.39)

Q̈s(t, k) + 3HQ̇s(t, k) + m2
s(t, k)Qs(t, k) = 0 . (5.40)

Following the conventions in [69] the following quantities are defined

ΩI
J := MI

J −M−2
P a−3Dt

(
a3

H
Φ̇IΦ̇J

)
, Ωσσ = σ̂I σ̂JΩI J −ω2 , (5.41)

MI J :=
k2

a2 +∇I∇JŴ + RIKJLΦ̇KΦ̇L , m2
s = ŝI ŝJ MI J + 3ω2 , (5.42)

while the source term appearing on the right hand side of Eq. (5.39) is given by

f (d/dt) := 2
[

d
dt
−
(

W,σ
σ̇

+
Ḣ
H

)]
. (5.43)

Eq. (5.39) shows that the adiabatic modes Qσ(t, k) are sourced by the product ωQs(t, k). We see
that the two additional quantities which have no analogue in single-field dynamics: the turnrate
ω in Eq. (5.28) at the level of the background dynamics and the isocurvature perturbation Qs in
Eq. (5.37) at the level of the perturbations, combine together to allow for an amplification of the
power spectrum. Only when the combination of ω and Qs is sufficiently large, are the modes
Qσ(t, k) amplified, leading to the amplification of the comoving curvature power spectrum. In the
next section, by elaborating more on the properties of the two-field potential Ŵ, we shall see why
the model allows for the isocurvature pumping mechanism to work.

5.3 The two-field potential landscape

As shown in Fig. 5.1, the landscape of the two-field potential (5.18) is dominated by three valleys
separated by two hills symmetrically located around ϕ = 0. The background trajectory, with
arbitrary starting point, is expected to fall into one of these valleys whose solution is determined
by solving the valley equation

Ŵ,ϕ(χ̂, ϕ) = 0 . (5.44)
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That the background trajectory must satisfy the condition (5.44) follows from the background dy-
namics (of ϕ in particular)

χ̂′′ + (εH − 3)

(
χ̂′ −M2

P
Ŵ,χ̂

Ŵ

)
+

1
2

F,χ̂

(
ϕ′

F

)2

= 0 , (5.45)

ϕ′′ + (εH − 3) F

(
ϕ′

F
−M2

P
Ŵ,ϕ

Ŵ

)
− F,χ̂χ̂′

ϕ′

F
= 0 . (5.46)

Here, the prime denotes the derivative with respect to the dimensionless time parameter N, de-
fined by dN = −Hdt. Physically, ∆N = −1 means that the scale factor has multipled by a factor of
e, such that a(N) = a(Ni)eNi−N . N is therefore referred to as the number of e-folds or the e-folding
number. For conventional reasons, N is counted backwards with N = 0 at the end of inflation.

For a fixed χ̂, we see that a necessary condition to reach a stationary point in the phase space
(ϕ, ϕ′) (which is to have ϕ′ = ϕ′′ = 0) is Ŵ,ϕ |χ̂ = 0. Thus, as χ̂ takes different values during
the background evolution, the classical trajectory is obtained by solving (5.44) for ϕ(χ̂). For the
two-field potential Ŵ in Eq. (5.18), Eq. (5.44) gives five solutions

ϕ0(χ̂) = 0, ϕ±v (χ̂), ϕ±h (χ̂). (5.47)

The solutions (5.47) correspond to the central valley at ϕ0, the two outer valleys at ϕ±v , and the two
hills at ϕ±h . The solutions ϕ±v (χ̂) and ϕ±h (χ̂) are only presented symbolically. It does not add to the
discussion to present their lengthy expressions in terms of χ̂ explicitly.

At the onset of the inflationary dynamics, the initial value χ̂i must be sufficiently large χ̂i/MP �
1 in order to guarantee that inflation lasts for at least N ≈ 60 efolds. As the dynamics proceeds,
the two outer valleys ϕ±v merge with ϕ0 at some χ̂. After the valleys merge with ϕ0, the potential
landscape only features one central valley at ϕ0 = 0. This can be seen more clearly in Fig. 5.2.

Therefore, the inflationary background trajectories, irrespective of their starting points, even-
tually end up running along the ϕ0 valley. However, there is a field value χ̂c at which the local
ϕ0 minimum turns into an unstable maximum (the right plot in Fig. 5.1). The critical point χ̂c is
determined by the condition

Ŵ,ϕϕ(χ̂, ϕ)
∣∣

ϕ=0 = 0. (5.48)

The solution of (5.48) only depends on m0/MP and ξ/ζ and is given by

χ̂c = Mp

√
3
2

ln

[
1 + 2

ξ

ζ

(
m0

MP

)2
]

. (5.49)

At χ̂ = χ̂c, when the second derivative Ŵ,ϕϕ turns negative, the local minimum along the ϕ
direction turns into an unstable local maximum and the two valleys symmetrically located around
ϕ0 emerge again (c.f. Fig. 5.2).

The inflationary trajectory which was previously running along ϕ0 would now be pushed into
one of the adjacent valleys that appear for χ̂ < χ̂c. It is this instability and the fall of the inflationary
trajectory that ultimately leads to the amplification of the power spectrum as we shall see next.

Before proceeding, it is important to mention that the reduction of the two-field potential into
a global attractor along ϕ = 0 only happens if a certain parameter combination is realized. The
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Figure 5.1: The landscape of the two-field potential (5.18) (left) and the vicinity of χ̂c (right).

Figure 5.2: Overview of the two-field potential (5.18). The red lines sketch the inflationary trajec-
tories running along the valleys in the direction of the arrows. ϕ0 is a global attractor as the two
valleys ϕ±v merge with ϕ0. After the valleys merge with ϕ0, the potential landscape only features
one central valley at ϕ0 = 0. However, when we reach the critical point χ̂ = χ̂c, we see that ϕ0
turns into a hill such that two valleys bifurcate adjacent to ϕ0 = 0 for χ̂ < χ̂c.

necessary condition for that to occur is

x =
6ξ2m2

0
λM2

P
< 1 . (5.50)

When x ≥ 1, the potential landscape never reduces to a single global attractor. This is shown in
Fig. 5.3. In such a scenario, if the initial conditions are such that the dynamics starts off inside one
of the valleys ϕ±v , the trajectory stays in the valley forever, and does not go through the richer dy-
namics in which it is first brought along ϕ = 0 and is then pushed outwards due to the instability
that occurs around χ̂c. In such a scenario the predictions of the model would be dependent upon
the initial conditions. If we start along ϕ = 0 in scenario two, as in the previous situation, the
trajectory is pushed off the ϕ = 0 attractor for χ̂ < χ̂c allowing for the amplification mechanism to
work. If we start inside ϕ±v , nothing dramatic happens and we get no amplification of the power
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spectrum. Thus, the request for the predictions of the model to be independent of the initial values
of the fields leads us to only consider scenario one in which the inequality (5.50) is satisfied.

Figure 5.3: Figure depicting how in scenario two the valleys ϕ0 and ϕ±v never merge for any χ̂.

5.4 The amplification mechanism

We have seen in Sec. 5.3 that irrespective of where the inflationary trajectory starts on the potential
landscape, it always ends up in the central valley ϕ0 = 0. Therefore, the inflationary dynamics
predominantly occurs along the χ̂ direction in the field-space such that σ̂ = χ̂ (c.f. Eq. (5.26)). The
amplification of Qσ in Eq. (5.39) requires as a necessary condition that Qs in Eq. (5.40) be non-zero.
Having identified the inflaton direction σ̂ with χ̂, we see that Qσ ∝ δχ̂ and Qs ∝ δϕ. The growth of
Qs in Eq. (5.40) is dictated by the effective mass m2

s , which in our situation is proportional to Ŵ,ϕϕ.
When the inflationary trajectory runs along ϕ = 0, well before reaching the critical point χ̂c,

the potential along the ϕ direction is concave, i.e., Ŵ,ϕϕ� 0. This suppresses any possible growth
of Qs. However, as the trajectory reaches the critical point χ̂c, Ŵ,ϕϕ approaches zero and turns
negative beyond the critical point χ̂c. The inflationary trajectory which was earlier in a stable
equilibrium along ϕ = 0, is now in an unstable equilibrium. During the small time the inflationary
trajectory spends on this convex hill, and due to the negative effective mass m2

s ∝ Ŵ,ϕϕ that Qs ∝
δϕ experiences along the hill, Qs grows exponentially. Shortly after going beyond χ̂c, being in
an unstable equilibrium, the trajectory slips down to one of the valleys adjacent to the hill along
ϕ = 0. We see that the time at which the inflationary trajectory slips, which leads to the change in
the inflaton direction σ̂ and hence the growth of the turn rate ω defined in Eq. (5.28), is inevitably
correlated to the time at which Qs starts growing. Thus, the general conditions that are required
for the sourcing of Qσ (and henceR), which to have the increase in the product ωQs, are naturally
realized within the model.
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5.5 The stochastic formalism

In general, the properties of PR for single-field inflationary models can be determined analytically.
The same is more difficult to achieve for multifield models, especially when the background dy-
namics is as complicated as described above. In such a situation the power spectrum is computed
by solving Eqs. (5.22)-(5.24) and Eqs. (5.39)-(5.40) numerically. While the time evolution of the per-
turbations is dependent upon the background, typically, the converse is not true. Therefore, one
first solves the background equations (5.22)-(5.24) and then, using those solutions, solve for the
perturbations Qs(t, k) and Qσ(t, k). This strategy works in most of the multi-field models of infla-
tion but not for the two-field model under consideration. The reason is that if one doesn’t take into
account the feedback of the quantum fluctuations onto the background, the inflationary trajectory
would roll forever in an unstable equilibrium along ϕ0 = 0, even after crossing the critical point
χ̂c. However, physically, what is expected to happen is that the inevitable quantum fluctuations
would eventually provide the required kick such that the trajectory falls into one of the adjacent
valleys at some χ̂ < χ̂c.

In the vicinity of the critical point χ̂c, the restoring classical force which keeps the trajectory fo-
cused to the ϕ0 attractor, is no longer sufficiently strong to counteract the diffusive force that orig-
inates from the unavoidable quantum zero-point fluctuations which the trajectory experiences in
the ϕ direction. For χ̂ < χ̂c, m2

s turns negative and the solution ϕ0 becomes unstable. At the same
time, the perturbation δϕ starts to grow and even dominates over the classical solution ϕ0. In sit-
uations where the quantum diffusive force dominates the classical background drift, the standard
formalism in which the background dynamics of the scalar fields is considered independently of
the time evolution of the quantum fluctuations, breaks down.

Instead, the application of the stochastic formalism [119], which properly takes into account
the back reaction of quantum fluctuations on the coarse grained classical background dynamics,
is required. In the stochastic formalism, the dynamics of ϕ during the transition stage around χ̂c
is determined by a probability density function P(ϕ, N) that specifies the probability of the field
having the value ϕ at a time N. The time evolution of P(ϕ, N) is described by the Fokker-Planck
equation (c.f. [127] and Eq. (2.14) in chapter 2),

∂P
∂N

= − ∂

∂ϕ
[DP] +

1
2

∂2

∂ϕ2 [FP] . (5.51)

The right-hand-side of the Fokker-Planck equation (5.51) is characterized by two terms: a classical
drift term with the coefficientD(ϕ, N) and a quantum diffusion term with the coefficient F (ϕ, N).
For the decomposition ϕ(N, x) = ϕ̄(N) + δϕ(N, x) into a homogeneous background ϕ̄(N) and a
Gaussian random fluctuation δϕ(N, x) with 〈δϕ〉 = 0, the coefficients are obtained as

D =
d〈ϕ〉
dN

, F =
d〈δϕ2〉

dN
. (5.52)

In the following we omit the bar over a background quantity. Assuming slow-roll in the χ̂ and
ϕ directions2, the equation of motion (5.46) reduces to the single-field dynamics of ϕ depending
only parametrically on χ̂(N),

ϕ′ ≈
F(χ̂)Ŵ,ϕ (χ̂, ϕ)

3H2 . (5.53)

2Within the slow-roll approximation ϕ′′ ≈ 0, εH � 1 and the term proportional to F,χ̂χ̂′ϕ′/F can can also be neglected
in (5.46)
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Since we are interested in the dynamics around ϕ = 0, Taylor expansion of Ŵ,ϕ yields the lin-
earized equation which determines the drift coefficient

D(ϕ, N) = ϕ′ ≈
m2

ϕ

3H2 ϕ , m2
ϕ(N) := FŴ,ϕϕ |ϕ=0. (5.54)

The variance
〈
δϕ2〉 after coarse graining over k & aH is given in terms of the power spectrum

Pϕ(k) of the scalar perturbation δϕ (c.f. Eq. (4.42) in chapter 4),〈
δϕ2
〉
=

ˆ k.aH

0
Pϕ(k)d ln k. (5.55)

Within the time interval −∆N (remembering that the number of efolds decrease as inflation
proceeds), as the scale factor increases, some of the modes which were earlier averaged over
now influence the background dynamics as they cross the horizon scale satisfying k = aH =

a∗e(N−N∗)H. They effectively provide an extra kick to the background dynamics by giving an ex-
tra contribution to the integral (5.55) by increasing its upper bound. Treating H as a constant, we
obtain d ln k ≈ −dN such that F in Eq. (5.52) becomes (c.f. Eq. (4.50))

F (N) = − Pϕ(k)
∣∣
k.aH ≈ −

(
H
2π

)2
. (5.56)

From Eq. (5.56) we also see that the precise choice of the coarse graining length scale is not impor-
tant. Even if the dynamics was coarse grained over a different length scale k ≈ εaH, we see that
the coefficient F would still be the same as the relationship between d ln k and dN is unchanged
for a constant ε. Nevertheless, 1/H serves a natural length scale for the inflationary background
dynamics such that the effective dynamics is obtained by averaging over the modes with physical
wavelengths a/k . 1/H. Inserting (5.54) and (5.56) into (5.51), P(ϕ, N) satisfies the Fokker-Planck
equation

∂P
∂N

= −
m2

ϕ

3H2
∂(ϕP)

∂ϕ
− H2

8π2
∂2P
∂ϕ2 . (5.57)

The Fokker-Planck equation (5.57) is solved by a Gaussian ansatz with a time dependent variance
S(N) = 〈ϕ2〉(N),

P(ϕ, N) =
1√

2πS(N)
exp

(
− ϕ2

2S(N)

)
. (5.58)

Inserting (5.58) into (5.57) yields an equation for S,

dS
dN

=
2
3

m2
ϕ

H2 S− H2

4π2 . (5.59)

Eq. (5.59) for the variance S is interpreted as determining the time evolution of effective amplitude
of the scalar field by identifying [108],

ϕ(N) ≡
√

S(N). (5.60)
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The stochastic formalism is applied for a period in which the quantum diffusive term H2/4π2

dominates the classical term 2m2
ϕS/(3H2) in Eq. (5.59). The stochastic stage starts at some point

χ̂ > χ̂c at which m2
ϕ falls from large positive values towards zero, and ends when it takes large

negative values for some χ̂ < χ̂c. The onset of the stochastic stage can be determined by the
condition 2m2

ϕ/3H2 < 1. This ensures that for any inevitable initial increment of S(N) ∼ H2/4π2

the diffusive term dominates the classical one. Similarly, the end of stochastic phase can be roughly
estimated by the condition 2m2

ϕ/3H2 ≈ −1.
To estimate the duration ∆N of Stage 2, the time taken by 2m2

ϕ/3H2 to change from 1 to −1
must be computed. For the potential (5.18), the ratio 2m2

ϕ/3H2 around ϕ = 0 is given by

2m2
ϕ

3H2 = 4ζF
M2

P
m2

0
− 8ξ

F
F− 1

(5.61)

that, in turn, provides the estimate

∆F(χ̂) ≈ 1
ζ

m2
0

M2
P

. (5.62)

Along ϕ0, the difference ∆F can be estimated from Starobinsky inflation ∆F ≈ ∆N (c.f. Eq. (98) in
[69]), leading to

∆N ≈ 1
ζ

m2
0

M2
P

, (5.63)

which gives a direct relationship between the duration of the stochastic stage and the free param-
eters of the model.

5.6 Numerical treatment

The background evolution can be divided into three stages. The dynamics during Stage 1 where
χ̂ � χ̂c and Stage 3 where χ̂ � χ̂c can be determined via the standard techniques, in which
one ignores the feedback of the quantum fluctuations onto the background dynamics. Instead,
the background dynamics during Stage 2 where χ̂ ≈ χ̂c is obtained by applying the stochastic
formalism. This is because it is only during this phase that the changes in the field ϕ are dominated
by the diffusive kicks due to the quantum modes δϕk rather than the gradients of the background
potential. The entire background dynamics is obtained by patching the numerical solutions of
the equations in the individual stages in a way such that the preceding stage provides the initial
conditions for the subsequent one.

During Stage 1 and Stage 3, the exact equations of motion (5.45) and (5.46) are solved numer-
ically for both the scalar fields. During Stage 2, for which the stochastic formalism is used to
describe the ϕ dynamics, the following equations are solved numerically

dS
dN

=
2
3

m2
ϕ

H2 S− H2

4π2 , (5.64)

d2χ̂

dN2 = (3− εH)

(
dχ̂

dN
−

Ŵ,χ̂
Ŵ

M2
P

)
. (5.65)
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In order to patch the numerical solutions obtained in the different stages, one needs to find the
transition moments between them. During the first phase along ϕ0, the steep positive curvature
of the potential along the ϕ direction provides a strong restoring force which immediately erases
the effect of the continuous quantum kicks trying to drive ϕ away from ϕ = 0. The moment N1 of
the transition between Stage 1 and Stage 2 is taken to be the moment at which for the first time the
effect of a quantum kick will not be erased. This will be true when the drift term in (5.64) becomes
comparable to the diffusive term for S(N1) = H2(N1)/(4π2). The resulting condition is solved
numerically for N1 as

m2
ϕ(N1) =

3
2

H2(N1). (5.66)

Since S = ϕ2 is effectively zero before N1, the complete set of initial conditions which result from
patching Stage 1 and Stage 2 read

S(N1) = 0, (5.67)

χ̂|s2
N1

= χ̂|s1
N1

,
dχ̂

dN

∣∣∣∣s2

N1

=
dχ̂

dN

∣∣∣∣s1

N1

. (5.68)

Stage 2 lasts until the curvature of the potential becomes dominant again (but this time with a
negative sign). The time N2, at which Stage 2 ends, is determined numerically from the condition

−2
3

m2
ϕ(N2)

H2(N2)
S(N2) =

H2(N2)

4π2 . (5.69)

The initial conditions for Stage 3 are

ϕ|s3
N2

= S1/2(N2)
dϕ

dN

∣∣∣∣s3

N2

=
1

2
√

S
dS
dN

∣∣∣∣
N2

, (5.70)

χ̂|s3
N2

= χ̂|s2
N2

dχ̂

dN

∣∣∣∣s3

N2

=
dχ̂

dN

∣∣∣∣s2

N2

. (5.71)

It should be emphasized that the second stage typically lasts for less than one efold (|∆N| . 1)
and that the values acquired by ϕ at the beginning of Stage 3 are very small. This a posteriori
justifies the assumptions of slow-roll along ϕ in (5.53), the Taylor expansion of the potential in
(5.54), and the Gaussian solution (5.58) to the Fokker-Planck equation (5.57).

The numerical solutions for ϕ(N), χ̂(N) and a(N) are then used in the equations for the per-
turbations (5.39) and (5.40), which are solved numerically with Bunch-Davis initial conditions
imposed in the deep subhorizon regime. Finally, the power spectrum PR is then computed nu-
merically by considering that the pivot scale k∗ = 0.002 Mpc−1 crosses the horizon at N = 60
[3, 103]. The numerical results are presented in the next section.

5.7 The power spectrum

5.7.1 Starobinsky’s model

Since the new model proposed in the thesis is a generalization of Starobinsky’s model, it is in-
structive to begin by looking at the predictions of the latter. The power spectrum of the comoving
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curvature perturbation for Starobinsky’s model (5.11) is shown in Fig. 5.4. Since it is a single-field
model of inflation, Qσ is the only perturbation that we have with Qs = 0. As described in the pre-
vious sections, Fig. 5.4 is obtained by numerically determining the time evolution of Qσ(t, k) until
the end of inflation which then yields the dependence of the comoving curvature perturbation
R(k, tend) on k, at the end of inflation tend (c.f. Eq. (5.38)).

As mentioned in chapter 4, the power spectrum PR(k) is typically parametrized as a power
law

PR(k, tend) =
k3

2π2 |R(k, tend)|2 = A∗R

(
k
k∗

)n∗R−1
, (5.72)

with the values of A∗R and n∗R, for the reference scale k∗ = 0.05 Mpc−1, experimentally constrained
to be [3]

A∗R = (2.099± 0.014)× 10−9 and n∗R = 0.9649± 0.0042 . (5.73)

In Fig. 5.4, the parameters A∗R and n∗R are obtained by making a straight line fit to the (numerically
obtained) log10 (PR(k, tend)) vs log10(k/k∗) plot. The precise value of A∗R depends upon the free
parameter m0 in Starobinsky’s model which is adjusted to fit the observational bounds. The value
of the spectral index n∗R, however, does not depend explicitly upon the free parameter m0 of the
model. It can be seen that the predictions of Starobinsky’s model are in perfect agreement with
observations.

AR = 2.10 ´ 10-9, nR = 0.96645
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Figure 5.4: The log-log plot of the power spectra PR for Starobinsky’s model plotted for the
wavenumbers 2× 10−4Mpc−1 . kCMB . 2 Mpc−1 accessible to Planck [3].

5.7.2 The two-field inflationary model

In Sec. 5.4 it was argued that the two-field generalization of Starobinsky’s model (5.18) might lead
to the amplification of the power spectrum on a certain length scale. Having taken into account
the subtleties of the model described in Sec. 5.4 and Sec. 5.5, R(k, tend) can again be determined
numerically by solving the coupled Eqs. (5.39) and (5.40). The formation of a peak in the power
spectrum PR of the comoving curvature perturbation is shown in Fig. 5.5.
Fig. 5.5 shows the weak logarithmic k dependence of the power spectrum PR for large wave-
lengths (small k) during the first slow-roll phase along ϕ0 in Stage 1 with the amplitudePR ≈ 10−9
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Figure 5.5: The log-log plot of the power spectra PR evaluated at the end of inflation N = 0 as a
function of the wave number k.

required for the consistency with CMB measurements. At smaller wavelengths (larger k),PR expe-
riences a strong amplification leading to a peak centered around kp/k∗ ≈ 1015 with the amplitude
PR ≈ 10−2. This peak corresponds to the modes which cross the horizon during the turn/fall of
the inflationary trajectory. For modes that cross the horizon during the slow-roll phase in Stage 3,
the amplitude of PR ≈ 10−10 is slightly smaller than that for the modes that cross the horizon
during Stage 1.

As argued before, different modes start seeing the potential and its gradients at different times.
This is because the k2/a2 term becomes subdominant with respect to the curvature of the potential
at different times for different modes. Simply speaking, smaller wavelength (larger k) modes
require the scale factor to be bigger in order for the k2 term to be subdominant (c.f. Eq. (5.42)). For
the large wavelength modes (for instance kCMB), which begin to see the potential during Stage 1
itself, the perturbation Qs is suppressed due to the large positive effective mass m2

s during Stage 1.
For these modes Qσ never gets amplified. The modes which begin to see the potential when χ̂
reaches the critical point χ̂c, Qσ gets amplified because the perturbation Qs ∝ δϕ for these modes
exits the horizon (i.e when k = aH) at a finite value. Unlike the kCMB modes Qs is therefore
non-zero at χ̂ = χ̂c, which is the time at which the amplification mechanism begins. The modes
corresponding to even smaller wavelengths begin to see the inflationary potential only after the
trajectory has already fallen into the adjacent valleys, near the end of inflation. They never get
amplified since they exit the horizon after the amplification mechanism is over.

This provides a qualitative explanation of Fig. 5.5 in which we see that the power spectrum is
amplified only for only a small window of length scales. In particular, the mechanism renders the
predictions of the model the same as Starobinsky’s model for the length scales probed by Planck.

5.8 PBH formation

Primordial black holes can form during the radiation dominated era, after the end of inflation, by
the collapse triggered by large density perturbations imprinted during inflation. As mentioned in
chapter 4, the probability of generating such a perturbation with a large amplitude is enhanced
by the peaks in the inflationary power spectrum of the curvature perturbation [116, 75, 62, 22]. A
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PBH forms whenever the overdensity

δ(t, x) :=
ρ(t, x)− ρ̄(t)

ρ̄(t)
(5.74)

exceeds a critical value δc in a given (spherical) Hubble volume VH(t) := 4πr3
H(t)/3. The Hubble

radius is defined as rH(t) := 1/H(t) and the background density in a flat FLRW universe is given
by ρ̄(t) = 3H2(t)/(8πGN). With the help of numerical simulations, one arrives at the following
relationship between the mass of the PBH MPBH, the horizon mass MH = ρ̄(tf)VH(tf) at the time
of formation tf and the amplitude of the perturbation δ

MPBH(δ, tf) = K MH(tf)(δ− δc)
γ . (5.75)

The parameters K, δc and γ in Eq. (5.75) are determined numerically [76, 115, 94, 49].

5.8.1 PBH abundance

In order to calculate the PBH abundance, it is useful to define the fraction of the mass in the
universe which collapsed into PBHs at the time of formation. This fraction β is defined as

β(tf) :=
ρPBH(tf)

ρ̄(tf)
. (5.76)

In the Press-Schechter formalism β is calculated as [106]

β(tf) = 2
ˆ ∞

δc

dδ
MPBH(δ, tf)

MH(tf)
P(δ, tf). (5.77)

Here, P(δ, tf) is the probability density function of generating an overdensity with amplitude δ at
the moment of formation tf. Assuming that the perturbations δ are independent random variables,
they follow Gaussian statistics.3 The lower integration bound in (5.77) is determined by the critical
collapse density δc. The probability density of having an overdensity with amplitude δ is given by

P(δ, tf) =
1√

2πσ2(tf)
exp

{(
−1

2
δ2

σ2(tf)

)}
. (5.78)

Hence, the perturbations forming PBHs are very rare and lie near the tail of the Gaussian PDF
(5.78). Calculating β from (5.77) requires calculating the variance σ2(tf) = 〈δ2(tf)〉 in (5.78). The
Fourier transform of the density contrast δ(t, x) is given by

δ(t, x) =
ˆ

d3k
(2π)3/2 eikxδk(t). (5.79)

As described in chapter 4, σ2(t) is completely determined by the power spectrum Pδ(t, k) via the
two-point correlation function such that

σ2(t) =
ˆ ∞

0
d(ln k)Pδ(t, k), (5.80)

〈δk(t)δ∗k′(t)〉 =
2π2

k3 Pδ(t, k)δ3(k− k′). (5.81)

3For a discussion on non-Gaussian effects, see e.g. [23, 132, 52, 134].
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Since the perturbations δk(t) arise from the comoving curvature perturbations Rk(t) amplified
during inflation, Pδ(t, k) is related to the inflationary power spectrum PR(t, k). The linear relation
between δk in the radiation dominated era andRk is given by 4

δk(t) =
4
9

(
k

aH

)2
T(t, k)Rk(t). (5.82)

The transfer function T(t, k) describes the sub-horizon dynamics k > aH of δk(t) after horizon
re-entry, while T(t, k) = 1 for superhorizon scales k < aH. Thus, the variance (5.80) is obtained as

σ2(t) =
ˆ ∞

0
d(ln k)

16
81

(
k

a(t)H(t)

)4
T2(t, k)PR(t, k). (5.83)

The integral (5.83) diverges at the upper integration bound for small wavelengths λ = 1/k. This is
avoided by smoothing δ(t, x) with a unit normalized window function W(x− y, R) at a smoothing
scale R,

δR(t, x) =
ˆ

d3y W(x− y, R)δ(t, y). (5.84)

Physically, the coarse graining induced by the smoothing means that at every point x, the smoothed
overdensity δR(t, x) represents the average of δ(t, x) over a spherical region of radius R centered
at x, i.e. the substructures in the overdensity δ(t, x) below the resolution scale R are smoothed out
in δR(t, x) by the averaging procedure. We choose a modified Gaussian window function WG in
(5.84). Following the conventions in [131], the window function in Fourier space reads5

WG(kR) = exp
[
− (kR)2

4

]
. (5.85)

The window function (5.85) strongly damps out contributions from modes much larger than the
“smoothing mode” kR = 1/R. Since we assume that a PBH forms when the modes δk(t) re-enter
the horizon at t = tf, the smoothing mode should be identified with the comoving Hubble radius
at formation

kR ≡ a(tf)H(tf). (5.86)

The variance (5.83) at tf, smoothed at the horizon scale, acquires the form

σ2
R(tf) =

ˆ ∞

0
d(ln k)

16
81

(
k

kR

)4
W2(k/kR)PR(tf, k). (5.87)

In order to have a sizable mass fraction (5.77), the smoothed variance (5.87) must be sufficiently
large. This is naturally realized for the power spectrum which features a strong amplification at
k ≈ kR.

4For a discussion taking into account the effects of the more general non-linear relation between the curvature pertur-
bations and the density contrast see [55, 134].

5Note the additional factor of 1/2 in the argument of the exponential in (5.85). For a comparison of the impact of
different window function see [59].
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Moreover, the horizon mass MH(tf) at the time of formation is related to the peak scale kp [96]
such that

MPBH(kp) ≈ 6.3× 1012M�

(
kp

Mpc−1

)−2

, (5.88)

where kp is the scale at which the inflationary power spectrum peaks and M� denotes the mass of
the sun. For instance, kp ≈ 1012Mpc−1 in Fig. 5.5. If we are interested in generating PBHs within
a given mass range, relation (5.88) gives an estimate for the peak location in PR, which ultimately
depends on the free parameters of the model. If we demand that all CDM that we observe today
is made of PBHs, only a narrow range for the PBH mass is observationally allowed. The scale
kp at which PR must be strongly amplified is thus strongly constrained by observations thereby
resulting in strong constraints on the free parameters of the model. It is also important to realize
via Eqs. (5.87) and (5.88) that both the mass and the abundance of PBHs are determined by the
inflationary power spectrum PR.

5.8.2 Primordial black holes as cold dark matter

In the case when sufficiently large number of PBHs are formed in the radiation dominated era,
they could make up a large fraction of the presently observed CDM content in the Universe [73,
33, 20, 29, 28, 61]. Since the mass spectrum of PBHs is already considerably constrained on a broad
range of scales, there are only a few PBH mass windows in which this possibility can be realized
[27, 28]. The observationally allowed masses for PBHs making up the whole of CDM are

10−17M� . MI
PBH . 10−16M�, (5.89)

10−13M� . MI I
PBH . 10−9M�. (5.90)

In addition to MI
PBH and MI I

PBH, the detection of binary black hole mergers at LIGO/Virgo has
renewed interest in the possibility of a primordial origin of CDM for PBHs in the mass range

10M� . MI I I
PBH . 102M�. (5.91)

Although the possibility of explaining all the observed CDM by PBHs in the mass window MI I I
PBH

seems to be ruled out observationally [27, 28, 113], a peak leading to the production of PBHs in the
mass range MI I I

PBH would provide an inflationary explanation for the observed merger events. For
these reasons, only the parameter combinations which lead to PBHs in these three mass windows
are considered in this work, as they are the most observationally relevant ones. The mass intervals
(5.89)-(5.91) directly translate into k intervals in which the peak featured in PR, centered at kp,
must lie (c.f. Eq. (5.88)):

kI
p ≈ 1015Mpc−1, (5.92)

1013Mpc−1 & kI I
p & 1011Mpc−1, (5.93)

kI I I
p ≈ 106Mpc−1. (5.94)
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In order to quantify the fraction of CDM that is made up of PBHs, the parameter FPBH is defined
in terms of the distribution f (MPBH)

FPBH :=
ˆ ∞

−∞
f (MPBH)d ln MPBH , (5.95)

such that FPBH = 1 when the CDM energy density ρCDM(t0) as observed today is equal to the
energy density due to primordial black holes ρPBH(t0), FPBH < 1 when ρPBH(t0) < ρCDM(t0) and
FPBH > 1 when ρPBH(t0) > ρCDM(t0). As discussed before, the probability that a PBH forms is
related to the amplitude of the power spectrum PR. Therefore, while the observational constraints
(5.89)-(5.91) determine the scale at which the power spectrum must peak, demanding that FPBH =
1 determines the amplitude of the peak of the power spectrum on those scales. The distribution
f (MPBH) typically assumes a log-normal shape given by

f (MPBH) =
AM√
2π∆2

M

exp

{
− [ln (MPBH/M0)]

2

2∆2
M

}
, (5.96)

and is ultimately determined by the inflationary power spectrum. This is because f (MPBH) is
related to β (Eq. (5.77)). β in turn depends on P(δ). P(δ) depends on σ2 (Eq. (5.78)) and σ2 depends
on PR (Eq. (5.87)). The relationship between f (MPBH), which encodes the distribution of the PBH
masses, and σ2

R, which is related to the inflationary power spectrum, is rather involved and is
derived in the appendix of publication I [68] (Eq. (A23)). Nevertheless, it is clear that starting
from the inflationary power spectrum the mass distribution of the PBHs can be computed. Using
the expression derived in publication I [68], this distrubtion is plotted in the figures presented in
Sec. 5.9.

In the next section it is shown that there exists a suitable combination of the free parameters
(ξ, ζ, λ) that leads to FPBH = 1 for the mass windows MI

PBH and MI I
PBH. While the observational

constraints rule out the possibility of CDM being made of PBHs lying in the mass window MI I I
PBH,

we also show for completeness that a suitable parameter combination can still lead to maximally
allowed PBH production within this mass window such that FPBH . 10−2-10−3 [27, 28, 113].

5.9 Results

5.9.1 Mass windows MI
PBH and MI I

PBH

For appropriate parameter values of the two-field generalization of Starobinsky’s model, it is
shown in this section that the mass distributions f (MPBH) with FPBH = 1 can be realized in both
mass windows MI

PBH and MI I
PBH. In Fig. 5.6 a sample parameter combination is chosen for which

PR peaks at kp ≈ 1015Mpc−1 and generates a significant amount of CDM in mass window MI
PBH.

The left plot in Fig. 5.6 shows a mass distribution f (MPBH) which leads to FPBH = 0.69 for ξ = 38.
The right plot in Fig. 5.6 illustrates the sensitivity of f (MPBH) on ξ. For a ξ larger by only 0.5%,
the amplification mechanism is already too strong and leads to the observationally unacceptable
large value of FPBH = 1.4.
Similarly, Fig. 5.7 shows f (MPBH) for two parameter combinations in the mass window MI I

PBH.
The left plot in Fig. 5.7 shows an observationally viable scenario with FPBH = 0.5, while the right
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Figure 5.6: Left: f (MPBH) for λ = 10−5, ξ = 38, ζ = 3.30× 10−10 leading to the log-normal fit
with Ap = 0.003835, ∆p = 0.592179 and kp = 3.04× 1015Mpc−1. Right: f (MPBH) for λ = 10−5,
ξ = 38.2, ζ = 3.31× 10−10 leading to the log-normal fit with Ap = 0.00391, ∆p = 0.5919 and
kp = 3.03× 1015Mpc−1. Both plots are obtained for m0 as in (5.100).
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Figure 5.7: Left: f (MPBH) for λ = 10−5, ξ = 36, ζ = 2.29× 10−10 leading to the log-normal
fit with Ap = 0.00485, ∆p = 0.6360 and kp = 3.69× 1012Mpc−1. Right: f (MPBH) for λ = 10−5,
ξ = 36.5, ζ = 2.31× 10−10 leading to the log-normal fit with Ap = 0.0051, ∆p = 0.6348 and
kp = 3.46× 1012Mpc−1. Both plots are obtained for m0 as in (5.100).

plot leads to a an unacceptable value FPBH = 2.1. This illustrates that the model parameters can be
adjusted such that a significant fraction of CDM (including all CDM) is made of PBHs in the two
mass windows (5.89)-(5.90).

5.9.2 LIGO mass window MI I I
PBH

If the observed LIGO black hole merger events are of inflationary origin, the merger rates may
be used to constrain the power spectrum via the PBH mass distribution f (MPBH). Observation-
ally, in the LIGO mass window (5.91), the upper bound on the total fraction FPBH is most likely
constrained to lie between 10−3-10−2, c.f. [28]. There seems to be some ambiguity concerning the
precise upper bound on FPBH for the LIGO mass window MI I I

PBH. Some works [34, 107, 60, 43]
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suggest that FPBH is closer to 10−3 while others indicate that FPBH could attain much higher values
[77, 133, 78, 35].
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Figure 5.8: Left: f (MPBH) obtained for the LIGO mass window MPBH ≈ 10M� for parameter
values λ = 10−5, ξ = 34 and ζ = 1.345 × 10−10. Right: f (MPBH) in the LIGO mass window
MPBH ≈ 10M� for parameter values λ = 10−5, ξ = 36.70 and ζ = 1.396× 10−10. Both plots are
obtained for m0 as in (5.100).

Fig. 5.8 shows that the chosen model parameters generate a distribution f (MPBH) consistent with
the observational constraints. The total fraction FPBH is highly sensitive to the model parameters,
in particular to ξ, as can be seen by comparing the two plots in Fig 5.8 where FPBH = 4.1× 10−3

for the left plot and FPBH = 0.9 for the right plot. Therefore, by fine tuning the model parameters
any numerical value FPBH ≤ 1 can be obtained.

5.10 Identification with the Higgs field

While in Starobinsky’s model inflation is driven by the additional scalar degree of freedom ex-
tracted from the R2 term (Eq. (5.1)), in Higgs inflation, the inflaton is identified with the Standard
Model (SM) Higgs boson non-minimally coupled to the Ricci scalar [18]. More explicitly, fh(R, ϕ)
in Eq. (5.2) for Higgs inflation is taken to be

fh(R, ϕ) =
U(ϕ)

2
R−V(ϕ) , (5.97)

with U(ϕ) = M2
P + ξϕ2 and V(ϕ) = λϕ4/4 being the same as in Eqs. (5.15) and (5.17) respectively

6. The starting action (5.97) is of the same form as Eq. (5.6) with an additional simplification that we
only have one scalar field, since the additional scalar field would only appear if one had modified
gravity terms in the starting action. As before, we get rid of the non-minimal coupling to the
gravity sector by making a conformal transformation ĝµν = Ω(ϕ)gµν such that action reads [18]

Sh[ĝ, û] =
ˆ

d4x
√
−ĝ

[
M2

P
2

R̂− 1
2

∂µû∂µû− Ŵ(û)

]
, (5.98)

6Since ν/MP ≈ 10−16, we neglect the constant ν present in the Higgs potential for the inflationary analysis.
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where Ω(ϕ) := 1 + ξϕ2/M2
P, dû/dϕ :=

√
(Ω + 6ξ2 ϕ2/M2

P)/Ω2 and Ŵ = V(ϕ(û))/Ω2(û).

For large field values ϕ � MP/
√

ξ, the effective inflationary potential Ŵ(û) can be shown to
take the same functional form as the Starobinsky potential (5.11) [18]. Therefore, the model of
Higgs inflation in which the scalar field is non-minimally coupled to gravity via the ξϕ2 term,
and Starobinsky’s model, in which inflation is governed by the scalaron extracted from the R2

term, yield the same predictions for the inflationary observables. The new two-field model (5.12)
considered in this work, which leads to the two-field inflationary potential (5.18), can therefore be
seen as a combination of the two models with an additional assumption that the R2 term is also
non-minimally coupled to the Higgs field via the coupling constant ζ.

The combination of Higgs inflation and Starobsinksy inflation in which ζ = 0 has already been
studied in previous works [48, 129, 74, 69]. It was concluded that also this simple combination
of the two models yields the same predictions for the inflationary observables as Higgs inflation
and/or Starobinsky inflation. However, with ζ = 0, the amplification of the power spectrum can-
not be realized. As we have seen, by paying the price of introducing this additional non-minimal
coupling between the R2 term and the Higgs field, the amplification of the power spectrum can be
realized which then offers the possibility to explain the observed CDM content in terms of PBHs.

In the SM, the value of the quartic Higgs coupling λ ≈ 10−1 is determined by the symmetry
breaking scale ν and the Higgs mass Mh. In view of the energy gap between the electroweak
energy scale and the inflationary energy scale, the RG flow is needed to determine the value of
λ during inflation [17, 44, 8]. An analysis of the full RG system of the extended scalaron-Higgs
model would be required for a precise determination of the running λ at the inflationary energy
scale which is not done here.

Instead, it is shown that for the likely values of 10−2 . λ . 10−6 that maybe realized for the
Higgs field during inflation [71, 16, 72], the other parameters of the model allow for a sufficient
amplification of the power spectrum so as to generate sufficient PBHs within the observationally
constrained mass windows MI

PBH and MI I
PBH to account for the observed CDM content.

5.11 Constraining the parameters

Let us assume for the sake of argument that PBHs accounting for CDM have masses ranging
within the mass window MI I

PBH. Then the first constraint on the inflationary model is provided by
the CMB observations on length scales 2× 10−4Mpc−1 . kCMB . 2 Mpc−1. The second constraint
is provided by the fact that the power spectrum must peak at a scale kI I

PBH to generate PBHs within
MI I

PBH. The third constraint is provided by the desire that the amplitude of the power spectrum
peak must be just right so that one can account for the whole of dark matter. For a given value of
λ that might lie somewhere between 10−2 . λ . 10−6, these three constraints completely fix the
remaining free parameters of the model.

5.11.1 CMB constraint

Since the CMB modes satisfy kCMB � kI I
p , they start seeing the inflationary potential much before

the inflationary trajectory reaches the critical point. Before reaching the critical point, the inflation-
ary trajectory is along ϕ = 0 where the two field potential reduces to the Starobisnky potential.
The predictions for the power spectrum PR(k) for the CMB modes would then be the same as
Starobinsky’s model. It was mentioned before that while the predicted value of the spectral index
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nR for Starobinsky’s model is independent of the parameter m0, the amplitude AR depends ex-
plicitly on this value. An oversimplified way of seeing this is to recall from Eq. (4.50) of chapter (4)
that PR ∝ H2 and within the slow roll approximation H2 ∝ Ŵ. From Eq. (5.11) we see further
that Ŵ ∝ m2

0. Thus, the CMB constraints on the scalar power spectrum fix the value of m0. More
precisely, in Starobinsky inflation we have the relations

A∗R ≈
N2
∗

24π2
m2

0
M2

P
, n∗R ≈1− 2

N∗
, (5.99)

where, as mentioned before, N serves as the dimensionless time parameter which counts the num-
ber of efolds remaining from the end of inflation. This means that for a given N, the scale factor
is smaller by a factor of e−N compared to its value at the end of inflation. N∗ is the efolding
number at which the mode k∗ crosses the horizon (which is to say that it satisfies the condition
k∗ = a(N∗)H(N∗)). Planck data [3] constraints A∗R, n∗R at k∗ = 0.05 Mpc−1 at values already spec-
ified in Eq. (5.73).

Taking N∗ = 60 for k∗ = 0.002Mpc−1, the scalaron mass is fixed to be

m0 ≈ 1.18× 10−5 MP . (5.100)

5.11.2 Constraint imposed by the PBH mass

In this section the relationship between the model parameters ζ and ξ and the PBH mass is ob-
tained. Using the definition of the number of efolds N∗ − N = ln a/a∗, for modes which cross the
horizon at k = aH and k∗ = a∗H with constant H ≈ H∗ respectively, we obtain N∗ − N = ln k/k∗.
During the phase of effective Starobinsky inflation, there is a simple relation between N and the
field value χ̂ given by N(χ̂) ≈ F(χ̂) (with F(χ̂) defined as in Eq. (5.13)). The peak in PR(k) is
centered around the modes k ≈ kp ± ∆k which cross the horizon in the vicinity of χ̂c. Hence, we
can express kp in terms of χ̂c defined in (5.49) by the relation

kp ≈ k∗ exp

(
N∗ − 1− 2

ξ

ζ

m2
0

M2
P

)
. (5.101)

Since MPBH is related to the peak scale kp via (5.88) we finally obtain MPBH in terms of the model
parameters, the pivot scale k∗ and the total number of efolds N∗,

MPBH ≈ M�

(
4× 10−7 k∗

Mpc−1

)−2

e
−2(N∗−1)+4 ξ

ζ

m2
0

M2
P . (5.102)

For N∗ = 60, k∗ = 0.002 Mpc−1, and m0 as in (5.100), we obtain the linear scaling relation between
ζ and ξ with a MPBH-dependent proportionality coefficient

ζ ≈ 5.6× 10−10
[

ln
(

1033 MPBH

M�

)]−1
ξ. (5.103)

Thus, the observational constraint that the PBHs accounting for CDM can either belong to MI
PBH

or MI I
PBH, imposes a relationship between the parameters ζ and ξ leaving only one out of the two

free. Next, we obtain a relation involving λ and ξ from the requirement that FPBH = 1 for a mass
distribution f (MPBH) centred around a given MPBH.
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5.11.3 Constraint imposed by the peak amplitude

In view of the complex inflationary dynamics around peak formation, going beyond an order of
magnitude estimate based on various simplifying assumptions is rather difficult. Since in any case
the results are obtained by a full numerical treatment, the discussion in this section is only meant
to provide a rough understanding of how the parameters of the model control the amplification
mechanism of the power spectrum.

We begin by noting that PR(k) is related to the perturbation Qσ(N, x) in position space by
ˆ

d ln kPR(k) =
1

2εH

〈
Q2

σ(N, x)
〉

M2
P

. (5.104)

According to Eq. (5.37), Qσ is related to δχ̂ and δϕ via Qσ = GI J σ̂
IδΦJ , with ΦI and GI J defined in

Eq. (5.20). During most of the inflationary dynamics along ϕ0 and the later part of the dynamics in
ϕ±v , the inflaton vector σ̂I points in the χ̂ direction and Qσ exclusively receives contribution from
δχ̂. Only during the short peak formation stage in the vicinity of χ̂c, where the trajectory turns
and σ̂I has a non-zero component in ϕ-direction, Qσ also receives contribution from δϕ. Here, we
assume that during this period σ̂I points in the ϕ-direction such that (σ̂ϕ)2 = F (c.f. Eq. (5.26)).7

For modes k ≈ kp ± ∆k, which cross the horizon during this period, (5.104) reduces to
ˆ kp+∆k

kp−∆k
d ln kPR(k) ≈

1
2εHF

〈δϕ2〉
M2

P
. (5.105)

For a simplified treatment we take the sharp peak limit PR(k) ≈ Apδ(ln k− ln kp) such that (5.105)
becomes

Ap ≈
1

2εHF
〈δϕ2〉

M2
P

. (5.106)

Although the slow-roll dynamics along ϕ±v slightly differs from that of the effective Starobinsky
inflation along ϕ0, for an order of magnitude estimate we use the background relations of Starobin-
sky inflation F(χ̂) ≈ N and εH(N) ≈ 1/N2 evaluated at Nc := N(χ̂c), so that (5.106) reduces to8

Ap ≈
Nc

2
〈δϕ2〉

M2
P

. (5.107)

As discussed in Sec. 5.5, close to χ̂c quantum diffusive effects dominate and a stochastic treatment
is required during which ϕ(N) is identified with 〈δϕ2(N, x)〉1/2. But even after the stochastic
phase, during the fall from ϕ0 to ϕ±v , both δϕ and ϕ continue to grow together – δϕ because
Ŵ,ϕϕ is still negative, and ϕ because it moves away from ϕ = 0 to larger field values until it
reaches ϕ±v (inside one of the two adjacent valleys that re-emerge for χ̂ < χ̂c). Hence

√
〈δϕ2〉

is bounded from above by the maximum distance between the hill and one of the two valleys
ϕ±v (χ̂max)− ϕ0 = ϕ±v (χ̂max). This value of χ̂max can be obtained by solving

∂ϕ±v (χ̂)

∂χ̂

∣∣∣∣
χ̂max

= 0 , such that 〈δϕ2〉 ≤
∣∣ϕ±v (χ̂max)

∣∣2 . (5.108)

7The exact dynamics is more complicated and involves a short phase in which δϕ and δχ̂ simultaneously contribute to
Qσ .

8To produce PBHs in the mass windows MI I I
PBH and MI I

PBH, we find Nc ≈ 40 and Nc ≈ 25, respectively.
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A strong amplification ofPR(k) requires a large δϕ and hence a large |ϕ±v (χ̂max)|. The inequality in
(5.108) can be parametrized by 〈δϕ2〉 ≈ α2|ϕ±v (χ̂max)|2 with α ∈ [0.1, 1].9 The analytic expression
for |ϕ±v (χ̂max)|2 is found from (5.44) and the first equation in (5.108) as10

|ϕ±v (χ̂max)|2 =
m2

0
ζ

L(x), (5.109)

with x is the same as in Eq. (5.50), and the function L(x) defined by

L(x) :=
2− 2

√
1− x− x
x

. (5.110)

As discussed in Sec. 5.3, the predictions of the model are independent of the point where the
inflationary trajectory starts on the two-field potential only if x < 1. Taking this to be the case,
the function (5.110) takes arguments from x ∈ [0, 1) which means that (5.110) takes values in the
interval L(x) ∈ [0, 1). For an order of magnitude estimate we approximate L(x) = x/4 +O(x2)
and obtain

〈δϕ2〉 ≈ α2|ϕ±v (χ̂max)|2 ≈
α2m2

0
4ζ

x. (5.111)

Combining (5.107) with (5.111), we obtain the analytic estimate for the peak amplitude

Ap ≈
Nc

8ζ

m2
0

M2
P

α2x. (5.112)

It was argued in Sec. 5.5 that ∆N ≈ m2
0/(M2

Pζ) corresponds to the duration of the stochastic phase.
This phase must be sufficiently short ∆N . 1 in order to produce a narrow peak in PR(k). If
∆N � 1, a larger window of modes would feel the amplification mechanism leading to a broader
peak of PR(k) which then risks to produce a broader distribution f (MPBH) incompatible with the
observational constraints. Since Nc = O(10), the magnitude of the total prefactor in (5.112) is
estimated to be of order Nc ∆Nα2/8 ≈ 10−2, leading to the condition

Ap ≈ 10−2x. (5.113)

Since a significant FPBH ≈ 1 requires a peak amplitude Ap ≈ 10−2-10−3 [113, 68], it is clear that x
cannot be much smaller than one and we finally obtain the estimate

x ≈ 1. (5.114)

This yields the approximate scaling relation

λ ≈ 6
m2

0
M2

P
ξ2. (5.115)

9Geometrically, the inflection point which lies between ϕ0 and ϕ±v cannot be too close to ϕ0 = 0. In addition, the inertia
of the background dynamics carries the trajectory along ϕ0 even after reaching the bifurcation point shown in the left plot
of Fig. 5.1, such that the fall into ϕ±v happens only after the valleys reach a sufficient separation, justifying the lower bound
on α.

10The criterion to determine χ̂max in (5.108) only applies to Scenario I. Only in this scenario, the valleys re-emerge at the
bifurcation point χ̂c turn and again move towards ϕ = 0.
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Inserting the scalaron mass m0 from (5.100), we obtain

λ ≈ 10−9ξ2. (5.116)

The precise value of FPBH for a given power spectrum PR(k) ≈ Apδ(ln k− ln kp) is exponentially
sensitive to the peak amplitude Ap [68]. This is the main reason why any attempt to obtain a pre-
cise analytical relation for FPBH in terms of the model parameters is hard to realize. Nevertheless,
in view of (5.113), the amplification only depends on x such that the same amplification is achieved
for different values of ξ and λ as long as they are related by the scaling relation (5.116). In general,
the exact numerical factor in the quadratic scaling law (5.116), depends on the values of FPBH and
the PBH mass MPBH at which the mass distribution f (MPBH) peaks, but the scaling law λ ∝ ξ2

will be the same for all mass windows and total mass fractions.
Finally, the analytical estimates (5.103) and (5.115) are confirmed by an exact numerical analy-

sis. A systematic parameter scan is performed for different values of λ, ξ and ζ such that a mass
distribution f (MPBH) in the window MI I

PBH centered around MPBH = 10−11M� with FPBH ≈ 1 is
realized. The parameters λ, ξ and ζ that permit such realizations, are related to each other by the
scaling relations shown in Fig. 5.9, which are remarkably close to the analytical estimates (5.103)
and (5.115).
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Figure 5.9: Numerically obtained scaling relations for the parameters leading to FPBH ≈ 1 for
f (MPBH) centered around MPBH = 10−11M�. Left: Linear scaling relation between ζ and ξ. Nu-
merically generated points (red) linear fit (blue). Right: Quadratic scaling relation between λ and
ξ. Numerically generated points (red) quadratic fit (blue).

The linear and quadratic fits to the numerically found scaling relations in Fig. 5.9 are given by

ζ = 4.23× 10−12ξ, λ = 2.47× 10−9ξ2. (5.117)

In addition to the correct functional form of the scaling relations, also the numerical coefficients
in (5.117) agree well with those predicted by the analytic estimates (5.103) and (5.116), thereby
numerically confirming them.
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5.12 Discussion

All parameters of the extended scalaron-Higgs model are fixed. The parameter m0 is fixed by
the CMB constraint (5.100) on the scalar inflationary power spectrum at large wavelengths, in-
dependently of the value of λ. In contrast, the non-minimal couplings ζ and ξ are ultimately
determined in terms of λ by the scaling relations (5.103) and (5.115). The relations are determined
by the requirement that the peak in PR(k) leads to a significant FPBH with a PBH mass distribution
f (MPBH) centered around MPBH. It is shown in this work that an analytic relationship between
the parameters of the new proposed model can be determined such that the model can offer to
account for the whole of dark matter within the observationally viable mass windows while at the
same time being compatible with the CMB constraints. Since this relationship holds for a range
of values of λ, that might be acquired by the Higgs field at inflationary energy scales, the conclu-
sion is that by considering Starobinsky’s model in which both the Ricci scalar and the Starobinsky
term are non-minimally coupled to a scalar field, possibly the Higgs field, one can simultaneously
account for the CMB observations and the observed CDM content in the universe.
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Chapter 6

Inflationary cosmology and its
implications for dynamical collapse
models

The discussion presented in chapter 5 shows how the various theoretically well motivated models
of inflation offer to account for the CMB observations. Even if we cannot yet pinpoint at the nature
of the inflaton, cosmological inflation is still widely regarded to be a part of standard cosmology.
In particular, the quantum fluctuations of the inflaton field are regarded as the most likely ori-
gin for the large-scale structure in the universe. This, however, also raises conceptual questions
concerning its quantum-to-classical transition. The subject is still actively debated within the com-
munity, where some argue for decoherence as an explanation [4, 105, 82], while others suggest the
need for a modification to the standard quantum dynamics [102, 121, 104, 32, 98].

Several works have applied the models of wavefunction collapse to cosmology in a similar
context [102, 84, 45, 85, 41, 42, 88, 87]. In this chapter, a plasuible generalization of the mass pro-
portional Continuous Spontaneous Localization (CSL) model [101, 58], which is the most studied
among the dynamical collapse models, is proposed and its consequences for the evolution of the
scalar perturbations during the early universe are investigated.

Under the influence of CSL dynamics, the corrections to the expectation value of any observ-
able can be computed by using standard perturbation theory. This can be done by identifying
a suitable stochastic perturbation to the original Hamiltonian, depending upon the choice of the
collapse operator. The observable of interest for which the corrections will be computed is the co-
moving curvature perturbation R̂. Since the modified dynamics a priori does not guarantee even
the large wavelength modes of R̂ to remain constant after the end of inflation, the power spec-
trum PR under the modified CSL dynamics is evaluated both during inflation and the radiation
dominated era. The discussion presented here concerns publication III [67].

6.1 Mass proportional CSL model

As introduced in chapter 3, dynamical collapse models are phenomenological models which mod-
ify the standard Schrödinger evolution through the addition of nonlinear and stochastic terms. The
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model is defined through the SDE

d |ψ〉 =
[
−iĤdt +

√
γ

m0

ˆ
dx
[
M̂(x)− 〈M̂(x)〉

]
dWt(x)

− γ

2m2
0

ˆ
dxdy

[
M̂(x)− 〈M̂(x)〉

]
G(x− y)

[
M̂(y)− 〈M̂(y)〉

]
dt

]
|ψ〉 . (6.1)

Here, Ĥ is the Hamiltonian of the system, γ encodes the strength of the collapse process, 〈·〉 de-
notes the expectation value computed with respect to the state |ψ〉, the noise Wt(x) is defined in
terms of the temporal and spatial correlations

E [ξt(x)ξt′(y)] = G(x− y)δ(t− t′), where G(x− y) =
1

(4πr2
C)

3/2 e
− (x−y)2

4r2
C , (6.2)

with ξt(x) = dWt(x)/dt, the symbol E[·] indicates the stochastic average, rC denotes the second
phenomenological parameter of the model, m0 is the reference mass scale taken to be the mass of
the nucleon and the operator M̂(x) in Eq. (6.1) is the mass density operator which involves the
creation and annihilation operators of different types of particles

M̂(x) = ∑
j

mj â†
j (x)âj(x) . (6.3)

Note that in this chapter we only work with the physical process such that |ψ〉 denotes the nor-
malized physical statevector and not the one representing the raw process as in chapter 3.

The expectation value E[〈ψ| Ô |ψ〉] of an arbitrary operator Ô can be calculated in terms of the
density operator ρ̂ as E[〈ψ| Ô |ψ〉] = Tr[Ôρ̂]. As described in chapter 3, under the influence of CSL
dynamics, the time evolution of the density matrix corresponding to the statevector (6.1) is the
same as the one obtained for the statevector which, instead, satisfies the Schrödinger equation (in
the Stratonovich representation) in the presence of an additional stochastic Hamiltonian. For the
SDE (6.1) and the CSL noise (6.2), this stochastic Hamiltonian ĤCSL must be identified with

ĤCSL =

√
γ

m0

ˆ
dxM̂(x)ξt(x) . (6.4)

6.2 Interaction picture framework

Modifications due to CSL dynamics can be quantified via perturbative approach. The total Hamil-
tonian Ĥ can be decomposed as

Ĥ = Ĥ0 + ĤCSL, (6.5)

where Ĥ0 is the Hamiltonian of the system and ĤCSL is the additional contribution due to dynam-
ical collapse models. The calculations are then performed in the interaction picture where, after
identifying Ĥ0 as the time dependent background Hamiltonian, the operators ÔI and the states
|ψI(t)〉 are given by

ÔI(t) = Û−1
0 (t, t0)ÔÛ0(t, t0) , |ψI(t)〉 = ÛCSL(t, t0) |ψ(t0)〉 , (6.6)
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with

Û0(t, t0) = T
{

exp
[
−i

ˆ t

t0

dt′Ĥ0(t′)
]}

, ÛCSL(t, t0) = T
{

exp
[
−i

ˆ t

t0

dt′ĤI
CSL(t

′)

]}
. (6.7)

Here, T denotes the time-ordering operator and ĤI
CSL the appropriate stochastic Hamiltonian in

the interaction picture. The general discussion can be presented without making a specific choice
for the collapse operator. Thus, for now, we consider the stochastic Hamiltonian ĤCSL to be given
by

ĤCSL(t) =
√

γ

m0

ˆ
dx ξt(x)L̂CSL(t, x), (6.8)

where L̂CSL(t, x) is an operator yet to be specified but γ, m0 and ξt(x) are the same as in Eq. (6.1).
Taking into account the time dependence of both the operator ÔI(t) and the state |ψ(t)〉, and re-
taining only the leading order term in γ, we get

〈Ô〉 = 〈ψI(t)| ÔI(t) |ψI(t)〉

≈ 〈ψ(t0)|
[

1̂ + i
ˆ t

t0

dt′ĤI
CSL(t

′)−
ˆ t

t0

ˆ t′

t0

dt′dt′′ĤI
CSL(t

′′)ĤI
CSL(t

′)

]
ÔI(t)

[
1̂− i

ˆ t

t0

dt′ĤI
CSL(t

′)

(6.9)

−
ˆ t

t0

ˆ t′

t0

dt′dt′′ĤI
CSL(t

′)ĤI
CSL(t

′′)

]
|ψ(t0)〉

= 〈ψ(t0)|
[

ÔI(t)− i
ˆ t

t0

dt′
[
ÔI(t), ĤI

CSL(t
′)
]
−
ˆ t

t0

ˆ t′

t0

dt′dt′′
[
ĤI

CSL(t
′′),
[
ĤI

CSL(t
′), ÔI(t)

]]]
|ψ(t0)〉 .

The next step involves taking the stochastic average over all the realizations of the noise such that

O ≡ E[〈Ô〉] ≈ 〈ψ(t0)| ÔI(t) |ψ(t0)〉 −
i
√

γ

m0

ˆ t

t0

dt′
ˆ

dx′E[ξt(x′)] 〈ψ(t0)|
[
ÔI(t), L̂I

CSL(t
′, x′)

]
|ψ(t0)〉

− γ

m2
0

ˆ t

t0

ˆ t′

t0

dt′dt′′
ˆ

dx′
ˆ

dx′′E
[
ξt′′(x

′′)ξt′(x
′)
]
〈ψ(t0)|

[
L̂I

CSL(t
′′, x′′),

[
L̂I

CSL(t
′, x′), ÔI(t)

]]
|ψ(t0)〉.

(6.10)

Afetr using Eq. (6.2), the expression simplifies further to be

O ≈ 〈ψ(t0)| ÔI(t) |ψ(t0)〉

− λ

2m2
0

ˆ t

t0

dt′
ˆ

dx′
ˆ

dx′′e
− (x′′−x′)2

4r2
C 〈ψ(t0)|

[
L̂I

CSL(t
′, x′′),

[
L̂I

CSL(t
′, x′), ÔI(t)

]]
|ψ(t0)〉, (6.11)

where λ := γ/(4πr2
C)

3/2. The full expectation value O can be written as the sum of the original
expectation value in the absence of collapse dynamics and the leading order correction that it
induces

O = 〈Ô(t)〉0 + δO(t)CSL . (6.12)
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Here,

〈Ô(t)〉0 = 〈ψ(t0)| ÔI(t) |ψ(t0)〉 ,

δO(t)CSL = −
λ

2m2
0

ˆ t

t0

dt′
ˆ

dx′
ˆ

dx′′e
− (x′′−x′)2

4r2
C 〈ψ(t0)|

[
ĤI

CSL(t
′, x′′),

[
ĤI

CSL(t
′, x′), ÔI(t)

]]
|ψ(t0)〉 .

(6.13)

6.3 Choice of the collapse operator

The FLRW background spacetime offers a simple generalization of the CSL noise (6.2). It is
achieved by demanding that, in terms of the physical coordinates xp and the cosmic time t, the
same correlations for the noise are obtained as in Eq. (6.2). However, since it will be more con-
venient to work with the conformal time η and the comoving coordinates x, the noise ξη(x) is
expressed in terms of the same, such that the condition mentioned before is satisfied. It is there-
fore given by

E[ξη(x)] = 0, E[ξη(x)ξη′(y)] =
δ(η − η′)

a(η′)
G(x− y), G(x− y) =

1
(4πr2

C)
3/2 e

− a2(η)(x−y)2

4r2
C .

(6.14)

In the terms of the same coordinates, the expectation value of the operator Ô can then be expressed
as

〈Ô(η)〉0 = 〈0| ÔI(η) |0〉 ,

δO(η)CSL = −
λ

2m2
0

ˆ η

η0

dη′

a(η′)

ˆ
dx′

ˆ
dx′′e

− a2(η′)(x′′−x′)2

4r2
C 〈0|

[
ĤI

CSL(η
′, x′′),

[
ĤI

CSL(η
′, x′), ÔI(η)

]]
|0〉 .

(6.15)

Having proposed a suitable generalization of the CSL noise, we now proceed towards the choice
of the collapse operator in a cosmological setting. Working within the framework of cosmological
perturbation theory, we remember that only the perturbations of the background quantities are
quantized. Therefore, any Hermitian operator Q̂(η, x) can be written as Q(η)1+ ˆδQ(η, x). Since
the collapse operator appears in the form M̂(x)− 〈M̂(x)〉 in Eq. (6.1), we see that the background
dynamics Q(η)1 does not influence the choice of the collapse operator [87]. Since the generaliza-
tion is confined to this framework, the classicality of the background dynamics makes it sufficient
to choose a collapse operator that is a function of the scalar perturbations only.

While different choices for the collapse operator have been previously proposed, most of the
choices are either linear or, to leading order, linearized in the field perturbations. In some works,
for instance, the collapse operator was taken to be the rescaled variable û = aδϕ̂ (c.f. Eq. (4.24))
itself [86, 24]. Similarly, in [87], the perturbed matter-energy density δ̂ρ, which is related to the
zero-zero component of the stress energy-momentum tensor, was taken to be the collapse operator.
These choices differ from the standard CSL model (applied to laboratory situations) in which the
collapse operator is quadratic in the creation and annihilation operators and not linear. This trait
is important as one would like that the collapse operator couples different Fourier modes as in the
standard case [2], which is not possible when the collapse operator is linear in the fields.
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In the present work, the collapse operator is taken to be the Hamiltonian density of the scalar
cosmological perturbations such that L̂I

CSL(η, x) = ĤI
0(η, x). During inflation, following the dis-

cussion in chapter 4, it is the Hamiltonian corresponding to the action (4.23). This choice allows
one to respect the essentials of both the CSL model and the cosmological perturbation theory, as
within its standard framework the Hamiltonian density is already quadratic in the creation and
annihilation operators upto leading order in the perturbations. This choice of the collapse operator
can also be viewed as making a relativistic generalization of the non-relativistic mass density in
the standard laboratory situations.

To proceed towards the goal of computing the CSL modifications to the power spectrum PR,
in Eq. (6.15), the initial state will be taken to be the Bunch-Davies vacuum state |0〉 and the op-
erator Ô to be R̂2. The CSL corrections are evaluated over two cosmological epochs. The first
one is the phase of cosmological inflation described in Sec. 6.4.1 and the second one is that of the
radiation dominated era described in Sec. 6.4.2. These two are separated at η = ηe by a phase
of reheating, with ηe denoting the end of inflation. For a simplified treatment, as in Ref. [87], it
will be assumed that the collapse dynamics does not introduce any substantial corrections during
this phase connecting the two epochs of interest. In the first epoch, η0 would correspond to the
beginning of inflation and the correction to R2 due to collapse models is computed at the end of
inflation. During the radiation dominated epoch, the initial time is taken to be the end of inflation
and the correction toR2 is computed at the end of radiation dominated era ηr.

6.4 CSL corrections to the power spectrum

6.4.1 Inflation

Having taken the collapse operator to be L̂CSL = ĤCSL = Ĥ0, from Eqs. (6.6) and (6.8) we get

Ĥ I
CSL(η) =

√
γ

m0

ˆ
dxξη(x)ĤI

CSL(η, x), (6.16)

where ĤI
CSL = Û−1

0 Ĥ0(η, x)Û0 represents the Hamiltonian density of the scalar perturbations in
the interaction picture. This coincides with the Hamiltonian density of the scalar perturbations
in the Heisenberg picture in standard cosmology, where one does not have additional contribu-
tions coming from collapse dynamics. During inflation, ĤI

CSL = Ĥh
inf. The latter is the standard

inflationary Hamiltonian corresponding to the action in Eq. (4.23) given by

Ĥh
inf =

1
2

ˆ
dx
{

˙̂u2(η, x) + δij∂iû(η, x)∂jû(η, x)− 2
η2 û2(η, x)

}
. (6.17)

The field operator û(η, x) in the Fourier space reads (as described before in chapter 4)

û(η, x) =
ˆ

dk

(2π)3/2 exp(ik · x)ûk(η) , (6.18)

where the Fourier components ûk(η) are specified in terms of the modes vk(η) and the creation
and annilation operators as

ûk(η) = vk(η)âk + v∗k (η)â†
−k . (6.19)
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Using Eqs. (6.19) and (6.18), the normal ordered Hamiltonian in terms of the creation and annihi-
lation operators is obtained to be

ĤI
CSL(η, x) =

ˆ ˆ
dqdp

ei(p+q)·x

2(2π)3

(
bp,q

η âp âq + dp,q
η â†

−q âp + b∗p,q
η â†

−p â†
−q + d∗p,q

η â†
−p âq

)
. (6.20)

Here, the following notations are introduced

bp,q
η = jp,q

η −
(

p · q +
2
η2

)
f p,q
η , dp,q

η = lp,q
η −

(
p · q +

2
η2

)
gp,q

η , (6.21)

with

f p,q
η = vp(η)vq(η), gp,q

η = vp(η)v∗q(η), jp,q
η = v̇p(η)v̇q(η), lp,q

η = v̇p(η)v̇∗q(η). (6.22)

We remember further from chapter 4 that in the perfect de Sitter limit, during inflation, the solution
for vk(η) reads

vk(η) =
e−iηk

(
1− i

ηk

)
(2k)1/2 . (6.23)

The comoving curvature perturbation R̂ is also related to û (and therefore to the modes vk) as

R̂2(η, x) =
û2(η, x)

z2 =
û2(η, x)

2εinfM2
Pa2(η)

, (6.24)

where εinf is the slow-roll parameter during inflation (c.f. Eq. (4.11) in which it was denoted by εH)
and z := aMP

√
2εinf (c.f. Eq (4.21)). From Eq. (6.15), we see that the correction induced by the CSL

model is encoded in the term

δR2(η)
CSL

= − λ

2m2
0

ˆ η

η0

dη′

a(η′)

ˆ
dx′

ˆ
dx′′e

− a2(η′)(x′′−x′)2

4r2
C 〈0|

[
ĤI

CSL(η
′, x′′),

[
ĤI

CSL(η
′, x′), R̂2(η, x)

]]
|0〉 .

(6.25)
By expressing the Hamiltonian density ĤI

CSL(η, x) and the comoving curvature perturbation R̂(η, x)
in terms of the creation and annihilation operators, the correction term becomes

δR2(η)
CSL

= − λr3
C

8εinfM2
Pm2

0a2(η)π9/2

ˆ η

η0

dη′

a4(η′)

ˆ ˆ
dqdp e

− r2
C

a2(η′)
(q+p)2

Re
[
bq,p

η′

{
d−q,−p

η′ ( f q,−q
η )∗

−(b−q,−p
η′ )∗gq,−q

η

}]
.

(6.26)

Noticing that the exponential is invariant under the interchange of the integration variables p and
q, the properties of the functions bq,p

η , dq,p
η , f q,p

η , and gq,p
η can be used to write the above result as

δR2(η)CSL = −
λr3

C

8εinfM2
Pm2

0a2(η)π9/2

ˆ η

η0

dη′

a4(η′)

ˆ ˆ
dqdp e

− r2
C

a2(η′)
(q+p)2

Fp,q
η′ , (6.27)
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where

Fp,q
η′ = Re

[
bp,q

η′ dq,p
η′ ( f q,q

η )∗ − bp,q
η′ (b

q,p
η′ )

∗gp,p
η

]
. (6.28)

The goal is to calculate the correction δPR at the end of inflation when η = ηe. By substituting
vk(η) with its solution in Eq. (6.23), the expression for Fp,q

η′ is obtained to be

Fp,q
η′ =

Re

[
1

8η′8 p3q4

(
1 +

i
ηeq

)2
e−2iq(η′−ηe) [((

−η′
2 p2 + iη′p + 1

) (
η′

2q2 − iη′q− 1
)
− (η′p− i)(η′q− i)

(
η′

2
(p · q) + 2

))
×

×
((

η′
2 p2 + iη′p− 1

) (
η′

2q2 − iη′q− 1
)
− (η′p + i)(η′q− i)

(
η′

2
(p · q) + 2

))]
−

1
8η′8 p4q3

(
1− i

ηe p

)(
1 +

i
ηe p

)
[((

−η′
2 p2 + iη′p + 1

) (
η′

2q2 − iη′q− 1
)
− (η′p− i)(η′q− i)

(
η′

2
(p · q) + 2

))
×

×
(
−
(

η′
2 p2 + iη′p− 1

) (
η′

2q2 + iη′q− 1
)
− (η′p + i)(η′q + i)

(
η′

2
(p · q) + 2

))]]
. (6.29)

For times close to the end of inflation, the condition qη′ � 1 is satisfied by all the modes of
cosmological interest since their physical wavelengths a(η)λq become larger than the length scale
1/Hinf (c.f. discussion below Eq. (4.48)). At earlier times, if this condition is not satisfied, then
the exponential appearing in Eq. (6.27) suppresses their contributions. Indeed, during inflation,
using the time evolution of the scale factor given by a(η) ≈ −1/(ηHinf) (c.f. Eq. (4.45)), the
exponential function in Eq. (6.27) becomes exp{−r2

C Hinf
2η′2(p + q)2} where Hinf is the value of

the Hubble parameter during inflation. To have an estimate of the orders of magnitudes involved,
we notice that the value of rC, which, for the Ghirardi-Rimini-Weber (GRW) model [56], is equal to
rC ≈ 1027M−1

P (≈ 10−7 meters), is much bigger than 1/Hinf ≈ 105M−1
P such that rC Hinf � 1 during

inflation. Therefore, we can safely expand Eq. (6.29) in powers of qη′ (or pη′), which to leading
order gives

Fp,q
η′ =

1
8p3q4η′8

(
−2q4η4

e
9

+
16q4ηeη′3

9
− 4p3qη′6

η2
e
− 32q4η′6

9η2
e

)
. (6.30)

Here, the leading order expression presented above contains only the terms that would survive
after computing the integral in Eq. (6.27). That is, terms which are symmetrical in p and q but
appear with opposite signs would not contribute to the integral and therefore do not appear in
the effectively leading order expression in Eq. (6.30). Since |ηe| � |η′|, the last two terms on the
RHS in Eq. (6.30) give the dominant contribution to the corrections with Fp,q

η′ ≈ −1/(2q3η2
e η′2)−

4/(9η2
e η′2 p3). Since p and q are dummy integration variables, to leading order Fp,q

η′ effectively
depends only on q (or p). After completing the p integral in Eq. (6.27), which now becomes a
standard three dimensional Gaussian integral, we get

δR2(ηe)CSL ≈ −
17
36

λHinf
3

π2εinfM2
Pm2

0

ˆ ηe

η0

d ln η

ˆ
d ln q . (6.31)

64



Following the definition of the power spectrum PR, the correction δPR to the power spectrum PR
is identified with δR2(ηe)CSL =

´
d ln q δPR leading to the final expression

δPR ≈ −
17
36

λHinf
3

π2εinfM2
Pm2

0
ln
(

ηe

η0

)
. (6.32)

To obtain the numerical value of δPR, η0 is taken to be η0 ≈ −k−1
∗ ≈ −1060M−1

P , where
k∗ = 5 × 10−60MP is the pivot scale which first crosses the horizon at the efolding number N∗
satisfying a(N∗) = k∗/H(N∗). The e-folding number N∗ satisfies 50 ≤ N∗ ≤ 60 [3]. The value
N∗ = 60 is taken for the numerical estimate. The scale factor at the end of inflation a(ηe) can then
be determined from the relation a(ηe) = a(N∗) exp(N∗). By setting εinf = 0.005 [87], we find

δPR(k, ηe) ∼ λ/λGRW × 10−34, (6.33)

where λGRW = 10−16 s−1 [9]. By comparing δPR(k, ηe) with the observational error of PR, which
is of order ≈ 10−11 [3], one obtains an upper bound λ . 107 s−1, which is 17 orders of magnitude
weaker than the latest bound λ . 10−10 s−1 [128].

6.4.2 Radiation dominated era

At the perturbative level, the action for u during the radiation dominated era reads [87]

δS(2) =
1
2

ˆ
dη

ˆ
dx
[

u̇2 − c2
s δij∂iu∂ju +

z̈
z

u2
]

, (6.34)

where cs is the speed of sound with cs = 1 during inflation and cs = 1/
√

3 during the radiation
dominated era. The general definition of z also depends on the speed of sound with

z := aMP
√

2ε/cs . (6.35)

The parameter ε is still the same as εH in Eq. (4.11), the difference being that the time evolution
of the Hubble parameter is different after the end of inflation. Note that during inflation when
cs = 1, the factor z reduces to its definition during inflation given in Eq. (4.21). As stated before,
we neglect in our analysis the reheating stage [87]. By matching the boundary conditions, the scale
factor during the radiation dominated era can then be approximated as

a(η) =
1

Hinfη2
e
(η − 2ηe) . (6.36)

By using this expression of a(η) in the definition of ε, one can show that ε = 2 during the radiation
dominated era. From this result, as well as the linear dependence of the scale factor on η, the
definition of z in Eq. (6.35) leads to z̈ = 0. The equation of motion during the radiation dominated
thus becomes

ük +
1
3

k2uk = 0 . (6.37)
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In contrast to the dynamics during inflation (4.22), the term proportional to z̈ does not appear. We
can decompose u in terms of the modes vk(η) as in Eq. (6.19), where now the modes satisfy

v̈k(η) +
1
3

k2vk(η) = 0. (6.38)

As in Ref. [87], the initial conditions required to specify the solution for the modes during the
radiation dominated era are determined by matching the curvature perturbation and its derivative
at the end of inflation. The full solution of vk(η) then becomes

vk(η) =

√
3

2η2
e
√

εinfk5/2 e−ikηe

{[
(1 +

√
3)(kηe)

2 −
√

3− i(1 +
√

3)kηe

]
e−ik η−ηe√

3

+
[
(1−

√
3)(kηe)

2 +
√

3− i(1−
√

3)kηe

]
eik η−ηe√

3

}
. (6.39)

Now, one obtains the Hamiltonian density during the radiation dominated era from Eq. (6.34). It
reads

ĤI
CSL(η, x) = Ĥh

rad(η, x) =
1
2

(
˙̂u2(η, x) +

1
3

δij∂iû(η, x)∂jû(η, x)
)

. (6.40)

From the expression of the operator û(η, x) in Eq. (6.18), and its decomposition in terms of the
modes vk(η) of Eq. (6.19), straightforward calculations lead to an expression for ĤI

CSL(η, x) that has
the structure of Eq. (6.20), but with the functions bq,p

η and dq,p
η defined as

bq,p
η = jq,p

η −
1
3
(q · p) f q,p

η , dq,p
η = lq,p

η −
1
3
(q · p)gq,p

η . (6.41)

Here, the functions appearing on the RHS of the equalities in Eq. (6.41) are the same as in Eq. (6.22).
During the radiation dominated era, the same operator ÔI(η) = R̂2(η, x) defined in Eq. (6.24)
reads

R̂2(η, x) =
û2(η, x)

12M2
Pa2(η)

, (6.42)

where the time evolution of the scale factor is instead given by Eq. (6.36) during the radiation dom-
inated era. The fact that ε(ηe ≤ η ≤ ηr) = 2 and c2

s = 1/3 during the radiation dominated era (ηr
denotes the conformal time at the end of this stage) have also been used in writing Eq. (6.42). The
contribution to the modification of the comoving curvature power spectrum during the radiation
dominated era is given by Eq. (6.25), where one substitutes η0 with ηe and η with ηr.

Using Eqs. (6.40), (6.42) and (6.36), and calculating the double commutator explicitly, we obtain

δR2(ηr)CSL = −
λr3

C

48M2
Pm2

0a2(ηr)π9/2

ˆ ηr

ηe

dη′

a4(η′)

ˆ ˆ
dqdp e

− r2
C

a2(η′)
(q+p)2

Fp,q
η′ , (6.43)
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where the function Fp,q
η′ is given by (c.f. Eqs. (6.22), (6.28) and (6.41))

Fp,q
η′ = − 1

8p5q5ε3η4
e

9e−
2i(p(η′−ηe)+q(η′+ηr−2ηe))√

3

(
4e

2i(p+q)(η′−ηe)√
3 (p · q)

(
−2qηe

(
q3η3

e − 2qηe +
√

3i
)
− 3
)

p5

+4e
2i(p(η′−ηe)+q(η′+2ηr−3ηe))√

3 (p · q)
(

2qηe

(
−q3η3

e + 2qηe +
√

3i
)
− 3
)

p5

+ 2q3
(

p2q2 − (p · q)2
) (

4p4η4
e − 2p2η2

e + 3
) [

e
2i(p+2q)(η′−ηe)√

3 + e
2i(pη′+2qηr−(p+2q)ηe)√

3

]
+4e

2i(p(η′−ηe)+q(η′+ηr−2ηe))√
3

(
4p4q3(pq + p · q)2η4

e − 2p2q2
(

2(p · q)p3 + q3 p2 + q(p · q)2
)

η2
e

+3
(

2(p · q)p5 + q5 p2 + q3(p · q)2
))

+ e
4i(pη′+qηr−(p+q)ηe)√

3 q3(−pq + p · q)2
(

2pηe

(
p3η3

e − 2pηe −
√

3i
)
+ 3
)

+e
4i(p+q)(η′−ηe)√

3 q3(pq + p · q)2
(

2pηe

(
p3η3

e − 2pηe −
√

3i
)
+ 3
)

+2e
2i(2pη′+qη′+qηr−2(p+q)ηe)√

3 q3
(

p2q2 − (p · q)2
) (

2pηe

(
p3η3

e − 2pηe −
√

3i
)
+ 3
)

+ q3
(

2pηe

(
p3η3

e − 2pηe +
√

3i
)
+ 3
) [

(−pq + p · q)2e
4iq(η′−ηe)√

3 + e
4iq(ηr−ηe)√

3 q3(pq + p · q)2
]

+2e
2iq(η′+ηr−2ηe)√

3 q3
(

p2q2 − (p · q)2
) (

2pηe

(
p3η3

e − 2pηe +
√

3i
)
+ 3
))

. (6.44)

We now consider, as in the inflationary era, the expansion of Fp,q
η′ in powers of qη′, qηe and qηr.

The leading order term reads

Fp,q
η′ ≈ −

54
q3ε3

infη
4
e

, (6.45)

where the terms that are symmetric in p and q but appear with opposite signs have been discarded
in the effectively leading order expression of Eq. (6.45) as they would yield a zero contribution to
the integral in Eq. (6.43). Using the leading order expansion of Eq. (6.45) in Eq. (6.43), as was
the case for the inflationary era, the p integral becomes a standard three dimensional Gaussian
integral. After completing the p integral first we get

δR2(ηr)CSL ≈
9λHinf

3η2
e

2M2
Pε3

inf(ηr − 2ηe)2π2m2
0

ˆ ηr

ηe

d ln
(
η′ − 2ηe

) ˆ
d ln q. (6.46)

The correction δPR to the power spectrum PR is given by

δPR ≈
9λH3

infη
2
e

2M2
Pε3

inf(ηr − 2ηe)2π2m2
0

ln
(

2ηe − ηr

ηe

)
. (6.47)

Borrowing the values of the constants from the inflationary dynamics and setting ηr = 3× 1060M−1
P

(which is estimated by using the fact that a(ηr)/a(ηe) ≈ 3× 1026 [135]) the correction turns out to
be almost zero with

δPR(k, ηr) ∼ λ/λGRW × 10−81 . (6.48)
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We must note that strictly speaking, due to the coupling between the modes in Eq. (6.43), the
cosmological modes which might be outside the horizon in the outer p integral can also receive
contributions from the subhorizon modes which satisfy pη′ � 1, for which the approximation
scheme breaks down. This was not a problem during inflation because in that era the scale
factor is given by a = − 1

Hinfη
′ . Consequently the exponential function in Eq. (6.27) becomes

exp
{(
−r2

C Hinf
2η′2(p + q)2

)}
, and as explained before, since typically rC � 1/Hinf, it becomes

necessary to have p2η′2 � 1 (and q2η′2 � 1) for the integrand to be non-zero. Due to the modified
functional dependence of the scale factor during the radiation dominated era given in Eq. (6.36),

the exponential function becomes exp
{(

(p + q)2 η2
e Hinf

2r2
C

η2
e

(η′−2ηe)2

)}
. Clearly, it is no longer nec-

essary to have pη′ � 1 in order for the exponent to be non-zero. While the condition pηe � 1 still
remains valid, as all the modes of interest are outside the horizon at the end of inflation, the ex-
pansion in pη′ and pηr needs further justification. In order to see this we notice that the exact
expression in Eq. (6.44) depends on η′ and ηr only via the terms pη′ and pηr appearing in the oscil-
lating phases. Thus, when a mode enters the horizon during the radiation dominated era (i.e. the
mode p now satisfies pη′ � 1 compared to pηe � 1 at the end of inflation), this phase is expected
to oscillate strongly and would not yield any significant contribution to the integrand. Moreover,
the a4 factor in the denominator would also suppress the contribution for a given mode p at a
later time, when p enters the horizon and pη′ � 1. Therefore, the assumption that pη′ � 1 and
pηr � 1 for all modes p and at all times η′ is expected to provide an upper bound on the integral.

6.5 Discussion

The results presented here differ from the conclusion reached in [87]. Taking δρ̂ to be the collapse
operator, for the same values of λGRW and rC, in [87], the CSL corrections were found to be too large
to be compatible with the CMB constraints. Strictly speaking, the results obtained in [87] were
found to depend upon which gauge-invariant construction one uses for the choice of the collapse
operator. It was argued that even though there are various possible ways of constructing a guage-
invariant version of the energy density contrast δ := δρ/ρ, only if one uses the construction δm
[87]

δm := δ + (v + B)
ρ̇

ρ
, (6.49)

does one end up with a collapse operator that is consistent with the CMB constraints. Here, B
is the metric perturbation as in Eq. (4.12) and v the peculiar velocity. On the grounds of this fine
tuning that is required for the consistency of the collapse operator, it was argued in [87] that CMB
rules out the mass proportional CSL model.

We see that even with the existing difficulties in making a relativistic generalization of the col-
lapse models [14, 123, 13, 12, 95, 124], one can come up with a reasonable ansatz that can be applied
to a cosmological setting and obtain precise estimates for the observables of interest. However, the
work presented here stresses the fact that an eventual validation or discard of the CSL model from
cosmological observations depends strongly upon the choice of the collapse operator and cannot
be made without addressing the issue of its generalization to the relativistic regime.
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Chapter 7

The electromagnetic vacuum as the
environment of an electron

Numerous physical phenomena such as the Casimir effect [31, 19, 99], the Unruh effect [125, 53,
122] and the Lamb shift [15, 83, 130, 40] are attributed to the presence of vacuum fluctuations. The
possibility of decoherence due to vacuum fluctuations, as being fundamental and unavoidable,
has also been discussed in various works [81, 79, 51, 11, 110, 47, 6, 21] without arriving at a general
consensus.

The interaction of an electron with the vacuum fluctuations can be studied within the frame-
work of open quantum systems. In this final part of the thesis, this formalism is applied to study
two specific phenomena. The first is the motion of an electron under the influence of an exter-
nal potential and radiation reaction. The second is decoherence due to interactions with vacuum
fluctuations.

The quantum mechanical version of the classical Abraham-Lorentz (AL) equation, which de-
scribes the recoil force experienced by an accelerated electron due to the emission of radiation
[39, 100, 64, 36], has been previously derived, for example, in [40]. Instead of the electron’s posi-
tion, the equation was obtained for the position operator and it was then argued why this operator
equation is fundamentally different from the classical one. The implications of the operator equa-
tion for the classical AL equation were not understood clearly and the difficulties in making this
connection were attributed to the presence of the additional transverse electric field operator of
the electromagnetic vacuum, which is zero classically. Similar problem persists concerning the
interpretation of the quantum Langevin equation obtained in [6] for an electron interacting with
vacuum fluctuations. It is important to mention that even after a quantum mechanical treatment,
neither [40] nor [6] found where the solutions to the problems associated with the AL formula
could lie.

In this work, the path-integral formalism is used to obtain the explicit expression of the reduced
density matrix in the position basis. The main difference between the approach followed in this
work compared to the ones followed before, is that instead of the Langevin equation, the master
equation is derived which yields the EOM for the expectation value of the position operator which
provides a direct correspondence with the classical dynamics. In the presence of an arbitrary
potential, it will be shown that the classical EOM is the same as the one obtained from the reduced
quantum dynamics. Moreover, the equation that emerges after a quantum mechanical treatment
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appears to be free of the problems associated with the AL equation: the existence of the runaway
solution which leads to an exponential increase of the electron’s acceleration, even in the absence
of an external potential [39, 100, 64].

Concerning decoherence, it will be shown that the loss of coherence due to vacuum fluctuations
at the level of the reduced density matrix is only apparent and reversible. To this end, by switching
off the interactions with the EM field, the original coherence is shown to be restored at the level
of the electron. Moreover, the expression for the decoherence factor that is obtained differs from
the ones obtained in [6, 21] where the authors argue for a finite loss of coherence for momentum
superpositions, due to vacuum fluctuations, but with different estimates for the magnitude of
decoherence.

The discussion presented in this chapter is based on the preprint [66].

7.1 The Lagrangian and the Hamiltonian formalism

We begin by formulating the Lagrangian and the Hamiltonian relevant for the dynamics of a non-
relativistic electron in the presence of an external potential and an external radiation field.

7.1.1 The Lagrangian

In the Coulomb gauge, the standard Lagrangian for the dynamics of a non-relativistic electron in
the presence of an external potential and an external radiation field is given by [37]

L =
1
2

mṙ2
e −V0(re) +

ε0

2

ˆ
d3r
(

E2
⊥(r)− c2B2(r)

)
+

ˆ
d3rj(r) ·A⊥(r)−

ˆ
1/2

d3k
|ρ|2
ε0k2 . (7.1)

Here, re denotes the position of the electron, m the bare mass, e the electric charge, V0(re) an arbi-
trary bare external potential acting only on the electron, E⊥ the transverse electric field (obtained
by taking the negative partial time derivative of the vector potential A⊥(r, t)), B the magnetic field
(obtained by taking the curl of A⊥(r, t)), ε0 the permittivity of free space, c the speed of light, ρ(r)
the charge density and j(r) the corresponding current density.

The last term in Eq. (7.1) describes the Coulomb potential between different particles which is
written in Fourier space where the symbol

´
1/2 means that the integral is taken over half the vol-

ume in the reciprocal space. For a single particle, it reduces to the particle’s Coulomb self energy
ECoul. After the introduction of a suitable cut-off, which is also necessary for the calculations that
are to follow, it takes a finite value given by ECoul = αh̄ωmax/π [36]. Since this term is a constant, it
does not affect the motion of the electron.

Further, within a point particle treatment of the electron, ρ(r) = −eδ(r − re) and the current
density is given by j(r) = −eṙδ(r− re). The interaction term thus becomes −eṙeA⊥(re, t). For the
electron traveling at non-relativistic speeds, the time derivative can be shifted from its position
onto the transverse vector potential. This is because in addition to a total derivative term, a term
of the form erevi∂iA⊥(r, t) appears (where vi := ṙi). After the wave expansion of A⊥, this term
is seen to be negligible with respect to ereȦ⊥(re, t) = −ereE⊥(re, t) as long as ωk � vk or v � c.
Therefore, for the non-relativistic electron, the Lagrangian relevant for the dynamics reduces to

L(t) ≈ 1
2

mṙ2
e −V0(re) +

ε0

2

ˆ
d3r
(

E2
⊥(r)− c2B2(r)

)
− ereE⊥(re) . (7.2)
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In Eq. (7.2) the total derivative d/dt(reA⊥(re)) and the constant self energy term have been omitted
as these do not affect the electron’s dynamics.

7.1.2 The Hamiltonian

In terms of the canonical variables re, p, A⊥ and Π, with p and Π being the conjugate momentums
for the variables re and A⊥ respectively, the Hamiltonian corresponding to the Lagrangian (7.2)
can be written in the form

H = HS + HEM + Hint . (7.3)

To write its explicit expression, first the quantity Π̂E = −Π̂/ε0 is defined since it appears repeat-
edly in the calculations. The different components of the full Hamiltonian can then be written
as HEM = ε0

2
´

d3r(Π2
E (r) + c2B2(r)), which is the free field Hamiltonian of the radiation field,

Hint = ereΠE(re), which is the term that encodes the interaction between the electron and the
radiation field and

HS =
p2

2m
+ V0(re) +

e2

2ε0

ˆ
d3rriδ⊥im(r− re)δ

⊥
mj(r− re)rj , (7.4)

which is the system Hamiltonian. The transverse Dirac delta δ⊥ij (r− re) that appears in the expres-
sion for HS is defined to be [36]

δ⊥ij (r− re) =
1

(2π)3

ˆ
d3k

(
δij −

kik j

k2

)
eik·(r−re) . (7.5)

It appears instead of the Dirac delta due to the coupling of the position of the electron with the
transverse electric field in Eq. (7.2). The form of HS calls for an identification of the full effective
potential V(re) governing the dynamics of the electron such that

V(re) := V0(re) + VEM(re) , VEM(re) =
e2

2ε0

ˆ
d3rriδ⊥im(r− re)δ

⊥
mj(r− re)rj . (7.6)

It should be emphasized that the extra term VEM(re) is not added to the bare potential by hand, but
arises due to the reE⊥ coupling in the Lagrangian (7.2). Although it gives a divergent contribution
e2

2ε0
δ⊥ij (0)r

i
er

j
e, after regularizing the transverse delta function on a minimum length scale rmin =

1/kmax, the contribution coming from this term becomes finite and scales as O
(

e2

2ε0
r2

e k3
max

)
. To

be more precise, this convergence is restored by imposing the cut-off consistently throughout the
calculations, by introducing the convergence factor e−k/kmax for the integrals in the Fourier space
(c.f. Sec. 7.3). Using this procedure, the expression for δ⊥ij (0) is obtained to be

δ⊥ij (0) =
1

(2π)3

ˆ
dkk2e−k/kmax

ˆ
dΩ
(

δij −
kik j

k2

)
. (7.7)

First evaluating the angular integral, which gives a factor 8π
3 δij, and then the radial integral, we

get

VEM(re) =
e2ω3

max

3π2ε0c3 r2
e . (7.8)
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The contribution of VEM(re) to the electron dynamics is cancelled exactly by another term that ap-
pears later in the calculations (upto second order in the interactions), as shown in Sec. 7.5. There-
fore, for all practical purposes, VEM(re) turns out to have no consequences on the dynamics of the
electron.

7.2 The master equation

Having obtained the Hamiltonian, we can now study the quantum dynamics. The probability
amplitude for a particle to be at the position xf at some final time t, starting from the position xi at
some initial time ti, is given by [5]

〈xf| Û(t; ti) |xi〉 =
ˆ

x(t)=xf,
x(ti)=xi

D[x, p]e−
i
h̄
´ t

ti
dt′(HT[x,p]−pẋ)

=

ˆ
x(t)=xf,
x(ti)=xi

D[x]e
i
h̄ ST[x] , (7.9)

where HT is the full Hamiltonian and ST is the corresponding action describing some general dy-
namics. From Eq. (7.9) the expression for the density matrix at time t can be written as [25]〈

x′f
∣∣ ρ̂(t) |xf〉 =

ˆ
x(t)=xf,
x′(t)=x′f

D[x, x′]e
i
h̄ (ST[x′ ]−ST[x])ρ(x′i , xi, ti) , (7.10)

where the integrals over xi and x′i are included within the path integral. The expression analogous
to Eq. (7.9) also exists for 〈pf| Û(t; ti) |pi〉 in which the boundary conditions are fixed on p(t) and
the phase-space weighing function is instead given by exp{−i

h̄
´ t

ti
dt′ (HT [x, p] + xṗ)} such that

〈pf| Û(t; ti) |pi〉 =
ˆ

p(t)=pf,
p(ti)=pi

D[x, p]e−
i
h̄
´ t

ti
dt′(HT[x,p]+xṗ) . (7.11)

The case that is of interest here, also involves integrating over the degrees of freedom of the ra-
diation field. For that, with a slight abuse of notation, exp{ i

h̄ SEM} is understood to be simply
the appropriate phase-space weighing function appearing inside the path integral with SEM :=
−
´ t

ti
d3rdt′(HEM −ΠȦ⊥) or SEM := −

´ t
ti

d3rdt′(HEM + A⊥Π̇) depending upon the basis states be-
tween which the transition amplitudes are calculated.

We are interested in the dynamics of the electron, having taken into account its interaction with
the radiation field environment. With this distinction, the total phase-space function can be written
as ST = SS[x] + SEM[µ] + Sint[x, ΠE], where SS denotes the system action, SEM[µ] := SEM[A⊥, ΠE] the
phase-space function governing the time evolution of the free radiation field in which µ denotes
its phase-space degrees of freedom and Sint[x, ΠE] := −e

´ t
ti

dt′xΠE encodes the interaction between
the two. The expression for the system-environment density matrix can then be written as〈

x′f ; Π f ′
E

∣∣∣ ρ̂(t)
∣∣∣xf; Π f

E

〉
=

ˆ
x(t)=xf,
x′(t)=x′f

D[x, x′]e
i
h̄ (SS[x′ ]−SS[x])ρS(x′i , xi, ti)×

×
ˆ

ΠE(t)=Π f
E ,

Π′E(t)=Π f ′
E

D[µ, µ′]e
i
h̄ (SEM[µ′ ]+Sint[x′ ,Π′E]−SEM[µ]−Sint[x,ΠE])ρEM(Π′E(ti), ΠE(ti), ti) ,

(7.12)
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where
∣∣∣Π f

E

〉
denotes the basis state of the environment 1. In writing Eq. (7.12) we have also as-

sumed the full density matrix ρ̂(ti) to be in the product state ρ̂(ti) = ρ̂S(ti) ⊗ ρ̂EM(ti) at the ini-
tial time ti. We notice that SEM[µ] is quadratic in the environmental degrees of freedom while
Sint[x, ΠE] is linear in both x and ΠE. After tracing over the environment, that is integrating over
ΠE(t) = Π′E(t), the term in the second line of Eq. (7.12) yields a Gaussian in x such that [25]
ˆ

ΠE(t)=Π′E(t)
dΠE(t)D[µ, µ′]e

i
h̄ (SEM[µ′ ]+Sint[x′ ,Π′E]−SEM[µ]−Sint[x,ΠE])ρi

EM = e
i

2h̄
˜

dt1dt2 Mab(t1;t2)xa(t1)xb(t2) ,

(7.13)

where ρi
EM := ρEM(Π′E(ti), ΠE(ti), ti). The vector notation with the convention xa = x for a = 1,

xa = x′ for a = 2 and xa = ηabxb with ηab = diag(−1, 1), has also been introduced. It is the matrix
elements Mab which determine the effective action of the system and contain the information about
its interaction with the environment. They can be obtained by acting with h̄

i
δ

δxa
δ

δxb |xa=xb=0 (where
xa and xb are set to zero after taking the derivatives) on Eq. (7.13) such that

Mab(t1; t2) =
ie2

h̄

ˆ
ΠE(t)=Π′E(t)

dΠE(t)D[µ, µ′]Πa
E (t1)Πb

E (t2) e
i
h̄ (SEM[µ′ ]−SEM[µ])ρi

EM . (7.14)

Here, in the light of the standard non-relativistic dipole approximation, the spatial dependence of
the canonical fields has been neglected (c.f. Sec. 7.3). Depending upon the value of the indices
a and b, the matrix elements correspond to the expectation values of the time-ordered, anti-time
ordered, path-ordered or anti-path ordered correlations in the Heisenberg picture [25]. For the
dynamics of the non-relativistic electron that is being considered here, the expression for Mab
reads

Mab(t1; t2) =
ie2

h̄

[〈
T̃ {Π̂E(t1)Π̂E(t2)}

〉
0 −

〈
Π̂E(t1)Π̂E(t2)

〉
0

−
〈
Π̂E(t2)Π̂E(t1)

〉
0

〈
T {Π̂E(t1)Π̂E(t2)}

〉
0

]
. (7.15)

The zero in the subscript denotes that the expectation values are calculated by disregarding the
interaction with the system, while T and T̃ denote the time-ordered and the anti-time ordered
products respectively. It is also understood that since the electron’s motion is considered to be
along the x-axis, only the x-component of the canonical field operator enters the expression for
Mab. In terms of the creation and annihilation operators, and the x-component of the unit polar-
ization vector εx

k, it is given by [38]

Π̂E(r, t) = i
(

h̄c
2ε0(2π)3

) 1
2
ˆ

d3k
√

k ∑
ε

âε(k)ei(k·r−ωt)εx
k + c.c . (7.16)

Since the initial state of the environment is taken to be the vacuum state |0〉 of the radiation field,
〈·〉0 = 〈0| · |0〉. After tracing over the environment, the reduced density matrix of the electron is
obtained from Eq. (7.12) to be〈

x′f
∣∣ ρ̂r(t) |xf〉 =

ˆ
x(t)=xf,
x′(t)=x′f

D[x, x′]e
i
h̄ (SS[x′ ]−SS[x]+SIF[x,x′ ])ρr(x′i , xi, ti) , (7.17)

1Note that the precise choice of the basis states is unimportant since the reduced density matrix is obtained after tracing
over the environment
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where the so-called influence functional SIF [50] is given by

SIF[x, x′] =
ie2

2h̄

ˆ t

ti

dt1dt2
[〈
T̃ {Π̂E(t1)Π̂E(t2)}

〉
0 x(t1)x(t2)−

〈
Π̂E(t1)Π̂E(t2)

〉
0 x(t1)x′(t2)

−
〈
Π̂E(t2)Π̂E(t1)

〉
0 x′(t1)x(t2) +

〈
T {Π̂E(t1)Π̂E(t2)}

〉
0 x′(t1)x′(t2)

]
.

(7.18)

The integral
´ t

ti
stands for both the t1 and the t2 integrals which run from ti to t. Alternatively, the

influence functional SIF can be written in the matrix notation as

SIF[x, x′] =
1
2

ˆ t

ti

dt1dt2
[
x(t1) x′(t1)

]
·
[

M11 M12
M21 M22

]
·
[

x(t2)
x′(t2)

]
. (7.19)

As it is more convenient, we make a change of basis to (X , u) defined by

X(t) :=(x′(t) + x(t))/2 , u(t) = x′(t)− x(t) , (7.20)

in which the influence functional transforms as

SIF[X, u] =
1
2

ˆ t

ti

dt1dt2
[
X(t1) u(t1)

]
·
[

M̃11 M̃12
M̃21 M̃22

]
·
[

X(t2)
u(t2)

]
, (7.21)

where[
M̃11 M̃12
M̃21 M̃22

]
=

[
M11 + M12 + M21 + M22

1
2 ((M12 −M21) + (M22 −M11))

1
2 (−(M12 −M21) + (M22 −M11))

1
4 ((M11 + M22)− (M12 + M21))

]
. (7.22)

Further, from Eq. (7.15), we have the following relations

M11 + M22 = −(M12 + M21) =
ie2

h̄
〈
{Π̂E(t1), Π̂E(t2)}

〉
0 , (7.23)

M12 −M21 =
ie2

h̄
〈[

Π̂E(t2), Π̂E(t1)
]〉

0 , (7.24)

M22 −M11 =
ie2

h̄
〈[

Π̂E(t1), Π̂E(t2)
]〉

0 sgn(t1 − t2) . (7.25)

Using these relations, M̃ takes the simplified form[
M̃11 M̃12
M̃21 M̃22

]
=

ie2

h̄

[
0

〈[
Π̂E(t2), Π̂E(t1)

]〉
0 θ(t2 − t1)〈[

Π̂E(t1), Π̂E(t2)
]〉

0 θ(t1 − t2)
1
2
〈
{Π̂E(t1), Π̂E(t2)}

〉
0

]
, (7.26)

where θ(t) is the Heaviside step function. Thus, in the (X, u) basis, the influence functional in
Eq. (7.18) takes the compact form

SIF[X, u](t) =
ˆ t

ti

dt1dt2

[
i
u(t1)N (t1; t2)u(t2)

2
+ u(t1)D(t1; t2)X(t2)

]
, (7.27)
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where the noise kernel N and the dissipation kernel D are defined as

N (t1; t2) :=
e2

2h̄
〈
{Π̂E(t1), Π̂E(t2)}

〉
0 ,

D(t1; t2) :=
ie2

h̄
〈[

Π̂E(t1), Π̂E(t2)
]〉

0 θ(t1 − t2) . (7.28)

Having determined the full effective action for the electron in terms of the influence functional,
the master equation can now be derived. From Eq. (7.17), it can be seen that the time derivative of
the reduced density matrix will have, in addition to the standard Liouville-von Neuman term, the
contribution coming from the influence functional. In order to compute that, the rate of change of
SIF needs to be evaluated. It is given by

δtSIF[X, u] = u(t)
ˆ t

ti

dt1 (iN (t; t1)u(t1) +D(t; t1)X(t1)) . (7.29)

In terms of the original (x, x′) basis, the master equation can now be written as

∂tρr(x′f , xf, t) = − i
h̄
〈

x′f
∣∣ [Ĥs, ρ̂r

]
|xf〉+

i
h̄

ˆ
x(t)=xf,
x′(t)=x′f

D[x, x′]δtSIF[x′, x]e
i
h̄ (SS[x′ ]−SS[x]+SIF[x,x′ ])ρr(x′i , xi, ti)

≈ − i
h̄
〈

x′f
∣∣ [Ĥs, ρ̂r

]
|xf〉+

i
h̄

ˆ
x(t)=xf,
x′(t)=x′f

D[x, x′]δtSIF[x′, x]e
i
h̄ (SS[x′ ]−SS[x])ρr(x′i , xi, ti)

≈ − i
h̄
〈

x′f
∣∣ [Ĥs, ρ̂r

]
|xf〉

− 1
h̄
(x′f − xf)

ˆ t

ti

dt1N (t; t1)

ˆ
x(t)=xf,
x′(t)=x′f

D[x, x′](x′(t1)− x(t1))e
i
h̄ (SS[x′ ]−SS[x])ρr(x′i , xi, ti)

+
i

2h̄
(x′f − xf)

ˆ t

ti

dt1D(t; t1)

ˆ
x(t)=xf,
x′(t)=x′f

D[x, x′](x′(t1) + x(t1))e
i
h̄ (SS[x′ ]−SS[x])ρr(x′i , xi, ti) .

(7.30)

For the second term on the right hand side in the second line of Eq. (7.30), SIF has been omitted in
the exponential. This is because SIF is second order in the coupling constant and is already present
adjacent to the exponential. Since the calculations are limited to second order in the interactions,
SIF can be neglected inside the exponential.

To simplify the master equation further, we note that the last two lines of Eq. (7.30) can be
written much more compactly. This is due to the following identity [25]ˆ

x(t)=xf,
x′(t)=x′f

D[x, x′]x′(t1)e
i
h̄ (SS[x′ ]−SS[x])ρr(x′i , xi, ti) =

=

ˆ
dx′(t1)

〈
x′f
∣∣ Ûs(t; t1)

∣∣x′(t1)
〉

x′(t1)
〈

x′(t1)
∣∣ Ûs(t1; ti)ρ̂r(ti)Û−1

s (t; ti) |xf〉

=
〈

x′f
∣∣ Ûs(t; t1)x̂Ûs(t1; ti)ρ̂r(ti)Û−1

s (t; ti) |xf〉
=
〈

x′f
∣∣ Ûs(t; t1)x̂Ûs(t1; ti)Û−1

s (t; ti)Ûs(t; ti)ρ̂r(ti)Û−1
s (t; ti) |xf〉

=
〈

x′f
∣∣ Ûs(t; t1)x̂Û−1

s (t; t1)ρ̂r(t) |xf〉 =
〈

x′f
∣∣ x̂Hs(−τ)ρ̂r(t) |xf〉 , (7.31)
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where

x̂Hs(−τ) := Û−1
s (t− τ; t)x̂Ûs(t− τ; t) , τ := t− t1 . (7.32)

Here, the operator Ûs(t − τ; t) is the unitary operator that evolves the statevector of the system
from time t to t− τ via the system Hamiltonian Ĥs only and the operator x̂ without the subscript
is the usual Schrödinger operator such that

x̂Hs(0) = x̂ , (7.33)

Similarly, we also have the analogous relation
ˆ

x(t)=xf,
x′(t)=x′f

D[x, x′]x(t1)e
i
h̄ (SS[x′ ]−SS[x])ρr(x′i , xi, ti) =

〈
x′f
∣∣ ρ̂r(t)x̂Hs(−τ) |xf〉 . (7.34)

Using these relations, and replacing the t1 integral with the τ integral (t1 = t − τ), the master
equation takes the compact form

∂tρr(x′f , xf, t) =− i
h̄
〈

x′f
∣∣ [Ĥs, ρ̂r(t)

]
|xf〉

− 1
h̄
(x′f − xf)

ˆ t−ti

0
dτN (t; t− τ)

〈
x′f
∣∣ [x̂Hs(−τ), ρ̂r(t)] |xf〉

+
i

2h̄
(x′f − xf)

ˆ t−ti

0
dτD(t; t− τ)

〈
x′f
∣∣ {x̂Hs(−τ), ρ̂r(t)} |xf〉 . (7.35)

The eigenvalues outside of the integrals in Eq. (7.35) can be obtained by acting with the position
operator x̂ such that

〈
x′f
∣∣ ∂tρ̂r |xf〉 =−

i
h̄
〈

x′f
∣∣ [Ĥs, ρ̂r(t)

]
|xf〉

− 1
h̄

ˆ t−ti

0
dτN (t; t− τ)

〈
x′f
∣∣ [x̂, [x̂Hs(−τ), ρ̂r(t)]] |xf〉

+
i

2h̄

ˆ t−ti

0
dτD(t; t− τ)

〈
x′f
∣∣ [x̂, {x̂Hs(−τ), ρ̂r(t)}] |xf〉 . (7.36)

The master equation in the operator form can therefore be written as

∂tρ̂r =−
i
h̄
[
Ĥs, ρ̂r

]
− 1

h̄

ˆ t−ti

0
dτN (t; t− τ) [x̂, [x̂Hs(−τ), ρ̂r(t)]]

+
i

2h̄

ˆ t−ti

0
dτD(t; t− τ) [x̂, {x̂Hs(−τ), ρ̂r(t)}] . (7.37)

The first line of the master equation is the usual Liouville-von Neuman evolution and involves
only the system Hamiltonian Ĥs, while the second and the third lines encode the system’s interac-
tion with the environment.
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We remember that due to the coupling between the position of the electron and the transverse
electric field in Eq. (7.2), the system Hamiltonian receives an additional contribution such that
Ĥs = p̂2/(2m) + V̂0(x) + V̂EM(x), where, having introduced a cut-off scale in the calculations and

considering the motion of the electron along the x-axis only, V̂EM(x) = e2ω3
max

3π2ε0c3 x̂2 (c.f. Sec. 7.1.2).
Moreover, since the master equation is valid upto second order in the interactions and since the
operator x̂Hs(−τ) appears alongside the dissipation and the noise kernels (which are already sec-
ond order in e), the time evolution governed by Ûs(t− τ; t) in Eq. (7.32) is understood to involve
only V̂0 and not V̂EM. Therefore, upto second order in the interactions, V̂EM only contributes via the
Liouville-von Neuman term.

7.3 The dissipation and the noise kernels

In order to solve the master equation (7.37), the kernels need to be evaluated explicitly. To achieve
that, we begin with the expression for the vacuum expectation value of the correlator

〈0| Π̂E(x(t1), t1)Π̂E(x(t2), t2) |0〉 =
−ih̄c

2ε04π2 �̂
{

1
r

ˆ ∞

0
dke−ikcτ

(
eikr − e−ikr

)}
, (7.38)

where

r := |x(t1)− x(t2)| , τ := t1 − t2 , �̂ := − 1
c2 ∂2

τ + ∂2
r . (7.39)

Here, the right hand side of Eq. (7.38) is obtained with the help of the expression of the quantized
canonical transverse electric field operator in Eq. (7.16). The expression in Eq. (7.38) becomes
convergent after resorting to the standard Hadamard finite part prescription [25], in which the
convergence factor e−ωk/ωmax is introduced inside the integral (with ωk = kc). Physically, this
prescription cuts off the contribution coming from the modes ωk � ωmax and mathematically it
is the same as using the iε prescription where one sends τ → τ − iε, with ε = 1/ωmax. After
completing the integral by using this prescription, we get

〈0| Π̂E(1)Π̂E(2) |0〉 =
h̄c

4π2ε0
�̂
{

1
r2 − c2(τ − iε)2

}
=

h̄c
π2ε0

1

(r2 − c2(τ − iε)2)
2 . (7.40)

For the correlator in Eq. (7.40), we ignore the spatial dependence of the fields in the spirit of the
non-relativistic approximation r � cτ. In this limit, the correlator becomes

〈0| Π̂E(1)Π̂E(2) |0〉 ≈
h̄

π2ε0c3 (τ − iε)4 . (7.41)

Using Eq. (7.41), the expressions for the noise and the dissipation kernels are obtained to be

N (τ) =
e2

π2ε0c3

(
ε4 − 6ε2τ2 + τ4)

(ε2 + τ2)
4 , (7.42)

D(τ) = 8e2

π2ε0c3
ετ(ε2 − τ2)

(ε2 + τ2)4 θ(τ) . (7.43)

77



Further, with some algebraic manipulation, the dissipation kernel can be expressed more com-
pactly as

D(τ) = e2

3π2ε0c3 θ(τ)
d3

dτ3

(
ε

τ2 + ε2

)
. (7.44)

Noticing that

ε

τ2 + ε2 =
d

dτ
tan−1(τ/ε) = πδε(τ) , (7.45)

we arrive at the expression

D(τ) = e2

3πε0c3 θ(τ)
d3

dτ3 δε(τ) . (7.46)

The last equality in Eq. (7.45) can be understood in the limit ε → 0 when the function tan−1(τ/ε)
takes the shape of a step function. Such an expression for D would yield infinite results. For
that, we keep in mind that these functions are always well behaved for a finite ε and that δε only
behaves like a Dirac delta for τ � ε.

7.4 Integrals involving the dissipation kernel

In this section we derive an identity involving the integrals of the form
´

dτD(τ) f (τ). To proceed,
we keep in mind the situation where ε is small but finite so that all the derivatives of the smoothed
Dirac delta are large but finite. However, for times τ � ε, we have δε(τ) = δ′ε(τ) = δ′′ε (τ) = 0.
In addition, since the derivative of the Dirac delta is an odd function of τ, we also have δ′ε(0) = 0.
In computing the integral of D(τ) multiplying an arbitrary function f (τ), we shift the derivatives
acting on δε one by one onto f (τ) by integrating by parts. Since the calculations of interest involve
integrating

´ t
0 dτD(τ) f (τ), where τ takes only non-negative values from 0 to t, the step function

θ(τ) can be omitted inside the integral.
The first integration by parts gives (the constant pre-factors appearing in Eq. (7.46) will be

plugged in at the end)

ˆ t

0
dτδ′′′ε (τ) f (τ) = −

ˆ t

0
dτδ′′ε (τ) f ′(τ) + δ′′ε (τ) f (τ)

∣∣t
0 . (7.47)

Since δ′′ε (t) = 0, only the boundary term −δ′′ε (0) f (0) survives. Further,

−
ˆ t

0
dτδ′′ε (τ) f ′(τ) =

ˆ t

0
dτδ′ε(τ) f ′′(τ)− δ′ε(τ) f ′(τ)

∣∣t
0 . (7.48)

Since δ′ε(t) = δ′ε(0) = 0 (δ′ε(τ) being an odd function of τ), both the boundary terms vanish.
Proceeding further we get

ˆ t

0
dτδ′ε(τ) f ′′(τ) = −

ˆ t

0
dτδε(τ) f ′′′(τ) + δε(τ) f ′′(τ)

∣∣t
0 . (7.49)
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As before, the boundary term at τ = t is zero and only the term −δε(0) f ′′(0) survives. Finally,
since δε(τ) goes to zero much faster than a generic function f (τ) for a small ε, it can be treated like
a Dirac delta such that

−
ˆ t

0
dτδε(τ) f ′′′(τ) = − f ′′′(0)

2
. (7.50)

The factor of half comes because the integral is performed from 0 to t. Collecting the two boundary
terms we get the result

ˆ t

0
dτδ′′′ε (τ) f (τ) = − f ′′′(0)

2
− δε(0) f ′′(0)− δ′′ε (0) f (0) . (7.51)

From Eq. (7.45) we have δε(0) = 1/(πε) = ωmax/π and δ′′ε (0) = −2ω3
max/π such that

ˆ t

0
dτD(τ) f (τ) = −2αh̄

3c2 f ′′′(0)− 4αh̄ωmax

3πc2 f ′′(0) +
2e2ω3

max

3π2ε0c3 f (0) . (7.52)

Here, the constant prefactor appearing in Eq. (7.46) has now been plugged back.

7.5 The Abraham-Lorentz equation as a classical limit

The rate of change of the expectation values can be obtained with the help of the master equa-
tion (7.37). For the position operator it is given by

d
dt
〈x̂〉 = Tr (x̂∂tρ̂r) =−

i
h̄

Tr
(
x̂ ·
[
Ĥs, ρ̂r

])
+

i
2h̄

ˆ t−ti

0
dτD(t; t− τ)Tr (x̂ · [x̂, {x̂Hs(−τ), ρ̂r(t)}])

− 1
h̄

ˆ t−ti

0
dτN (t; t− τ)Tr (x̂ · [x̂, [x̂Hs(−τ), ρ̂r(t)]]) . (7.53)

Due to the identity

Tr
(

Â ·
[
B̂, Ĉ

])
= Tr

([
Â, B̂

]
· Ĉ
)

, (7.54)

the terms involving the dissipation and the noise kernels vanish and we get

d
dt
〈x̂〉 = − i

h̄
Tr
(
ρ̂r ·

[
x̂, Ĥs

])
=
〈 p̂〉
m

. (7.55)

Here, we remember that the system Hamiltonian Ĥs receives a contribution from V̂EM in addition
to the bare potential V̂0 such that (c.f. the discussion between Eqs. (7.4) and (7.8))

Ĥs(t) =
p̂2

2m
+ V̂0(x, t) +

e2ω3
max

3π2ε0c3 x̂2 . (7.56)

Similarly, for the momentum operator the following relation is obtained

d
dt
〈 p̂〉 = Tr ( p̂∂tρ̂r) =−

i
h̄

Tr
([

p̂, Ĥs
]
· ρ̂r
)
+

i
2h̄

ˆ t−ti

0
dτD(t; t− τ)Tr ([ p̂, x̂] · {x̂Hs(−τ), ρ̂r(t)})

− 1
h̄

ˆ t−ti

0
dτN (t; t− τ)Tr ([ p̂, x̂] · [x̂Hs(−τ), ρ̂r(t)]) . (7.57)
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Since [x̂, p̂] = ih̄1, the term involving the noise kernel vanishes and Eq. (7.57) simplifies to

d
dt
〈 p̂〉 = −〈V̂0,x 〉 −

2e2ω3
max

3π2ε0c3 〈x̂〉+ Tr
(

ρ̂r(t)
ˆ t−ti

0
dτD(τ)x̂Hs(−τ)

)
. (7.58)

Evaluating the integral using Eq. (7.52), we see that the last term in the integral gives the contri-

bution 2e2ω3
max

3π2ε0c3 〈x̂〉 to d
dt 〈 p̂〉 in Eq. (7.58) and cancels the contribution coming from V̂EM. The EOM

therefore reduces to

d
dt
〈 p̂〉 = −〈V̂0(x),x 〉 −

2αh̄
3c2 Tr

(
ρ̂r(t)

d3

dτ3 x̂Hs(−τ)

∣∣∣∣
τ=0

)
− 4αh̄ωmax

3πc2 Tr
(

ρ̂r(t)
d2

dτ2 x̂Hs(−τ)

∣∣∣∣
τ=0

)
.

(7.59)

It is interesting to compare the quantum mechanical EOM with the one derived classically. Within
classical electrodynamics, a charged spherical shell of radius R which is accelerated by an external
force Fext, experiences an extra recoil force (radiation reaction) due to the emission of radiation. By
taking the limit R→ 0 in the equation describing its dynamics, one obtains the Abraham-Lorentz
formula

mR ẍ = Fext +
2h̄α

3c2
...
x , (7.60)

where mR denotes the observed renormalized mass. See for example [100, 65] and the references
therein for the derivation of the AL formula. The triple derivative term appearing in Eq. (7.60)
can be interpreted as the friction term that leads to energy loss due to radiation emission. For
instance, when the external potential is taken to be V0(x) = (1/2)mω2

0x2, one has
...
x ≈ −ω2

0 ẋ [36].
However, the issue with Eq. (7.60) is that the same triple derivative term persists even when the
external potential is switched off, leading to an exponentially increase of the particle’s acceleration.

Defining τ0 := 2h̄α
3mRc2 , we get (in the absence of any external force) for the acceleration a(t) of

the charged particle

a(t) = a(t0) exp{(t− t0)/τ0} . (7.61)

One may try to circumvent the problem by simply assuming a(t0) = 0. This, however, does not
work. To see why, we consider an external force such that

Fext =


0 , for t ≤ 0
f (t) , for 0 < t ≤ t1

0 for t > t1 .
(7.62)

It can be shown that in the presence of the triple time derivative term
...
x as in Eq. (7.60), the accel-

eration a(t) changes continuously even if Fext does not. If we set the initial conditions such that
a = 0 for t ≤ 0, we get

a(t) =


0 , for t ≤ 0
af(t) , for 0 < t ≤ t1

af(t1) exp{(t− t1)/τ0} for t > t1 .
(7.63)
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We see that the run-away solution for t > t1 persists since af(t) is non-zero in the presence of
a generic Fext. We may set the initial conditions such that a(t1) = 0 (and therefore a(t) = 0
for t ≥ t1) to avoid the run-away solution. However, since a(t) changes continuously due to
the presence of

...
x in the differential equation, by matching the boundary conditions we see that

if a(t1) = 0, a(0) 6= 0, implying that the particle started accelerating before the external force
was even switched on. This behaviour is clearly acausal and also unacceptable. Thus, the choice
of the initial value of the acceleration only allows us to trade between acausality and the run-
away solution, both of which are physically unacceptable. A more elaborate discussion of the AL
formula and the problems associated with it can be found in [39, 100, 64, 65] and the references
therein.

To see if these problems persist at a quantum mechanical for Eq. (7.59), first we consider the
situation when the external potential is switched off. To proceed, we note that the time derivatives
of x̂Hs in Eq. (7.59) can be easily computed, since from Eq. (7.32) we have the relation (upto leading
order in the interactions)

d
dτ

x̂Hs(−τ) = − i
h̄

[
V̂0(x) +

p̂2

2m
, x̂Hs(−τ)

]
. (7.64)

Taking another time derivative of x̂Hs , with V̂0(x) = 0, we get

d2

dτ2 x̂Hs(−τ)

∣∣∣∣
τ=0

=

(
−i
h̄

)2 [ p̂2

2m
,
[

p̂2

2m
, x̂
]]

= 0 , (7.65)

where, in Eq. (7.65), the relation x̂Hs(0) = x̂ has also been used. Similarly, the third derivative term
appearing in Eq. (7.59) also vanishes. Therefore, when V̂0(x) = 0, Eq. (7.59) simply reduces to

d
dt
〈 p̂〉 = 0 . (7.66)

Unlike the AL formula (7.60), we see that upto second order in the interactions there are no so-
lutions which allow for an exponential increase of the particle’s acceleration in the absence of an
external potential.

Next we consider the case when the external potential is switched on. When the potential does
not depend explicitly on time, the double and triple derivative terms in Eq. (7.59) yield double
and triple commutators with respect to the system Hamiltonian respectively (discarding V̂EM upto
second order). Eq. (7.59) can then be written as

d
dt
〈 p̂〉 =Fext +

4αh̄ωmax

3πc2 Tr
(

1
h̄2 ρ̂r(t)

[
Ĥs,

[
Ĥs, x̂

]])
− 2αh̄

3c2 Tr
(

i
h̄3 ρ̂r(t)

[
Ĥs,

[
Ĥs,

[
Ĥs, x̂

]]])
. (7.67)

Here, the external force is defined to be Fext := −〈V̂0(x),x 〉. Due to the presence of V̂0(x), the com-
mutators of Ĥs with x̂ no longer vanish. To simplify the equation further, we shift the commutators
onto the density matrix using the cyclic property such that

Tr
(
ρ̂r
[
Ĥs,

[
Ĥs, x̂

]])
= Tr

(
x̂
[
Ĥs,

[
Ĥs, ρ̂r

]])
. (7.68)

The same relationship is also obtained for the triple commutator term, with an additional minus
sign. Remembering that the master equation is only valid upto second order in the interaction, it is
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sufficient to evaluate the trace in Eq. (7.67) at 0th order. This implies that within the trace, the time
dependence of the density matrix can be evaluated only by retaining the Liouville-von Neuman
term in Eq. (7.37). The right hand side of Eq. (7.68) thus becomes proportional to Tr(x̂ ¨̂ρr). With
these simplifications, Eq. (7.67) can be written as

mR

d2

dt2 〈x̂〉 = Fext +
2αh̄
3c2

d3

dt3 〈x̂〉 . (7.69)

After identifying the observed electron mass with the re-normalized mass mR := m + 4αh̄ωmax
3πc2 ,

Eq. (7.69) reduces to the Abraham-Lorentz formula (7.60). The same result also holds true for
the case in which the bare potential V̂0(x, t) depends explicitly on time (c.f. Appendix E of the
preprint [66]). It must be remarked that the equation of motion derived quantum mechanically
only reduces to Eq. (7.60) in the presence of an external potential. When the external potential is
switched off, the EOM reduces to Eq. (7.66) and is therefore free of the runaway solution.

7.6 Decoherence

In this final section, having already obtained the master equation, we are interested in assessing if
the spatial superposition of a charged particle at rest can be suppressed via its interaction with the
vacuum fluctuations alone. We begin by writing the position space representation of the master
equation (7.37) relevant for decoherence

∂tρr =

[
− (x′ − x)2N1(t)

h̄

]
ρr , (7.70)

where N1(τ) is defined to be

N1(τ) :=
ˆ τ

0
dτ′N (τ′) = − 4αh̄

3πc2
(τ3 − 3τε2)

(τ2 + ε2)3 . (7.71)

Here, the initial time has been set to ti = 0 and only the second term involving the noise kernel in
Eq. (7.37) has been retained. This is because the other terms typically give subdominant contribu-
tions when the question of interest is to evaluate the rate of decay of the off-diagonal elements of
the density matrix at late times [114, 25]. We have also used the expression of the noise kernel in
Eq. (7.42) inside the integral to obtain the expression for N1. Integrating Eq. (7.70) we get

ρr(x′, x, t) = exp
(
− (x′ − x)2

h̄
N2(t)

)
ρr(x′, x, 0) , (7.72)

where N2(t) :=
´ t

0 dτN1(τ). The function N2(t) is inversely proportional to the coherence length

lx(t) defined by lx(t) := (h̄/N2(t))
1
2 . After performing the integral over N1 the expression for the

coherence length is obtained to be

lx(t) =

√
3πc2

2αω2
max

· (t
2 + ε2)2

t4 + 3t2ε2
t�ε
=

√
3π

2α

1
kmax

. (7.73)
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We see that the coherence length approaches a constant value on time scales much larger than
ε = 1/ωmax and that its value scales inversely with the UV cut-off. Taken literally, if one sets
kmax = 1/λdb, where λdb is the de Broglie wavelength of the electron, one would arrive at the
conclusion that vacuum fluctuations lead to decoherence with the coherence length of the charged
particle asymptotically reducing to lx ≈ 25λdb within the time scales t ≈ λdb/c.
False Decoherence. It is clearly unsatisfactory to have an observable effect scale explicitly with the
UV cut-off, since the precise numerical value of the cut-off is strictly speaking arbitrary. A sim-
ilar situation was encountered in [126] in a different context of a harmonic oscillator coupled to
a massive scalar field. However, it was argued in [126] that the reduced density matrix of the
harmonic oscillator described false decoherence. In such a situation, the off-diagonal elements of
the density matrix are suppressed simply because the state of the environment goes into different
configurations depending upon the spatial location of the system. However, these changes in the
environmental states remain locally around the system and are reversible. For the electron inter-
acting with vacuum fluctuations, we therefore take the point of view that if the reduced density
matrix describes false decoherence, then after adiabatically switching off the interactions with the
environment (after having adiabatically switched it on initially), the original coherence must be
fully restored at the level of the system.

To formulate the argument we consider a time dependent coupling q(t) = −e f (t) such that
f (t) = 1 for most of the dynamics between the initial time t = 0 and the final time t = T, while
f (0) = f (T) = 0. The quantity relevant for decoherence is the noise kernel which, under the
time-dependent coupling, transforms as

N → Ñ = f (t1) f (t2)N (t1; t2) = f (t1) f (t2)N (t1 − t2) . (7.74)

The decoherence factor in the double commutator in Eq. (7.37) involves replacing t2 with t1 − τ
and then integrating over τ. Therefore, the functionN1 transforms asN1 → Ñ1, with Ñ1 given by

Ñ1(t1) = f (t1)

ˆ t1

0
dτ f (t1 − τ)N (τ) . (7.75)

From the definitions of N1 and N2 we have N = (d/dτ)N1, N1 = (d/dτ)N2 and N1(0) =
N2(0) = 0. Using these relations and integrating by parts, Eq. (7.75) becomes

Ñ1(t1) = f (t1)N1(t1) f (0) + f (t1)N2(t1) ḟ (0) + f (t1)

ˆ t1

0
dτN2(τ)

d2

dτ2 f (t1 − τ) . (7.76)

In the limit ε→ 0 (taking the UV cut-off to infinity), we see from Eq. (7.73) thatN2 looses any time
dependence. We can therefore bring N2 outside the integral such that

Ñ1(t1) = f (t1)N1(t1) f (0) + f (t1)N2 ḟ (0)− f (t1)N2( ḟ (0)− ḟ (t1)) (7.77)

The terms involving ḟ (0) cancel out and we get

Ñ1(t1) = f (t1)N1(t1) f (0) + f (t1)N2 ḟ (t1) . (7.78)

After integrating by parts Eq. (7.78), in order to obtain Ñ2(T) =
´ T

0 dt1Ñ1(t1), we get

Ñ2(T) = f (0) ( f (T)N2(T)− f (0)N2(0))− f (0)N2

ˆ T

0
dt1 ḟ +

N2

2

ˆ T

0
dt1

d
dt1

f 2 . (7.79)
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In the limit ε → 0, as we noted earlier, N2(t) takes a constant value for any time t > 0 but is zero
at t = 0 from the way it is defined. After completing the remaining integrals we get

Ñ2(T) =
N2

2

(
f 2(0) + f 2(T)

)
. (7.80)

Since we assume that the interactions are switched off in the very beginning and at the very end,
we see that Ñ2(T) = 0 such that Eq. (7.72) becomes ρ̃r(x′, x, T) = ρr(x′, x, 0). Therefore, by adia-
batically switching off the interactions we recover the original coherence within the system.

This is different from standard collisional decoherence where, for example, one originally has
[114]

∂tρr(x′, x, t) = −Λ(x′ − x)2ρr(x′, x, t) . (7.81)

When in this case we send Λ→ Λ̃ = f (t)Λ, we get

ρ̃r(x′, x, t) = exp
{
−Λ(x′ − x)2

ˆ t

0
dt′ f (t′)

}
ρr(x′, x, 0) (7.82)

The density matrix depends on the integral of f (t) rather than its end points and we see that
coherence is indeed lost irreversibly.

7.7 Discussion

In this work, the interaction of a non-relativistic electron with the radiation field is formulated
within the framework of open quantum systems and the explicit expression for the master equa-
tion of the reduced electron dynamics in the position basis is obtained. It is shown that the classical
limit of the quantum dynamics is free of the problems associated with the purely classical deriva-
tion of the Abraham-Lorentz formula. With respect to possible decoherence induced by vacuum
fluctuations alone, the apparent decoherence at the level of the reduced density matrix is shown
to be reversible and an artifact of the formalism used. In mathematically tracing over the environ-
ment, one traces over the degrees of freedom that physically surround the system being observed.
These degrees of freedom must be regarded as the part of the system being observed (possibly as
its dressed states [47, 126]), rather than the environment. This interpretation stems from the fact
that one restores full initial coherence back into the system after switching off the interactions with
the environment adiabatically.
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Chapter 8

Summary and outlook

There has been a rising interest in adding the dark matter problem to the list of cosmological
puzzles already solved by inflation. While the general mechanism leading to the formation of
primordial black holes triggered by inflationary perturbations has already been fairly well estab-
lished and discussed extensively in the literature, the search for specific theoretically well moti-
vated models of inflation that lead to the formation of PBHs is not yet over. In the first part of the
thesis, one such model is constructed which is a simple combination of Starobinsky’s model and
the model of non-minimal Higgs inflation. It inherits the compatibility of the two models with the
CMB observations and also offers the possibility to account for the observed CDM content in the
universe.

For a given value of the quartic self-coupling λ, it is shown that the remaining free parame-
ters of the model, the scalaron mass m0 and the non-minimal coupling parameters ξ and ζ, must
all attain a specific value such that the model is consistent with CMB observations and generates
sufficiently many PBHs, in an observationally viable mass window, in order to simultaneously
account for the observed CDM content in the universe. The model leads to some specific predic-
tions that can be falsified by future observations. For instance, the predictions of the model on
wavelengths probed by the CMB are identical to that of Starobinsky’s model. Thus, a measure-
ment of the tensor-to-scalar ratio higher than that predicted by Starobinsky’s model would rule
this model out. While the value of the free parameters of the model can account for any fraction of
dark matter that might be attributed to PBHs by future observations, it can only produce a single
peak in the adiabatic power spectrum, such that the mass of the PBHs can only lie within a narrow
interval. Therefore, the model could also be tested against the possibility of detecting PBHs with
very different masses. It would also be interesting to see if the detection of gravitational waves,
that might accompany the formation of PBHs [113], puts additional constraints on the model.

As mentioned in the introduction to the thesis, if one believes in the validity of the standard
linear quantum dynamics for any system under consideration, one is logically led towards the
Everett’s interpretation. If, instead, we require the observed measurement record in an experiment
to be the only one around which the universal wavefunction localizes, one may instead arrive at
the dynamical collapse models which achieve this localization continuously and asymptotically in
time. The task then becomes to see if the collapse models are indeed consistent with observations
and to constrain the free parameters of the modified, non-linear and stochastic quantum dynamics
that they postulate.
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In generalizing to a cosmological setting, while the authors in [87] claim that the mass pro-
portional CSL model is incompatible with the CMB observations (for most of the gauge-invariant
constructions of their choice of the collapse operator), the work presented in the second part of the
thesis shows and emphasizes that this conclusion strongly depends upon how the model is gen-
eralized and applied during inflation. Instead of considering the perturbed matter-energy density
as the collapse operator (as in [87]), the Hamiltonian density of the scalar perturbations is assumed
to play the role of the collapse operator during inflation and the radiation dominated era. At the
level of first order cosmological perturbations, this generalization is shown to give negligible cor-
rections to the power spectrum of the comoving curvature perturbation. The constraints imposed
by the inflationary dynamics on the free parameters of the CSL model are further found to be
insignificant compared to those already imposed by the state of the art laboratory experiments.
Thus, the work presented here not only shows that the CSL model can be generalized in a manner
that is consistent with CMB observations, but also that we first need to arrive at a general con-
sensus on how the various collapse models should be generalized to a relativistic regime before
arriving at a final conclusion concerning their compatibility with the CMB observations.

In the third and final part of the thesis, the dynamics of a non-relativistic electron is studied
in the presence of vacuum fluctuations. The subject again relates to the foundational aspects of
quantum mechanics where the question of interest is whether or not the environment of vacuum
fluctuations of the radiation field, which is fundamental and unavoidable, behaves somewhat like
an ordinary environment, such as that comprising of thermal photons, and if it leads to decoher-
ence effects for an electron in a superposition of two spatial locations.

To address this question, standard quantum electrodynamics techniques are applied within the
framework of open quantum systems to derive the master equation for the reduced density matrix
of the electron in the position basis. From the master equation, it is deduced that the environment
of vacuum fluctuations does not behave like an ordinary one and does not lead to decoherence
of an electron in a spatial superposition. It is shown that although the off-diagonal elements of
the reduced density matrix are suppressed, it does not imply that the vacuum fluctuations lead
to irreversible loss of coherence for an electron (at rest) in a superposition of two different spatial
locations. This is because full coherence is restored at the level of the electron simply by switching-
off its interaction with the radiation field at late times. This would not have been the case had the
loss of coherence been genuine and irreversible. Furthermore, the same mathematical formalism
is also applied in addressing the well-known and long-standing problems associated with the
Abraham-Lorentz formula. It is shown in this thesis that the equation of motion obtained for the
expectation value of the position operator, obtained after averaging over the radiation field, is
free of the instability problems associated with the Abraham-Lorentz formula that one faces in a
purely classical derivation. While there has been a general expectation that these problems might
not persist at a quantum mechanical level, it might be for the first time that this is demonstrated
clearly.
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