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S U M M A R Y 

Seismic attributes are derived measures from seismic data that help characterize subsurface 
geological features and enhance the interpretation of subsurface structures: we propose to 

exploit the hidden layers of Long–Short Time Memory neural network predictions as possible 
new reflection seismic attributes. The idea is based on the inference process of a neural 
network, which in its hidden layers stores information related to different features embedded 

in the input data and which usually are not considered. Neural network applications typically 

ignore such intermediate steps because the main interest lies in the final output, which is 
considered as the e xclusiv e e xploitable feature of the process. On the contrary, here we analyse 
the possibility to exploit the intermediate prediction steps, hereafter referred as ‘deep attributes’ 
because they are produced by a deep learning algorithm, to highlight features and emphasize 
characteristics embedded in the data but neither recognizable by traditional interpretation, 
nor evident with classical attributes or multi-attribute approaches. Nowadays, classical signal 
attributes are numerous and used for different purposes; we here propose an original strategy 

to calculate attributes pre viousl y ne v er e xploited, which are potentially complementary or a 
good alternative to the classical ones. 

We tested the proposed procedure on synthetic and field 2-D and 3-D reflection seismic data 
sets to test and demonstrate the stability, affordability and versatility of the entire approach. 
Fur ther more, we e v aluated the performance of deep attributes on a 4-D seismic data set to 

assess the applicability and ef fecti veness for time-monitoring purposes and comparing them 

with the sweetness attribute. 

Key words: Image processing; Machine learning; Neural networks, fuzzy logic. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/237/1/378/7603383 by guest on 18 N

ovem
ber 2024
1  I N T RO D U C T I O N  

Seismic attributes have been developed since the 1970s to help 
reflection seismic interpretation exploiting additional quantities to 
classical reflection amplitude and multitrace horizons correlation. 
In fact, the basic principle of seismic data interpretation is the 
detection of reflections that are related to subsurface impedance 
contrasts (e.g. Anstey 2013 ). Therefore, seismic horizons are linked 
not only to stratigraphic or structural contacts, but also to porosity 
or fluid content variations within the same geological unit. 

An incredibly large number of seismic attributes have been de- 
veloped since the first applications. While most of the attributes 
are well defined from the mathematical point of view, their corre- 
lation with specific physical parameters or geological elements is 
still not apparent (Li & Zhao 2014 ). Since the 1990s, the further 
development of new seismic attributes or the more sophisticated 
calculation of already available ones benefited from 3-D seismic 
surv e ys, characterized by a spatial data coverage that was previ- 
ousl y unconcei v able (Chopra & Marfurt 2005 ). In addition, 3-D 

based seismic attributes improved (semi) automated data interpre- 
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tation and 3-D (auto) picking and surface/volume extraction, as well 
as more accurate estimates of reservoir parameters and their spatial 
variations. 

Following the definition of Chopra & Marfurt ( 2007 ), seismic 
attributes are ‘any measure of seismic data that helps us visually 
enhance or quantify features of interpretation interest’; we here 
propose a new approach to automatically extract seismic attributes 
from reflection seismic data set based on neural network (NN) 
calculations. 

In recent years, NN, and in a broader sense, deep learning (DL) 
techniques have been extensi vel y applied in different branches of 
geophysics (a comprehensi ve re vie w is provided by Yu & Ma 2021 ), 
and particularly in different steps of reflection seismic surv e ys with 
se veral dif ferent objecti ves: 

(i) Optimize data acquisition maximizing the information while 
avoiding redundant data (e.g. Lu et al . 2019 ; Deighton & Olsen 
2021 ). 

(ii) Perform data simulations creating realistic synthetic data sets 
(e.g. Moseley et al . 2020 ; Roncoroni et al . 2021 ). 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
s Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
 any medium, provided the original work is properly cited. 
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Figure 1. Conceptual scheme of a neuron in an LSTM, which contains four 
interacting layers. In the white rectangles, the acti v ation functions, while in 
the white circles the mathematical operations are depicted. 
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(iii) Enhance data quality by means of interpolation, processing
nd imaging algorithms (e.g. Jia & Ma 2017 ; Wang et al . 2019 ; Hou
 Hoeber 2020 ; Klochikhina et al . 2020 ). 
(iv) Improve interpretation, data classification, information ex-

raction and seismic horizon/surface picking (e.g. Di et al . 2018 ;
uan et al . 2019 ; Das & Mukerji 2020 ; Wrona et al . 2021 ; Ron-

oroni et al . 2022a ; Roncoroni et al . 2022b ; Sain & Kumar 2022 ). 
(v) Perform data inversion and parameters extraction (e.g. Wang

t al . 2019 , 2020 ; Ruiz et al . 2021 ). 

Alongside all these applications, we propose a totally new way of
sing hidden layer (HL) predictions, which are usually the ‘trans-
arent’ steps of an y NN l ying in between data input and the expected
utput. The idea is based on the inference process of a Long–Short
ime Memory (LSTM)-based NN. In its HL, an NN extracts in-
ormation related to some features (i.e. attributes) embedded in
he input data and uses them to get the required inference (i.e. the
utput). DL applications typically ignore the information from the
ntermediate steps because the main interest lies in the final output,
hich is considered the manageable result of the entire process. In
ther words, we analyse the possibility to exploit the intermediate
rediction steps to highlight features and emphasize characteristics
mbedded in the data but recognizable neither by traditional inter-
retation, nor by classical attributes or multi-attribute approaches. 

Since the obtained features are produced by a DL procedure,
e decided to refer to them as deep attributes (DA). In addition,

uch a definition follows similar ones already used, even for slightly
ifferent issues, in other fields of research and technology like face
ecognition (Jadhav et al . 2016 ) and, more in general, to image
nalysis and pattern recognition (Kim et al . 2022 ). 

To avoid any confusion, we remark that our procedure does not
ombine, mix, classify, fuse, extrapolate previous attributes. There-
ore, it is different from the ones recently proposed by Qian et
l . ( 2018 ) and further modified by Li et al . ( 2022 ) in which DL is
sed to ‘extract deep features from seismic waveforms and combine
ultiple attributes for seismic attribute fusion at the same time’ so

ypically exploiting the NN output and not considering its HL. 
We applied our analysis on both synthetic and field 2-D and 3-D

eflection seismics thus demonstrating the affordability and versa-
ility of the whole procedure. Fur ther more, we e v aluated the perfor-
ance of DA on a 4-D seismic data set to assess the applicability

or time-monitoring purposes critically evaluating the performance
s respect to a standard attribute. 
 M E T H O D S  

n this paper, we focus on LSTM-based NN, however, the proposed
pproach could be applied, in principle, to any NN geometry. The
hoice of LSTM is moti v ated b y the causal nature of the recurrent
eural network (RNN), which can provide a more reliable represen-
ation of the different signal components embedded in the seismic
ata. Other typical NNs like for instance U-Net or convolutive neu-
al networks (CNN) work more on the geometrical features, while
STM is more signal-related and combines both the dynamic and
pectral information of the data. Although the peculiarities of each
ifferent NNs architecture are more suitable for different specific
asks, HL information (i.e. DA) can in principle al wa ys be exploited.

The simplest RNN is made up of a single neuron that receives
n input, produces an output, and sends that output to itself and to
he output vector. At each time step t , the recurrent neuron receives
he inputs x (t), as well as its own output from the previous time step
 ( t −1). Special neurons have been introduced to handle long-term
ependencies: one of the most used is the LSTM, at first introduced
y Hochreiter and Schmidhuber ( 1997 ). LSTMs are in fact explicitly
esigned to avoid the long-term dependency problems: they have
 chain-like structure, as for the RNN, but the repeating module
as a different architecture (see Fig. 1 ), with the peculiar ability to
eep on information even from x(t ) < x ( t −1). The capability to spot
ong time dependencies within a series (in our case a time series)
s the reason for the choice of this type of layers for the proposed
xtraction method. 

Another crucial point of the methodology is the NN geometry: the
se of an encoder–decoder structure is directly linked to the typical
ncoder–decoder convolutive NN (ED-CNN). A classical geometry
f ED-CNN is made of a chain of couples of CNN layers, linked
ith pooling layers in the encoder and with up-sampling layer in

he decoder. A pooling layer takes values in an interval (defined as
ernel) and gives out a single value, that is, the maximum values in
his case; doing this we can perform a reduction of the length of the
race equal to the kernel size. An up-sampling layer makes exactly
he opposite: it takes a single value at and replicates it kernel-size
imes. 

The mix between this kind of neurons and the encoder–decoder
eometr y g rants us that each values of the HL can be directly linked
o the correct position in time or, in some way, to what happened at
revious times. This assure the causality typical of seismic waves
ropagation. 

In Fig. 2 , we explain the main NN geometry used. If we try
o focus on the change of a single time step, assuming the kernel
ize = 2 both for the pooling and for the up-sampling la yers, w e
ave before the first pooling layer point D1, which refers to time t .
fter the first pooling layer we get point D2, referring to time [ t ,

 + 1] and at the third la yer, w e ha ve point D3 referring to time [ t ,
 + 3]. In the encoded version of the signal, we have point E1 and E2
eferring both to time [ t , t + 5] and the information for their creation
omes just from time < t + 5, since the recurrent neuron does not go
ackwards. In the decoder part, we have exactly the inverse of what
escribed above. 

Since the base of the methodology is the down sampling of the
eismic wa velet, w e ha ve to take care of the input sampling rate. In
rder to estimate the optimal sampling rate for each signal (beside
he Nyquist–Shannon theorems and related issues, see e.g. Dossi et
l . 2018 ) we compute the amplitude spectrum in the Fourier domain
ith a unit sampling interval. We then resample it in order to get
 desired frequency with this unitary value. This approach allows
o work without changes on every input frequency and without

art/ggae053_f1.eps


380 G. Roncoroni et al . 

Figure 2. (a) Base structure of the proposed method. The geometry is based on an encoder–decoder LSTM NN with input equal to output. Recurrent layers 
are depicted in b lue, w hile a sample at time t is highlighted to show the loss of resolution of DA. (b) Example of applications of the LSTM ED to the real 
data shown in Fig. 6 . We can see the loss of resolution and the implementation of D A (lo wer part). We can also e v aluate the good reconstruction of the input, 
comparing the two top right pictures (for a better visual comparison see also Fig. 7 ). E1, E2, E3 and D1, D2, D3 are the HL of the encoder and decoder parts, 
respecti vel y. 
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considering the sample rate. This allows to generalize the values we 
will state later in this paper to any source frequency. 

The best v alue w as estimated taking into account the minimum 

depth of the NN needed to lose the wave nature during down sam- 
pling: if we oversample a trace, for example, a wavelet is discretized 
in 64 points, after three pooling layers we will still have 8 sample 
per wavelet and in turn the task of reconstructing the signal will be 
easy and no DA will be needed. On the other hand, if we use a too 
low sampled trace, we will have to create a very deep NN and we 
will lose a large amount of information. 

By taking into account the maximum discretization and the loss 
value, since we still have to get a good reconstruction of our input 
data, we found as an optimal value 16 samples per wavelet. We 
tested this value on different data with various complexities and we 
al wa ys got good results. 

As we can see in Fig. 3 , the loss function has a plateau between 4 
and 8 samples, while it starts decreasing with higher values. From 

32 samples, the number of pooling layers is not enough to make 
the NN able to lose the waveform during the training: this means 
that we get very good results in terms of prediction (which is not 
the main objective of DA extraction), but poor results in term of 
features extraction. 

Once w e ha ve defined the procedure, the main objective of the 
NN is to obtain an exact copy of the input by processing it into the 
encoder part so that it can retrieve the original trace in the decoder 
part. 

The proposed w orkflo w is: 

(i) Create an LSTM-based NN that fits a specific problem. 
(ii) Train the NN on the data. 
(iii) Use the HL predictions as a set of additional information (i.e. 

DA) for improved seismic analysis and interpretation purposes. 

Once w e ha ve a trained NN w e can start working on the prediction 
of each single neuron from each HL. In Fig. 4 , we show all the DA 

produced by the trained NN during the horizons extraction step. 

art/ggae053_f2.eps
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Figure 3. Loss function values with varying discretization steps of the input: with 4 and 8 samples we got to a plateau, while increasing the sampling rate we 
get better results but to avoid overfitting we chose 16 as a good value since it can get acceptable reconstructions without keeping the waveform memory. With 
32 (or more) samples, the problem is overfitted. Dotted and dashed lines represent the validation and training losses, respectively. 

Figure 4. 32 DA of HL 3 of the encoder phase applied to a seismic profile of the Marmousi data set. 
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The proposed methodology can be applied to several dif-
erent data sets and with slightly different purposes. In this
aper , we propose tw o different approaches to e v aluate its
otential. 

At first, we used the method to infer complex geometries in
-D seismic profiles. We tested the ef fecti veness of the proposed
A approach on synthetic and field data considering the obtained
A then computing a principal component analysis (PCA) in order

o reduce the number of attributes, while summarizing the whole
nformation content. 

We further exploit a single DA applying the same NN to a 3-
 seismic surv e y repeated in different years (i.e. a 4-D data set)
o monitor a CO 2 storage field. This allows to e v aluate the stability
nd the repetitiveness of the methodology and its use for monitoring
urposes. 

 R E S U LT S  

.1 Application on 2-D data 

.1.1 Synthetic example 

n order to test the methodology, we performed at first an analysis on
he elastic Marmousi model (Martin, 2004 ) which is a classical data

art/ggae053_f3.eps
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Figure 5. Test of the application of PCA on the HL depicted in Fig. 4 . The total explained variance ratio is plotted on the top of each picture. As we can see, 
nine PCA results can explain 0.91 of the total variance. 
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set used for e v aluation purposes. An examplary HL of the Encoder 
part of the NN applied to a profile of this data set is shown in Fig. 4 . 

F rom F ig. 4 , it is apparent that some of the DA provide infor - 
mation about the single reflectors geometry, while other are more 
related to the different seismic signatures of the various zones. 
Moreover, it is interesting to notice that the resolution level of the 
DA panels is variable and spans over a wide range. Since it is diffi- 
cult to get and summarize the whole information contained in many 
DA, we decided to apply a PCA to each HL to get a lower number 
of attributes that could condense all the extracted features. In order 
to better understand how much information we are losing with the 
PCA analysis we compute the explained variance ratio, which is the 
percentage of variance related to each DA. As we can see in Fig. 5 , 
with just nine components we can explain 0.91 (i.e. 91 per cent) of 
the total variance of the first HL of the encoder. 

From the PCA panels, it is apparent that they encompass not only 
the information related to the geometry and location of the reflec- 
tions, but even more important, there are additional details related 
to materials in-between reflectors (i.e. transmission attributes) or 
to changes in the frequency content or main geological domains. 
In order to better understand the prediction performances of the 
proposed methodology, we directly compare some of the velocity 

art/ggae053_f5.eps
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Figure 6. (a) Velocity model and (b)–(e) DA for an example of a seismic profile from the Marmousi model. 
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odels used to generate the Marmousi data set with some randomly
elected DA (Fig. 6 ). 

It is interesting to note that DA can highlight elements at dif-
erent resolution levels, and with dif ferent geolo gical meaning. For
nstance, w hile in F ig. 6 (b) several horizons related to the main
elocity variations are apparent, in Fig. 6 (c) a general overview
f the stratigraphy is pro vided. Moreo ver, Figs 6 (d) and (e) pro-
ide a clear distinction between the shallow lower velocity zone
nd the high velocity one in depth, with some slightly different
etails. 

art/ggae053_f6.eps
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Figure 7. Example of a seismic profile of the WS10 exploration project: (a) field processed data and (b) NN reconstruction (output). 
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3.1.2 Field data example 

We further tested the proposed methodology on field data of the 
2-D marine seismic profile of the WS10 exploration project, ob- 
tained in autumn 2010 in the west Mediterranean Sea by the Istituto 
Nazionale di Oceanografia e Geofisica Sperimentale, which also 
performed the data processing (Geletti et al ., 2014 ).). The selected 
portion of the seismic profile images a rifted margin of the east- 
ern Sardo-Proven c ¸al Basin characterized by a faulted salt dome 
and by a portion of an almost undisturbed sedimentary sequence 
(Fig. 7 ). 

The PCA analysis performed allow to condense the main part of 
DA information (equal to 92 per cent) in just four panels (Fig. 8 ). 
Beside the ef fecti veness in reducing the number of DA panels PCA 

is quite efficient in keeping both high- and low-frequency features. 
In fact, while panels (a) and (b) provide information about the 
general geological (and velocity) trends, and panels (c) and (d) give 
evidence of local structures like the salt dome and the most coherent 
horizons. 

3.1.3 Application on a 4-D data set 

The Sleipner 4-D seismic data set is a reference data set from 

the Sleipner CO 2 storage site. Several seismic surv e ys hav e been 
performed at the storage site since 1994, when the first surv e y was 
completed before the commencement of fluid injection. This data set 
contains seismic cubes from 1994 to 2010. In 2007, Petroleum Geo- 
Ser vices (PGS) perfor med a full reprocessing of 1994, 2001, 2004 
and 2006 data sets collected with the same geometry, acquisition 
parameters, with an identical processing flow (Equinor 2020 ). An 
example of crossline for the four data sets is presented in Fig. 9 . 

We applied the technique to the processed data cube from 2001 
acquisition and we selected just a DA panel that enhances the strong 
reflection of the injection area. We applied the same trained NN on 
the data set of all the years from 1994 to 2006 to test the stability of 
the approach. A time slice showing some of the results is provided 
in Fig. 10 . 

As we can see, the methodology is stable over different and 
independent data sets collected in different years and the single DA 

plotted is able to highlight the CO 2 saturated area and its limits. 
DA (Fig. 10 a) gives results comparable to the ones provided by 
Sweetness attribute (Fig. 10 b) which is a composite signal attribute 
calculated by dividing the instantaneous amplitude by the square 
root of the instantaneous frequency thus condensing both dynamics 
and spectral informations. DA results can be further compared with 
the analysis performed by Chadwick et al . (2010 ) on the same data 
set. 

Values plotted in Fig. 10 (a) are scaled to the maximum values of 
more recent 2006 time slice: results evidence that also the magnitude 
of the prediction is independent from the training data and that the 

art/ggae053_f7.eps
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Figure 8. Results of the PCA analysis on the last layer before the encoding part of the geometry applied on the same data set as in Fig. 7 a. 
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his is a crucial and not obvious result that points out the high
tability and affordability of the whole approach, which is helpful
ot only for qualitative analyses but also for detailed monitoring
urposes. 

Moreover, a simple threshold (values > 0) on the DA on the
-D cube is ef fecti ve to enhance the evolution of the injected area
hrough time (Fig. 11 ). While plots in Fig. 10 are very helpful
n estimating the real boundaries of the CO 2 saturated volume, as
lready discussed, the purpose of the DA threshold is rather aimed
t testing the stability of the approach. 

 D I S C U S S I O N  

e remark that the proposed approach is quite different from all
he existing seismic attribute analyses, including the ones exploiting
ifferent strategies to combine and condense attributes (see e.g. Sain
 Kumar 2022 ). In fact, PCA, clustering, cross plot, NN methods

re ef fecti ve in decreasing the total number of attrib utes, b ut all have
o calculate the attributes beforehand and are somehow subjective
n terms of the selection of attributes to be combined (Meldahl
t al ., 2001 ). The proposed technique, on the contrary, exploits
STM networks using their intermediate prediction steps, which
re usually disregarded, as a way to recover additional information
hrough quantities here referred as DA. Meta-attributes, which are
he aggregation of seismic attributes combined with the interpreter’s
nsight through ‘artificial intelligence’ techniques (Sain & Kumar
022 ) are indeed something different, but future research could be
irected on the one hand to combine DA with the experience of
he interpreter, and on the other to infer a one-to-one correlation
etween DA and specific physical parameters and/or geological
eatures. 

From the computational point of view the methodology is prof-
table on GPU machines, since LSTM gets a great improvement
rom cuda implementation. For a single 3-D Sleipner data cube,
raining time on a laptop with a RTX-1080 with 8Gb of memory
akes only few hours for a 116 532 traces training. Prediction time
n the same number of traces is just of 2.4 s for the whole data
et. 

 C O N C LU S I O N S  

e exploit the HLs of LSTM networks as DA of reflection seismic
ata sets. The proposed methodology is definitely different from
he ones in which NN are applied to combine/condense pre viousl y
alculated attributes. 

The results obtained from synthetic and field data show that the
ew method is able to manage ev en comple x geometries highlight-
ng not only single seismic reflectors (i.e. features with high spatial
requenc y) but, ev en more important, the main geological and geo-
hysical features related for instance to the low spatial frequency
eismic velocity trend. PCA can be successfully applied on DA in

art/ggae053_f8.eps
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Figure 9. Example of a crossline of 1994, 2001, 2004 and 2006 data sets reprocessed by PGS in 2007 (data from Equinor 2020 ). 

Figure 10. 900 ms time slices extracted from the 1994, 2001, 2004 and 2006 3-D Sleipner data sets representing the same (a) single DA and the (b) 
corresponding values of the Sweetness attribute. The NN training was performed on the 2001 data and then applied to all the other data as a stability test of the 
whole DA calculation procedure. 
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Figure 11. 3-D display of the same DA as shown in Fig. 10 , where all values greater than 0 are plotted highlighted. See the text for more details. 
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rder to reduce the total number of attributes and is ef fecti ve in
etaining the information content. 

The stability tests performed demonstrate the high affordability
f the procedure that can be trained on a single data set (or just on a
ortion) and then applied to larger seismic volumes. The application
f DA to a 4-D data set collected to monitor a controlled CO 2 

njection in an underground gas storage further demonstrate the
tability and the repetitiveness of the methodology and in turn its
ull applicability for monitoring purposes. 

Future research will be directed to infer specific correlations be-
ween DA and single or integrated physical parameters which would

ake the DA a new possible strategy for the quantitative subsur-
ace petrophysical characterization at different scale and resolution
evels. 
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ttps://github.com/Giacomo-Roncoroni/DeepAttributes . 

E F E R E N C E S  

nstey , N.A. , 2013, Seismic Interpretation, Dordrecht: Springer Nether-
lands. https://public.ebook central.proq uest.com/choice/publicfullrecord 
.aspx?p=5577515 . 

hadwick , A. , et al. , 2010. Quantitati ve anal ysis of time-lapse seismic mon-
itoring data at the Sleipner CO2 storage operation. Leading Edg e , 29,
170–177. 

hopra , S. & Marfurt, K.J., 2005. Seismic attributes — a historical perspec-
tive. Geophysics, 70, 3SO–28SO. 

hopra , S. & Marfurt, K.J., 2007. Seismic attributes for prospect
identification and reservoir characterization, SEG, pp.481.
doi: 10.1190/1.9781560801900. 

as , V. & Mukerji, T., 2020. Petrophysical properties prediction from
prestack seismic data using convolutional neural networks. Geophysics,
85 (5), N41–N55, 

eighton , M. & Olsen, S., 2021. AI: a game changer in seismic acquisition
and processing. Geoexpro, 18, 4. source: https://geoexpro.com/ai- a- game
- changer- in- seismic- acquisition- and- processing/ 

i , H. , Wang, Z. & AlRegib, G., 2018. Deep convolutional neu-
ral networks for seismic salt-body delineation, in Annual, AAPG,
doi: 10.1306/70630Di2018. 

ossi , M. , Forte, E. & Pipan, M., 2018. Quantitative analysis of GPR signals:
transmitted wa velet, amplitude deca y, and sampling-related amplitude
distortions. Pure appl. Geophys., 175 (3), 1103–1122. 

art/ggae053_f11.eps
https://github.com/Giacomo-Roncoroni/DeepAttributes
https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=5577515
http://dx.doi.org/10.1190/1.3304820
http://dx.doi.org/10.1190/1.2098670
http://dx.doi.org/10.1190/1.9781560801900
http://dx.doi.org/10.1190/geo2019-0650.1
https://geoexpro.com/ai-a-game-changer-in-seismic-acquisition-and-processing/
http://dx.doi.org/10.1007/s00024-017-1752-2


388 G. Roncoroni et al . 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/237/1/378/7
Duan , Y. , Zheng, X., Hu, L. & Sun, L., 2019. Seismic facies analysis based 
on deep convolutional embedded clustering. Geophysics, 84 (6), IM87–
IM97. 

Equinor . 2020. Sleipner 4D seismic dataset [Data set]. Archive2014. 
doi: 10.11582/2020.00005. 

Geletti , R. et al. , 2014. The Messinian Salinity Crisis: New seis- 
mic evidence in the West-Sardinian Margin and Eastern Sardo- 
Proven ̧ cal basin (West Mediterranean Sea), Marine Geology, 351, 
76–90. 

Hochreiter , S. & Schmidhuber, J. 1997. Long Shor t-Ter m Mem- 
ory, Neural Computation, 9, 8 (Nov. 1997), 1735–1780. doi: 
10.1162/neco.1997.9.8.1735. 

Hou , S. & Hoeber, H., 2020. Seismic processing with deep convolu- 
tional neural networks: opportunities and challenges, in 82nd EAGE An- 
nual Conference & Exhibition, vol. 2020, pp. 1–5. doi: 10.3997/2214- 
4609.202010647. 

Jadhav , A. , Namboodiri, V.P. & Venkatesh, K.S., 2016. Deep attributes for 
one-shot face recognition. In: Hua, G. & J égou, H.(eds) Computer Vision –
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