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81Département de Physique Théorique and Center for Astroparticle Physics,
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We constrain six possible extensions to the ΛCDM model using measurements from the Dark Energy Sur-
vey’s first three years of observations, alone and in combination with external cosmological probes. The DES
data are the two-point correlation functions of weak gravitational lensing, galaxy clustering, and their cross-
correlation. We use simulated data vectors and blind analyses of real data to validate the robustness of our
results to astrophysical and modeling systematic errors. In many cases, constraining power is limited by the ab-
sence of theoretical predictions beyond the linear regime that are reliable at our required precision. The ΛCDM
extensions are: dark energy with a time-dependent equation of state, non-zero spatial curvature, additional rel-
ativistic degrees of freedom, sterile neutrinos with eV-scale mass, modifications of gravitational physics, and a
binned σ8(z) model which serves as a phenomenological probe of structure growth. For the time-varying dark
energy equation of state evaluated at the pivot redshift we find (wp, wa) = (−0.99+0.28

−0.17,−0.9 ± 1.2) at 68%
confidence with zp = 0.24 from the DES measurements alone, and (wp, wa) = (−1.03+0.04

−0.03,−0.4+0.4
−0.3) with

zp = 0.21 for the combination of all data considered. Curvature constraints of Ωk = 0.0009 ± 0.0017 and
effective relativistic species Neff = 3.10+0.15

−0.16 are dominated by external data, though adding DES information
to external low redshift probes tightens the Ωk constraints that can be made without CMB observables by 20%.
For massive sterile neutrinos, DES combined with external data improves the upper bound on the mass meff by
a factor of three compared to previous analyses, giving 95% limits of (∆Neff ,meff) ≤ (0.28, 0.20 eV) when
using priors matching a comparable Planck analysis. For modified gravity, we constrain changes to the lensing
and Poisson equations controlled by functions Σ(k, z) = Σ0ΩΛ(z)/ΩΛ,0 and µ(k, z) = µ0ΩΛ(z)/ΩΛ,0 re-
spectively to Σ0 = 0.6+0.4

−0.5 from DES alone and (Σ0, µ0) = (0.04 ± 0.05, 0.08+0.21
−0.19) for the combination of

all data, both at 68% confidence. Overall, we find no significant evidence for physics beyond ΛCDM.

I. INTRODUCTION

The discovery of the accelerated expansion of the universe
made about two decades ago [1, 2] established ΛCDM as the
standard model in cosmology. This paradigm relies on three
pillars: that general relativity correctly describes gravitational
interactions at cosmological scales; that at those scales the
Universe appears homogeneous, isotropic and spatially flat;
and that the Universe’s content at late times is dominated by
non-relativistic, pressureless cold dark matter (CDM), and the
cosmological constant term Λ. The resulting ΛCDM model
is in good agreement with cosmological observations from a
wide range of temporal and spatial scales [3–22].

The impressive phenomenological success of the ΛCDM
model has not been matched in our understanding of the phys-
ical nature of dark energy [23, 24], nor in insights as to why
the cosmological constant appears to be so small relative to
natural scales in particle physics [25–28]. Therefore, cos-
mology is in need of new and better data that can help shed
light on these cosmological conundrums. The quest to un-
derstand dark energy has spawned a worldwide effort to mea-
sure the growth and evolution of cosmic structures in the Uni-
verse. Ongoing experiments focused on dark energy include
wide field photometric surveys such as the Dark Energy Sur-
vey (DES)1 [29–31], the Hyper Suprime-Cam Subaru Strate-
gic Program (HSC-SSP)2 [18, 32], the Kilo-Degree Survey
(KiDS)3 [19, 33], in addition to ongoing spectroscopic sur-
veys like the Extended Baryon Oscillation Spectroscopic Sur-
vey (eBOSS)4 [34] and the Dark Energy Spectroscopic In-
strument (DESI) 5 [35]. These surveys have demonstrated
the feasibility of ambitious large-scale structure analyses, fea-

1 http://www.darkenergysurvey.org/
2 https://www.naoj.org/Projects/HSC/
3 http://kids.strw.leidenuniv.nl/
4 https://www.sdss.org/surveys/eboss/
5 https://www.desi.lbl.gov/

tured development of state-of-the-art systematics calibration,
and established new standards in protecting analyses against
observer bias before the results are revealed. Thus far, these
surveys have provided constraints consistent with the ΛCDM
model, and contributed to tightening the constraints on several
key cosmological parameters.

Using data from these surveys to search for deviations from
the predictions of ΛCDM is one of the primary goals of
modern cosmology. Such deviations could provide clues as
to where that minimal cosmological model needs to be ex-
tended, and thus a deeper understanding of the fundamen-
tal physics impacting the large-scale properties of the Uni-
verse. One approach to testing the ΛCDM model is to com-
pare ΛCDM parameter estimates inferred from different sets
of observables. This is the motivation behind the ongoing ex-
ploration of the 3–5σ tension in measurements of the Hubble
constant, H0, between low-redshift distance-ladder measure-
ments and those from the CMB at z ≈ 1100 (see Refs. [36–
41] for a summary), as well as the scrutiny of 1–3σ offsets
between large scale structure [16–19, 30, 42–46] and CMB-
based [11, 12] constraints on the amplitude of matter density
fluctuations scaled by the square root of the matter density,
S8 ≡ σ8(Ωm/0.3)0.5.

In the present analysis we adopt a complementary approach
by constraining cosmological models which add physics be-
yond that of the standard ΛCDM paradigm. While future pre-
cision measurements and careful characterization of existing
data (e.g. as in Refs. [47, 48]) will undoubtedly be required
to resolve the origin of any tensions between datasets, it is
also valuable to investigate whether (or to what extent) any
observed offsets may be alleviated by new physics. Addition-
ally, constraining the parameters of extended models can of-
fer greater sensitivity to signatures of beyond-ΛCDM physics
that may not manifest clearly as a tension between different
measurements of ΛCDM parameters.

This paper constrains a range of extended models using a
combined analysis of weak-lensing and galaxy-clustering ob-

http://www.darkenergysurvey.org/
https://www.naoj.org/Projects/HSC/
http://kids.strw.leidenuniv.nl/
https://www.sdss.org/surveys/eboss/
https://www.desi.lbl.gov/
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servations from the first three years of data6 of the Dark En-
ergy Survey (henceforth DES Y3) [49]. The models, are as
follows:

• Dynamical dark energy parameterized via the linear ex-
pansion of the dark energy equation of state w(a) =
w0 + (1− a)wa;

• Non-zero spatial curvature Ωk;

• Varying the effective number of relativistic species
Neff ;

• Sterile neutrinos varying parameters Neff and meff to
control the particles’ temperature and effective mass re-
spectively;

• Deviations from General Relativity introduced via the
functions Σ(k, z) = Σ0ΩΛ(z)/ΩΛ,0 and µ(k, z) =
µ0ΩΛ(z)/ΩΛ,0 respectively modifying the lensing and
Poisson equations;

• Variation of the growth rate of structure parameterized
by independent σ8 values in different redshift bins.

The selection of these models dictated both by their interest
to the cosmology community (this is the primary motivation
for w0 − wa, Ωk, Neff ), and by the kinds of physics about
which DES measurements add qualitatively new information
(primarily motivating Neff −meff , Σ0 − µ0, binned σ8(z)).

This work is a successor to the DES Y1 extended-model
analysis [50], which for conciseness we will reference as
DES-Y1Ext, and complements the main DES Y3 galaxy
clustering and weak lensing analysis [44] (henceforth DES-
Y3KP) that presented cosmology results for ΛCDM and the
wCDM model testing for a constant dark energy equation of
state different from −1. All of these studies extract cosmo-
logical information from DES data via a so-called ‘3×2pt’
analysis, in which parameter estimation is based on the com-
bined analysis of three types of projected two-point correla-
tion functions: cosmic shear measurements capturing weak
lensing distortions to the shape of background source galax-
ies, galaxy clustering measurements of the positions of fore-
ground lens galaxies, and the tangential shear of source galaxy
shapes around each of the lens positions. Compared to DES-
Y1Ext, this work includes a number of updates, the most no-
table being that the DES Y3 data cover roughly three times
the sky area included in the Y1 analysis. To maximize the
constraining power of our cosmological data, we will addi-
tionally combine the DES Y3 3×2pt constraints with the fol-
lowing external datasets: baryon acoustic oscillations (BAO)
and redshift-space distortion (RSD) measurements from the
eBOSS, 6dF, and MGS galaxy surveys [15], the Pantheon type
Ia supernova (SN) catalogue [8], and the Planck 2018 cosmic
microwave background (CMB) data [51].

6 Publicly available at: https://des.ncsa.illinois.edu/
releases/y3a2

The paper is organized as follows: In Sec. II we describe
the DES Y3 data used in this analysis, and the baseline mod-
eling of the observables. Sections III and IV are devoted to
a presentation of the extended models and the main datasets
exploited in this work, respectively. In Sec. V we discuss the
details of our analysis validation. We present our main results
in Sec. VI, and conclude in Sec. VII.

Data supplementing this paper, including chains, scale cuts,
and numerical versions of summary plots, will be available
online as part of the DES Y3 data release. 7

II. DATA AND BASELINE MODELING

In this section we describe the DES data used in this anal-
ysis and the likelihood used to perform parameter estimation
based on the angular two-point correlation function (2PCF)
summary statistics into which those data are condensed.

A. Source and lens catalogues

The Dark Energy Survey (DES) is a 5000 deg2 photometric
galaxy survey which, over the course of six years, collected
data using the Dark Energy Camera (DECam [52]), mounted
on the Vı́ctor Blanco 4m telescope at the Cerro Tololo Inter-
American Observatory (CTIO) in Chile. In this work we em-
ploy data from the first three years of DES observations (DES
Y3), which constitute the DES Data Release 1 (DR1 [49]).
That data was processed to produce a photometric catalog of
399 million objects with signal-to-noise ratio of ∼ 10 in r,i,z
co-add images. For cosmological inference, we further refine
this catalog to produce a ‘Gold’ sample [53] containing 319
million objects, extending to a limiting magnitude of 23 in the
i-band.

From the Gold sample galaxies we select two samples:
‘source’ (background) galaxies, whose shear is used for mea-
surements of gravitational lensing, and ‘lens’ (foreground)
galaxies, whose positions are recorded and used for mea-
surements of galaxy clustering. The source galaxy sample
is used to produce the DES Y3 shape catalogue [54]. We
measure galaxy shapes with the METACALIBRATION pipeline
[55, 56], which uses r,i,z-band information to infer objects’
ellipticity and other photometric properties, employing up-
dates to PSF solutions [57], astrometric solutions [53], and
inverse-variance weighting for the galaxies to improve upon
a similar pipeline used for the DES Y1 analysis [30]. Multi-
plicative shear bias is calibrated using image simulations [58]
and redshifts are inferred using a self-organizing-map ap-
proach [59, 60] which connects wide and deep-field [61]
galaxy measurements using Balrog simulations [62]. The final
DES Y3 shape catalog contains 100 million galaxies covering

7 https://des.ncsa.illinois.edu/releases/y3a2/
Y3key-extensions

https://des.ncsa.illinois.edu/releases/y3a2
https://des.ncsa.illinois.edu/releases/y3a2
https://des.ncsa.illinois.edu/releases/y3a2/Y3key-extensions
https://des.ncsa.illinois.edu/releases/y3a2/Y3key-extensions
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an area of 4143 deg2, with a weighted effective number den-
sity neff = 5.9 per arcmin2 and corresponding shape noise
σe = 0.26.

The lens galaxy sample that we use in this paper,
MagLim [63], is one of the two lens samples considered in
DES-Y3KP. The MagLim sample contains sources selected
to be in the redshift range 0.2 ≤ z ≤ 1.05, and is di-
vided into six tomographic bins with nominal edges z =
[0.20, 0.40, 0.55, 0.70, 0.85, 0.95, 1.05]. Uncertainties in the
photometric redshift estimator used to define these bins cause
the bins’ actual n(z) redshift distributions to extend out-
side those bounds. The inferred lens redshift distributions
have been further validated using cross-correlations between
galaxies in MagLim with spectroscopic galaxy samples [64].
Weights based on the correlation between number density
with survey properties mitigate the impact of observing sys-
tematics [65]. Refs. [65, 66] describe the sample’s validation
and characterization in more detail.

We follow DES-Y3KP in removing the two highest red-
shift MagLim bins from our analysis, as studies after unblind-
ing the Λ/wCDM results revealed issues with the sample at
z > 0.85. These issues, which manifest as an inability of
the model to consistently match the clustering amplitude of
galaxy clustering and galaxy–galaxy lensing in the last two
tomographic bins, were initially detected because they con-
tribute to poor Λ/wCDM model fits. While this might be
of particular interest to searches for beyond-ΛCDM physics,
investigation since suggests that the issue is most plausibly
caused by systematics related to photometric calibration. Fur-
ther discussion can be found in Refs. [44, 46, 66]. Given these
indications, we choose to adopt a conservative approach of re-
moving the impacted MagLim bins from our analysis.

B. 2PCF – measurements

The cosmological information contained in the lens and
source samples described above is then summarized in three
two-point correlation functions (2PCF):

• Galaxy clustering: the auto-correlation of lens galaxy
positions wi(θ) in each redshift bin i, i.e. the fractional
excess number of galaxy pairs of separation θ relative
to the number of pairs of randomly distributed points
within our survey mask [65],

• Cosmic shear: the auto-correlation of source galaxy
shapes within and between source redshift bins i, j,
of which there are two components ξi,j± (θ), taking the
products of the ellipticity components of pairs of galax-
ies, either adding (+) or subtracting (−) the component
tangential to the line connecting the galaxies and the
component rotated by π/4 [67, 68],

• Galaxy–galaxy lensing: the mean tangential ellipticity
of source galaxy shapes around lens galaxy positions
γi,jt (θ), for each pair of redshift bins i, j [69].

Details of these measurements and the checks for poten-
tial systematic effects in them are described in detail in
Refs. [65, 67–69], and an overview of the full data vector is
given in Ref. [44]. We follow DES-Y3KP and refer to the

combined list of {wi(θ), ξij± (θ), γijt (θ)}, for all angles θ and
redshift bins i and j, as the ‘data vector’. Section II C be-
low has more details about the component pieces of the data
vector.

Each of these measurements is performed in a set of 20
logarithmic bins of angular separation between 2.5’ and 250’
using the software TREECORR [70]. We only use a subset of
these bins, removing angular scales where our model is not
sufficiently accurate, as discussed in Sec. II D.

C. 2PCF – baseline modeling

Our baseline modeling methodology generally follows that
used in DES-Y3KP [44], and described in detail in the
methodology Y3 paper [71]. Notable differences from the
DES-Y3KP analysis include the use of a simpler non-linear
alignment (NLA) intrinsic alignment model as opposed to the
tidal alignment and tidal torquing (TATT) model as our fidu-
cial intrinsic alignment model, and not using the shear-ratio
likelihood [72] in most of our analysis. Below we summarize
the modeling used to compute the 3×2pt likelihood, as well
as these differences.

As noted above, the Y3-3×2pt analysis consists of a set of
2PCF measurements describing the angular correlation of lens
galaxy positions and source galaxy shapes for several redshift
bins. We model the likelihood as Gaussian in the data vector
D,

lnL(D|Θ) = −1

2

[
(D−M(Θ))

T
C−1 (D−M(Θ))

]
+L0,

(1)
where Θ is the vector of cosmological and nuisance parame-
ters, C is the covariance, and L0 is a normalization constant.
The covariance is computed analytically using COSMOLIKE
[71] including COSMOCOV [73]. The likelihood and the co-
variance were validated in Ref. [74], where it has been shown
that, for the precision level attained by the DES Y3 analysis,
assuming a Gaussian likelihood with the various assumptions
involved in the computation of C are all excellent approxima-
tions (see in particular Fig. 1 of Ref. [74]). We sample the
above likelihood to obtain posterior and evidence estimates
using the POLYCHORD nested sampler [75, 76], following
guidelines for settings described in Ref. [77]. The length of
the fiducial data vector D is 462 though for some models data
points will be removed to account for modeling uncertainties
(see Table I). The length of the parameter vector Θ for ΛCDM
is 28 when fitting DES data alone (additional parameters are
introduced when combining with external data).

Full details of how the data vector D is theoretically pre-
dicted can again be found in Refs. [44, 71], but here we give
a brief overview. The 2PCF are computed from the observed
projected galaxy density contrast δg and the shear field de-
composed into E- and B-modes. The 2PCF forming the data
vector D can be expressed in terms of the angular power spec-
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tra as:

wi(θ) =
∑

`

2`+ 1

4π
P`(cos θ)Ciiδgδg (`)

γijt (θ) =
∑

`

2`+ 1

4π

P 2
` (cos θ)

`(`+ 1)
CijδgE(`)

ξij± (θ) =
∑

`>2

2`+ 1

4π

2(G+
`,2(x)±G−`,2(x))

`2(`+ 1)2

× [CijEE(`)± CijBB(`)],

(2)

where i, j denote redshift bins. Here P` are the Legendre
polynomials of order `, Pm` are the associated Legendre poly-
nomials, x = cos θ and the functions G+/−

`,m (x) are a com-
bination of the associated Legendre polynomials Pm` (x) and
Pm`−1(x) and are given explicitly in Eq. (4.19) of Ref. [78].
Following DES-Y3KP, we only consider the auto-correlations
wi(θ) for each tomographic bin since in the DES Y1 and Y3
analyses it was shown that the cross correlations do not add
much constraining power and would make our analysis much
more susceptible to systematic errors related to the modeling
of magnification and redshift distributions [14, 63].

The angular power spectra C(`) that enter Eqs. (2) com-
bine integrals over tracer distributions with astrophysical con-
tributions from intrinsic alignments (IA), magnification, and
redshift space distortions (RSD). The shear-shear (EE, BB)
and galaxy-shear (δgE) spectra are computed using the Lim-
ber approximation and include magnification and IA, but ne-
glect RSD. Galaxy-galaxy clustering (δgδg) is computed with
via non-Limber integrals with contributions from both RSD
and magnification. These calculations are described below.

Using the Limber approximation [79] and assuming spatial
flatness, the angular power spectra for for cosmic shear and
galaxy-galaxy lensing can be written in a general form

CijAB(`) =

∫
dχ
qiA(χ)qjB(χ)

χ2
Pδ

(
k =

`+ 0.5

χ
, z

)
, (3)

where {A,B} ∈ {δg, κ}and κ is the weak lensing conver-
gence whose contributions to shear correlations will be de-
tailed below.. Here, Pδ(k, z) is the three-dimensional mat-
ter power spectrum evaluated at wavenumber k and red-
shift z. We use CAMB to compute the linear Pδ(k, z) and
HALOFIT [80–82] to do nonlinear modeling. The radial
weight functions qiA,B are given by

qiκ(χ) =
3H2

0 Ωmχ

2a(χ)

∫ χh

χ

dχ′
(
χ′ − χ
χ′

)
niκ(z(χ′))

dz

dχ′

qiδg (χ) = bi niδ(z(χ))
dz

dχ
.

(4)
Here H0 is the Hubble parameter today, Ωm is the ratio of to-
day’s matter density to today’s critical density, and a(χ) is the
Universe’s scale factor at comoving distance χ. For concise-
ness, we refer Refs. [83, 84] for the full non-Limber expres-
sions used for Cijδgδg (`).

In the expression above, we adopt a linear galaxy bias
model to relate the galaxy density δg to the matter density:
δg = biδ, with bi the galaxy bias in lens redshift bin i, which
we vary in the analysis. Furthermore, niκ(z) and niδ(z) denote
the redshift distributions of the different DES Y3 redshift bins
of source and lens galaxies respectively, normalized so that∫
dz niκ,δ(z) = 1.
Contributions to observed spectra from intrinsic alignments

and magnification are included as follows:

CijEE(`) = Cijκκ(`) + CijκIE(`) + CjiκIE(`) + CijIEIE(`)

CijBB(`) = CijIBIB(`),

CijδgE(`) = Cij′δgκ(`) + Cij′δgIE(`) + CiCjCijκκ(`) + CiCijκIE(`)

Ciiδgδg (`) = Cii′δgδg (`) + 2CiCiiδgκ(`) + Ci2Ciiκκ(`).
(5)

Here IE/B refers to the E/B-modes of the intrinsic alignment
(IA), the prime denotes non-magnified power spectra, and Ci
are magnification constants. We emphasize that compared to
the calculations that we employ in practice, the expression for
galaxy clustering in Eq. (5) neglects contributions from RSD.
These RSD contributions, which depend on the linear growth
factor f(χ), are incorporated — along with magnification —
in the non-Limber calculation of Ciiδgδg (`).

We now describe the IA and magnification effects, as well
as their modeling, in more detail. IA refers to the fact that
galaxies tend to align because of their gravitational environ-
ment, thus contributing to the cosmic shear signal. Here,
we adopt the non-linear tidal alignment model as our fidu-
cial IA model [85, 86]. The NLA model assumes that intrin-
sic galaxy shapes are linearly proportional to the fully nonlin-
ear tidal field, calculated using the nonlinear power spectrum.
While this ansatz is not a fully consistent nonlinear model, it
is straightforward to calculate and has been shown to more
accurately describe observed IA than linear theory (see, e.g.,
Ref. [87]). Our fiducial NLA model has two free parameters,
a and η, which control the amplitude and redshift dependence
of IA, respectively. IA includes both gravitational lensing–
intrinsic (GI) and intrinsic–intrinsic (II) contributions, whose
power spectra are then given by

PGI(k, z) = A1(z)Pδ(k, z), PII(k, z) = A2
1(z)Pδ(k, z).

(6)
The pre-factor A1(z) is

A1(z) = −aC̄1
ρcritΩm

D(z)

(
1 + z

1 + z0

)η
, (7)

where D(z) is the linear growth factor normalized to be equal
to (1 + z)−1 at high redshifts, ρcrit is the critical density
and C̄1 is a normalisation constant, by convention fixed at
C̄1 = 5× 10−14M−1

� h−2Mpc3. The IA angular power spec-
tra are then computed using Eq. (3) with the kernel qiI(χ) =
niκ(z(χ)) dz/dχ (see Ref. [68] for more detailed discussion
of the IA modeling and implementation for DES Y3 cosmic
shear).

Our decision to adopt the NLA model contrasts with the
DES-Y3KP Λ/wCDM analysis, which adopted a more com-
plicated tidal alignment and tidal torquing (TATT) IA model.
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The systematic tests carried out prior to the DES-Y3KP anal-
ysis motivated the use of the TATT model because when ana-
lyzing synthetic data containing tidal torquing effects of a size
allowed by DES Y1 constraints, cosmological constraints us-
ing the simpler NLA model were found to be biased. How-
ever, the ΛCDM analysis of the Y3-3×2pt data has subse-
quently shown preference for a generally lower amplitude of
intrinsic alignments, finding that the NLA model is sufficient
for unbiased modeling at the Y3 precision level. With the ben-
efit of these ΛCDM results, and the desire to limit the num-
ber of nuisance parameters in our extended-model analysis,
we thus opt for the NLA model. We do however run addi-
tional chains that use TATT, and prior to unblinding we check
if there is a preference for the TATT model over NLA in any of
the beyond-ΛCDM models. We use the Fast-PT code [88] im-
plemented in COSMOSIS in order to compute both the NLA
and TATT contributions, unless specified otherwise.

As noted above, we include the contribution to galaxy clus-
tering from the magnification of the lens sample density in
Eq. (5) using magnification constants Ci. We also include a
contribution from the magnification of the lens sample galaxy
density. In Eq. (5), Ci is the magnification constant,. These
constants are determined by the selection function of the lens
sample tomographic bin such that the magnified number den-
sity is related to the convergence experienced by lens galaxies
through: δig,mag = Ciκi. The prime in Eq. (5) indicates the
power spectrum unmodified by magnification. We fix the co-
efficients Ci to values indicated in Table II, which were deter-
mined in Ref. [89] using the Balrog image simulations [62].
Note that in V we test the sensitivity of our cosmology results
to inaccuracies in these assumed values.

The baseline analysis of DES-Y3KP includes a shear ra-
tio likelihood. This quantity incorporates the ratio between γt
measurements with the same lens bin and different shear bins
[72]. While previously studied in the context of constraining
dark energy models [90], it has more recently been found that
shear ratio’s particular strength is its sensitivity to the redshift
distribution of source galaxies [91]. In all model extensions
other than binned σ8(z), we do not include this shear ratio
likelihood. Recall that the motivation for including shear ra-
tio is to add additional geometric constraining power which
for instance helps reduce photometric redshift uncertainties.
However, simulated analyses for our extended model showed
that the inclusion or not of the shear ratio likelihood had a
minimal impact on 3×2pt constraints. Given this, and the
lack of extended modeling validation of that likelihood, we
have opted to not include it as part of our baseline analysis.

D. Scale cuts

As in the DES-Y3KP analysis, we define scales below
which we remove measurements from our analysis to mitigate
the limits of the 3×2pt modeling. Modeling uncertainties of
measurements at small angular scales may otherwise lead to
systematic biases in cosmological parameter estimates. We
refer to this approach as scale cuts. In the end the likelihood
calculation in Eq. (1) only uses 2PCF measurements that re-

Data points
Scale cuts ξ+ ξ− γt w Total Used for extended models
Fiducial 166 61 192 43 462 w0 − wa, Neff , binned σ8(z)
Linear 105 3 105 43 256 Neff −meff , Σ0 − µ0

Linear+Limber 100 2 100 19 221 Ωk

TABLE I. Number of 3×2pt data points remaining after the dif-
ferent sets of scale cuts used in this analysis. The fiducial cuts
are the same as those used in DES-Y3KP, linear cuts remove ad-
ditional points at small scales affected by nonlinear structure growth,
and linear+Limber cuts remove data points both at nonlinear scales
and where non-Limber calculations are needed to accurately model
large-angle galaxy clustering. Unless otherwise noted, whenever a
comparison is shown between an extended model and ΛCDM, the
ΛCDM results will use scale cuts matching those of the extended
model.

main after such cuts. Our baseline scale cuts are the same
as those used for the ΛCDM analysis of DES-Y3KP. As de-
scribed in detail in the DES Y3 methods paper [71], these
cuts were defined based on the iterative analysis of synthetic
data. Specifically, that data was a theoretical prediction of
the 2PCF observables that included two significant system-
atic effects not included in our model: baryonic feedback ef-
fects extracted from the OWLS AGN hydrodynamic simula-
tions and non-linear galaxy bias. By repeatedly analyzing that
synthetic data while removing successively more small-angle
data points, we determined scale cuts at which the biases on
Ωm and S8 due to each of the unmodeled systematics were
below 0.3σ. This determines the fiducial scales used for the
DES Y3 3×2pt analysis, where the number of data points for
each of the 2PCF is summarized in the first line of Table I.8

These same cuts are used for the wCDM, w0 − wa, Neff and
binned σ8(z) models.

For several of the models studied in this paper, we have cho-
sen a stricter set of scale cuts than the fiducial case. Specif-
ically, for models with nonzero Ωk, at the time of this analy-
sis HALOFIT had not been sufficiently validated on non-linear
scales9; for Neff − meff models, HALOFIT is known to be
not sufficiently well calibrated; and finally the Σ0 − µ0 tests
of gravity are only well-defined on linear scales. For these
classes of models, we restrict our analysis to purely linear
scales (for nonzero curvature there will be an additional scale
cut, discussed below). To determine those scales, we follow
the procedure first applied in the Planck 2015 analysis [93]
and followed later in DES-Y1Ext. We compute the differ-
ence between the nonlinear and linear theory predictions of
the 2PCF in the standard ΛCDM model at a fiducial cosmol-
ogy on scales left after fiducial scale cuts. Using the respective
data vector theory predictions, DNL and Dlin, and full error
covariance of DES Y3, C, we calculate the quantity

∆χ2 ≡ (DNL −Dlin)T C−1 (DNL −Dlin) (8)

8 Minimum and maximum scales used after the scale cuts procedure are in-
dicated in the COSMOSIS files shared as part of the data release.

9 Ref. [92], which was released when this paper was in final stages of prepa-
ration, represents a promising approach to improve this.
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and identify the single data point that contributes most to this
quantity. We remove that data point, and repeat the process
until ∆χ2 < 1. This constitutes our set of linear scales, used
for Neff −meff and Σ0 − µ0. The resulting linear scale cuts
lead to a 3×2pt data vector of 256 elements (see second line
of Table I).

The third and final choice of scale cuts removes both scales
which are impacted by nonlinear structure growth, and those
requiring non-Limber projection calculations to accurately
model galaxy clustering. This is relevant for the Ωk analysis,
because the accuracy of the fast non-Limber method [83] used
to model large-angle galaxy clustering has not been tested for
Ωk 6= 0. The procedure to identify these scales is the same as
that described for linear scale cuts above, except that the syn-
thetic data vector Dlin is replaced with Dlin+Limb, which, in
addition to having only linear modeling for the matter power
spectrum, is computed using the Limber approximation at all
angular scales. The linear+Limber cuts are thus slightly more
stringent than the linear-only cuts. Table I shows that the re-
sulting cuts lead to a 3×2pt data vector of 221 elements that
are then used in the Ωk analysis. Note that the iterative nature
of our scale-cut definition causes the Linear+Limber cuts to
remove additional points from ξ±(θ) and γt(θ) compared to
the Linear cuts, even though non-Limber calculations are only
used for galaxy clustering w(θ) calculations.

E. Parameter space

The parameters and their priors used in our baseline analy-
sis match those of DES-Y3KP. The cosmological parameters
are

Θbase = {Ωm,Ωb, As, ns, h,Ωνh
2} (9)

(equivalently, Ωνh
2 can be replaced by

∑
mν), with the neu-

trinos modeled as three degenerate species with equal masses.
The priors on these parameters are listed in the top section
of Table II. We adopt an additional prior requiring 0.005 <
Ωbh

2 < 0.040. This baryon-density prior is introduced be-
cause we include a Big Bang Nucleosynthesis (BBN) consis-
tency condition which imposes a relation between the physi-
cal baryon density Ωbh

2, the relativistic degrees of freedom
Neff , and the Helium abundance YHe [94].10 This consistency
relation only alters calculations when Neff is varied, but in-
troduces the Ωbh

2 prior for all models because it relies on a
table defined for a finite range of physical baryon density and
so rejects samples outside that range.

We also vary a number of nuisance parameters to describe
systematic effects. The intrinsic alignment is described by
two parameters, a and η, and the linear galaxy bias by one
parameter bi for each of the lens bins; these parameters are
assigned flat priors. Additionally, each lens bin has two nui-
sance parameters: one that controls the mean of the photo-
metric redshift distribution in redshift bin i, ∆zil , and another

10 http://parthenope.na.infn.it/

Parameter Prior
Base Cosmology
Ωm Flat (0.1, 0.9)
109As Flat (0.5, 5.0)
ns Flat (0.87, 1.07)
Ωb Flat (0.03, 0.07)
h Flat (0.55, 0.91)
103Ωνh

2 Flat (0.60, 6.44)
0.005 < Ωbh

2 < 0.040
Extended Cosmology
w0, wa Flat w0 ∈ (−3.0,−0.33)

wa ∈ (−3.0, 3.0)
w0 + wa < 0

Ωk Flat (-0.25, 0.25)
Neff Flat (1.0, 10.0)
Neff ,meff Flat Neff ∈ (3.044, 10)

meff ∈ (0.0, 3.0) eV
Σ0, µ0 Flat Σ0, µ0 ∈ (−1.5, 1.5)

µ0 > 2Σ0 + 1

A
Plin
i (i ∈ [2, 4]) Flat (0.1, 3)

Lens Galaxy Bias
bi(i ∈ [1, 4]) Flat (0.8, 3.0)
Lens magnification
C1 Fixed 0.42
C2 Fixed 0.30
C3 Fixed 1.76
C4 Fixed 1.94
Lens photo-z
∆z1

l × 102 Gaussian (−0.9, 0.7)
∆z2

l × 102 Gaussian (−3.5, 1.1)
∆z3

l × 102 Gaussian (−0.5, 0.6)
∆z4

l × 102 Gaussian (−0.7, 0.6)
σ1
z,l Gaussian (0.98, 0.06)
σ2
z,l Gaussian (1.31, 0.09)
σ3
z,l Gaussian (0.87, 0.05)
σ4
z,l Gaussian (0.92, 0.05)

Intrinsic Alignment
a Flat (−5, 5)
η Flat (−5, 5)
Source photo-z
∆z1

s × 102 Gaussian (0.0, 1.8)
∆z2

s × 102 Gaussian (0.0, 1.5)
∆z3

s × 102 Gaussian (0.0, 1.1)
∆z4

s × 102 Gaussian (0.0, 1.7)
Shear calibration
m1 × 102 Gaussian (−0.6, 0.9)
m2 × 102 Gaussian (−2.0, 0.8)
m3 × 102 Gaussian (−2.4, 0.8)
m4 × 102 Gaussian (−3.7, 0.8)
External data
τ (Planck) Flat (0.01, 0.8)
AP (Planck) Gaussian (1.0,0.0025)
M (SN) Flat (−20,−18)

TABLE II. Parameters and priors describing the baseline cosmology,
extended models and nuisance parameters used in this analysis. We
quote the lower and upper limits of flat priors and the mean and stan-
dard deviation of Gaussian priors. The parameter w is fixed to −1
for all models other than wCDM and w0 − wa, and for wCDM it
uses the same prior as for w0. For the Neff −meff model we fix the
sum of active neutrino masses to 0.06 eV.

http://parthenope.na.infn.it/
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which stretches or compresses the n(z) distribution in z, σiz,l.
Each of the four source bins has a photometric redshift uncer-
tainty parameter ∆zis, as well as a shear calibration parameter
mi.

As indicated at the bottom of Table II, we also vary the op-
tical depth τ along with a number of nuisance parameters as-
sociated with the Planck likelihood, as described in Sec. IV A,
when using Planck data. When the Pantheon supernovae like-
lihood is included, we additionally sample over the absolute
magnitude of the supernovae M , as described in Sec. IV C.

III. BEYOND-ΛCDM MODELS

We now introduce the beyond-ΛCDM models constrained
in this paper. For each, we introduce its physics and parame-
terization, and describe any alterations required to the baseline
approach for modeling 3×2pt observables and performing pa-
rameter estimation.

A. Dark energy: w0 − wa

We use the phenomenological model proposed in [95, 96]
, often referred to as the CPL model, for a time-varying dark
energy equation of state:

w(a) = w0 + (1− a)wa, (10)

where a is the scale factor, and w0 and wa two new parame-
ters. This is the most commonly considered parameterization
of dark energy equation of state with more than one param-
eter, and has been shown to provide a good fit to a number
of dynamical dark energy models that have a more complete
physical description [95].

We will also report constraints on the value of w(a) at the
so-called pivot redshift [97] zp = a−1

p −1, wp ≡ w(ap). Here
ap is the scale factor where we have the strongest constraints
onw(a), and therefore where the value of the equation of state
and its derivative with respect to the scale factor are uncorre-
lated. Using this parameter, Eq. (10) can be rewritten as

w(a) = wp + (ap − a)wa. (11)

The value of the pivot scale factor is determined using the
marginalized parameter covariance as

ap = 1 +
Cw0wa

Cwawa

. (12)

In the flat w0 − wa model, the expansion rate becomes

H2(a)

H2
0

= Ωma
−3 + (1− Ωm)a−3(1+w0+wa)e−3wa(1−a)

(13)
As described in Appendix A, we performed additional val-

idation tests to ensure that the use of HALOFIT in our calcu-
lation of the nonlinear matter power spectrum is valid for the
w0 − wa model. We use the fiducial scale cuts for this model
(see Table I).

B. Curvature: Ωk

To define the curvature density Ωk, it is most convenient
to start from the Friedmann–Lemaı̂tre–Robertson–Walker
(FLRW) metric in the form

ds2 = −dt2 + a2
[
dχ2 + r2 (χ)

(
dθ2 + sin2 θdφ2

)]
, (14)

where χ is the comoving (radial) distance and a is the scale
factor. Then the angular diameter distance r (χ) is defined as:

r(χ) =





K−1/2 sin
(
K1/2χ

)
for K > 0

χ for K = 0

|K|−1/2 sinh
(
|K|1/2χ

)
for K < 0,

(15)

where K is the curvature term. A positively curved space has
K > 0, negatively curved corresponds to K < 0, and flat
space has K = 0. With the curvature of arbitrary sign, the
expansion rate can be written as

H2(a)

H2
0

= Ωma
−3 + (1− Ωm − Ωk) + Ωka

−2 , (16)

where Ωk = −K/H2
0 . It then follows that Ωk < 0 corre-

sponds to positive spatial curvature, and Ωk > 0 to negative.
As noted in Sec. II D, for the curved-universe analysis, due

to lack of validated modeling we use a conservative set of
scale cuts which avoid both nonlinear scales and the large
angular scales where the non-Limber calculation is adopted
to model galaxy clustering.11 For the angular scales where
the Limber approximation is used, we apply the commonly-
used angular-diameter rescaling approximation for the impact
of curvature on line-of-sight projection, which replaces χ in
Eq. (3) with the angular diameter distance r(χ).

C. Extra relativistic degrees of freedom: Neff

We next consider a model that allows for new radiative de-
grees of freedom in the early Universe, described by the pa-
rameter Neff . This parameter relates contributions to the en-
ergy density in radiation in the early Universe from relativistic
species to that of photons via

ρrad =

[
1 +Neff

7

8

(
Tν,0
Tγ,0

)4
]
ργ . (17)

Here ρrad and ργ are the co-moving energy densities of radi-
ation and photons after electron–positron annihilation. In the
standard cosmological model, all contributions to Neff come
from neutrinos and its value is Neff = 3.044, corresponding

11 This is a more conservative choice than the approach taken in DES-Y1Ext,
where Ωk constraints used the fiducial scale cuts as the Limber approxi-
mation was used at all scales.



10

to three neutrino species plus small corrections due to their
non-instantaneous decoupling from photons [98, 99].

We capture the effects of Neff by using CAMB’s predic-
tions for its impact on the expansion history and power spec-
tra, using a modified version of the COSMOSIS CAMB inter-
face. We set the CAMB parameters so that each of the three
massive neutrino species is assigned a degeneracy [100] of
1
3Neff . This means that varying Neff has a continuous effect
on the neutrino temperature Tν , with ∆Neff = 0 correspond-
ing to the temperature if there are no additional relativistic
species beyond the standard model. We do not apply any other
modifications to the fiducial model.

D. Massive sterile neutrinos: Neff −meff

We additionally constrain the properties of a light relic par-
ticle with non-zero mass, modeled as single species of thermal
sterile neutrino. The properties of the sterile neutrino are con-
trolled by the parameters Neff and meff . The impact of sterile
neutrinos on CMB observables is fairly similar to that of vary-
ing Neff alone, while its impact on large scale structure has a
richer phenomenology. Like active neutrinos, sterile neutrinos
suppress large scale structure formation at scales smaller than
a free-streaming length scale (k > kfs), with the magnitude of
that suppression at high k controlled by their contribution to
cosmological energy density Ωνs . The free-streaming scale is
set by both the particle’s physical mass and temperature, and
the relationship between those properties and the parameters
Neff and meff depend on the specifics of the model consid-
ered. In this analysis, we choose to model the sterile neutrino
as a thermal relic, that is, a stable particle species which was
once in thermal equilibrium with standard model particles but
decoupled at an early time. With this assumption, the parti-
cle’s physical mass is mth = meff(∆Neff)−3/4 and in linear
theory the free-streaming scale is [? ]

kfs =
0.8hMpc−1

√
1 + z

(
meff

(1eV)∆Neff

)
. (18)

While this thermal model is just one of several possible
choices one could make for describing sterile neutrinos, our
constraints will represent a more general search for new
physics. As is discussed in Refs. [101–104], this kind of two-
parameterNeff−meff model is sufficient to perform a generic
search for a population of stable, non-interacting massive relic
particles. [103, 104].

Here the parameter ∆Neff ≡ Neff − 3.044 determines the
temperature of the sterile neutrino, which is related to the
standard model temperature of active neutrinos via Tνs =
(∆Neff)1/4Tνa . Thus, ∆Neff = 1 corresponds to a sterile
neutrino that thermalizes at the same temperature as the ac-
tive neutrinos, while lower Neff means the sterile neutrinos
are colder. The parameter meff is an effective mass which
captures how the sterile neutrino contributes to the cosmolog-
ical energy densities, defined so that

Ωνsh
2 =

meff

94.1eV
. (19)

When we consider sterile neutrinos the conversion factor be-
tween the particle mass and Ωνh

2 is slightly different from
the 93.14eV value used for active neutrinos. This is because
sterile neutrinos are assumed not to be affected by electron–
positron annihilation in the same way as active neutrinos.
Note that both versions of the Ων-to-mass conversion factor
encode a number of standard model assumptions which can-
not be disentangled from cosmological constraints on neutrino
mass. Our measurements thus serve as both a test of the mass
of neutrinos and of those assumptions. As with theNeff model
described above, we use CAMB along with a modified ver-
sion of the COSMOSIS CAMB interface to compute the im-
pact of the sterile neutrinos on expansion history and the linear
matter power spectrum.

We assume that active neutrino temperatures are at their
standard model value in the instantaneous decoupling approx-
imation, Tνa = (4/11)1/3Tγ , and following the Planck 2018
cosmology analysis [11], we fix the active neutrino mass to
the minimum allowed by neutrino oscillation experiments,∑
mν = 0.06 eV. Additionally, because the presence of mas-

sive light relics like sterile neutrinos complicates the model-
ing of the nonlinear matter power spectrum as well as galaxy
bias [101, 102, 105, 106] and there are not readily available
tools to account for the impact of sterile neutrinos on non-
linear power spectrum modeling (see e.g. Refs. [107, 108]),
when constraining Neff −meff we restrict our analysis to lin-
ear scales using the scale-cut procedure described in Sec. II D.

Note that our fiducial prior has a lower bound of ∆Neff =
0, which means our parameter space will include the small-
∆Neff regime where the sterile neutrino will be indistinguish-
able from cold dark matter. As we will find in Sec. V C,
including this unconstrained region makes parameter estima-
tion more susceptible to projection effects and thus less robust
to the details of nuisance parameter marginalization and the
data’s noise realization. Given this, in order to obtain a more
robust set of constraints and to allow more direct comparison
with other studies, we reportNeff−meff constraints using two
alternative priors: one where the lower bound of the prior is
raised to require ∆Neff > 0.047, corresponding to the min-
imum temperature for a fermion relic particle that was ever
in thermal equilibrium with standard model particles [101], as
well as the same model-specific prior used in Planck analyses,
requiring mth ≤ 10 eV.

E. Test of gravity on cosmological scales: Σ0 − µ0

We test gravity on cosmological scales by adopting the
common Σ, µ phenomenological parameterization proposed
and developed in Refs. [109–118]. This model has recently
been tested using CMB measurements by the Planck satellite
and weak lensing data from surveys such as CFHTLens, KiDS
and DES in Refs. [11, 50, 93, 119–121]. In this approach, de-
viations from the gravitational physics described by General
Relativity (GR) are introduced through modifications to the
Poisson and lensing equations which then take the following
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form in Fourier space:

k2Ψ = −4πGa2 [1 + µ(a, k)] (ρδ + 3(ρ+ P )σ),

k2Φ = −4πGa2 [1 + Σ(a, k)] (2ρδ + 3(ρ+ P )σ).
(20)

Here Ψ is the Newtonian gravitational potential, which de-
termines the gravitational interactions of massive particles, Φ
is the Weyl potential with which massless particles interact
gravitationally, δ corresponds to density fluctuations in the
comoving gauge, ρ to matter density, and (P + ρ)σ to the
fluid anisotropic stress potential. The functions Σ(a, k) and
µ(a, k) represent deviations from GR, with Σ = µ = 0 recov-
ering the predictions of GR. This parameterization is equiva-
lent to modifications to the gravitational constant G, and Σ/µ
are sometimes denoted as GΦ/Ψ respectively.

We assume a time dependence following the energy den-
sity of the effective dark energy in units of the critical density
ΩΛ(a) normalized by its value today ΩΛ,0, as done previously
in Refs. [11, 50, 109, 119, 120]:

Σ(a, k) = Σ0
ΩΛ(a)

ΩΛ,0
,

µ(a, k) = µ0
ΩΛ(a)

ΩΛ,0
.

(21)

This parameterization is designed to be sensitive to deviations
from GR that are associated with cosmic acceleration. As is
pointed out in e.g. Ref. [122], these assumptions may cause
our Σ0−µ0 parameterization to lack sensitivity to some mod-
ified gravity signals that could be captured by searches with
less restrictive assumptions. However, the parameterization of
Eq. (21) has the benefit of adding few new parameters, which
makes it easier to constrain them robustly. Variations of the
(Σ,µ) model with alternative assumptions about the time and
scale dependence of deviations from GR will be explored in a
follow-up paper [123].

This phenomenological approach is defined only in linear
theory, while possible approaches to define similar functional
forms of deviations from GR on all scales have been proposed
e.g. in Ref. [124], allowing the use of halo-model based ap-
proaches as proposed in Refs. [125, 126] for (Σ, µ) models.
However these methods have not yet been tested for the pa-
rameterization of (Σ, µ) considered here, so we restrict our
analysis of DES Y3 3×2pt measurements to linear scales by
imposing scale cuts as described in Sec. II D.

In order to model the impact of Σ0 − µ0 on the 2PCF, we
modify the COSMOSIS baseline pipeline to use the Weyl po-
tential power spectrum PΦΦ(k) when computing weak lensing
observables. This is in contrast to the fiducial analysis, which
assumes the Poisson equation:

k2Φ =
3

2
ΩmH

2
0δ/a. (22)

Although the impact of Σ0 can be computed simply modify-
ing the lensing kernel used for 2PCF computations in Eq. (3)
(as was done in DES-Y1Ext), we choose to use the Weyl po-
tential directly as it facilitates more flexible applications to
other parameterizations of modified gravity and new physics
affecting growth, as used in e.g. Refs. [123, 127].

To model 3×2pt observables, we need both the Weyl po-
tential auto-correlation PΦΦ(k, z) and its correlation with the
matter density PΦδ(k, z). We compute their linear predic-
tions using MGCAMB v3.012 [128], modifying its interface
with COSMOSIS. The corresponding non-linear spectra are
then obtained using a non-linear scaling factor:

PNL
ΦΦ (k, z) =

PNL
δδ (k, z)

PL
δδ(k, z)

PL
ΦΦ(k, z), (23)

where the NL and L superscripts refer respectively to the
HALOFIT non-linear and linear predictions of P (k, z) and we
use the same non-linear boost to get the cross-power spectrum
PNL

Φδ (k, z).
We modify the ΛCDM modeling pipeline so that power

spectra of fields derived from the Weyl gravitational poten-
tial, namely the convergence κ and magnification, are com-
puted directly using the projected Weyl potential auto- and
cross-power spectra. The angular power spectra C(`) are
computed using a version of Eq. (3) with k4PΦΦ(k, z) re-
placing Pδδ(k, z) for Cκκ(`). Similarly k2PΦδ(k, z) replaces
Pδδ(k, z) for Cκδg (`). In this formulation, the lensing kernel
from Eq. (4) instead reads:

qiκ(χ) = χ

∫ χh

χ

dχ′
(
χ′ − χ
χ′

)
niκ(z(χ′))

dz

dχ′
. (24)

Appropriate adjustments must also be made for the modeling
of galaxy clustering to account for contributions from magni-
fication as shown in Eq. (5). Additionally, we compute the GI
NLA intrinsic alignment contributions by modifying Eq. (6)
such that:

PGI(k, z) = A1(z)k2PΦδ(k, z), (25)

used to compute CκI(`) using the lensing kernel in Eq. (24).
In a fully rigorous treatment, the modified Newtonian poten-
tial Ψ should determine the alignments of galaxies’ intrinsic
shapes. However, we choose to model the tidal alignment con-
tributions (corresponding to the I term in the GI and II power
spectra of Eqs. (6) and (25)) using the matter power spec-
trum Pδδ(k, z) modified by µ, by neglecting the impact of
anisotropic stress. The angular power spectra C(`) of Eq. (5)
computed with the Weyl gravitational potential are then con-
verted into real-space 2PCFs ξ±(θ), γt(θ), and w(θ) follow-
ing the same procedure as in ΛCDM.

We checked that this modified COSMOSIS pipeline repro-
duces ΛCDM results, with negligible shifts in parameter es-
timation, as shown in Appendix B. We note that the mat-
ter power spectrum Pδδ(k, z) computed by MGCAMB shows
an unexpected dependence on Σ0 at large scales, for k <
10−2 Mpc/h−1. This dependence leads in turn to a slight
dependence of the clustering 2PCF w(θ) on Σ0 for θ above
100 arcmin, more significantly for the highest redshift bins.
Its impact on Σ0 constraints is however negligible at DES Y3

12 https://github.com/sfu-cosmo/MGCAMB.

https://github.com/sfu-cosmo/MGCAMB
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3×2pt sensitivity, with a change in the posterior value com-
puted with simulated clustering measurements alone of 0.3%
for Σ0 = 1.5 compared to GR.

The CAMB dverk routine fails due to MGCAMB imple-
mentation of the evolution of perturbations, for a large set of
Σ0 − µ0 values satisfying

µ0 > 2Σ0 + 1. (26)

We thus impose a prior excluding this region of parameter
space.

As opposed to other cosmological models, we will not test
for consistency of Σ0 − µ0 results against an alternative IA
model such as TATT. Although its use has not been fully vali-
dated against simulations for instance in non-GR theories, the
NLA model allows for amplitude and redshift dependences
and propagation of Σ0 − µ0 modification of gravity to IA
as described above. We therefore adopt the NLA model as
in other models and as in previous Σ0 − µ0 studies such as
DES-Y1Ext,[120, 121]. However, to get the next-order terms,
the perturbative derivation of the TATT model in [129] as-
sumes GR and would need to be re-derived to capture the
tidal physics in modified gravity theories with a similar level
of generality. Adopting the TATT model for the Σ0−µ0 anal-
ysis would amount to using a GR IA model which would ac-
curately describe IA in the case of Σ0 − µ0 consistent with 0
but could potentially bias results if not. Additionally, we do
not make use of the Fast-PT algorithm to predict the IA and
galaxy bias models, and instead use the simple linear galaxy
bias (as validated in [71]) and the IA NLA model using the
matter and Weyl power spectra directly as computed by MG-
CAMB. We note that we do not use the linear alignment (LA)
model, in which case the IA signal is sourced by the linear
Weyl and matter power spectra: indeed, although non-linear
scales are removed through the scale cuts procedure described
in Section II D, we model non-linearities using HALOFIT so
that non-linear information left over after scale cuts is mod-
eled.

F. Binned σ8(z)

Finally, we test ΛCDM predictions of the evolution of
structure growth without assuming a particular physical mech-
anism by using what we will refer to as the binned σ8(z)

model. This model introduces amplitudes APlin
i which scale

the linear matter power spectrum in redshift bins i associated
with our lens galaxy sample. For our fiducial MagLim lens
sample, the edges of the redshift ranges used to define tomo-
graphic bins are [0, 0.4, 0.55, 0.7, 1.5]. In other words, when
we perform our model calculations, in the range z ∈ [0, 0.4)

we multiply the linear matter power spectrum by APlin
1 , in the

range z ∈ [0.4, 0.55) we multiply Plin(k) by APlin
2 , and so on.

As a model-agnostic test of ΛCDM growth history, this is in
a sense a successor to the growth-geometry split analysis of
Ref. [130].

Because it introduces step functions in the linear growth
factor, this parameterization implies delta function features in

the linear growth rate f(z). These spikes have no impact on
the external RSD modeling because none of the fσ8 measure-
ments in that likelihood fall on our z-bin boundaries. We ne-
glect their effect on RSD contributions DES galaxy cluster-
ing.13

In practice we fix APlin
1 = 1 and sample over APlin

2−4. Be-
cause our measurements are sensitive to the productsAsA

Plin
i ,

where As is the primordial power spectrum amplitude, if we
varied all fourAPlin

i amplitudes the parameters would be com-
pletely degenerate with As. By fixing14 APlin

1 , we thus avoid
those degeneracies and our parameterization of binned σ8(z)
reads:

Θσ8(z) ∈ {APlin
1 ≡ 1, APlin

2 , APlin
3 , APlin

4 }. (27)

This parameterization lends itself to a physical interpretation:
As controls the amplitude of structure observed in the lowest
redshift lens bin, while the binned σ8(z) amplitudes provide
a consistency test of whether the time-evolution of the growth
of structure is consistent with the ΛCDM prediction

APlin
2 = APlin

3 = APlin
4 = 1 (ΛCDM). (28)

We will additionally report constraints on a set of derived pa-
rameters,15

σ
[bin i]
8 ≡ σ8

√
APlin
i , (29)

which correspond to the value of σ8 expected at redshift z = 0
based on the amplitude of structure in redshift bin i.

When we include both Planck and low-redshift measure-
ments of structures (from DES or external RSD data), we treat
the CMB measurements as an additional high-z bin, and intro-
duce an additional amplitude APlin

CMB. In practice, we imple-
ment this by passing the product APlin

CMBAs as the As input to
CAMB when computing CMB observables. To be fully self-
consistent, the amount of that lensing smoothing of the CMB
power spectra should account for the modulation of the line-
of-sight matter power spectrum by the APlin

i parameters. For
simplicity, we have chosen not to model this. Instead, when
we include CMB constraints for the binned σ8(z) model, we
marginalize over the lensing smoothing amplitude AL [131]
(matching the parameter used in Planck analyses) in order to

13 A fully consistent calculation here would account for the enhanced RSD
contributions to w(θ). This effect could in principle be used to empirically
constrain the smoothness of the linear growth factor’s redshift evolution,
but we neglect it for simplicity because it’s impact on overall constraining
power is likely to be small, and implementing it would require significant
updates to our modeling pipeline.

14 The choice to fix the amplitude for the lowest redshift i = 1 as opposed
to some other bin was arbitrary. While a different choice would affect the
inferred values of the APlin

i parameters, the resulting model would have
the same degrees of freedom, so would not affect the physical interpretation
of the results — i.e. the inferred σ8 values.

15 Note that the decision to include constraints on the derived σ[bin i]
8 parame-

ters as part of the presentation of our binned σ8(z) model results was made
after unblinding.
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remove late-time LSS information from the CMB likelihood.
We neglect the dependence of the Integrated Sachs-Wolfe ef-
fect on late-time modified growth, as sensitivity to the effect
is limited by cosmic variance.

Note that the phenomenology probed by this APlin
i param-

eterization is to similar to a Σ0 − µ0 description of modified
gravity with fixed Σ = 0 and µ(z) defined as a piecewise
function of z. It is therefore comparable to models studied
in e.g. Refs. [122, 132, 133]. The distinction between our
binned σ8(z) model and modified gravity parameterizations
is largely one of interpretation rather than modeling specifics.
Here we are framing binned σ8(z) as a consistency test of
ΛCDM rather than a physical model, so we use the same mod-
eling choices as in Λ/wCDM, including fiducial scale cuts and
HALOFIT as our model for the nonlinear matter power spec-
trum, in contrast to the more conservative approach adopted
in the Σ0 − µ0 model above.

In our binned σ8(z) analysis we include the shear ratio like-
lihood when analyzing DES 3×2pt. The shear ratio was fore-
casted to strengthen the constraints on the binned σ8(z) am-
plitudes relative to 3×2pt alone. Because shear ratio mea-
surements probe the relative distances between a given lens
bin and different source bins, they isolate geometric infor-
mation and will be insensitive to the APlin parameters. This
means shear ratio measurements help break degeneracies be-
tween the binned σ8(z) amplitudes, nuisance parameters re-
lated to photometric redshift uncertainties, intrinsic align-
ments, and cosmological parameters which affect both ge-
ometry and growth (namely Ωm). As we are treating binned
σ8(z) as a consistency test of ΛCDM rather than a physical
model, we argue that we can include it without additional val-
idation of the small-scale modeling.

IV. EXTERNAL DATA

We consider the DES 3×2pt likelihood described above in
comparison to and in combination with measurements from
other cosmological experiments. We use the same external
measurements as in DES-Y3KP, using public likelihoods from
most constraining datasets available at the time of this analy-
sis. These include, as summarized in Table III:

• cosmic microwave background (CMB) temperature and
polarization anisotropies measurements by the Planck
satellite as described in Sec. IV A,

• distances and growth from 6dFGS, MGS, eBOSS DR16
baryon acoustic oscillations (BAO) and redshift space
distortions (RSD) data as described in Sec. IV B,

• supernovae (SN) distance modulus from Pantheon as
described in Sec. IV C.

When performing combined analyses of these probes, we
assume they are uncorrelated (except for BAO and RSD,
whose correlations are taken into account in published like-
lihoods) so we simply multiply their likelihoods.

Observables Data

CMB (Planck in text) Planck 2018 TTTEEE-lowE (no lensing)

BAO eBOSS DR16: LRGs, ELGs, QSOs,
Lyman-α QSOs + 6dFGS + MGS

RSD eBOSS DR16: LRGs, ELGs, QSOs + MGS
SN Pantheon sample (2018)

TABLE III. External data used as measurements of additional ob-
servables: cosmic microwave background (CMB), baryon acous-
tic oscillations (BAO), redshift-space distortions (RSD), supernovae
(SN).

A. Cosmic microwave background

The cosmic microwave background temperature and polar-
isation primary anisotropies carry information about density
and tensor perturbations at the time of the last scattering sur-
face. In addition, effects such as reionization and gravitational
lensing caused by large scale structures produce secondary
anisotropies carrying information about the evolution of the
Universe since the CMB emission. In recent decades, mea-
surements of CMB anisotropies have led to the most powerful
existing constraints on ΛCDM cosmological parameters.

In this paper we therefore use the Planck 2018 TTTEEE-
lowE likelihood presented in Ref. [11]. This likelihood com-
bines three components: a high-` likelihood based on mea-
surements of multipoles 30 ≤ ` ≤ 2508 for the temperature
(TT) angular power spectrum and 30 ≤ ` ≤ 1996 for the TE
and EE spectra (plik), and two low-` likelihoods of the temper-
ature TT (commander) and the polarization EE (simall) spec-
tra on multipoles 2 ≤ ` ≤ 29. To facilitate the study of how
cosmological model extensions impact the offset between S8

constraints from 3×2pt and CMB temperature and polariza-
tion, we do not include the CMB lensing likelihood.

When analyzing data we use the full Planck likelihood pro-
vided as part of the COSMOSIS standard library. This full
likelihood includes 47 nuisance parameters where 21 param-
eters are marginalized over, 13 of which have Gaussian pri-
ors provided with the public Planck likelihood. In the case
of the Σ0 − µ0 model, in order to limit computing time we
instead use the Planck plik-lite likelihood, which includes the
effects of Planck nuisance parameter marginalization and only
requires us to sample the absolute calibration parameter AP.
We have checked that it gives equivalent results to using the
full likelihood in this extended model.

For simulated analyses of DES 3×2pt combined with ex-
ternal data, we use a simplified Planck likelihood based on
Ref. [134] using two Gaussian likelihoods for ` < 30 and
using the TTTEEE Planck plik-lite likelihood for ` > 30.
We also replace the power spectra measurements with model
predictions at our fiducial cosmological parameters. For both
simulated and real analyses, when we include CMB measure-
ments we marginalize over the optical depth to recombination
τ with a flat prior in the range [0.01, 0.8].
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B. Baryon acoustic oscillations and redshift space distortions

Baryon acoustic oscillations in the early Universe imprinted
features in the matter distribution at a characteristic scale
which can be detected as an excess of galaxy pairs separated
by a certain distance in the local universe. By measuring the
relationship between redshift and the angular diameter dis-
tance associated with that excess, we can use BAO as a stan-
dard ruler to constrain the expansion history of the Universe.

We use the combinations of BAO likelihoods from eBOSS
Data Release (DR) 16 [135] to provide measurements of the
Hubble parameter H(zi) and the evolution of the comoving
angular distance dA(zi). More specifically, we use likelihoods
from the reanalysis of BOSS DR 12 Luminous Red Galaxies
(LRGs) (dropping its highest redshift measurements), eBOSS
LRGs, Emission Line Galaxies (ELGs), quasars (QSOs) and
Lyman-αQSOs. These BAO measurements are made at effec-
tive redshifts of zeff = 0.38, 0.51, 0.70, 0.84, 1.48, 2.33, re-
spectively. We additionally include BAO measurements from
two lower signal-to-noise galaxy samples, 6dFGS [136] and
MGS [137]. These likelihoods are based on measurements of
the quantity dV (z) ≡ [cz(1 + z)2d2

A(z)/H(z)]1/3 evaluated
at effective redshifts of zeff = 0.11 for 6dFGS and zeff = 0.15
for MGS.

As an external constraint on the growth rate of structure, we
include the eBOSS DR16 redshift-space distortions measure-
ments. RSD likelihoods include constraints on the growth of
cosmic structure via constraints on the quantity f(zi)σ8(zi),
where f is the linear growth rate. We use the eBOSS DR16
RSD measurements including a reanalysis of BOSS DR12
RSD measurements, LRGs, ELGs and QSOs, at the same red-
shifts as BAO measurements. We also use the MGS RSD
measurement from [138] at zeff = 0.15. When both BAO
and RSD measurements from a given sample are included, we
account for their covariance using the public eBOSS DR16
likelihoods.

It is worth noting that the RSD likelihoods we use are in
the form of marginalized constraints on the quantity fσ8 at
sample redshifts, and that those constraints are derived quan-
tities from analyses which assume a ΛCDM template for RSD
features in the galaxy distribution. When studying models
beyond-ΛCDM, care must be taken in using these likelihoods,
as it is possible that inaccuracies in that template could lead to
biases in beyond-ΛCDM cosmological parameter inferences.
Studies of this in e.g. Ref. [139] demonstrated that using GR-
based templates they were able to obtain unbiased fσ8 con-
straints for modified gravity simulations, as long as the mod-
ified gravity model did not induce scale-dependent structure
growth modifications. Given this, we follow the final eBOSS
cosmology analysis [15], which uses these same RSD mea-
surements to constrain wCDM, Ωk, w0 − wa, Σ0 − µ0, and
massive neutrino cosmologies, and proceed with including
RSD measurements among our external likelihoods. Given
the use of these measurements to constrain neutrino mass (e.g.
in [15]), we assume that they are likely also safe to use for our
Neff −meff model, but we highlight that this assumption may
be worth investigating for future, more precise, analyses.

C. Supernovae

Type Ia supernovae are a key cosmological probe that was
originally used to discover the accelerated expansion of the
universe. Here we adopt the Pantheon SN Ia sample [8],
which combines objects detected and followed up by sev-
eral different surveys (Pan-STARRS, Sloan Digital Sky Sur-
vey (SDSS), Supernova Legacy Survey (SNLS)). The result-
ing sample contains 1048 SN Ia spanning the redshift range
0.01 < z < 2.26.

The Pantheon likelihood assigns a Gaussian likelihood to
the measured SN distance moduli, µ = 5 ln [dL/10pc]. It
provides a full covariance of these measurements, accounting
for cosmic variance and the impact of measurement systemat-
ics. We model the distance modulus as

µ = mB −M + αx1 − βC + ∆M + ∆B . (30)

Here, x1 and C are the light curve width and color respectively,
∆M is a distance correction based on the host-galaxy mass of
the SN, and ∆B is a distance correction based on predicted
biases from simulations. The calibration parametersα, β, ∆M

are fit to data as described in Ref. [8], while ∆B is calibrated
using simulations. The absolute magnitude M is a nuisance
parameter that we marginalize over in our analysis with a flat
prior −20 < M < −18.

V. ANALYSIS PROCEDURE AND VALIDATION

Our analysis procedure can be divided into five stages.
These steps, described in more detail below, proceed as fol-
lows:

1. We analyze a fiducial synthetic data vector — that is,
we analyze a noiseless model prediction at a fiducial set
of ΛCDM parameters as if it were data. In this paper,
the term ‘simulated analysis’ will refer to this kind of
analysis of synthetic data. (Sec. V A)

2. We validate scale cuts and modeling choices by ana-
lyzing a series of alternative simulated data vectors that
have been ‘contaminated’ by systematics or by model-
ing choices which are more complex that those used in
our baseline model. (Sec. V B)

3. We perform a set of analysis tests using the fiducial syn-
thetic data vector to study the robustness of our results
against changes in the model used for parameter esti-
mation. (Sec. V C)

4. We repeat the previous step’s robustness tests against
variations of the model for real data, without unblind-
ing the cosmology results. Once we completed these
robustness tests, a draft of this paper and the analysis
plan documented in it underwent a stage of DES inter-
nal review (Sec. V C).

5. Finally, we reveal our cosmology results, assess tension
metrics, compute model comparison metrics, and de-
scribe the results in Sec. VI.
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This procedure is designed to ensure as far as possible that
decisions on how to structure the analysis are not influenced
by knowledge of how they affect the main results. Since the
data we are working with have already been unblinded for the
Λ/wCDM models in DES-Y3KP, we opted not to use the two-
point-function transformation blinding method [140]. Instead,
we simply blinded at the parameter level, post-processing
chains to shift marginalized posterior means onto fiducial val-
ues via unknown offsets. Additionally, until pre-unblinding
internal review was completed, we avoided looking at com-
parisons between theory and model predictions for observ-
ables, tension metrics between datasets, and any model com-
parison statistics between extended cosmological models and
ΛCDM.

Several analysis choices used in this work were adjusted
after ΛCDM unblinding, in line with changes made to the
analysis in DES-Y3KP. These changes are: the choice of the
MagLim rather than the REDMAGIC [65, 141, 142] lens sam-
ple, and the removal of the two highest redshift MagLim lens
bins (which would have been bins 5 and 6) from the fiducial
analysis. As noted in Sec. II C, we have also adopted the sim-
pler two-parameter NLA description of intrinsic alignments
instead of the five-parameter TATT model used in DES-Y3KP.
We made the choice to use NLA largely because the DES-
Y3KP ΛCDM analysis did not find that the TATT model is
favored over NLA. We emphasize that while these aspects
of our analysis have been shaped by findings for unblinded
ΛCDM results, these changes were frozen in before analyzing
any data for the beyond-ΛCDM models.

A. Fiducial synthetic data

We initially validate our analysis by performing a series of
analyses of synthetic measurements — that is, analyses of the
data vector predicted from our fiducial model, with no noise.
With the exception of the change in data vector, this analysis
is identical to our eventual analysis of real data: the synthetic
DES 3×2pt data are generated using the same redshift distri-
butions used for the final analysis, and the likelihood is eval-
uated using a covariance produced at our fiducial cosmology
using the same analytical calculations described in Ref. [74].
In addition to synthetic DES 3×2pt measurements, we addi-
tionally produce synthetic versions of the external likelihoods
for simulated combined analyses.

We begin with a baseline simulated analysis: using our fidu-
cial model, we analyze synthetic data vectors produced using
those same calculations. This can be thought of as a ‘best case
scenario’ where our model calculations are exactly correct so
that we can estimate the expected constraining power and the
relationship between marginalized posteriors and parameters’
input values.

In some cases when constraints are weak, prior volume ef-
fects cause marginalized confidence intervals for parameters
to be offset from their input (ΛCDM) values. This occurs
because the prior in our full parameter space can be highly
non-uniform when projected onto certain cosmological vari-
ables. This occurs notably for the synthetic Planck-only re-

sults, which prefer Ωk < 0 at 1.4σ. This offset from flatness,
which can be understood in terms of the CMB’s well-known
geometric degeneracy [143], is in the same direction as what
has been previously reported for the analysis of real CMB
data but at a lower significance. The preference for Ωk < 0
goes away when the Planck likelihood is combined with low-
redshift geometric likelihoods.

We also see offsets in the DES 3×2pt and
3×2pt+BAO+RSD+SN Neff − meff constraints, which
is due to a positive degeneracy between Neff and meff

constraints for the lower redshift probes, as well as degen-
eracies between both of those parameters and H0. Adding
CMB information introduces a powerful constraint on Neff ,
breaking those degeneracies and causing the marginalized
posterior distribution for the All-data constraints to be more
reflective of the input parameter values. Given this concern
about the projection effects, for Neff − meff we will focus
primarily on constraints from DES Y3 3×2pt and all external
data (i.e. BAO+RSD+SN+Planck) rather than DES alone.

In the Σ0−µ0 model, µ0 measurements by DES Y3 3×2pt
alone are prior-dominated so will not be reported. We addi-
tionally note that a Σ0-S8 degeneracy causes a slight offset for
the DES-only Σ0 posterior, though the resulting constraints
are consistent with the input value. The addition of external
RSD or Planck data enable precise measurements of µ0, in
turn leading to more precise constraints on Σ0.

B. ‘Contaminated’ synthetic data

Next, we analyze synthetic 3×2pt data that have been ‘con-
taminated’ by various effects. The goal here is to test robust-
ness of our results to modeling complexities and systematic
effects which are not included in our fiducial model. To verify
this, we compare the results of the analysis of contaminated
synthetic data to those from our baseline simulated analysis,
both computed in ΛCDM. This allows us to quantify the im-
pact these modeling uncertainties have on parameter estimates
and model comparison statistics used to evaluate tensions with
ΛCDM. The priority here — and what we can evaluate most
accurately, given the lack of in-depth study of and available
modeling tools for describing systematics in extended cosmo-
logical models — is to assess whether unmodeled systemat-
ics are can produce a false detection of tension with ΛCDM.
Specifically, we study three alterations to the synthetic data:

• Nonlinear bias + baryons: A realization of bary-
onic feedback and non-linear galaxy bias is added
to the synthetic 3×2pt observables. Baryonic feed-
back effects are added using the method described in
Refs. [144, 145], and are based on the OWLS hydrody-
namic simulations [146, 147] with large AGN feedback
according to the prescription of Ref. [148]. Nonlinear
galaxy bias is modeled using an effective 1-loop de-
scription with renormalized nonlinear bias parameters
as in Refs. [149–152]. This synthetic data is produced
with the same contaminations used in Ref. [71] to de-
fine scale cuts for DES-Y3KP. Analyzing it allows us
to verify that the scale cuts defined for ΛCDM continue
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to protect against these small-angle systematics in the
beyond-ΛCDM models we consider.

• Euclid emulator: The HALOFIT computation for the
nonlinear, gravity-only matter power spectrum is re-
placed with that of EUCLID EMULATOR [153]. Check-
ing that this alternate nonlinear prescription does not
shift our results is a test of robustness against inaccura-
cies of the small-scale power spectrum modeling.

• Magnification 3σ offset: The magnification coef-
ficients Ci (see Eq. (5)) are offset from their fidu-
cial values by three times their uncertainty, where
the latter is determined in Ref. [89] using the Bal-
rog simulations. The coefficients used are C =
[1.97, 1.74, 2.93, 2.97] compared to the fiducial coeffi-
cients C = [0.42, 0.30, 1.76, 1.94]. This 3σ offset is
designed to demonstrate the robustness of results to the
amplitude of the magnification signal and validate the
decision to fix the C values at their fiducial values.

To facilitate these tests we adopt the newly-developed
FASTISMORE (Fast Importance Sampling for MOdel Ro-
bustness Evaluation) scheme, which is presented in more de-
tail in Appendix C and Ref. [154]. Briefly, the approach ex-
ploits the fact that if our analysis is robust against a given
systematic, the shift in posteriors should be small when the
data is ‘contaminated’ with that effect. This allows us to use
the posterior from a baseline chain (run using uncontaminated
synthetic 3×2pt observables) as a proposal distribution for es-
timating the posterior for a contaminated datavector via im-
portance sampling (IS). Doing this allows us to quickly verify
whether the change in posterior is indeed negligible. If qual-
ity statistics indicate that the IS posterior estimate is of good
quality, it can be used to quantify the effect of the systematic
on parameter estimates and model comparison statistics. If
the estimate is poor, this indicates we need to run a new chain
to estimate the contaminated posterior.

Once we have obtained reliable posterior estimates, we
assess shifts in the marginalized constraints on the beyond-
ΛCDM parameters. We quantify this following Ref. [130],
defining the marginalized posterior shift ∆θ for parameter Θ
as

∆Θ =
Θ̄A − Θ̄B√

(Θ̄A −Θlow68
A )2 + (Θup68

B − Θ̄B)2

. (31)

Here, Θ̄ is the parameter’s posterior-weighted mean, and
the labels A and B correspond to the baseline and alterna-
tive (contaminated) synthetic data vectors, defined such that
Θ̂A > Θ̂B . The parameter Θlow68

A is the lower bound of
the 68% confidence interval for posterior A, while Θ

up68
B is

the upper bound of the 68% confidence interval for posterior
B. Thus the denominator of Eq. (31) is an effective 1σ error
for parameter Θ, accounting for possible asymmetry in the
marginalized posteriors. We consider a parameter shift to be
negligible if ∆Θ < 0.3.

We perform these checks for DES 3×2pt and DES
3×2pt+BAO+RSD+SN+Planck posteriors for each beyond-
ΛCDM model, as well as 3×2pt+BAO+RSD+SN (leaving out

Planck), using simulated external data likelihoods produced at
the same fiducial cosmology as the synthetic DES data. Re-
sults are shown in the “Alt data” rows of Fig. 1, with points
and error bars indicating the mean and marginalized 68% con-
fidence interval for each parameter. Where error bars are not
visible they are smaller than the size of the data point. In
that plot the N (0)

eff constraints are for the model which varies
Neff only, while N (m)

eff shows the ∆Neff constraint from the
Neff −meff model. Points with ∆Θ > 0.3 are highlighted.

Nearly all shifts evaluated were below the 0.3σ threshold,
meaning these beyond-ΛCDM parameter estimates are robust
against each of the considered systematics. The only excep-
tion to this occurs for the binned σ8(z) model’s response to
changes in the assumed magnification parameter. For the
binned σ8(z) DES 3×2pt results we see ∆

A
Plin
3

= 0.31, and
for 3×2pt+BAO+RSD+SN+Planck binned σ8(z) results we
find ∆

A
Plin
3

= 0.37. We note that these numbers are close
to the desired threshold, especially relative to our sampling
uncertainty of∆Θ± ∼ 0.04, and so are not very concerning.

We also check whether these contaminations affect our
assessment of whether an extended model is favored rela-
tive to ΛCDM. We do this by comparing the values of the
Suspiciousness model comparison statistic S, defined in Ap-
pendix F, evaluated in our contaminated and baseline simu-
lated analyses. For a base model M0 (e.g. ΛCDM) whose
parameter space is a subspace of extended modelMX , we de-
fine Suspiciousness so that lnS < 0 indicates a preference for
MX . Of the several model comparison statistics that we will
ultimately report as part of our results, we use Suspiciousness
here because it is readily calculable from importance-sampled
posteriors. Fig. 2 shows the changes produced by systematic
contamination in lnS relative to the expected amount of scat-
ter, for DES 3×2pt and DES 3×2pt+BAO+RSD+SN+Planck
constraints. The largest shift occurs for Neff -vs-ΛCDM,
where analyzing the EUCLID EMULATOR synthetic data shifts
lnS by ∼ 1σ in the limit that posteriors are Gaussian. We
should therefore interpret model comparison results for Neff

with some caution. Otherwise, all systematics considered
cause negligible changes in Suspiciousness and thus are un-
likely to result in a false detection of tension with ΛCDM.

C. Robustness to model variations

We additionally study how parameter constraints respond
to changes in our model. By comparing results obtained using
alternative modeling choices to those obtained from our fidu-
cial model, we assess the robustness of our findings relative to
those model variations. As before, we quantify this compar-
ison in terms of the parameter shift ∆Θ defined in Eq. (31),
and we consider any shifts with ∆Θ < 0.3 to be negligible.
The model changes considered are:

• TATT - We use a five-parameter TATT intrinsic align-
ment model [129] instead of the two-parameter NLA
model used in the present baseline analysis. This
model, which was the fiducial IA model in DES-Y3KP,
has significantly more flexibility to describe IA scale



17

-1.5 -1.0

w

-1.5 -1.0 -0.5

w0

-2.0 0.0

wa

-1.4 -1.0

wp

-0.2 0.0 0.2

Ωk

1.0 5.0

N
(0)
eff

3.0 7.0

N
(m)
eff

0.0 1.5

meff [eV]

synthetic data

Baseline

Alt data: NL bias, baryons

Alt data: Euclid emulator

Alt data: 3σ mag. offset

Alt model: TATT IA model

Alt model: vary Xlens

Alt model: hyperrank

DES 3x2pt 3x2pt+BAO+RSD+SN 3x2pt+BAO+RSD+SN+Planck

0.0 0.5

Σ0

-1.0 0.0

µ0

1.0 1.2

APlin
2

1.0 1.2

APlin
3

1.0 1.3

APlin
4

synthetic data

Baseline

Alt data: NL bias, baryons

Alt data: Euclid emulator

Alt data: 3σ mag. offset

Alt model: TATT IA model

Alt model: vary Xlens

Alt model: hyperrank

FIG. 1. Simulated analysis constraints on beyond-ΛCDM model parameters, showing robustness against systematics and model varia-
tions. Points and error bars show the mean and 68% confidence interval for marginalized parameter constraints, and points that are offset
from the baseline by more than 0.3σ, according to Eq. (31), are highlighted in yellow and red. To facilitate comparison between rows,
solid vertical lines and shaded regions show the location and 68% confidence interval of the baseline point for DES 3×2pt and DES
3×2pt+BAO+RSD+SN+Planck results in blue and black respectively. Dashed vertical lines show the ΛCDM values used to generate the
synthetic data vectors. We use N (0)

eff to identify the effective number of relativistic degrees of freedom when no mass is included in the model,
N

(m)
eff for that parameter in the Neff −meff model. For parameters where the combination of all data (DES 3×2pt and all external data) is

much more constraining than DES 3×2pt, a version of this plot with narrower axis ranges can be found in Fig. 19 of Appendix D.

and redshift dependence, allowing it to capture IA from
tidal alignment and tidal torquing, as well as the re-
sponse to the density-weighted tidal field. We use the
same parameters and prior ranges as in DES-Y3KP.
Comparison with an analysis using TATT allows us to
test the robustness of our results against our choice of
intrinsic alignment model. As explained in Sec. II C,
for each of the beyond-ΛCDM models we perform a
pre-unblinding model comparison between TATT and
NLA to test whether there is tension with the choice of
NLA as the fiducial IA model for that cosmology. Note
that this set of tests are not performed for Σ0 − µ0 be-
cause the TATT modeling tools are not available for our
modified gravity calculations (see Sec. III E).

• Varying XLens: We marginalize over a parameter
XLens which multiplies the galaxy bias terms appearing

in γt(θ) calculations, thus allowing the galaxy–galaxy
lensing observables to have a different bias parame-
ter than galaxy clustering. Such an effect was discov-
ered after unblinding the ΛCDM 3×2pt analysis us-
ing the REDMAGIC lens sample, and while it is still
under investigation, it is thought to be due to an un-
accounted for systematic related to lens sample selec-
tion [142]. This effect motivated the choice of MagLim
over REDMAGIC as the fiducial lens sample in DES-
Y3KP. While no evidence was found in ΛCDM for
XLens 6= 1 for our data vector, which uses the four-bin
MagLim lens sample, we include results marginalizing
over parameter to test the robustness of our beyond-
ΛCDM constraints to the presence of this kind of sys-
tematic in the real data analysis. Note that a similar
effect with independent XLens values for each redshift
bin is able to capture the issues with the fifth and sixth
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FIG. 2. Impact of contamination by unmodeled systematics on the Suspiciousness model comparison metric evaluated for synthetic ΛCDM
data. Panels show Suspiciousness evaluated between different beyond-ΛCDM models and ΛCDM, with the marker styles indicating different
contaminations. Blue circular markers indicate the baseline case where the synthetic data is produced using the same model as used for
parameter estimation. Studying whether contaminations shift lnS towards more negative values than the baseline measurement tells us
whether they are likely to produce a false detection of beyond-ΛCDM physics. Shaded regions indicate the expected ±1σ scatter around the
baseline for Gaussian posteriors, and the red dashed line denotes the value of lnS that would produce a 1σ preference for the beyond-ΛCDM
model (though as we discuss in Appendix F lnS is expected to follow a χ2 distribution, such that the true uncertainty is more skewed toward
negative values of lnS than the shaded regions, making the test conservative). Error bars on points indicate sampling uncertainty. Results are
shown for the analysis of DES 3×2pt alone and 3×2pt+BAO+RSD+SN+Planck (All data).

MagLim bins which led to their removal from the anal-
ysis. Studies in ΛCDM have shown that the first four
MagLim bins we analyze are consistent withXLens = 1
in this redshift-dependent formulation as well [66, 142].
Thus to limit the parameter space of these tests, here
we consider only a single redshift-independent XLens

parameter. As an additional exploration of this effect,
in Appendix G we study the response of the extended
models to synthetic data produced with XLens 6= 1.

• Hyperrank: Instead of using the four ∆zs photo-z bias
parameters of our fiducial model, we use the hyper-
rank [155] method to marginalize over uncertainties in
the source sample redshift distributions. This method
uses three ‘rank’ parameters to sample an ensemble of
1000 realizations of source n(z) histograms that were
generated using a three-step Dirichlet (3sDir) sampling
method [59, 156, 157]. (Throughout this paper we
will use “hyperrank” as shorthand for what might more
properly be referred to as the 3sDir+hyperrank method.)
Compared to the fiducial approach, hyperrank captures
more information about uncertainties in the shapes of
those redshift distributions as well as correlations be-
tween different source bins. Comparing constraints ob-
tained using hyperrank to our fiducial model will indi-
cate how sensitive our results are to our characteriza-
tion of source photo-z uncertainties. Note that in DES-
Y3KP, it was found that using hyperrank for ΛCDM
produced a 0.53σ shift in S8 (see Appendix E1 of that
Reference and our Appendix D 4).

Because we are using the TATT comparisons to evaluate
our choice of fiducial IA model (except for the Σ0 − µ0

model), we run TATT analyses for all three principal data
combinations (DES 3×2pt alone, only low redshift probes:
DES 3×2pt+BAO+RSD+SN, and all data combined: DES
3×2pt+BAO+RSD+SN+Planck). We run XLens and hyper-

rank analyses for DES 3×2pt only, except for the Σ0 − µ0,
binned σ8(z) and Neff −meff models. This choice was mo-
tivated by non-negligible shifts seen for binned σ8(z) and
Neff−meff in the blinded real-data tests for DES 3×2pt-alone.
Additional chains were run for Σ0 − µ0 as well because that
model also primarily affects structure growth.

Results showing the impact of these model variations on
simulated analyses are shown in the ‘Alt model’ lines of Fig. 1,
and results for real data are shown in Fig. 3. 16 For synthetic
and real data, other than for Neff − meff and binned σ8(z),
all shifts due to these model variations were below 0.3σ. The
non-negligible parameter shifts occurring for Neff −meff and
binned σ8(z) have motivated adjustments to analyses choices
for those models. Further detailed discussion of those shifts
can be found for Neff −meff in Appendix D 2 and for binned
σ8(z) in Appendix D 3, respectively, which we briefly sum-
marize here. First, the sensitivity of theNeff−meff constraints
to model variations seem to be caused by prior volume effects
associated with an unconstrained part of parameter space at
small ∆Neff . Since adjusting our prior to remove that part of
parameter space restores robustness, this motivates our choice
to report Neff − meff results using priors that require either
∆Neff > 0.047 or mth < 10 eV, as noted at the end of
Sec. III D.

Second, for binned σ8(z) the most concerning parameter
shifts occur for hyperrank, which causes the APlin

i amplitudes
to change by ∼ 1 − 2σ relative to their baseline model esti-
mates. Given this, we report binned σ8(z) results for both the

16 Before unblinding cosmological parameter estimates or model compar-
isons with ΛCDM, at this stage we studied only differences between the
alternative and baseline chain constraints, working with a version of Fig. 3
where baseline means were subtracted from all numbers, causing all the
points in the top row to be on zero. The Figure was updated after unblind-
ing to show the actual parameter values of the constraints.
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FIG. 3. Beyond-ΛCDM parameters constraints for real data and the impact of model variations. Points and error bars show the mean and
68% confidence interval for marginalized constraints on extended model parameters, and shifts larger than 0.3σ according to Eq. (31) are
highlighted in yellow and red. Dashed gray lines show parameter values that correspond to ΛCDM. Solid vertical lines and shaded regions
mark the DES 3×2pt and combination of all data, DES 3×2pt+BAO+RSD+SN+Planck baseline results, in blue and black respectively, to
facilitate comparison between rows. No points are shown in second row of Σ0 and µ0 constraints because of the lack of TATT IA model
implementation within the modified gravity pipeline. A version of this plot with narrower axis ranges can be found in Fig. 20 of Appendix D 1.

baseline and hyperrank versions of the analysis, using their
comparison as a rough estimate for the impact of systematic
uncertainties related photometric redshift estimates. We note
that model variations most severely impact inferences about
σ8 in the lowest redshift bin, which then propagates to affect
APlin
i parameters because they are defined relative to bin 1.

Importantly, the derived parameters σ[bin i]
8 ≡ σ8[APlin

i ]1/2,
which are more closely related to the observed amplitude of
LSS, are more robust to modeling variations especially when
we combine DES 3×2pt with external data.

VI. RESULTS

We now show the principal results of our analysis. This
section is organized as follows: In Table IV, we show a sum-
mary of marginalized constraints on individual parameters. In
Secs. VI A-VI F, we report and discuss constraints for each of
the cosmological models studied in this work. In Secs. VI G
and VI H we examine how these cosmological models and
other model variations impact estimates of S8 and

∑
mν re-

spectively. While discussions of results for individual models
touch on tensions and model comparisons, Secs. VI I and VI J,
present more details about the definitions and determination of
tension and model comparison statistics, respectively.

In this section, parameter estimates shown with two-sided
error bars report the mean and 68% confidence interval of

marginalized one-dimensional posteriors. One-sided errors
report 95% confidence bounds. Before unblinding, we de-
cided that we would report results from combined datasets
only if the p-value associated with the Suspiciousness tension
metric, described in Appendix E and Ref. [158], is greater
than 0.01. We evaluate that metric for two data combinations:
DES 3×2pt versus the external low-redshift data combina-
tion BAO+RSD+SN, and Planck versus the combination of
all non-CMB data, 3×2pt+BAO+RSD+SN.

A. Results: w0 − wa

We start with dynamical dark energy described by param-
eters w0 and wa. The marginalized constraints are shown in
the left panel of Fig. 4. We find

w0 ≥ −1.4, wa = −0.9± 1.2 DES Y3 (32)

w0 = −0.95± 0.08, wa = −0.4+0.4
−0.3 DES Y3 + External.

DES Y3 3×2pt data alone weakly constrain17 w0 and wa, but
are statistically consistent with the cosmological-constant val-

17 We report two-sided 3×2pt-only constraints on wa because its one-
dimensional marginalized posterior is not bounded by the wa priors, but
note that the constraint is strongly influenced by the intersection of the
posterior with the upper w0 prior boundary.
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DES 3x2pt All External All data

wCDM w0 −0.94+0.31
−0.18 −1.04+0.03

−0.03 −1.03+0.03
−0.03

w0-wa

w0 ≥ −1.40 −0.94+0.08
−0.08 −0.95+0.08

−0.08

wa −0.94+1.15
−1.15 −0.45+0.36

−0.28 −0.38+0.36
−0.28

wp −0.99+0.28
−0.17 −1.04+0.04

−0.03 −1.03+0.04
−0.03

Ωk 102Ωk ≥ −16 0.08+0.18
−0.18 0.09+0.17

−0.17

Neff Neff ≤ 7.84 3.10+0.16
−0.17 3.10+0.15

−0.16

∆Neff >
0.047

∆Neff - ≤ 0.36 ≤ 0.34

meff [eV] - ≤ 0.18 ≤ 0.14

mth <
10eV

∆Neff - ≤ 0.23 ≤ 0.28

meff [eV] - ≤ 0.42 ≤ 0.20

Σ0-µ0

Σ0 0.56+0.37
−0.48 0.37+0.12

−0.09 0.04+0.05
−0.05

µ0 - 0.20+0.22
−0.22 0.08+0.21

−0.19

Binned
σ8(z)

A
Plin
2 1.00+0.14

−0.21 0.92+0.14
−0.23 1.03+0.11

−0.14

A
Plin
3 0.88+0.14

−0.19 0.95+0.17
−0.30 0.98+0.11

−0.13

A
Plin
4 0.89+0.20

−0.26 1.22+0.17
−0.33 1.24+0.13

−0.16

A
Plin
CMB - 0.89+0.10

−0.22 1.04+0.04
−0.06

σ
[bin 1]
8 0.75+0.05

−0.05 0.83+0.09
−0.06 0.78+0.02

−0.02

σ
[bin 2]
8 0.74+0.06

−0.07 0.79+0.06
−0.06 0.79+0.04

−0.04

σ
[bin 3]
8 0.70+0.06

−0.07 0.80+0.07
−0.07 0.76+0.04

−0.04

σ
[bin 4]
8 0.70+0.10

−0.09 0.90+0.05
−0.04 0.86+0.04

−0.05

σ
[CMB]
8 - 0.78+0.02

−0.02 0.79+0.01
−0.01

Binned
σ8(z),

hyperrank

A
Plin
2 1.16+0.16

−0.16 0.92+0.14
−0.23 1.28+0.07

−0.09

A
Plin
3 1.07+0.15

−0.17 0.95+0.17
−0.30 1.17+0.08

−0.10

A
Plin
4 0.85+0.13

−0.24 1.22+0.17
−0.33 1.51+0.12

−0.14

A
Plin
CMB - 0.89+0.10

−0.22 1.26+0.03
−0.04

σ
[bin 1]
8 0.73+0.04

−0.04 0.83+0.09
−0.06 0.72+0.01

−0.01

σ
[bin 2]
8 0.78+0.06

−0.06 0.79+0.06
−0.06 0.81+0.02

−0.02

σ
[bin 3]
8 0.75+0.07

−0.06 0.80+0.07
−0.07 0.77+0.03

−0.03

σ
[bin 4]
8 0.67+0.07

−0.09 0.90+0.05
−0.04 0.88+0.04

−0.04

σ
[CMB]
8 - 0.78+0.02

−0.02 0.80+0.01
−0.01

TABLE IV. Marginalized constraints on beyond-ΛCDM parameters
for DES Y3 3×2pt, all external data (Planck+BAO+RSD+SN), and
all data (3×2pt+Planck+BAO+RSD+SN). Two-sided constraints re-
port the mean and 68% confidence interval for each parameter’s
marginalized posterior. One-sided constraints report 95% bounds.

ues of (w0, wa) = (−1, 0). When combined with external
data, the constraints tighten considerably. The combined con-
straints find wa < 0 at about 1σ, and are thus consistent with
the standard model. In thew0−wa plane, the DES 3×2pt data
alone have similar constraining power to Planck alone. Ad-
ditionally, 3×2pt+BAO+RSD+SN (without Planck) produce

constraints comparable those from the combination of all data
considered.

The pivot equation-of-state (see Sec. III A) is

wp = −0.99+0.28
−0.17 DES Y3

= −1.03+0.04
−0.03 DES Y3 + External,

(33)

where for the DES Y3 3×2pt and all-data constraints, the
pivot redshifts are zp = 0.24 and zp = 0.27, respectively.
Note that DES alone does give a two-sided constraint on wp,
unlike on w0. The right panel of Fig. 4 shows the constraints
in the (wp, wa) plane. The DES Y3 3×2pt data again qualita-
tively agree with CMB alone, but are somewhat more centered
on the ΛCDM model values of wp = −1, wa = 0. We note
that the 3×2pt wa constraints are slightly tighter than the lat-
est Pantheon+ supernovae measurements [159], which report
a 68% confidence interval width of 2.8 on wa, compared to
2.3 from DES Y3 3×2pt.

Fig 5 presents a more detailed view of the most powerful
constraints in the w0 − wa plane, additionally showing con-
straints from the external low redshift data (BAO+RSD+SN)
alone and Planck combined with low-redshift geometric data
(BAO+SN). Looking at individual parameter constraints, we
note that the marginalized posterior mean for w0 is essen-
tially the same for all data combinations considered here,
and that compared to constraints from BAO+RSD+SN alone,
adding 3×2pt data causes the wa estimate to shift downwards
by about 1σ. Adding Planck constraints to that moves the
all-data wa estimate slightly lower, but not by a significant
amount, and produces constraints that are very similar to the
Planck+BAO+SN data combination. All constraints are sta-
tistically consistent with ΛCDM parameter values.

Overall, the DES 3×2pt data strengthen the case that the
(w0, wa) model parameters are in excellent agreement with
the ΛCDM values w0 = −1, wa = 0. We discuss the com-
parison between the present results and DES Y1 3×2pt con-
straints on w0 − wa [50] in Appendix H.

B. Results: Ωk

Fig. 6 shows constraints on curvature in the Ωk–Ωm plane.
We see that curvature is not strongly constrained by the DES
Y3 3×2pt data alone, and that the constraints on curvature
from all data (DES 3×2pt+BAO+RSD+SN+Planck) are iden-
tical to those from Planck combined with low-redshift ge-
ometric probes (BAO+SN). The DES 3×2pt data do con-
tribute constraining power when combined with other low
redshift data by breaking degeneracies in the full parameter
space. Specifically, when combined with BAO+RSD+SN,
DES 3×2pt data lower the upper bound on Ωk by constrain-
ing Ωm and thus helping to break a degeneracy between Ωm

and Ωk. This decreases the width of the marginalized 68%
confidence interval on Ωk by 20%.

We recover the well-documented (see e.g. [11, 160–166])
finding that constraints from Planck alone favor negative Ωk at
roughly three sigma and are significantly offset from the low-
redshift constraints. That offset is along the direction of the
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FIG. 4. Constraints on the dynamical dark-energy w0 − wa model. The left panel shows the constraints on w0 and wa, while the right
panel shows constraints on the derived pivot value wp and again wa. Contours show 68% and 95% confidence regions. The pale blue
contours are DES 3×2pt, the purple contours is the low-z combination of 3×2pt+BAO+RSD+SN, the open red contours are for Planck, and
the open black contours represent everything combined. The pivot redshifts derived for the wp–wa are 0.24 for DES 3×2pt only, 0.21 for
3×2pt+BAO+RSD+SN, and 0.27 for all data constraints. The gray hatched region shows the part of parameter space removed by the prior that
requires w0 + wa < 0.
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FIG. 5. A more detailed look at how different data contribute
constraining power to w0 and wa. The purple contours showing
3×2pt+BAO+RSD+SN and black contours showing all data con-
straints are the same as those in Fig. 4. The green contours show con-
straints from the external low-z data alone (BAO+RSD+SN), while
the pink contours show constraints from Planck combined with low
redshift geometric probes only (BAO+SN). The gray hatched region
shows the excluded region where w0 + wa > 0.

primary CMB anisotropies’ geometric degeneracy [143], indi-
cated in Fig. 6 with a gray dashed line18, and when that degen-
eracy is broken with low-redshift observables the constraints
shift to become consistent with Ωk =0. Quantifying the
tension between the Planck-only and 3×2pt+BAO+RSD+SN
posteriors, we find the Suspiciousness p-value to be exactly
at our threshold of 0.01 for combining data. Given this, we
report constraints for the combination of all the data, but ad-
ditionally report the constraints from 3×2pt+BAO+RSD+SN
(without Planck). The marginalized constraints on Ωk are

Ωk ≥ −0.16 DES Y3

= 0.001± 0.002 DES Y3 + External

= −0.03+0.04
−0.03 DES Y3 + External, no CMB

(34)

Compared to the combination of all external data, the inclu-
sion of 3×2pt in the DES Y3 + External constraints listed
above narrows the 68% confidence interval range by only 6%.
Compared to the eBOSS analysis of Ref. [167], in which Ωk is
measured from the combination of CMB, BAO, and SN, our
constraints are about 10% weaker, likely due to differences
in analysis procedures (for example, we vary neutrino mass,
while that analysis fixes it). Our “no CMB” constraints are

18 The line is drawn for constant shift parameter R ∝
√

Ωmh2(1 +
z∗)dA(z∗) corresponding to the Planck+BAO constraints reported in
Ref. [11], where z∗ is the redshift of recombination.
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FIG. 6. Constraints on the curvature density Ωk and matter density
Ωm. The diagonal dashed gray line shows the direction of the pri-
mary CMB anisotropies’ geometric degeneracy [143].

slightly tighter than those reported in Ref. [168] from a differ-
ent combination of low-redshift probes.

C. Results: Neff

Much like curvature, the number of relativistic species Neff

is weakly constrained by DES 3×2pt alone, but combining the
DES with external data leads to modest improvements. The
constraints are

Neff ≤ 7.8 DES Y3

= 3.10+0.15
−0.16 DES Y3 + External.

(35)

Constraints on the number of relativistic species are given
in Fig. 7. The DES 3×2pt and BAO+RSD+SN constraints
both individually peak around Neff ' 3, though we cau-
tion that these constraints are mainly shaped by prior pro-
jection effects. Both the 3×2pt and BAO+RSD+SN poste-
riors are unconstrained along Neff − Ωb and Neff − h de-
generacy directions. Given our choice of priors, the upper
bounds on Neff are shaped by the upper prior bound on h,
while the lower bound on Neff are determined by the lower
prior bound for Ωb. Both DES 3×2pt and RSD are sensitive
to the amplitude of the power spectrum, which is affected by
Neff through changes in the redshift of matter-radiation equal-
ity, while BAO is additionally sensitive to a small phase shift
caused by Neff ’s impact on the Silk damping scale. These
probes’ posteriors have different degeneracies betweenAs and
Neff , and the overlap between them rules out small Neff val-
ues, while the upper bound is still primarily determined by
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FIG. 7. Marginalized posterior on the number of relativistic species
Neff . The vertical dotted gray lines shows the standard model value
of Neff = 3.044.

where the posterior intersects the Ωb prior. The constraints are
still consistent with the standard-model value of Neff . Once
the 3×2pt+BAO+RSD+SN data are combined with Planck,
the overall combined posterior shifts slightly compared to
the Planck-only constraints, but remain fully consistent with
Neff ' 3.

D. Results: Neff −meff

We next consider the Neff −meff model. Recall, following
discussion in Sec. V C, that this particular set of constraints
is prone to parameter-space projection effects in the small-
∆Neff region, so our fiducial analysis imposes the constraint
∆Neff > 0.047, where ∆Neff ≡ Neff − 3.044. Making
that assumption, and reporting the constraints only for all data
combined, we find

∆Neff < 0.34, meff < 0.14 eV DES Y3 + External.
(36)

The constraints are shown in Fig. 8.
We also consider constraints for a prior requiring ∆Neff >

0, but also mth < 10 eV. For this prior, the constraints from
all data combined are

∆Neff < 0.28, meff < 0.20 eV DES Y3 + External.
(37)

This prior on the sterile neutrino’s thermal mass matches the
Planck 2018 analysis [11], which used the same CMB likeli-
hood as us, plus Planck lensing constraints (which we do not
include) and BOSS DR12 BAO to constrain ∆Neff < 0.23
and meff < 0.65 eV. Thus, while we find slightly weaker con-
straints on Neff , the inclusion of DES 3×2pt and RSD effec-
tive measurements of the amplitude of structure at low red-
shifts allows us to tighten the upper bound on meff by about a
factor of three.

Another interesting, if less direct, comparison can be made
to the analysis of Ref. [101]. That work analyzed the Planck
data including lensing, the full-shape BOSS DR12 measure-
ment, and CFHTLens weak lensing measurements at fixed
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FIG. 8. Constraints on the beyond-ΛCDM parameters of the Neff −meff model. The left plot shows results obtained using the fiducial prior
3.044 < Neff < 10, with axes spanning the full prior range. In it, the Planck and all-data posteriors reside entirely inside the mth > 10eV
region where sterile neutrinos behave like CDM, shown in a very narrow gray hatched wedge along the left axis of the plot. The other contours
show consraints from DES 3×2pt (blue), external low redshift data from BAO+RSD+SN (dashed green), and 3×2pt +BAO+RSD+SN (purple).
The right panel shows chains run using an alternative prior where ∆Neff > 0.047, and with the plot range reduced to more clearly show the
all-data (3×2pt+BAO+RSD+SN+Planck) results. Because the DES 3×2pt and DES 3×2pt+BAO+RSD+SN chains have very few samples in
the excluded region, the alternative prior has no effect on the purple and blue contours.

∆Neff = 0.047, to find the constraint meff < 1.6 eV. They
found that the weak lensing measurements were crucial to ob-
taining a tight constraint onmeff . While our results are not di-
rectly comparable (our meff constraints would likely weaken
if we performed our analysis at fixed, small ∆Neff ), our find-
ings lend further support to the idea that precise cosmic shear
measurements of LSS can powerfully constrain the presence
of light but massive relic particles produced in the early Uni-
verse.

E. Results: Σ0 − µ0

Next, we show results of tests of gravity on cosmological
scales parametrized by Σ0 − µ0 in Fig. 9. As discussed in
Sec. V A, µ0 is not constrained by DES Y3 3×2pt alone so
will not be reported. The Eq. (26) prior set on Σ0−µ0 is repre-
sented by a hatched area in the figure. While the Planck-only
contours are visibly offset from the 3×2pt +BAO+RSD+SN
combination, the Suspiciousness tension metric comparing
the two posteriors has p = 0.02 (above the 0.01 threshold),
so we proceed with reporting results from the combination of
all data. These constraints are
Σ0 = 0.6± 0.4 DES Y3

Σ0 = 0.04± 0.05, µ0 = 0.08+0.21
−0.19 DES Y3 + External,

(38)
the latter of which can be compared to the external-only con-
straint, which is Σ0 = 0.37+0.12

−0.09, µ0 = 0.20± 0.22. Thus the

addition of DES 3×2pt data both tightens the constraints on
(Σ0, µ0) and shifts them to be more consistent with general
relativity.

The constraint on Σ0 from DES Y3 3×2pt data alone is
limited by the linear scale cuts used for this model, which ac-
tually results in the 3×2pt-only bounds on Σ0 presented here
to be weaker than the comparable DES-Y1Ext result by 40%.
To understand this, recall from Sec. II D that we define these
linear scale cuts by iteratively removing small-angle measure-
ments until the difference between 3×2pt model predictions
with and without nonlinear modeling are deemed insignifi-
cant. We assess the significance of that difference relative to
the data covariance, which means that as measurements get
more precise this method produces more stringent cuts. Quan-
titatively, Σ0 − µ0 constraints in the present analysis are only
based on 55% of the fiducial data vector, while in DES-Y1Ext
the linear cuts retained 73% of the data points. The weakened
Σ0 constraints imply that this method for protecting against
the Y3 measurements’ greater sensitivity to non-linear effects
reduces the S/N available for cosmology inference and indi-
cates the need for a more sophisticated method of accommo-
dating for nonlinear modeling uncertainties as data get more
precise.

Given the offset of the Planck contour as well as comple-
mentary of growth measurements from RSD, which primarily
constrain µ0, and 3×2pt, which constrain Σ0, it is interesting
to report modified gravity constraints from the combination
of only low-redshift probes. This result is shown in purple in
Figs. 9, leading to measurements of Σ0 − µ0 independent of
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CMB observables:

Σ0 = −0.06+0.09
−0.10, µ0 = −0.4± 0.4

DES Y3 + External, no CMB.
(39)

Results from the combined constraints is partly driven by the
BAO+RSD+SN measurement of µ0 = −0.5+0.4

−0.5, indicating
µ0 < 0 at 1σ significance. This is in contrast to the results re-
ported in Ref. [167], in which analysis of the same BAO+RSD
data assuming a fixed background cosmology produces µ0

constraints centered on zero.
To aid in the interpretation of these results, Fig. 10 shows

how different data combinations break degeneracies between
the modified gravity parameters and S8. The fact that lensing
observables are sensitive to the product product S8Σ0 limits
the ability of DES 3×2pt alone to constrain Σ0. By constrain-
ing S8 and µ0, RSD measurements of the growth rate of struc-
ture are able to break that degeneracy and thus improve con-
straints on Σ0.

The behavior of the Planck-only contours can be under-
stood in terms of two relevant degeneracies. First, Planck’s
constraints on Σ0 mainly come from the impact of lensing,
which smooths the high-` peaks of the CMB power spectra.
(The integrated Sachs-Wolfe effect [169, 170] also introduces
some sensitivity to Σ0, but cosmic variance affecting the low
multipoles where that occurs limits its constraining power.)
That lensing signal, like DES cosmic shear, is sensitive to the
product S8Σ0, and thus leads S8-Σ0 degeneracy parallel to
that seen for 3×2pt. Second, µ0 adds a degree of freedom to
the relationship between CMB constraints on the primordial
power spectrum amplitude As and the amplitude of density
fluctuations in the late Universe. This leads to a positive de-
generacy between S8 and µ0: for a given value of As, which
is tightly constrained by Planck, larger µ0 will enhance struc-
ture growth and thus increase S8. Combining Planck with the
BAO+RSD+SN data allows the RSD observables’ direct mea-
surement of S8 break both of these degeneracies.

The fact that the Planck contours, either from Planck alone
or in combination with the BAO+RSD+SN low redshift data,
are offset towards higher Σ0 than 3×2pt follows a trend seen
for DES Y1 data in both DES-Y1Ext and Ref. [11]. As noted
in Ref. [11], this preference is driven by the excess smoothing
of high-` Planck measurements that that are captured by the
phenomenological AL parameter. These are the same features
that pull the Planck-only Ωk constraints towards negative val-
ues. When all data are analyzed together, the Σ0 constraints
are in agreement with those from 3×2pt, with the CMB mea-
surements contributing to tightening constraints primarily by
breaking the RSD posterior’s weak degeneracy between σ8

and µ0.

F. Results: binned σ8(z)

Finally, we report constraints on the binned σ8(z) model.
We begin by examining the set of derived parameters σ[bin i]

8

(see Eqs. (27-29)), which correspond to the values of σ8 in-
ferred from LSS observed in redshift bin i, and which we
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FIG. 9. Constraints on the Σ0 − µ0 modified gravity parame-
ters, with axis ranges reflecting the parameters’ prior ranges. The
gray hatched region shows where samples are excluded by the µ0 <
2Σ0 + 1 requirement of MGCAMB: any overlap of contours with
that region is a reflection of KDE smoothing done by GETDIST.

showed in Sec. V C are more robust to model variations than
the sampled APlin

i parameters. These constraints are:

σ
[bin 1]
8 = 0.75+0.05

−0.05,

σ
[bin 2]
8 = 0.74+0.06

−0.07,

σ
[bin 3]
8 = 0.70+0.06

−0.07, DES Y3

σ
[bin 4]
8 = 0.70+0.10

−0.09,

(40)

and

σ
[bin 1]
8 = 0.78+0.02

−0.02,

σ
[bin 2]
8 = 0.79+0.04

−0.04,

σ
[bin 3]
8 = 0.76+0.04

−0.04, DES Y3 + External

σ
[bin 4]
8 = 0.86+0.04

−0.05,

σ
[CMB]
8 = 0.792+0.015

−0.010,

(41)

Fig. 11 presents these constraints in comparison to ΛCDM
constraints on σ8. In that figure, the set of lighter, unfilled
data points show how the σ

[bin i]
8 constraints change when

use the alternative hyperrank method of marginalizing over
source galaxy photo-z uncertainties. We find that hyperrank
induces non-negligible but still small (∼ 0.5σ) shifts in σ[bin i]

8
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FIG. 10. Examination of how RSD growth information, as part of the BAO+RSD+SN external low redshift data combination, breaks
degeneracies between S8 and modified gravity parameters Σ0 and µ0 when combined with either DES 3×2pt or Planck.

for the 3×2pt-only i ∈ {2, 3} measurements, and all-data
i ∈ {2,CMB} measurements, while a much larger, almost
3σ shift occurs for the all-data constraint on σ[bin 1]

8 . As is
discussed in more detail in Appendices D 3 and D 4, the lack
of robustness of the lowest redshift is likely due to an inter-
action between the source n(z) and IA modeling which is
most significant at low redshifts. In the same Figure, we re-
port additional results to facilitate interpretation of how dif-
ferent structure growth observables contribute to constraints.
Namely, we show the combination of DES data with only ge-
ometric external data (3×2pt +BAO+SN) shifts constraints to
slightly higher S8 in both ΛCDM and binned σ8, but not as
much as the 3×2pt +BAO+RSD+SN data combination. Thus
the combined analyis’ shift towards higher σ8, especially in
the highest redshift bin 4, seems to be primarily driven by the
RSD likelihood.

Fig. 12 translates these results to the inferred growth func-
tion σ8(z). That figure compares marginalized constraints
when we vary the binned σ8(z) amplitude parameters shown
with data points at a few example redshifts, to the 68% confi-
dence bands obtained from ΛCDM fits to DES 3×2pt and all
data (3×2pt+BAO+RSD+SN+Planck).

All measurements are within approximately 1σ of the
ΛCDM σ8 estimate. The fact that the DES-only constraints
on σ8(z) are consistently lower than Planck and that our com-
bined constraints find σ[bin 4]

8 to be higher than σ[bin i]
8 in the

other bins agrees with similar features seen in Refs. [171–
173]. In those works, analyses of DESI galaxies cross cor-
related with Planck lensing, eBOSS QSO clustering, and both
of those observables combined with DES Y1 3×2pt measure-
ments, respectively, suggest that the amplitude of structure at
z ∼ 0.8 may be slightly higher compared to lower redshift
measurements, and thus hinting at a slower growth rate than
expected in ΛCDM. However the trends seen in these refer-
ences, as well as that in our work, are only significant at the
∼1σ level and thus not strong enough to motivate any kind of
firm conclusion. We also note that a similar trend is not found
in Ref. [122]’s binned modified gravity study using DES Y1
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FIG. 11. Constraints on binned σ8(z) compared to ΛCDM con-
straints in the top row. Points and error bars show the marginalized
posterior mean and 68% confidence intervals. Unfilled, lighter mark-
ers correspond to the same data as the darker points with matching
colors and shapes, but were obtained using the hyperrank marginal-
ization over uncertainties in source galaxy redshift distributions.
Shaded bands highlight the location of the top row’s 3×2pt and
Planck ΛCDM points for comparison.
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and BOSS DR12 LSS data. It will be interesting to monitor
how new and more precise data constrain the time-evolution
of the amplitude of density fluctuations.

For completeness, we additionally report constraints on the
sampled amplitude parameters used to implement this model,
APlin

2 , APlin
3 , APlin

4 , and APlin

CMB (see Eq. (27)). We empha-
size that these constraints should be interpreted with cau-
tion, because in Sec. V C we found that they are not robust
to a change in how we marginalize over our source photo-
z uncertainties. Particularly for the all-data constraints, this
occurs because these sampled amplitude parameters are de-
fined relative to bin 1, so the sensitivity to hyperrank seen for
σ

[bin 1]
8 propagates to APlin

i inferences for higher redshift bins.
Specifically, switching from our fiducial analysis to one with
the hyperrank ns(z) marginalization scheme produces shifts
between 0.5 − 2σ shifts in all of the amplitude parameters.
The hyperrank-model constraints on these parameters can be
found in Table IV. The constraints on these parameters using
our baseline model are

APlin
2 = 1.00+0.14

−0.21,

APlin
3 = 0.88+0.14

−0.19, DES Y3

APlin
4 = 0.90+0.20

−0.26,

(42)

and

APlin
2 = 1.03+0.11

−0.14,

APlin
3 = 0.98+0.11

−0.13, DES Y3 + External

APlin
4 = 1.24+0.13

−0.16,

APlin

CMB = 1.04+0.04
−0.06.

(43)

G. Impact of model and analysis choices on S8

In line with studies exploring whether beyond-ΛCDM
models alleviate the tension between weak lensing and Planck
S8 measurements (see Sec. I and e.g. Refs. [41, 174–
188]), in Fig. 13 we compare constraints on S8 obtained
within a selection of cosmological models and, for compar-
ison, analysis choices within the ΛCDM model. In that
Figure, points show the mean and 68% confidence inter-
vals of the marginalized S8 posterior, with different colors
and marker styles corresponding to results from different
sets of observables. We report constraints for DES 3×2pt
(blue), the combination of DES and other low redshift probes
(3×2pt+BAO+RSD+SN, purple), Planck alone (red), Planck
combined with low-redshift geometric probes BAO+SN to
break geometric degeneracies (pink), and the combination of
all data (3×2pt+BAO+RSD+SN+Planck, black). Blue and
red vertical lines and bands mark the location of the baseline
ΛCDM DES 3×2pt and Planck constraints shown in the top
row, to indicate the level of offset between those measure-
ments and to facilitate comparisons with other rows.

The first group of S8 constraints shown are for beyond-
ΛCDM models. These include wCDM along with the ex-
tended models studied in this paper, except for the binned
σ8(z) model for which σ8 constraints were discussed above
in Sec. VI F. In these extended models, we see that the most
overlap between Planck and 3×2pt S8 constraints occurs for
dynamical dark energy described by wCDM and w0 − wa.
For both ΛCDM and beyond-ΛCDM models, we find that
the combination of low redshift probes, i.e. combining DES
Y3 3×2pt with BAO, RSD and SN as shown in purple, mea-
sure S8 to be more consistent with Planck constraints than
3×2pt alone. This repeats the same finding of DES-Y3KP
(see Figs. 14 and 15 of Ref. [44]). The behavior occurs be-
cause the external geometric (BAO+SN) probes constrain Ωm

to be at the higher end of the range allowed by the 3×2pt-
only constraints. Given the Ωm–σ8 degeneracy, this leads to a
higher S8 value.

For comparison, additional blocks of points in Fig. 13 show
how constraints on S8 are affected by changes to the analysis
choices while retaining the ΛCDM model, and the impact of
two extensions to ΛCDM which we label ad hoc models. The
ΛCDM analysis choice variations include using the shear ra-
tio likelihood, different scale cuts, the more general TATT IA
model, the hyperrank method for marginalizing over source
photo-z uncertainties, and fixing neutrino mass. The ad hoc
models include varying XLens, which introduces a mismatch
between the galaxy bias affecting galaxy clustering and that
affecting galaxy–galaxy lensing (see its description as part
of the robustness tests of Sec. V C), and varying AL [131],
which scales the amount of lensing-related smoothing affect-
ing the CMB temperature and polarization power spectra (See
Sec. III F and e.g. Ref. [11]). Both these ad hoc models cor-
respond to the introduction of a parameter to explain features
in the DES Y3 3×2pt and Planck data respectively, and not
new physics as opposed to the beyond-ΛCDM models con-
sidered in this analysis. While XLens has little effect on the
3×2pt constraints and thus on the 3×2pt-Planck comparison,
varying AL leads to more consistent estimates of S8 across all
probe combinations shown (see also [179, 182]).

H. Impact of model choice on
∑
mν

Next, we examine constraints on the sum of neutrino
masses

∑
mν . While DES 3×2pt data are not particularly

sensitive to this parameter, the fact that we vary Ωνh
2 as part

of our baseline analysis allows us to study how its bounds
are impacted by the assumed cosmological model. With this
aim, Table V reports the 95% upper bound on

∑
mν from

Planck+BAO+RSD+SN with and without DES 3×2pt for sev-
eral of the models considered in this paper, while Fig. 14
shows the one-dimensional marginalized posterior from the
combination of all data. For all models other than Σ0 − µ0

and binned σ8(z), including the DES 3×2pt likelihood either
has no effect or slightly weakens the bounds on

∑
mν .

Neutrino mass constraints have a strong dependence on
assumptions about the time evolution of dark energy, with
the all-data upper bound on

∑
mν increasing relative to the
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confidence interval inferred from ΛCDM posteriors, with DES 3×2pt + shear ratio shown in blue and the combination of all data
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Vertical dashed lines show the bin divisions used to define the binned σ8(z) model’s APlin

i amplitudes.

95% upper bound on
∑
mν [eV]

Model All External All data
ΛCDM 0.14 0.14
wCDM 0.17 0.19
w0–wa 0.25 0.26
Ωk 0.16 0.15
Neff 0.14 0.16
Σ0–µ0 0.21 0.14
Binned σ8(z) 0.30 0.20
AL 0.14 0.19

TABLE V. Impact of the cosmological model on the 95% con-
fidence upper bound on the sum of neutrino masses. The “All
external” column reports constraints from the combination of
Planck+BAO+RSD+SN, while “All data” additionally includes DES
3×2pt constraints (3×2pt+SR in the case of binned σ8(z) and AL).

ΛCDM value by a factor of 1.4 for wCDM and 1.9 for
w0 − wa. In contrast, Ωk and Neff have little impact. Modi-
fying gravity with Σ0 − µ0 weakens external data constraints
on neutrino mass by external data, but when DES 3×2pt is
included the resulting constraint matches that of ΛCDM. Re-
laxing assumptions about the evolution of structure growth by
binning σ8(z) increases the bound by a factor of 1.4.

I. Tension between DES and external data for extended models

In Fig. 15 we report measures of tension between DES
3×2pt and external low-redshift probes (BAO+RSD+SN), as
well as between the combination of all low redshift probes
(3×2pt+BAO+RSD+SN) and Planck. We evaluate the signif-
icance of tension using three statistics, which are discussed in

more detail in Appendix E: the Bayes ratio R, the Suspicious-
ness S, and a p value that converts S into a tension probability.
We define these quantities such that lnR < 0 and lnS < 0
correspond to evidence of tension. The quantity p(S, dBMD),
where BMD stands for “Bayesian model dimensionality” (see
Eq. (E6) for more details), approximates the probability, as-
suming a null hypothesis of agreement between datasets, that
we will find a value of lnS as low or lower than the observed
value. Thus, small p corresponds to stronger tension. This
probability is assessed using both S and the quantity dBMD,
which is a Bayesian estimate of the number of directions in
parameter space in which a tension could be meaningfully de-
tected — that is, which are constrained by both datasets in-
dependently. We show multiple statistics here because while
R is likely to be the most familiar to readers, it has an unde-
sirable sensitivity to the choice of flat prior ranges. In con-
trast, S is insensitive to the prior range of well-constrained
parameters, and its significance assessed via p(S, dBMD) is
expected to agree with a number of other proposed tension
metrics [158].

We estimate lnR, lnS and dBMD using the ANESTHETIC
software19 [189], which produces an ensemble of 200 realiza-
tions capturing the uncertainty introduced by sampling vari-
ance. For lnR and lnS, in Fig. 15 we report the mean of this
ensemble, and use error bars (which are occasionally smaller
than the datapoint) to show the standard deviation. For the
p-values, whose ensemble distribution is significantly non-
Gaussian, we report the median, and approximate its one-
sigma sampling variance errors using the 16 and 84% quan-

19 https://github.com/williamjameshandley/anesthetic

https://github.com/williamjameshandley/anesthetic


28

0.7 0.75 0.8 0.85 0.9 0.95

S8

ΛCDM baseline

wCDM

w0-wa

Ωk

Neff

Neff-meff , ∆Neff > 0.047

Neff-meff , mth < 10eV

Σ0-µ0

with SR

lin. scale cuts

lin.+Limber scale cuts

TATT IA model

Hyperrank

Hyperrank + SR

fix
∑
mν = 0.06 eV

ΛCDM+Xlens

ΛCDM+AL

ΛCDM+AL, fix mν

B
ey

on
d

-Λ
C

D
M

m
o
d

el
s

Λ
C

D
M

m
o
d

el
va

ri
at

io
n

s
A

d
h

o
c

m
o
d

el
s

DES 3x2pt

DES 3x2pt+BAO+RSD+SN

All data

Planck

Planck+BAO+SN

FIG. 13. Constraints on S8 in different models and under differ-
ent analysis assumptions. Points and error bars show the means and
marginalized 68% confidence, and the shaded bands mark the loca-
tion of the top row’s ΛCDM baseline points for 3×2pt and Planck.
Missing points simply indicate chains that were not run as part of
other robustness tests. The rows with ‘SR’ in the label and those
varying AL include shear ratio as part of the DES 3×2pt likelihood,
all others do not. The Σ0 − µ0 3×2pt constraint of S8 = 0.61+0.09

−0.16

is cut off to improve the dynamic range for other points in the plot.

tiles. We use the threshold of p(S, dBMD) ≥ 0.01 as a re-
quirement for reporting combined constraints.

For all models and statistics, there is no indication of any
tension between DES 3×2pt and the external low-redshift
probes (BAO+RSD+SN). This is also true for almost all evalu-
ations of tension between the combination of all low-redshift
probes 3×2pt+BAO+RSD+SN and Planck. The only cases
where we find significant tension are for the Ωk and Σ0 − µ0

comparison of 3×2pt+BAO+RSD+SN versus Planck, both of
which have a significance between 2-3σ.

As was noted above in Sec. VI B, for Ωk the p-value median
is 0.010, exactly at our threshold for reporting combined con-
straints. This merits further discussion, because in addition to
being the most significant measure of tension reported, it is
also the noisiest. The 16% and 84% quantiles are 0.002 and

0.0 0.1 0.2 0.3 0.4
∑
mν [eV]

P

Planck+BAO+RSD+SN
+DES Y3 3x2pt

ΛCDM

wCDM

w0-wa

Ωk
Neff

Σ0-µ0

Binned σ8(z)

AL

FIG. 14. Marginalized posterior for the sum of neutrino masses ob-
tained from the analysis of DES 3×2pt+BAO+RSD+SN+Planck in
different cosmological models. The dotted vertical gray line shows
the minimum mass allowed by neutrino oscillation measurements,∑
mν = 0.06 eV, and the hatched area shows the region excluded

by the Ωνh
2 > 0.006 prior.

1.0, respectively20. This means that at an approximately 1σ
level of certainty, our evaluation of tension between Planck
and low-redshift Ωk constraints could plausibly be consistent
with both a slightly-greater-than-3σ tension and with there be-
ing no tension at all. This large scatter is driven by the small
value of dBMD = 1.5 ± 1.6 (reporting the mean and stan-
dard deviation from the sample variance estimate). This small
dBMD means that that there is limited overlap in the parameter
directions constrained by Planck and 3×2pt+BAO+RSD+SN,
making the assessment of tension extremely sensitive to noise
in the posterior estimates. To further contextualize this find-
ing, we note that the Planck-only preference for Ωk < 0 driv-
ing this tension signal has been the subject of extensive dis-
cussion in the literature (see e.g. [11, 160–166]) which high-
lights the fact that the interpretation of this tension can depend
on subtleties related the choice of priors, parameters sampled,
Planck likelihood calculation method, as well as the relation-
ship to features in the Planck power spectra also captured by
phenomenological parameter AL.

For modified gravity, we see a tension between Planck and
the other data that is likely driven by the same AL-like fea-
tures of the CMB power spectrum. For Σ0 − µ0, the tension
measurement is less signficant and much less noisy than for
Ωk: the median Suspiciousness p-value is 0.024 with 16%
and 84% quantiles of 0.013 and 0.039.

Note that Fig. 15 does not show tension results for the
binned σ8(z) model. This is because, as described in

20 As we will discuss in Appendix E, we assign p = 1 to realizations with
dBMD < 0, reasoning that there can be no tension measured if there are
no shared parameters in the two datasets’ independent constraints.
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value of lnR associated with the narrowest choice of uninformative prior.) The quantity pmeasures the significance accounting for the number
of constrained parameters via the Bayesian model dimensionality dBMD. In the plot, p-value errors indicate the 0.16 and 0.84 quantiles of the
sample variance realizations, points indicate the mean, and the shaded regions highlight probabilities associated with 1σ, 2σ, and 3σ tension.
If error bars are not seen they are smaller than the size of the marker. Further information and definitions of these tension metrics can be found
in Appendix E.

Sec. III F, in that model we sample different sets of param-
eters when fitting DES and Planck constraints separately and
in combination. This makes tension metrics difficult to eval-
uate, so for simplicity we will show combined ‘all-data’ con-
straints on binned σ8(z) without checking a tension metric.
This should be a reasonably safe choice because that model’s
APlin
i and APlin

CMB parameters introduce enough modeling free-
dom to capture any differences between observables.

J. Assessing the preference for extended models relative to
ΛCDM

Fig. 16 shows several model comparison statistics. We
show a variety of metrics here because it allows us to compare
the results of different model comparison tests, and to account
for the fact that readers may have different preferences re-
garding which of these tests are most familiar or interpretable.
Points further to the left of each subpanel indicate ΛCDM to
be more disfavored with respect to the extended model, while
those on the right side of the panels favor ΛCDM and dis-
favor the extension. Definitions of these metrics and details
about how they are computed can be found in Appendix F,
though we will summarize them here. The metrics include the

Bayesian evidence ratioR and Suspiciousness S, both defined
so that lnR < 0 and lnS < 0 indicates that the data dis-
favour ΛCDM. We also report the ratio of the change in the
maximum posterior goodness-of-fit to the number of added
parameters, ∆χ2/∆k, ∆AIC which is an information-theory
derived metric based on ∆χ2 with a penalty for adding pa-
rameters, and ∆DIC which is related to ∆AIC but adjusted
for the number of parameters constrained by the data.

For Suspiciousness, we report two p-values converting lnS
to probabilities: p(S, dBMD), in which dBMD uses Bayesian
model dimensionality to quantify the number of additional
parameters constrained in the beyond-ΛCDM analysis, and
p(S,∆k) which instead simply uses the number of additional
sampled parameters ∆k (e.g. ∆k = 1 for Ωk, ∆k = 2 for
w0 − wa, etc.). The model comparison definition of S can
be shown to be equivalent to the change in posterior-averaged
log-likelihood for different models (see Ref. [154], and for
the analogous relation in the case of data tensions, Ref. [19]).
This means p(S,∆k) can be viewed as a Bayesian analog to
evaluating the probability of the best-fit ∆χ2/∆k.

Like ∆χ2/∆k, the information provided by lnS for model
comparison is inherently asymmetric: the “hardening” of lnS
against prior choice means that while it can be used to quan-
tify the significance of preference for an extended model, it
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will never definitively favor the model with fewer parameters.
This is in contrast to lnR, for which tight constraints around
ΛCDM parameter values relative to the prior range will cause
the extended model to be definitively disfavored.

Examining R, we find that none of the extended models
are significantly preferred against ΛCDM, with the combined
data usually mildly or definitively favoring ΛCDM. The only
exception to this is for Neff −meff when we impose an upper
bound on the sterile neutrino’s thermal mass, where accord-
ing to the Jeffreys scale we find a substantial (but not strong)
preference for the extended model. The preference for ΛCDM
reaches a particularly decisive level in the binned σ8(z) case,
unsurprisingly as it is a phenomenological model adding sev-
eral parameters without much enhancing the overall fit to data.
Considering model variations while assuming ΛCDM, we find
that there is neither a preference for varying neutrino mass nor
for varying the additional TATT IA parameters. Relative to
the Neff −meff results, the preference against varying active
neutrino mass is comparable to that against Neff −meff when
the ∆Neff > 0.047 prior is used, but that the sterile neutrino
model is more favored when we use the mth < 10 eV prior.
For the ad hoc models, fixingXLens is favored over varying it,
in line with previous studies of the MagLim lens sample, and
that there is strong but not significant preference for varying
AL, in line with previous Planck analyses [11, 182, 191].

Turning our attention to lnS, we see that panel gener-
ally reports values lower than lnR, reflecting the expectation
that Suspiciousness is not able to significantly favor ΛCDM
over extended models. When assessing the significance of S
measurements using the associated p-values, we find quali-
tative agreement with the evidence ratio findings. For both
the main set of beyond-ΛCDM models and model variations
within ΛCDM, most preferences for the extended models over
ΛCDM are less than 1σ significance, and all are less than 2σ.
The strong lnR evidence for Neff −meff with mth < 10 eV
translates via p(S,∆k) to a preference of slightly over 1σ sig-
nificance.21 The largest shift between R and S values occurs
the binned σ8(z) model, particularly for the baseline model’s
all-data result. However, given the large number of added pa-
rameters, the p-values report that preference for binned σ8(z)
remains insignificant, at less than 2σ.

The ∆AIC roughly tracks the evidence ratio, and the ∆χ2

and ∆DIC the Suspiciousness, as expected from the respec-
tive definitions.

The overall model comparison conclusion is that none
of the models considered offers a compelling alternative to
ΛCDM in explaining the data.

21 For that model, p(S, dBMD) is not reported because the prior on mth

restricts the parameter space in a way that causes the Bayesian model di-
mensionality of the Neff −meff posterior to become smaller than that of
ΛCDM, causing the p-value to become undefined.

VII. CONCLUSIONS

We have presented constraints on extensions to the ΛCDM
cosmological model from DES Y3 measurements of cosmic
shear, galaxy–galaxy lensing, and clustering (3×2pt summary
statistics) in addition to state-of-the-art external data. We in-
vestigated how such extensions affect the modeling of 3×2pt
observables, and validated the analysis using simulated and
blinded real data to ensure that known sources systematic er-
ror cannot lead to a false detection of beyond-ΛCDM cosmol-
ogy. This work allows us to obtain robust and precise con-
straints on beyond-ΛCDM cosmology thanks to the unprece-
dented statistical power of the DES Y3 galaxy METACALI-
BRATION shape and MagLim lens catalogs. Our analysis in-
dicates no significant deviations from ΛCDM and its precision
is primarily limited by the need for further theoretical devel-
opments.

We first expand the exploration of dark energy properties by
constraining time dependence of its equation of state. While
constraints from DES 3×2pt alone do not contribute signifi-
cantly to w0 − wa information compared combination of all
external data, their precision are comparable to those from
other individual cosmological probes. The precision of con-
straints from DES Y3 3×2pt on w0−wa is comparable to that
of Planck alone, and our wa constraints are slightly tighter
than the latest measurements from Pantheon+ alone [159].
Combining datasets yields precise estimates for w0 − wa
which are consistent with a cosmological constant, with the
constraining power from measurements of only low redshift
3×2pt +BAO+RSD+SN probes comparable to data combina-
tions including CMB observables.

DES 3×2pt measurements contribute to constraints on the
curvature density of the Universe Ωk mainly by constraining
Ωm, which helps break a degeneracy between Ωm and Ωk
when 3×2pt data are combined with BAO+RSD+SN, lead-
ing to a 20% improvement on curvature constraints that can
be obtained from low redshift probes. While this low-redshift
measurement of Ωk is an order of magnitude weaker than con-
straints including CMB observables, it is an interesting inde-
pendent check, given the much-discussed ∼ 3σ tension be-
tween Planck and BAO curvature constraints, which we re-
cover. We find combined constraints to be compatible with
flatness, whether or not Planck likelihoods are included in the
analysis. The constraining power contributed by DES mea-
surements to this study is limited by the lack of validated non-
linear LSS modeling and non-Limber projection calculations
for non-flat geometry.

Next, we constrain two models sensitive to additional rel-
ativistic particle species in the early Universe. We find that
DES 3×2pt measurements have little impact on inferences
about changes to the number of relativistic species parame-
terized byNeff , but that they are a powerful tool for constrain-
ing the impact of light relic particles with non-zero mass on
the evolution of large scale structure. We explore this by con-
straining a species of sterile neutrinos with effective massmeff

and a temperature set byNeff . As in the case when the param-
eter is varied alone, Neff is primarily constrained by CMB ob-
servables, while growth information from DES Y3 3×2pt and



31

-5.0 0.0 5.0 10.0

lnR

-2.3 0.0 2.3

lnS

0.01 0.1 1.0

p(S,∆k)

0.01 0.1 1.0

p(S, dBMD)

-10 -5 0 5

∆χ2/∆k

-10 0 10

∆AIC

-10 0 10

∆DIC

Model Comparisons

[wCDM] vs. [ΛCDM]

[w0-wa] vs. [ΛCDM]

[w0-wa] vs. [wCDM]

[Ωk] vs. [ΛCDM]

[Neff ] vs. [ΛCDM]

[Neff -meff , ∆Neff > 0.047] vs. [ΛCDM, fix mν ]

[Neff -meff , mth < 10 eV] vs. [ΛCDM, fix mν ]

[Σ0-µ0] vs. [ΛCDM]

[Binned σ8(z)] vs. [ΛCDM]

[Binned σ8(z), hyp] vs. [ΛCDM, hyp]

[ΛCDM] vs. [ΛCDM, fix mν ]

[ΛCDM, lin. P (k)+cuts] vs. [ΛCDM, fix mν ]

[TATT IA model] vs. [ΛCDM]

[XLens] vs. [ΛCDM]

[AL] vs. [ΛCDM]

[AL, fix mν ] vs. [ΛCDM, fix mν ]

[AL] vs. [AL, fix mν ]

DES 3x2pt 3x2pt+BAO+RSD+SN+Planck

FIG. 16. Model comparison metrics evaluated between pairs of nested models as listed on the right-hand side. All pairs are arranged so
that the model listed first has more parameters. In all panels, points further to the left indicate more of a preference for the extended model.
Blue points report metrics based on DES Y3-3×2pt constraints alone, while black points are for DES Y3-3×2pt combined with the Planck,
BAO, RSD, and SN likelihoods. For the Bayes ratio lnR and Suspiciousness lnS, error bars report the standard deviation associated with
sampling variance and shaded regions show regions of substantial and strong preference for the extended parameter space according to the
Jeffreys’ scale. The two sets of p values evaluate the significance of the lnS results assuming a change in degree of freedom associated with
the additional number of sampled parameters ∆k in the extended model and the Bayesian model dimensionality dBMD. The p-value points
correspond to the mean estimate for sampling variance realizations, the uncertainties correspond to the 0.16 and 0.84 quantiles, and the shaded
regions denote probabilities corresponding to 1σ, 2σ, and≥ 3σ. For the change in maximum posterior goodness-of-fit, ∆χ2, errors reflect the
propagated standard deviations of 15 MAP estimates performed for each chain, and shaded regions have boundaries at ∆χ2/∆k = −1, −2,
and −3. For the information criterion statistics ∆AIC and ∆DIC, uncertainties reflect the same MAP estimate scatter, and the shaded regions
are where model likelihoods quantified by Akaike weights (see e.g. Ref. [190]) match the probabilities associated with the lnR Jeffreys scale
boundaries. Definitions and more information about these model comparison statistics can be found in Appendix F.

external RSD data allows us to tightly constrain meff . In do-
ing this, our combined analysis of all data improves upon the
best available constraints on meff by a factor of three, finding
meff < 0.20eV. This constraining power is limited by a lack
of validated small scale modeling, which requires us to ap-
ply conservative linear scale cuts to the 3×2pt measurements.
Given this, we stress that modeling advances such as those be-
ing developed in e.g. Refs. [101, 102, 107, 108] will be key to
enabling more precise constraints, and that, excitingly, more
powerful constraints are attainable even with existing data.

We also test gravity on cosmological scales measuring the
Σ0 − µ0 parameters. The most interesting constraints for
this model come from the combination of multiple observ-
ables. In particular, the complementary approach of DES
3×2pt and external RSD measurements to measuring large
scale structure allows us to break degeneracies between the
modified gravity parameters and S8. Their combination thus
gives tight constraints, particularly on Σ0, resulting in con-
sistency with general relativity. We find that Planck tempera-
ture and polarization constraints prefer slightly higher values
of Σ0 than either 3×2pt alone or the combination of all low-

redshift probes, likely driven by high-` feature of the CMB
power spectra that drives the offset seen in the Ωk analysis.
When all data are analyzed together the resulting constraints
remain consistent with GR. As with sterile neutrinos, the con-
straining power contributed by DES 3×2pt is also limited by
our use of linear scale cuts. In fact, because the increased pre-
cision 3×2pt measurements causes our procedure for defin-
ing linear scale cuts to remove larger fraction of data points
in Y3 compared to Y1, constraints placed on Σ0 by 3×2pt
alone to actually weaken compared to the similar analysis in
DES-Y1Ext. Looking ahead to DES Y6 and next-generation
surveys, this underlines the need for more sophisticated meth-
ods of accounting for non-linear modeling uncertainties when
performing cosmological tests of gravity.

Finally, we perform a more generic test of ΛCDM’s predic-
tions for structure growth via a binned σ8(z) model, in which
we introduce amplitude parameters that allow the normaliza-
tion of the matter power spectrum to vary independently in
four redshift bins defined by the lens galaxy sample. While
constraints on the sampled amplitude parameters are not ro-
bust to changes in how we account for source galaxy photo-
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metric redshift uncertainties, the σ8 values inferred separately
for each redshift bin are more robust, especially for the higher
redshift bins when 3×2pt constraints are combined with exter-
nal data. This analysis finds no significant deviation from the
prediction of ΛCDM, and highlights the importance of care-
fully accounting for the impact of photo-z uncertainties when
investigated beyond-ΛCDM parameterizations which affect
the growth of structure.

In summary, we have conducted robust tests of extensions
to ΛCDM using the unprecedentedly precise DES Y3 3×2pt
measurements in combination with other state-of-the-art cos-
mological data, while underlining challenges that will need to
be addressed for future wide field galaxy surveys to further
test the laws and contents of the Universe. We ultimately de-
tect no significant preference for any of the extended models
studied in our analysis. Thus, ΛCDM remains the favored
model to describe our data.
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[22] M. M. Ivanov, M. Simonović, and M. Zaldarriaga, Phys. Rev.
D 101, 083504 (2020), arXiv:1912.08208 [astro-ph.CO].

[23] J. Frieman, M. Turner, and D. Huterer, Ann. Rev. Astron. As-
trophys. 46, 385 (2008), arXiv:0803.0982 [astro-ph].

[24] D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C. Hi-
rata, A. G. Riess, and E. Rozo, Phys. Rept. 530, 87 (2013),
arXiv:1201.2434 [astro-ph.CO].

[25] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
[26] S. M. Carroll, Living Rev. Rel. 4, 1 (2001), arXiv:astro-

ph/0004075 [astro-ph].
[27] J. Martin, Comptes Rendus Physique 13, 566 (2012),

arXiv:1205.3365 [astro-ph.CO].
[28] A. Padilla, (2015), arXiv:1502.05296 [hep-th].
[29] B. Flaugher, H. T. Diehl, K. Honscheid, et al. (DES), As-

tro. Journal 150, 150 (2015), arXiv:1504.02900 [astro-ph.IM].
[30] DES Collaboration (DES), Phys. Rev. D 98, 043526 (2018),

arXiv:1708.01530 [astro-ph.CO].
[31] DES Collaboration (DES), Mon. Not. Roy. Astron. Soc. 460,

1270 (2016), arXiv:1601.00329 [astro-ph.CO].
[32] H. Aihara et al., Publ. Astron. Soc. Jap. 70, S4 (2018),

arXiv:1704.05858 [astro-ph.IM].
[33] K. Kuijken et al., Mon. Not. Roy. Astron. Soc. 454, 3500

(2015), arXiv:1507.00738 [astro-ph.CO].
[34] K. S. Dawson et al., Astron. J. 151, 44 (2016),

arXiv:1508.04473 [astro-ph.CO].
[35] M. E. Levi et al. (DESI), (2019), arXiv:1907.10688 [astro-

ph.IM].
[36] L. Verde, T. Treu, and A. G. Riess, Nature Astron. 3, 891

(2019), arXiv:1907.10625 [astro-ph.CO].
[37] L. Knox and M. Millea, Phys. Rev. D 101, 043533 (2020),

arXiv:1908.03663 [astro-ph.CO].

[38] E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang,
A. Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, Class.
Quant. Grav. 38, 153001 (2021), arXiv:2103.01183 [astro-
ph.CO].

[39] P. Shah, P. Lemos, and O. Lahav, Astron. Astrophys. Rev. 29,
9 (2021), arXiv:2109.01161 [astro-ph.CO].

[40] A. G. Riess et al., Astrophys. J. Lett. 934, L7 (2022),
arXiv:2112.04510 [astro-ph.CO].

[41] E. Abdalla et al., JHEAp 34, 49 (2022), arXiv:2203.06142
[astro-ph.CO].

[42] M. Asgari et al. (KiDS), Astron. Astrophys. 645, A104 (2021),
arXiv:2007.15633 [astro-ph.CO].

[43] A. Krolewski, S. Ferraro, and M. White, JCAP 12, 028
(2021), arXiv:2105.03421 [astro-ph.CO].

[44] DES Collaboration (DES), Phys. Rev. D 105, 023520 (2022),
arXiv:2105.13549 [astro-ph.CO].

[45] C. Chang, Y. Omori, E. J. Baxter, C. Doux, A. Choi, S. Pandey,
A. Alarcon, O. Alves, A. Amon, F. Andrade-Oliveira, et al.
(DES, SPT), (2022), arXiv:2203.12440 [astro-ph.CO].

[46] DES and SPT Collaborations (DES, SPT), (2022),
arXiv:2206.10824 [astro-ph.CO].

[47] C. Chang et al. (LSST Dark Energy Science), Mon. Not.
Roy. Astron. Soc. 482, 3696 (2019), arXiv:1808.07335 [astro-
ph.CO].

[48] A. Leauthaud et al. (DES), Mon. Not. Roy. Astron. Soc. 510,
6150 (2022), arXiv:2111.13805 [astro-ph.CO].

[49] T. M. C. Abbott, F. B. Abdalla, S. Allam, A. Amara, J. Annis,
J. Asorey, S. Avila, O. Ballester, M. Banerji, W. Barkhouse,
et al., The Astrophysical Journal Supplement Series 239, 18
(2018).

[50] DES Collaboration (DES), Phys. Rev. D 99, 123505 (2019),
arXiv:1810.02499 [astro-ph.CO].

[51] N. Aghanim et al. (Planck), Astron. Astrophys. 641, A5
(2020), arXiv:1907.12875 [astro-ph.CO].

[52] B. Flaugher et al. (DES), The Astronomical Journal 150, 150
(2015), arXiv:1504.02900 [astro-ph.IM].

[53] I. Sevilla-Noarbe et al. (DES), Astrophys. J. Suppl. 254, 24
(2021), arXiv:2011.03407 [astro-ph.CO].

[54] M. Gatti, E. Sheldon, et al. (DES), Mon. Not. Roy. Astron.
Soc. 504, 4312 (2021), arXiv:2011.03408 [astro-ph.CO].

[55] E. Huff and R. Mandelbaum, (2017), arXiv:1702.02600
[astro-ph.CO].

[56] E. S. Sheldon and E. M. Huff, Astrophys. J. 841, 24 (2017),
arXiv:1702.02601 [astro-ph.CO].

[57] M. Jarvis et al. (DES), Mon. Not. Roy. Astron. Soc. 501, 1282
(2021), arXiv:2011.03409 [astro-ph.IM].

[58] N. MacCrann et al. (DES), Mon. Not. Roy. Astron. Soc. 509,
3371 (2021), arXiv:2012.08567 [astro-ph.CO].

[59] J. T. Myles, A. Alarcon, et al. (DES), Mon. Not. Roy. Astron.
Soc. 505, 4249 (2021), arXiv:2012.08566 [astro-ph.CO].

[60] R. Buchs, C. Davis, et al. (DES), Mon. Not. Roy. Astron. Soc.
489, 820 (2019), arXiv:1901.05005 [astro-ph.CO].

[61] W. G. Hartley et al. (DES), Mon. Not. Roy. Astron. Soc. 509,
3547 (2021), arXiv:2012.12824 [astro-ph.CO].

[62] S. Everett et al. (DES), Astrophys. J. Supp. 258, 15 (2022),
arXiv:2012.12825 [astro-ph.CO].

[63] A. Porredon et al. (DES), Phys. Rev. D 103, 043503 (2021),
arXiv:2011.03411 [astro-ph.CO].

[64] R. Cawthon et al. (DES), Mon. Not. Roy. Astron. Soc. 513,
5517 (2022), arXiv:2012.12826 [astro-ph.CO].

[65] M. Rodrı́guez-Monroy et al. (DES), Mon. Not. Roy. Astron.
Soc. 511, 2665 (2022), arXiv:2105.13540 [astro-ph.CO].

[66] A. Porredon et al. (DES), (2021), arXiv:2105.13546 [astro-
ph.CO].

http://dx.doi.org/10.1088/0067-0049/192/1/1
http://arxiv.org/abs/1104.1443
http://dx.doi.org/10.1088/0004-637X/795/1/44
http://arxiv.org/abs/1310.3828
http://arxiv.org/abs/1310.3828
http://dx.doi.org/10.3847/1538-4357/aab9bb
http://arxiv.org/abs/1710.00845
http://dx.doi.org/ 10.3847/2041-8213/ab04fa
http://dx.doi.org/ 10.3847/2041-8213/ab04fa
http://arxiv.org/abs/1811.02374
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://arxiv.org/abs/1212.5226
http://dx.doi.org/10.1051/0004-6361/201833910
http://dx.doi.org/10.1051/0004-6361/201833910
http://arxiv.org/abs/1807.06209
http://dx.doi.org/ 10.1088/1475-7516/2020/12/047
http://arxiv.org/abs/2007.07288
http://arxiv.org/abs/2007.07288
http://dx.doi.org/ 10.1111/j.1365-2966.2012.21473.x
http://arxiv.org/abs/1204.3674
http://dx.doi.org/ 10.1103/PhysRevD.98.042006
http://dx.doi.org/ 10.1103/PhysRevD.98.042006
http://arxiv.org/abs/1708.01536
http://dx.doi.org/ 10.1103/PhysRevD.103.083533
http://arxiv.org/abs/2007.08991
http://dx.doi.org/10.1093/mnras/stt601
http://dx.doi.org/10.1093/mnras/stt601
http://arxiv.org/abs/1303.1808
http://dx.doi.org/ 10.1103/PhysRevD.98.043528
http://dx.doi.org/ 10.1103/PhysRevD.98.043528
http://arxiv.org/abs/1708.01538
http://dx.doi.org/ 10.1093/pasj/psz010
http://arxiv.org/abs/1809.09148
http://dx.doi.org/10.1051/0004-6361/202039063
http://arxiv.org/abs/2007.15632
http://dx.doi.org/10.1093/mnras/stw3006
http://dx.doi.org/10.1093/mnras/stw3006
http://arxiv.org/abs/1607.01790
http://dx.doi.org/10.1088/1475-7516/2017/05/015
http://dx.doi.org/10.1088/1475-7516/2017/05/015
http://arxiv.org/abs/1611.09862
http://dx.doi.org/10.1103/PhysRevD.101.083504
http://dx.doi.org/10.1103/PhysRevD.101.083504
http://arxiv.org/abs/1912.08208
http://dx.doi.org/10.1146/annurev.astro.46.060407.145243
http://dx.doi.org/10.1146/annurev.astro.46.060407.145243
http://arxiv.org/abs/0803.0982
http://dx.doi.org/ 10.1016/j.physrep.2013.05.001
http://arxiv.org/abs/1201.2434
http://dx.doi.org/10.1103/RevModPhys.61.1
http://dx.doi.org/10.12942/lrr-2001-1
http://arxiv.org/abs/astro-ph/0004075
http://arxiv.org/abs/astro-ph/0004075
http://dx.doi.org/10.1016/j.crhy.2012.04.008
http://arxiv.org/abs/1205.3365
http://arxiv.org/abs/1502.05296
http://dx.doi.org/10.1088/0004-6256/150/5/150
http://dx.doi.org/10.1088/0004-6256/150/5/150
http://arxiv.org/abs/1504.02900
http://dx.doi.org/ 10.1103/PhysRevD.98.043526
http://arxiv.org/abs/1708.01530
http://dx.doi.org/10.1093/mnras/stw641
http://dx.doi.org/10.1093/mnras/stw641
http://arxiv.org/abs/1601.00329
http://dx.doi.org/10.1093/pasj/psx066
http://arxiv.org/abs/1704.05858
http://dx.doi.org/10.1093/mnras/stv2140
http://dx.doi.org/10.1093/mnras/stv2140
http://arxiv.org/abs/1507.00738
http://dx.doi.org/10.3847/0004-6256/151/2/44
http://arxiv.org/abs/1508.04473
http://arxiv.org/abs/1907.10688
http://arxiv.org/abs/1907.10688
http://dx.doi.org/10.1038/s41550-019-0902-0
http://dx.doi.org/10.1038/s41550-019-0902-0
http://arxiv.org/abs/1907.10625
http://dx.doi.org/10.1103/PhysRevD.101.043533
http://arxiv.org/abs/1908.03663
http://dx.doi.org/10.1088/1361-6382/ac086d
http://dx.doi.org/10.1088/1361-6382/ac086d
http://arxiv.org/abs/2103.01183
http://arxiv.org/abs/2103.01183
http://dx.doi.org/10.1007/s00159-021-00137-4
http://dx.doi.org/10.1007/s00159-021-00137-4
http://arxiv.org/abs/2109.01161
http://dx.doi.org/10.3847/2041-8213/ac5c5b
http://arxiv.org/abs/2112.04510
http://dx.doi.org/10.1016/j.jheap.2022.04.002
http://arxiv.org/abs/2203.06142
http://arxiv.org/abs/2203.06142
http://dx.doi.org/ 10.1051/0004-6361/202039070
http://arxiv.org/abs/2007.15633
http://dx.doi.org/10.1088/1475-7516/2021/12/028
http://dx.doi.org/10.1088/1475-7516/2021/12/028
http://arxiv.org/abs/2105.03421
http://dx.doi.org/ 10.1103/PhysRevD.105.023520
http://arxiv.org/abs/2105.13549
http://arxiv.org/abs/2203.12440
http://arxiv.org/abs/2206.10824
http://dx.doi.org/10.1093/mnras/sty2902
http://dx.doi.org/10.1093/mnras/sty2902
http://arxiv.org/abs/1808.07335
http://arxiv.org/abs/1808.07335
http://dx.doi.org/10.1093/mnras/stab3586
http://dx.doi.org/10.1093/mnras/stab3586
http://arxiv.org/abs/2111.13805
http://dx.doi.org/ 10.3847/1538-4365/aae9f0
http://dx.doi.org/ 10.3847/1538-4365/aae9f0
http://dx.doi.org/ 10.1103/PhysRevD.99.123505
http://arxiv.org/abs/1810.02499
http://dx.doi.org/10.1051/0004-6361/201936386
http://dx.doi.org/10.1051/0004-6361/201936386
http://arxiv.org/abs/1907.12875
http://stacks.iop.org/1538-3881/150/i=5/a=150
http://stacks.iop.org/1538-3881/150/i=5/a=150
http://arxiv.org/abs/1504.02900
http://dx.doi.org/10.3847/1538-4365/abeb66
http://dx.doi.org/10.3847/1538-4365/abeb66
http://arxiv.org/abs/2011.03407
http://dx.doi.org/ 10.1093/mnras/stab918
http://dx.doi.org/ 10.1093/mnras/stab918
http://arxiv.org/abs/2011.03408
http://arxiv.org/abs/1702.02600
http://arxiv.org/abs/1702.02600
http://dx.doi.org/10.3847/1538-4357/aa704b
http://arxiv.org/abs/1702.02601
http://dx.doi.org/ 10.1093/mnras/staa3679
http://dx.doi.org/ 10.1093/mnras/staa3679
http://arxiv.org/abs/2011.03409
http://dx.doi.org/10.1093/mnras/stab2870
http://dx.doi.org/10.1093/mnras/stab2870
http://arxiv.org/abs/2012.08567
http://dx.doi.org/ 10.1093/mnras/stab1515
http://dx.doi.org/ 10.1093/mnras/stab1515
http://arxiv.org/abs/2012.08566
http://dx.doi.org/ 10.1093/mnras/stz2162
http://dx.doi.org/ 10.1093/mnras/stz2162
http://arxiv.org/abs/1901.05005
http://dx.doi.org/ 10.1093/mnras/stab3055
http://dx.doi.org/ 10.1093/mnras/stab3055
http://arxiv.org/abs/2012.12824
http://dx.doi.org/ 10.3847/1538-4365/ac26c1
http://arxiv.org/abs/2012.12825
http://dx.doi.org/10.1103/PhysRevD.103.043503
http://arxiv.org/abs/2011.03411
http://dx.doi.org/ 10.1093/mnras/stac1160
http://dx.doi.org/ 10.1093/mnras/stac1160
http://arxiv.org/abs/2012.12826
http://dx.doi.org/10.1093/mnras/stac104
http://dx.doi.org/10.1093/mnras/stac104
http://arxiv.org/abs/2105.13540
http://arxiv.org/abs/2105.13546
http://arxiv.org/abs/2105.13546


34

[67] A. Amon et al. (DES), Phys. Rev. D 105, 023514 (2022),
arXiv:2105.13543 [astro-ph.CO].

[68] L. Secco, S. Samuroff, et al. (DES), Phys. Rev. D 105, 023515
(2022), arXiv:2105.13544 [astro-ph.CO].

[69] J. Prat et al. (DES), Phys. Rev. D 105, 083528 (2022),
arXiv:2105.13541 [astro-ph.CO].

[70] M. Jarvis, G. Bernstein, and B. Jain, Mon. Not. Roy. Astron.
Soc. 352, 338 (2004), arXiv:astro-ph/0307393 [astro-ph].

[71] E. Krause et al. (DES), (2021), arXiv:2105.13548 [astro-
ph.CO].

[72] C. Sánchez, J. Prat, et al. (DES), Phys. Rev. D 105, 083529
(2022), arXiv:2105.13542 [astro-ph.CO].

[73] X. Fang, T. Eifler, and E. Krause, Mon. Not. Roy. Astron. Soc.
497, 2699 (2020), arXiv:2004.04833 [astro-ph.CO].

[74] O. Friedrich et al. (DES), Mon. Not. R. Astron. Soc. 508, 3125
(2021), arXiv:2012.08568 [astro-ph.CO].

[75] W. J. Handley, M. P. Hobson, and A. N. Lasenby,
Mon. Not. R. Astron. Soc. 450, L61 (2015),
arXiv:1502.01856.

[76] W. J. Handley, M. P. Hobson, and A. N. Lasenby,
Mon. Not. R. Astron. Soc. 453, 4384 (2015),
arXiv:1506.00171 [astro-ph.IM].

[77] P. Lemos, N. Weaverdyck, et al. (DES), Submitted to
Mon. Not. R. Astron. Soc. (2022), 10.1093/mnras/stac2786,
arXiv:2202.08233 [astro-ph.CO].

[78] A. Stebbins, (1996), arXiv:astro-ph/9609149.
[79] D. N. Limber, Astrophys. J. 117, 134 (1953).
[80] R. E. Smith, J. A. Peacock, A. Jenkins, S. D. M. White, C. S.

Frenk, F. R. Pearce, P. A. Thomas, G. Efstathiou, and H. M. P.
Couchmann (VIRGO Consortium), Mon. Not. Roy. Astron.
Soc. 341, 1311 (2003), arXiv:astro-ph/0207664 [astro-ph].

[81] R. Takahashi, M. Sato, T. Nishimichi, A. Taruya, and
M. Oguri, Astrophys. J. 761, 152 (2012), arXiv:1208.2701
[astro-ph.CO].

[82] S. Bird, M. Viel, and M. G. Haehnelt, Mon. Not. Roy. Astron.
Soc. 420, 2551 (2012), arXiv:1109.4416 [astro-ph.CO].

[83] X. Fang, E. Krause, T. Eifler, and N. MacCrann, JCAP 05,
010 (2020), arXiv:1911.11947 [astro-ph.CO].

[84] E. Krause, E. Eifler, J. Zuntz, O. Friedrich, M. Troxel, et al.
(DES), Submitted to: Phys. Rev. D (2017), arXiv:1706.09359
[astro-ph.CO].

[85] C. M. Hirata and U. c. v. Seljak, Phys. Rev. D 70, 063526
(2004).

[86] S. Bridle and L. King, New Journal of Physics 9, 444 (2007).
[87] J. Blazek, Z. Vlah, and U. Seljak, Journal of Cosmology and

Astroparticle Physics 2015, 015 (2015).
[88] J. E. McEwen, X. Fang, C. M. Hirata, and J. A. Blazek, JCAP

09, 015 (2016), arXiv:1603.04826 [astro-ph.CO].
[89] J. Elvin-Poole et al. (DES), (2022), arXiv:2209.09782 [astro-

ph.CO].
[90] B. Jain and A. Taylor, Phys. Rev. Lett. 91, 141302 (2003),

arXiv:astro-ph/0306046.
[91] J. Prat, C. Sanchez, Y. Fang, et al. (DES), Phys. Rev. D 98,

042005 (2018), arXiv:1708.01537 [astro-ph.CO].
[92] R. Terasawa, R. Takahashi, T. Nishimichi, and M. Takada,

Phys. Rev. D 106, 083504 (2022), arXiv:2205.10339 [astro-
ph.CO].

[93] P. Ade et al. (Planck), Astron. Astrophys. 594, A14 (2016),
arXiv:1502.01590 [astro-ph.CO].

[94] O. Pisanti, A. Cirillo, S. Esposito, F. Iocco, G. Mangano,
G. Miele, and P. D. Serpico, Comput. Phys. Commun. 178,
956 (2008), arXiv:0705.0290 [astro-ph].

[95] E. V. Linder, Phys. Rev. Lett. 90, 091301 (2003), astro-
ph/0208512.

[96] M. Chevallier and D. Polarski, Int. J. Mod. Phys. D10, 213
(2001), arXiv:gr-qc/0009008 [gr-qc].

[97] D. Huterer and M. S. Turner, Phys. Rev. D 64, 123527 (2001),
arXiv:astro-ph/0012510.

[98] J. J. Bennett, G. Buldgen, P. F. De Salas, M. Drewes, S. Gari-
azzo, S. Pastor, and Y. Y. Y. Wong, JCAP 04, 073 (2021),
arXiv:2012.02726 [hep-ph].

[99] K. Akita and M. Yamaguchi, JCAP 08, 012 (2020),
arXiv:2005.07047 [hep-ph].

[100] A. Lewis, “CAMB Notes,” (2014).
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Appendix A: HALOFIT validation forw0 − wa

We model the matter power spectrum by using
CAMB [198, 199] to compute the linear matter power
spectrum and the HALOFIT semi-analytic fitting formula
from Ref. [81] (with the prescription from Ref. [82] for
massive neutrinos) to compute non-linear corrections. The
HALOFIT fitting formula depends on the linear matter power
spectrum and a subset of cosmology parameters, and was
developed based on fits to wCDM N -body simulations.
While those simulations include cosmological models with
w 6= 1, they do not include cases where the dark energy
equation of state varies with time.

To validate the use of HALOFIT to model the non-linear
matter power spectrum in our w0 − wa model, we note that
Casarini et al. [211] provides a recipe for computing the non-
linear power spectrum P (k, z) for w0−wa model given mod-
eling ingredients for wCDM. That scheme works by identify-
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FIG. 17. Validation of HALOFIT for nonlinear modeling in w0−wa,
showing the ∆χ2 difference between the 3×2pt data vector com-
puted with the fiducial pipeline versus one where the Casarini [211]
method has been used to compute the nonlinear matter power spec-
trum. The colored heatmap shows the interpolation between points
sampled in a grid (black circles) in the w0−wa plane. The white re-
gion in the upper right reflects the excluded region wherew0 +wa >
0. ∆χ2 � 1 across the full space, indicating that the modeling of
HALOFIT is sufficient.

ing an effective wCDM model for each redshift z for a given
w0 − wa cosmology, chosen so weff(z) matches the distance
from redshift z to that of last scattering. Using N -body sim-
ulations, Casarini et al. [211] shows that this mapping can be
used to accurately compute nonlinear matter power spectra in
w0−wa cosmologies. While employing the Casarini mapping
is not practical for our full analysis because it is too computa-
tionally intensive, we can use it for validation. To do this,
we use the Casarini prescription to compute the non-linear
matter power spectrum for a grid of cosmologies in spanning
our two-dimensional w0 − wa prior range. We then compare
predictions for the 3×2pt data using our fiducial pipeline to
those using the Casarini nonlinear power spectra. For each
w0−wa gridpoint, we evaluate ∆χ2 between our fiducial and
the Casarini model predictions and show the results in Fig. 17.
Differences between these calculations have ∆χ2 < 0.24 for
all allowed values of w0 and wa, with the largest differences
occurring in the high-w0, low-wa part of parameter space. For
all regions where wa > −2.5, this difference is ∆χ2 < 0.15.
Based on these results, we conclude that our fiducial model
using HALOFIT is accurate enough to perform our w0 − wa
analysis with our fiducial scale cuts.

We posit that a significant driver of the Casarini weff(z)
mapping’s success in modeling non-linear power for w0−wa
comes from the fact that it correctly accounts for the impact
of dynamic dark energy on the linear growth factor. Thus, the
fact that we are correctly computing the linear matter power
spectrum for the w0 − wa cosmology allows us to reach this
accuracy even if we are not explicitly accounting for the wa
parameter in HALOFIT.

FIG. 18. Constraints on Ωm and S8 in ΛCDM, showing 68 and 95%
confidence limits from the baseline DES Y3 COSMOSIS pipeline
in black and the modified version using the Weyl potential for the
lensing predictions in blue. These results are obtained using 3×2pt
measurements for the same linear scale cuts used to obtain Σ0 − µ0

constraints.

Appendix B: Validation of Weyl potential pipeline

As an additional validation of the modeling pipeline used
to constrain the modified gravity Σ0 − µ0 model, we com-
pare parameter estimates in ΛCDM for the baseline COSMO-
SIS pipeline used in DES Y3 3×2pt analyses to the pipeline
modified to use the Weyl potential to model lensing-related
quantities (see Sec. III E for more details). Figure 18 shows
ΛCDM constraints obtained by analyzing 3×2pt data using
the same linear scale cuts applied for the Σ0 − µ0 analyses.
That figure shows the results for the baseline pipeline in black
and the Weyl pipeline in blue. Differences are negligible for
the estimated cosmological parameters Ωm and S8.

Appendix C: The FASTISMORE framework for robustness tests

The FASTISMORE framework used for the model robust-
ness tests described in Sec. V B is at its core an application
of importance sampling for performing validation tests of the
robustness against systematics. Importance sampling (IS) is a
method to quickly estimate a target distribution p(Θ) by us-
ing samples from a proposal distribution q(Θ) reweighted by
the ratio p(Θ)/q(Θ) ∝ Lp/Lq (see e.g. Ref. [212]). The
FASTISMORE framework consists of several parts: the in-
frastructure for performing fast IS posterior estimates, code
for computing quality statistics for that estimate as well as for
how the IS procedure contributes to sampling variance, and
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guidelines for using those metrics based on a number of sim-
ulated analyses. These tools will be made publicly available
and documented in more detail in an upcoming publication,
Ref. [154].

The accuracy of an IS estimate depends on whether the
samples drawn from the proposal distribution cover the rel-
evant parameter space of the target distribution with high
enough density. In our application for robustness tests, the
proposal distribution is the posterior of our baseline simulated
analysis and the target is the posterior for a synthetic data vec-
tor contaminated with a systematic that is not included in the
analysis model, as described in Sec. V B. Given this, chains
will only be required if a contamination produces a significant
change in the posterior. For cases where IS can be used, this
method allows the impact of a systematic to be assessed in
seconds, as opposed to the thousands of core-hours required
to run a chain.

We quantify the performance of IS posterior estimates us-
ing Kish’s effective sample size:

ESS =
(
∑
i wi)

2

∑
i w

2
i

, (C1)

where wi is the total weight of each sample. Assuming this
approximates the true effective sample size (for a discussion
on the validity of this approximation, see [213]), one can es-
timate the standard error on the mean θ̄ of the parameter of
interest θ by using σθ̄ ≈ σθ/

√
ESS, where σθ is the standard

deviation of the posterior. The uncertainty on the parameter
mean shift is then estimated as:

σ∆θ̄ . σθ

√
1

ESSbase
+

1

ESScont
, (C2)

where ESSbase is the effective sample size of the baseline
chain and ESScont is the effective sample size of the IS-
estimated contaminated samples. For the analysis of contam-
inated synthetic data described in V B of this paper, we found
ESScont > 150 for all validation tests such that the uncer-
tainty on the parameter mean shifts are at most 0.08σ. Thus
all of our systematics tests pass the IS quality requirements.

We also employ the FASTISMORE framework to assess the
impact of systematics on model comparison metrics between
ΛCDM and a beyond-ΛCDM models. To assess how Suspi-
ciousness (see Appendix F) lnS is affected by contamination
from systematics, we must compare quantities derived from
four chains: a baseline (B) and alternative (contaminated)
synthetic data (A) chain for both the extended model (X) and
ΛCDM (0). As will be shown in Ref. [154], the change in
lnS due to systematic contamination can be written in terms
of the within-model differences between the baseline (B) and
alternative (A) synthetic data,

∆ lnSX0 = lnSAX0 − lnSBX0 (C3)
= lnSXAB − lnS0

AB . (C4)

Here, we use Scab to denote Suspiciousness between a and b,
keeping c fixed, defined so lnS < 0 indicates a preference for
a. This rearrangement makes the calculation more tractable,
as the quantities SXAB and S0

AB are easily computed using im-
portance sampling.

Appendix D: Additional validation plots and discussion

Here we provide additional information to supplement the
validation test results presented in Sec. V.

1. All-data robustness plots

We begin by showing plots complementing Fig. 1 of
Sec. V B and Fig. 3 of Sec. V C, which show the impact of data
vector contamination and model variations on the combined
3×2pt+BAO+RSD+SN+Planck constraints. Since those all-
data constraints are much more constraining than the DES
3×2pt alone for some models, the effects of data vector con-
tamination and model variations on the combined constraints
are not clearly visible in plots in the main body of the text,
whose ranges are set to show the 3×2pt-only constraints.
To facilitate closer examination, here we include versions of
those plots showing only the all-data constraints. Fig. 19
shows an All-data only version simulated analysis plot, while
Fig. 20 shows the real data response to model variations.

In both plots, we additionally show the results of the robust-
ness tests for Neff −meff when the priors requiring ∆Neff >
0.047 or mth < 10 eV are applied. We set the meff axis
range to show those results clearly, cutting off the fiducial
prior points which were shown in Sec. V C to have non-
negligible shifts. For these alternative Neff − meff priors,
the nonlinear bias and baryon contamination produces a shift
∆meff

= −0.33, which is only slightly above and within sam-
pling variance of the 0.3 threshold.

2. Robustness investigation: Neff −meff

In the robustness tests of Sec. V C, we noted thatNeff−meff

parameter constraints shifted significantly in response to sev-
eral model variations. Here we provide further description
of these non-negligible parameter shifts and argue that they
are likely the result of prior volume effects associated with
an unconstrained region of parameter space at small ∆Neff .
For Neff − meff , recall that we will be primarily focused on
results from all data (DES 3×2pt+BAO+RSD+SN+Planck)
rather than DES 3×2pt only results.

Of the parameter shifts that are above our desired threshold
for Neff −meff , those produced by the TATT model variation
are the least significant, and are not very concerning. For the
simulated analysis, switching to TATT causes ∆meff

= 0.37.
This change in meff is not concerning, both because it is only
marginally over our threshold, and because our simulated con-
straints on meff are one-sided upper bounds so that this shift
can be interpreted as being simply due to weakened constrain-
ing power in a more complicated IA model. When these tests
were repeated for real data, shifts in the constraints on both
Neff and meff were negligible.

The XLens and hyperrank tests have a more dramatic im-
pact on the Neff − meff constraints from all data. For the
analysis of real data, varying XLens causes ∆meff

= −0.41,
while using hyperrank causes ∆Neff

= 0.91 and, strikingly,
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FIG. 19. Constraints on beyond-ΛCDM model parameters for the
same simulated analyses studied in Fig. 1 of Sec. V B, but with nar-
rower axis ranges for models where All-data is much more constrain-
ing than DES 3×2pt. Points and error bars show the mean and 68%
confidence interval for marginalized constraints on extended model
parameters. Yellow and red highlights indicate shifts larger than 0.3σ
according to Eq. (31). Vertical dashed lines show the input, ΛCDM
parameter values, while solid vertical lines and shaded regions show
the location of the baseline results. For the effective number of ra-
diative degrees of freedom, N (0)

eff is the constraint for the model with
no sterile neutrino mass, and N

(m)
eff shows the constraints for the

Neff − meff model. For Neff − meff we additionally show results
using the alternative prior ∆Neff > 0.047, which are less subject
to projection effects and thus more robust than posteriors produced
using the fiducial Neff −meff prior.
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FIG. 20. Real All-data constraints for the same analyses presented
in Fig. 3 of Sec. V C, but with narrower axis ranges for parame-
ters where All-data is much more constraining than DES 3×2pt.
Points and error bars show the mean and 68% confidence interval
for marginalized constraints on extended model parameters, yellow
and red highlights indicate shifts larger than 0.3σ and shaded regions
indicate the location of the baseline results.

∆meff
= −18. To understand this behavior, we note that the

upper bound on meff for all data is largely determined by how
the posterior is shaped in the low-∆Neff region of parameter
space where meff has no impact on observables because the
sterile neutrinos are indistinguishable from cold dark matter.
Because CMB measurements provide tight upper bounds on
∆Neff , a significant fraction of the all data posterior occu-

pies this region of parameter space. The flatness of the likeli-
hood in the meff direction when ∆Neff is low (independent of
what data are considered) implies that the marginalized con-
straints on both Neff and meff are highly susceptible to the
details of how the higher-dimensional posterior projects those
parameter directions. Given this, our all-dataNeff−meff con-
straints may be highly sensitive to the choice of nuisance pa-
rameters, and the data’s noise realization may produce large
shifts in meff that do not necessarily carry physical informa-
tion. As we describe in Appendix D 4, hyperrank causes hard-
to-characterize changes to the posterior shape even in ΛCDM,
so it is plausible that the dramatic ∆meff

produced by hyper-
rank is related to this kind of parameter-space projection.

This prior-volume-effect hypothesis is supported by the fact
that our results become more robust when we apply priors
to remove the unconstrained low-∆Neff region. We consider
two such priors. We run additional (real data) chains raising
the lower bound on Neff to require ∆Neff > 0.047, and ad-
ditionally we consider a cut on the physical sterile neutrino
mass, assuming a thermal relic model, mth < 10 eV. This
mth cut matches the prior used for Neff −meff in the Planck
2018 analysis [11]. Plots showing these shifts for all-data con-
straints with the alternative ∆Neff priors can be found above
in Figs. 19 and 20.

Requiring ∆Neff > 0.047 leads to negligible shifts be-
tween the all-data constraints from the hyperrank and the
baseline models, as well as between the baseline and varying
XLens. Requiring mth < 10eV, which is the prior match-
ing the Planck 2018 analysis, results in neglible shifts due
to XLens, and hyperrank-vs-baseline shifts of ∆(Neff ,meff ) =
(−0.26,−0.39), only slightly above our 0.3σ threshold. For
comparison, we also consider simulated Neff − meff analy-
ses of all data combined, post-processing the chains to en-
force the alternative priors rather than running new chains.
For simulated all-data analyses with fiducial priors, XLens

produces ∆(Neff ,meff ) = (−0.71,+0.57) and hyperrank pro-
duces (−0.27,+0.39), while with the alternate priors hyper-
rank causes negligible shifts and XLens produces a shift of
∆Neff

∼ 0.5. While this latter shift is non-negligible, it is not
concerning given the robustness of the real data results, espe-
cially noting that the post-processing used for these synthetic-
data tests results in significant sampling uncertainty.

To lend further support to the idea that the dramatic shift in
the all-data Neff − meff constraints (particularly meff ) when
using hyperrank is a prior volume effect, we study the profile
likelihood for meff in Fig. 21. The profile likelihood shows
the maximum likelihood in 20 bins of sampled meff values.
For the fiducial Neff − meff priors, we see in the top panel
that while the hyperrank maximum sampled likelihood drops
at large meff , the hyperrank model does not produce a bet-
ter fit to the data than the baseline chain in the small meff

regime. The lower panel shows the same profile for chains
run with a prior requiring ∆Neff > 0.047. In that panel, the
hyperrank and baseline profile likelihoods remain fairly sim-
ilar as meff increases. This suggests that that drop seen for
the hyperrank chain in the top panel is due to a lack of chain
samples exploring the high meff , rather than a dramatically
worse fit. This supports the idea that the differences between
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FIG. 21. Profile likelihood for All-data Neff − meff chains, com-
paring of baseline and hyperrank. Lines show the maximum like-
lihood found for a chain sample in each of 20 bins of meff values.
The upper panel shows results for the fiducial Neff − meff priors,
and the lower panel shows resutls for chains run with the alternative
∆Neff > 0.047 prior. The fact that hyperrank does not produce a
better fit to the data than the baseline at small meff supports the idea
that shift in meff constraints for hyperrank is due to parameter space
projection effects rather than an actual strong preference for small
meff values.

the marginalized hyperrank and baseline posteriors are driven
by parameter space projection effects.

Overall these studies support the conclusion that ourNeff−
meff constraints are significantly more stable against model
changes when a prior is applied to remove the unconstrained
small-∆Neff region. This motivates our choice to focus on
results reported for Neff −meff constraints obtained with the
∆Neff > 0.047 and mth < 10eV priors rather than those
obtained with the fiducial prior.

3. Robustness investigation: binned σ8(z)

Here we describe and investigate non-negligible shifts in
the binned σ8(z) parameters due to the hyperrank and XLens

model variations studied in Sec. V C. The only > 0.3σ shift
produced by varying XLens, ∆

A
Plin
3

= 0.36 for DES 3×2pt-
alone, is not far above our threshold so is not concerning. We
thus focus primarily on the impact of the hyperrank approach
to parameterizing source galaxy redshift uncertainties. For
the real-data 3×2pt-only analysis, using hyperrank leads to

parameter shifts of ∆
(A

Plin
2 ,A

Plin
3 )

= (+0.72,+0.84), while
analyzing all data produces even more significant parameter
shifts: ∆

(A
Plin
2 ,A

Plin
3 ,A

Plin
4 )

= (+1.73,+1.36,+1.42).
A detailed characterization of what is driving the low-

redshift amplitude shifts is beyond the scope of this paper,
though we present some exploratory investigation in Ap-
pendix D 4. What these findings clearly highlight is that
source photo-z uncertainties and our method of accounting
for them can have a significant impact on inferences about the
growth of LSS over time, especially when constraining mod-
els that, like our binned σ8(z) parameterization, add degrees
of freedom beyond what is expected for ΛCDM. While in
principle the hyperrank method should provide a more com-
plete description of photo-z uncertainties than the baseline
∆zs nuisance parameters, without additional validation we
are not confident in switching our main analysis to use it for
binned σ8(z). Given this ambiguity, we choose to report for
binned σ8(z) constraints and model comparisons for both our
baseline model and for hyperrank. Showing results from both
analyses will roughly quantify the size of the photo-z-related
systematic uncertainties. Note that this means that if we find
tension with ΛCDM in one but not both of these binned σ8(z)
analyses, we will not be able to definitively claim a discovery
of non-standard large scale structure growth.

To further characterize what we can or cannot say robustly
about our binned σ8(z) inferences, we repeat these validation
tests22 for the derived parameters σ[bin i]

8 defined in Eq. (29).
Recall that σ[bin i]

8 are more closely related to the amplitude
of large scale structured observed separately in each redshift
bin than the sampled APlin

i amplitudes, which are defined
relative to the amplitude in the lowest redshift bin. When
real data are analyzed, model variations still produce non-
negligible σ[bin i]

8 shifts, as can be seen in Fig. 22, but these
are smaller than those found for the sampled APlin

i parame-
ters. Theshift for the lowest redshift bin shifts in response to
varyingXLens are only slightly above the 0.3σ threshold, with
∆
σ
[bin ]
8 1

= −0.42 and −0.39 for DES 3×2pt and all data re-

spectively. For hyperrank, the non-negligible shifts for 3×2pt-
only are ∆

(σ
[bin 2]
8 ,σ

[bin 3]
8 )

= (+0.47,+0.64), while for all data
they are ∆

(σ
[bin 1]
8 ,σ

[bin 2]
8 ,σ

[CMB]
8 )

= (−2.72,+0.52,+0.60).
For 3×2pt+BAO+RSD+SN (leaving out Planck), the only
non-negligible shift is ∆

σ
[bin 1]
8

= −0.73, and similarly 3×2pt
+BAO+SN (DES combined with only geometric external
data) it is ∆

σ
[bin 1]
8

= −0.62.
Thus, we see that when we combine 3×2pt with external

constraints, the source photo-z marginalization scheme pri-
marily contributes systematic uncertainty to the LSS ampli-
tude measured for the lowest redshift bin. The fact that the
sampled APlin

i parameters are defined relative to bin 1 is thus
why those amplitudes are strongly affected by the change to
hyperrank. Our study of the σ[bin i]

8 derived parameters show

22 Note that these redefined amplitude parameters, and thus these additional
robustness tests, were explored after unblinding.
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FIG. 22. Impact of model variations on the derived pa-
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Plin
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that of Fig. 3 and All data (in black) refers to DES
3×2pt+SR+BAO+RSD+SN+Planck.

that when we combine DES 3×2pt measurements with other
low redshift geometric probes, we are in fact able to make
fairly robust inferences of binned σ8(z) for the redshift ranges
corresponding to bins 2-4.

4. Hyperrank discussion

In our model robustness validation tests, for both Neff −
meff and for binned σ8(z) we found that using the hyper-
rank [155] method to marginalize over source photo-z un-
certainties, as opposed to the fiducial ∆zs mean-shift nui-
sance parameters, caused non-negligible shifts in the beyond-
ΛCDM parameter posteriors. Here we present some addi-
tional investigation into that behavior. To place these stud-
ies in context, we illustrate that switching to hyperrank can
have non-negligible impacts on parameter estimation even in
ΛCDM. The method’s impact on shear-only analysis has been
thoroughly studied and the DES Y3 cosmic shear results were
found to be robust to this model variation [67]. However, in
DES-Y3KP it was found that switching to hyperrank produces
a 0.53σ shift in S8.

Fig. 23 further illustrates this behavior by showing the
ΛCDM constraints on S8 and the mean redshift of a subset
of source bins for various iterations of our analysis choices.
In that figure, solid red and black lines show ΛCDM poste-
riors on the photo-z bias nuisance parameters for the base-
line settings in this work (black, using NLA as the IA model
and not including shear ratio) and in the ΛCDM analysis
of DES-Y3KP (red, TATT IA model, including shear ratio).
The shaded pink contours show the results for the hyperrank
chain that was run as part of robustness tests in DES-Y3KP
(with TATT and shear ratio), while dashed purple contours
and shaded blue contours show hyperrank chains run as part
of this paper’s beyond-ΛCDM studies (with NLA), with and
without including the shear ratio likelihood, respectively. We
see that all of the hyperrank chains have multi-modal poste-
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FIG. 23. Comparison of baseline and hyperrank chain posteriors for
S8 and shifts in mean source bin redshift around the fiducial ns(z)
means for bins 1 and 2. This is a 3×2pt version of the plot shown for
shear-only in Fig. 17 of Ref. [67].

riors, and that there are significant qualitative difference be-
tween the various hyperrank chains compared. The choice of
IA model has the largest impact on the shape of these poste-
riors, but even comparing the two NLA chains (blue-shaded
and purple-dashed), including or not including shear ratio can
also cause non-negligible posterior shifts. Notably, we find
that these model variations have a more significant impact on
S8 estimates when hyperrank is used than in the baseline ∆z
approach to marginalizing photo-z uncertainties.

These effects can be understood in terms of interactions be-
tween intrinsic alignment (IA) parameters and details of the
shape of the source redshift distribution. The contribution of
IA to measured cosmic shear become fractionally more im-
portant at low source galaxy redshifts where lensing contri-
butions are smaller. Additionally, the IA signal depends on
the projection of n2

s(z) onto the sky, while lensing depends on
the square of the projected ns(z). Together, these two effects
mean that IA calculations are more sensitive to the detailed
shape of the source galaxy redshift distribution, and thus that
different hyperrank ns(z) realizations can have very differ-
ent IA kernels, especially depending on their low-z features.
While including or not including the shear ratio likelihood
doesn’t significantly impact the cosmology constraints in the
baseline 3×2pt analysis, this choice does have an impact on
the IA parameter constraints, and thus affects the posterior
when hyperrank is used.

If this behavior is occurring in ΛCDM, it perhaps not sur-
prising that hyperrank causes significant shifts in the APlin

amplitudes when we allow σ8 to vary independently in dif-
ferent redshift bins. We explored whether specific features in
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the n(z) distributions sampled by hyperrank correlate with the
binned σ8(z) amplitude parameters, and thus might be driv-
ing the shifts we see. Unfortunately, this investigation did not
yield any further insights.

Appendix E: Metrics for assessing tension between datasets

In Sec. VI I, we employ three different tension metrics to
assess agreement between datasets: the Bayes ratio R, Suspi-
ciousness S, and a p-value computed from S and the Bayesian
model dimensionality dBMD. The Bayes ratio R is defined
for independent datasets A and B and for their combination
AB as [214]:

R ≡ ZAB
ZAZB

, (E1)

where

ZD ≡ P (D|M) =

∫
dΘ L(D|Θ,M)π(Θ|M). (E2)

is the Bayesian Evidence. In that expression, L is the like-
lihood of observing the data given model M and parameter
values Θ, and π is the prior probability of those parameters
given the model. In effect R can be viewed as a hypothe-
sis test assessing the odds of both datasets being described
with a single set of parameters (ZAB) as opposed to two in-
dependent sets of parameters (ZAZB). Smaller values of R
indicate stronger evidence of tension between measurements
from datasets A and B. When using lnR the strength of the
tension is usually interpreted using the Jeffreys’ scale [215],
where lnR < −2.3 is considered ‘strong’ tension with ap-
proximately 10 : 1 odds, −2.3 < lnR < −1.2 is consid-
ered ‘substantial’ tension with approximately 3 : 1 odds, and
lnR > −1.2 indicates the datasets are in agreement. This in-
terpretation of odds is only correct in the context where one
of the models being considered is correct and where the pri-
ors accurately characterize prior beliefs on the parameters. As
is discussed in e.g. Refs. [158, 216, 217], the value of lnR
depends strongly on the choice of parameter prior ranges, so
when interpreting tension assessed with the Bayes ratio, one
should check the robustness of conclusions under reasonable
changes to those priors. The fact that we use wide, uninfor-
mative priors therefore makes lnR somewhat ambiguous to
interpret as a tension metric for this work.

Given this, we additionally report tension using the
Bayesian Suspiciousness S [216]. Like the Bayes ratio, Sus-
piciousness measures tension between posteriors in our full
sampled parameter space, but removes the prior dependence
by dividing R by the information ratio I ,

lnS = lnR− ln I. (E3)

The information ratio quantifies the probability of data A and
B given the prior width, and is defined

ln I ≡ DA +DB −DAB , (E4)

where D ≡
∫
P ln (P/π) dθ is the Kullback–Leibler Diver-

gence [218] from the prior π to the posterior P for a given
dataset. One can interpret the Suspiciousness as a posterior-
averaged goodness-of-fit statistic between the combined vs.
independent datasets A and B [19].

As with the Bayes ratio, more negative values of lnS in-
dicate stronger evidence of tension, while positive values in-
dicate agreement between datasets. To further quantify the
strength of tension or agreement, we can use the fact that if
both datasets come from the same set of parameters and there
is some choice of parameters in which the posterior is roughly
Gaussian, the quantity dBMD−2 lnS follows approximately a
χ2
dBMD

probability distribution, where dBMD counts the num-
ber of parameter dimensions constrained by both posteriors A
and B [216]. We use this information to compute a p-value
estimating the probability of finding a value of lnS as small
or smaller than the measured value if the two datasets are ac-
tually in agreement.

For each chain we assess dBMD using the Bayesian Model
Dimensionality [219], which estimates the number of param-
eters constrained by a given posterior. It is equal to

d = 2
(
〈(lnL)2〉 − 〈lnL〉2

)
, (E5)

where again angled brackets refer to the posterior-weighted
average. We compute the number of parameters that are inde-
pendently constrained by both datasets A and B as

dBMD = dA + dB − dAB , (E6)

where the dAB term avoids double-counting parameters. We
evaluate the survival function,

p(S, dBMD) =

∫ ∞

dBMD−2 lnS

χ2
dBMD

(x) dx (E7)

There are several other metrics one could use to assess ten-
sions between datasets, including but not limited to parameter
difference distributions [220, 221] and eigentensions [222]. It
was shown in Ref. [158] that all of these metrics give results in
agreement with lnS when quantifying tensions. We therefore
focus on S, which has the advantage of requiring no additional
computation after running the chains.

Appendix F: Model comparison metrics

In Sec. VI J we perform a number of model comparison
tests to assess whether data favor any extensions to ΛCDM
over that cosmological standard model. Here we present def-
initions of the metrics used to assess those comparisons, di-
vided into two categories: Bayesian quantities depending on
the posterior distribution in the full parameter space, and those
depending on maximum a posteriori probability (MAP) esti-
mates. To define these metrics, let us consider two models:
a baseline model M0 and a model which extends it, MX ,
such that the parameter space ofM0 is a subspace ofMX ’s
parameter space.
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1. Bayesian quantities

The Bayesian quantities are analogous to those used to eval-
uate tensions between datasets. We define the Bayes ratio by
comparing the Bayesian evidence evaluated in these different
models but with matching data via,

R =
Z0

ZX
. (F1)

Suspiciousness S and an associated p(S, dBMD) are defined
in the similar way to Eqs. (E3)-E7, but withM0 replacing all
quantities associated with the AB joint constraints, andMX

replacing the sums where contributions from datasets A and
B are included separately. That is to say, the definition of S in
Eq. (E3) still holds, but with a single dataset used in all parts
of the evaluation and

ln I ≡ DX −D0, (F2)

and similarly,

dBMD ≡ dX − d0. (F3)

One challenge of using lnS for model comparison is that
number of additional constrained parameters dBMD is typi-
cally small, such that noise in the estimate of dBMD can have
a large impact on p(S, dBMD). Specifically, if we let ∆k be
the number of parameters that are in MX but not in M0,
then dBMD ≤ ∆k. Most of the models we consider have
∆k = 1 or 2, meaning that if the additional extended model
X parameters are not well constrained, dBMD can be very
small. If we could make a noiseless estimate of dBMD, this
quantity would approach zero in the limit of completely un-
constrained beyond-ΛCDM parameters. In practice, sampling
variance can cause the estimates made in Eqs. (E5) and E6 to
return values of dBMD < 0. This complicates interpretation
of p(S, dBMD) (Eq. (E7)), because the χ2 probability distribu-
tion is undefined for negative numbers of degrees of freedom.
For estimates where this happens we report p(S, dBMD) = 1,
reasoning that if the added parameters of MX are uncon-
strained, no tension withM0 can be found.

Given the ambiguity of this determination, we additionally
report a tension probability using the number of added pa-
rameters ∆k instead of dBMD: p(S,∆k). This ensures we
avoid scenarios where the probability distribution for S is
undefined. In addition to being less subject to sampling er-
ror, p(S,∆k) has a benefit for interpretation, since it can be
viewed as a Bayesian likelihood ratio test. As will be shown
in Ref. [154], we can interpret the model-comparison formu-
lation of Suspiciousness as the change in posterior-averaged
goodness-of-fit, 2 lnS = 〈χ2

X〉−〈χ2
0〉. This means p(S,∆k),

which evaluates this change relative to the expected improve-
ment from additional model freedom, serves as a Bayesian
analog of the more traditional χ2 test statistic that compares
the goodness-of-fit at the two models’ maximum likelihood
points. Further connections can be made to more traditional
information criteria-based model comparison statistics, where

for limiting cases the Suspiciousness can be interpreted as an-
logous to ∆DIC, but with a lesser penalty applied for addi-
tional model parameters. This is explored in greater detail in
Ref. [154].

2. MAP-based statistics

In our large parameter space, MAP estimates from nested
sampler chains are subject to significant sampling error and so
cannot be accurately determined by simply selecting the sam-
ple with the highest posterior from a chain. To estimate the
maximum posterior, we therefore perform additional maxi-
mization as follows. For each chain, we select the 15 sam-
ples with the highest reported posteriors. Starting at each of
those 15 points, we run two iterative optimization searches to
maximize the posterior using the COSMOSIS maxlike sam-
pler, which is an interface to the scipy.optimize func-
tion [192], using the BFGS [223–226] optimization algorithm.
Of the resulting 15 MAP estimates, we select the one with the
highest posterior. Based on limited studies for simulated anal-
yses we find this produces reasonably accurate estimates of
the maximum posterior probability, (the error on χ2 is prob-
ably less than about 0.5, though we have not quantified this
rigorously), but still very noisy estimates of the associated pa-
rameter values. Given this, we use the maximum posterior es-
timates for model comparison statistics, but we do not report
MAP parameter values.

We use the MAP posterior estimates to compute the model
comparison statistics ∆χ2, ∆AIC, and ∆DIC. The quantity
χ2 here measures the goodness of fit at the best-fit point in
parameter space,

χ2 = −2 lnLmax (F4)

In practice we focus on the quantity ∆χ2/∆k, where ∆χ2 =
χ2
X − χ2

0 and ∆k is the change in modeling degrees of free-
dom between modelsMX andM0. The Akaike Information
Criterion (AIC) is defined as [227]

AIC = −2 lnLmax + 2k (F5)

where k is the number of model parameters. The Deviance
Information Criterion (DIC) is defined by [228]

DIC = −2 lnLmax + 2pDIC. (F6)
with pDIC = 2 lnLmax − 2〈lnL〉 (F7)

Note that here we follow Ref. [229] in using a MAP-based
calculation of the DIC statistic, rather than an alternative def-
inition where pDIC is instead equal to the Bayesian model
dimensionality defined in Eq. (E5) (see e.g. Eq. (7.10) in
Ref. [230]). This is motivated by the fact that the MAP-based
calculation is not affected by the instabilities for small dBMD

described in the text below Eq. (F3).
The numbers reported for MAP-based quantities in

Sec. VI J rely on a slightly different definitions than those
given above. This is because we would like to consider agree-
ment with the Gaussian priors on DES nuisance parameters
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in addition to the 3×2pt and external likelihoods to assess
goodness-of-fit. For example, if modelMX could get an ex-
cellent fit to the 3×2pt measurements, but as a consequence
required shear calibration parameters mi to take extreme val-
ues compared to the principled priors made as part of the
METACALIBRATION analysis, we would not want to consider
that model favored overM0. To account for this, when com-
puting ∆χ2, ∆AIC, and ∆DIC, we treat the Gaussian pri-
ors as effectively part of the likelihood. In practice what this
means is that we evaluate them using the maximum posterior
P instead of the maximum likelihood L and introduce a cor-
rection to account for differences in the flat prior contributions
between modelsMX andM0.

To derive what the flat prior correction should be, we write
the posterior P for data d, modelM, and parameters Θ as

P(Θ|d,M) =
L(d|Θ,M)G(Θ|M)πflat(M)

Z(d|M)
, (F8)

where L is the likelihood, G is the product of the various
of Gaussian priors on nuisance parameters, and πflat is the
Θ-independent contribution to the prior from all flat priors.
For the purpose of our model comparison statistics, we would
like to define goodness-of-fit quantities like Eqs. (F4), (F5),
and (F6), but depending on the product LG in place of just L.
The fact that πflat does not depend on Θ means that the best fit
defined for LπG will be the same vector ΘMAP

M which max-
imizes P . Suppressing arguments for conciseness, we note
that a χ2-like posterior-based goodness-of-fit for modelMX

is

[χ2
P ]X = −2 ln (LMAP

X GMAP
X )− 2 lnπflat

X (F9)

≡ [χ2
LG ]X − 2 lnπflat

X . (F10)

Model comparison betweenMX andM0 therefore involves
the comparison

∆χ2
LG ≡ [χ2

LG ]X − [χ2
LG ]0 (F11)

= [χ2
P ]X − [χ2

P ]0 + 2 lnπflat
X − 2 lnπflat

0 . (F12)

Using this expression, the ∆χ2 model comparison statistic re-
ported in the main body of this paper is computed as:

∆χ2 ≡− 2(lnPMAP
X − lnPMAP

0 ) (F13)

+ 2(lnπflat
X − lnπflat

0 ). (F14)

Similar calculations for AIC and DIC result in the same flat-
prior correction term.

Appendix G: Testing beyond-ΛCDM model response toXLens

We can use a synthetic data study similar to those in
Sec. V B to assess how beyond-ΛCDM models respond to
a synthetic 3×2pt data vector produced with the redshift-
independent parameter XLens 6= 1. As described in Sec. V C,
the parameterXLens describes a mismatch between the galaxy
bias detected by galaxy clustering versus that from galaxy-
galaxy lensing. This is of interest because such a mismatch
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FIG. 24. Model comparison metrics when run on a synthetic data
vector produced with XLens = 0.89. Points mark the median of 200
sampling variance estimates output by ANESTHETIC, and error bars
(smaller than the points in most cases here) show the 16 and 84%
quantiles.

was found in the 3×2pt results for the alternative REDMAGIC
lens sample studied in DES-Y3KP: when XLens is included
in the REDMAGIC 3×2pt analysis, its preferred value is sig-
nificantly less than the fiducial value of one. The effect is
thought to be caused by residual systematics related to the lens
sample selection, and remains a topic of active investigation.
This indication of residual systematics ultimately motivated
the choice of MagLim over REDMAGIC as the fiducial lens
sample for DES-Y3KP, as this XLens effect is not present for
the four-bin MagLim sample we are using for the analysis in
this paper. Given this, we emphasize that this investigation
is performed to understand the effects of such a systematic in
extended model spaces, rather than as a validation test that our
analysis must pass.

The test proceeds as follows: we generate a simulated data
vector with XLens = 0.89, which approximates the preferred
value from the REDMAGIC analysis. We then fit the XLens-
contaminated synthetic data with our beyond-ΛCDM models
to see how they respond. Note that we use full MCMC chains
for this as the FASTISMORE results indicated that the pos-
terior shifts introduced by the XLens contamination were too
large to be accurately captured through importance sampling.

Estimated model comparison metrics between ΛCDM and
our extended models for such a contaminated data vector are
shown in Fig. 24. Compared to the baseline simulated analy-
sis, the XLens contamination causes model comparison met-
rics to shift slightly in favor of extended models relative to
ΛCDM, but none of these shifts are enough to cause an ex-
tended model to be strongly preferred to ΛCDM. Compare
this to the ∆χ2 ∼ 18 found when fitting a ΛCDM + XLens

model (the correct model for the contamination). This is
change in χ2 is comparable to, if a bit smaller than, the
∆χ2 ∼ 25 improvement found when fitting the REDMAGIC
3×2pt data in DES-Y3KP. The wCDM model shows per-
haps the greatest sensitivity, and we do see > 1σ shifts up-
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FIG. 25. Comparison between the DES Y3 and Y1 3×2pt constraints
on dynamic dark energy parameters. Dashed red contours show that
analyzing the Y3 data with Multinest sampler settings matching what
those used in Y1 artificially narrow the Y3 posterior estimate.

wards in the marginalized posterior on w when contaminated
with XLens, which roughly agrees with the behavior seen in
DES-Y3KP where the original REDMAGIC sample preferred
w > −1 (c.f. Fig. 12 of DES-Y3KP), in contrast to the fiducial
MagLim sample. These findings are not unexpected. As was
discussed in DES-Y3KP, the XLens effect seen for the initial
Y3 REDMAGIC analysis appears to be much more consistent
with a lens sample systematic than with new physics. The
study presented here supports this, finding that the observed
effect cannot be easily reproduced using the beyond-ΛCDM
models considered here.

Appendix H: Comparison of Y1 and Y3w0 − wa constraints

Figure 25 shows a comparison between the DES Y3 3×2pt
constraints on the w0 − wa dynamic dark energy parameters
reported above in the body of the text to those previously
published in DES-Y1Ext [50]. In that figure, the blue filled
contour shows same result presented for DES Y3 3×2pt con-
straints in Fig. 4 of the main body of this paper, while the
black contours show the 68 and 95% confidence regions for
the posterior estimate presented in DES-Y1Ext. We see that
there is little change between our Y3 w0 − wa results and
those reported in the comparable DES Y1 analysis, although
the modeling and analysis choices are similar in both cases.

One analysis choice that has an impact on this comparison
is the sampler used for parameter estimation: we use Poly-
chord in the present analysis while Multinest was used in the
DES-Y1Ext analysis. To assess the impact of differences in
this sampler choice on w0 − wa constraints we reanalyze the
DES Y3 3×2pt data using the same Multinest sampler [203–
205] settings used in DES-Y1Ext, but keeping all other anal-
ysis choices the same as in our fiducial Y3 analysis. One
of the main motivations for switching to using the Polychord
sampler for DES Y3 analyses was that Multinest tends to un-
dersample posterior tails [77], an effect which seems to be
exacerbated in directions of parameter space where the pos-
terior is more non-Gaussian. The impact of this undersam-
pling is clearly visible for the 3×2pt w0 − wa constraints in
Fig. 25, with the dashed red Multinest contours suggesting
tighter constraints than the (more correct) blue Polychord con-
tours and than the DES-Y1Ext Multinest constraints. Quan-
titatively, Multinest underestimates the width of the DES Y3
3×2pt marginalized 68 and 96% confidence intervals for wp
by 7 and 21%, respectively, compared to the same quantities
estimated using Polychord. This suggests that the Y1 3×2pt
w0−wa constraints may be at least somewhat artificially tight-
ened due to the use of Multinest.
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