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1 Introduction

In ordinary quantum mechanics, a physical system and an observer are two separate entities.
They interact when the observer performs a measurement, resulting in the system’s state
collapsing according to the Born rule. However, the situation changes in the presence of
gravity. Since the observer also gravitates, they cannot be considered completely decoupled
from the quantum system.

Recent research has shown that incorporating perturbative quantum gravity effects can
significantly impact quantum systems [38]. The algebra of observables transitions from a type
III von Neumann algebra to a type II algebra. This type of algebra supports density matrices
and traces, and therefore one can define an entropy, but lacks irreducible representations or
pure states. It is well-suited for understanding perturbative quantum gravity as a coarse-
grained theory, akin to thermodynamics, where information theory quantifies our ignorance
of microscopic details.

In spacetimes with an asymptotic boundary, an observer at infinity can gravitationally
dress observables. However, this is not possible in a closed universe, such as de Sitter
space, where spatial slices are closed manifolds. As emphasized in [9, 39], an observer is
required to impose gravitational constraints properly. The resulting algebra of observables
is constructed from the type III algebra of quantum field observables on the static patch
by introducing an observer and imposing gravitational constraints, resulting in a type II1
algebra. This perspective clarifies several results. For instance, empty de Sitter space
corresponds to a state of maximal entropy, explaining the thermal nature of correlators.
Thermal fluctuations can be interpreted as entropic fluctuations. Similarly, in a non-empty
universe, the entropy of a semi-classical state is given by the generalized entropy. Additional
discussions on the relationship between observers and gravitational algebras can be found
in [1, 3, 7, 11, 13–16, 22, 23, 25, 26, 40, 41]. For applications to black holes and other setups,
see [2, 5, 8, 10].

Note that a more complete theory should derive, rather than assume, the presence of
the observer. It is worth mentioning that there are attempts to obtain a non-trivial set
of physical states without introducing an observer, but instead through a group-averaging
procedure. Indeed as shown in [20, 21], one can construct de Sitter-invariant states with

– 1 –



J
H
E
P
1
1
(
2
0
2
4
)
0
8
9

infinite norm by smearing over the de Sitter group and then construct a finite inner product
on these states by dividing by the volume of the group.

In line with the thermodynamic coarse-grained interpretation, this note addresses the
dynamical fluctuations associated with certain states. Ordinary quantum mechanics provides a
straightforward method for understanding static fluctuations of observables: the experimenter
prepares several identical copies of the same system and performs projective measurements of
an observable X, obtaining the probability distribution of the eigenvalues of X in a particular
state ρ. To study dynamical fluctuations, one must allow the system to evolve for some time
after the initial measurement before performing a second measurement. This approach is
known as the two-point or two-time measurement scheme.

In this note, we aim to explore thermodynamic fluctuations of observables in perturbative
quantum gravity using a two-time measurement scheme. Our primary motivation is to
understand certain nonequilibrium aspects of the dynamics, following our previous work [8].
We will establish general fluctuation theorems for physical quantities, extending the results
of Jarzynski [37] and England [12] to perturbative quantum gravity in de Sitter space.

Considering measurements in de Sitter space naturally leads to the study of quantum
channels, which can be seen as generalized measurements without recording the outcome [31].
Mathematically, a quantum channel is a trace-preserving, completely positive map. The
theory of type II1 factors includes natural trace-preserving completely positive maps, such
as the conditional expectation map, which identifies a subfactor. We focus on finite index
subfactors, where we provide a physical interpretation of the structures relevant to their
classification. Notably, for infinite-dimensional algebras, an observer may require a hierarchy
of auxiliary vector spaces to set up quantum channels properly, unlike generalized quantum
measurements, where a single “ancilla” space suffices.

While finalizing this submission, we received [19], where Jones’ basic construction for a
type II1 factor is also discussed. In [19], this construction is applied to a model of evaporating
black holes to address the black hole information problem. In this note, however, we focus on
the hyperfinite type II1 factor, which describes physics in the static patch of de Sitter space,
and relate the associated Jones construction to quantum channels. The two perspectives
seem complementary and compatible; however it would be interesting to further investigate
their relationship.

2 Quantum measurement theory

In this section we briefly review certain aspects of quantum measurement theory in finite
dimensions, including two-times measurements and their relation to nonequilibrium physics,
and quantum channels. We will follow the texts [31, 32].

Projective measurements. Assume we have a finite dimensional Hilbert space H and
consider the algebra of bounded operators B(H). Consider a set of orthogonal projection
operators {πs}, πsπr = δsrπs and

∑n
s=1 πs = 1. We write the spectral decomposition of

an observable O as O =
∑

s λsπs.
Assume that the system is initially in a state described by the density matrix ρ. The

probability of the sth outcome is then ps = tr ρ πs. After having measured the outcome
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s the system is in the state

ρ′s = πs ρ πs

ps
. (2.1)

If we don’t record the measurement outcome, we have to average over all possible post-
measurement states weighted by their probability. The average post-measurement state (that
is unconditional to the measure of the outcome s)

ρ′ =
∑

s

psρ′s =
∑

s

πs ρ πs (2.2)

describes the averaged effect of a quantum measurement. Note that since we haven’t recorded
the outcome the probabilities ps have canceled.

Ancillas. These expressions can also be derived from a unitary dynamics if we introduce
an auxiliary n dimensional quantum system, the ancilla A. One assumes that originally the
ancilla is in a pure state ρA = |1⟩ ⟨1|A. One postulates that the interaction between the
ancilla and the original system is given by the operator

V =
n∑

s=1
πs ⊗

n∑
r=1

|r + s − 1⟩ ⟨r| . (2.3)

Note that we are assuming the ancilla has a basis of states of the same cardinality as the
projectors of the original system. Ordering of labels is cyclic. It is easy to see that V

is a unitary operator. The effect of the interaction between the system and the ancilla
is that the combined system is described by ρ′AS = V ρ ⊗ ρAV †, so that tracing over the
ancilla degrees of freedom

ρ′ = trAV ρ ⊗ ρAV † =
n∑

s=1
πs ρ πs (2.4)

reproduces the effect of a projective measurement. Similar considerations hold for ρ′s. Argu-
ments along these lines can be used to describe also generalized measurements.

Quantum channels. An experimenter can manipulate a quantum system in many ways,
without necessarily measuring its state. The density matrix of a state can in general evolve
according to

ρ −→ ρ′ =
∑

k

Ek ρ E†
k ,

∑
k

E†
k Ek = 1 , (2.5)

where the operators Ek are called Kraus operators. This operation is called a quantum
channel. It generalizes ordinary unitary evolution, which is recovered when there is only one
Kraus operator. It is the most general control operation that an experimental can perform
on the system. Since the expression (2.5) is formally the same as (2.2), quantum channels
can be seen as (generalized) measurements where the outcome is not recorded [31].

Consistency requires this operation to satisfy two conditions: it has to be trace-preserving
(that is if Trρ = 1 then Trρ′ = 1) and completely positive (a map C is positive is it sends
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positive elements to positive elements; it is completely positive if its tensor product with the
identity map in B(Cn) is positive for every n; physically the auxiliary Hilbert space ensures
that quantum channels map states to states also when they are acting on a part of the system).

Consider for example a system described by a state ρ. We act with the Kraus operator
Ek to obtain the state

EkρE†
k

TrEkρE†
k

(2.6)

with probability pk = TrEkρE†
k. The expectation value of any observable A conditioned

on a generalized measurement described by the set of Kraus operators {Ek} is obtained by
summing over all possible outcomes, weighted by their probability pk; that is

E (A|ρ, {Ek}) = Tr
(

A
∑

k

EkρE†
k

)
. (2.7)

In other words we can equivalently describe a quantum channel as a conditional expectation.
In the following we will find that there are natural trace-preserving completely positive

maps in the context of type II1 which also can be described as conditional expectations.

Two-time measurements and nonequilibrium dynamics. A two-time measurement is
characterized by the fact that the quantum system is let free to evolve in time between the
two measurements. Assume that our system is initially at time t = 0 in a state described by
the density matrix ρ. Consider an observable X with spectral decomposition X =

∑
x x Πx.

Assume that an observer performs a projective measurement of X and finds the value x. As
explained above now the system is in the state ΠxρΠx/p(x). We now let the system evolve
in time with an Hamiltonian H and perform a second measurement at the time t > 0. The
probability of obtaining x′ having already measured x is

p(x′|x) = 1
p(s)tr

(
Πx′ e − i tHΠxρΠx e i tH

)
(2.8)

so that the probability of obtaining the two values x and x′ is

p(x′, x) = tr
(
Πx′ e − i tHΠxρΠx e i tH

)
(2.9)

Note that if we assume that projections correspond to pure states Πx = |x⟩ ⟨x|, then the
above formulas read

p(x′|x) =
∣∣⟨x′|Ut,0|x⟩

∣∣2
p(x′, x) = | ⟨x′|Ut,0|x⟩ |2 ⟨x|ρ|x⟩ (2.10)

In particular p(x′|x) has also the interpretation of the transition probability between two
states. We will also loosely refer to p(x′, x) as a transition probability.

One can obtain information about the nonequilibrium dynamics comparing a process
with its time-reverse process, with probability ptr(x, x′). If one is interested in a certain
function f of the outcome and set ∆f = f(x′) − f(x), then one can prove that [32]

p(∆f)
ptr(−∆f) = e ∆f (2.11)
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One can chose ∆f = β(∆E − ∆F ) where ∆E is the change in energy of the system obtained
from the two measurements, and ∆F is a constant associated with the system free energy
(the logarithm of the normalization of the density matrix). If one interprets the change of
energy as work ∆E = w one finds

p(w)
ptr(−w) = e β(w−∆F ) (2.12)

which averaged gives the quantum analog of the Jarzynski’s equality [37]

⟨ e −βw⟩ = e −β∆F (2.13)

We refer the reader to [32] for a more in depth discussion and a more complete overview
of the relevant literature.

3 Observers and gravitational algebras

We will now focus on aspects of gravitational algebras in de Sitter space. Specifically, as
stressed in [9], the algebra of operators in de Sitter, being a closed universe, requires an
observer to be operationally defined. If we consider the static patch accessible to the observer,
then the algebra of observables A0 can be defined as the algebra generated by quantum fields
along the wordline of the observer. This algebra acts on a “code” subspace of the Hilbert
space H0. The physical algebra of observables in the static patch is then obtained adding
to considering A0 and adding the information about the observer.

If H is the Hamiltonian which generates time translations on the static patch, adding
the observer gives the new Hamiltonian

Ĥ = H + Hobs = H + q , (3.1)

where we have adapted the simplest model of an observer as in [9], a simple clock whose energy
is bounded from below. The fact that there interactions between the observer and the quantum
fields can be neglected is equivalent to the limit GN −→ 0. The full Hilbert space is now

H = H0 ⊗ L2(R+) . (3.2)

The physical algebra is obtained by imposing the Hamiltonian constraint

A =
(
A0 ⊗ B(L2(R+))

)Ĥ
. (3.3)

This algebra is obtained through a two-step procedure. First, one takes the crossed product
of the algebra A0 with the one-parameter group of automorphisms generated by H , resulting
in a II∞ algebra. Next, the observer’s energy is constrained to be bounded from below by
applying the appropriate projection Θ (which is 1 for q ≥ 0 and zero otherwise). It is by
applying this projection that one obtains a II1 algebra, as can be verified by computing
the trace of the identity.

Elements of this algebra are generated by operators of the form

â = Θ e i pH a e − i pH Θ , (3.4)
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and bounded functions of q. Here p is the variable conjugate to q. To uniformize with the
notation of [9], we introduce the variable x = −q. If one conjugates the algebra by e − i pH ,
one gets an equivalent, perhaps simpler, description: the algebra A is generated by a ∈ A0
and H + x, appropriately projected by Θ(q) = Θ(−H − x).

While the algebra A0 is a type III algebra, A is a type II1 factor. It is also an “hyperfinite”
algebra, meaning that it can be approximated by finite-dimensional matrix algebras. In the
classification of von Neumann factors there exists only one hyperfinite type II1 factor up
to isomorphisms. This factor is usually called R in the literature and we will also adopt
this notation. Note that for infinite dimensional algebras being isomorphic is a rather
weak condition.

For a type II1 one can define a unique trace, up to normalization. This means that
one can define density matrices and their von Neumann entropy. This entropy should be
thought of as a renormalized entropy where an infinte constant, corresponding to the infinite
entanglement of the vacuum state in quantum field theory, has been subtracted. The algebra
A has a state with maximum entropy, the so called tracial state, whose density matrix is
the identity. The trace is defined as

Tr â = ⟨Ψmax|â|Ψmax⟩ (3.5)

where Ψmax = ΨdS ⊗ e −βdSq/2√βdS. The state with maximum entropy is empty de Sitter
space tensored with a state where the observer’s energy has a thermal distribution. Indeed
cyclicity of the trace follows from the thermal nature of de Sitter space: for

Tr â(t) b̂ = Tr b̂ â(t) (3.6)

to hold, it has to be

⟨b(0)a(t)⟩β = ⟨a(t − i β)b(0)⟩β , (3.7)

which is the KMS condition. Here â(t) = e i Ht â e − i Ht denote the usual time dependence
of the operators.

A particularly important class of states are the semiclassical states of the form Φ̂ =
Φ ⊗ f(x). Here Φ ∈ H0 and f(x) ∈ L2(R+). For these states spacetime has a semiclassical
character, where the observer can measure time with uncertainty in time smaller than βdS.
To ensure this one can pick f(x) =

√
ε g(εx) with ε ≪ βdS and g bounded, smooth and

with support only for x < 0.
The density matrix associated with such a state is

ρΦ̂ = 1
β
|f
(

x + hΨ
β

)
|2 e −βx∆Φ|Ψ + O(ε) . (3.8)

Its entropy is the expectation value of the observable S = − log ρΦ̂

S(ρΦ̂) = −⟨Φ̂| log ρΦ̂|Φ̂⟩

= −⟨Φ|hΨ|Φ|Φ⟩ + ⟨Φ̂|hΨ + βx|Φ̂⟩ +
∫ 0

−∞
dx|f(x)|2

(
− log |f(x)|2 + log β

)
(3.9)
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where hΨ = βdSH. This entropy is physically interpreted as the generalized entropy of
the bifurcate horizon

Sgen = A

4GN
+ Sout , (3.10)

where A is the area of the horizon and Sout the entropy of the quantum fields outside the
horizon. This entropy gives the entropy of the static patch in de Sitter. This entropy can
also be interpreted as a relative entropy [30].

4 Fluctuation theorems

In this section we will discuss fluctuation theorems. The strategies of the proofs are related
to those of [4] and [32]. In [4] the authors consider finite dimensional systems and then
relate the two-time measurement process to the spectral measure of certain relative entropy
operators in order to have a well defined thermodynamic limit. On the other hand [32]
requires the system to be finite dimensional in order to use properties of pure states and the
results only hold for particular choices of the weights of the final state. Our construction
is different and uses the properties of type II1 factors.

Quantum nonequilibrium correlators. In ordinary quantum mechanics general aspects
of nonequilibrium dynamics can often be captured by correlators of the form

Tr (ρ ΠO ΠO′(t)) (4.1)

where ΠO and ΠO′(t) are projections evaluated at different times and ρ describes a state.
Correlators of this form appear already in studying gravity in de Sitter space [35]. A general
discussion of correlators of this type together with several applications can be found for
example in [32] and references therein.

In our case the analog of the above correlators are objects of the form

Tr
(

ρα

Φ̂1
σ1−α

Φ̂2

)
= ⟨Φ̂2|∆α

ρ
Φ̂1

|σ
Φ̂2
|Φ̂2⟩ (4.2)

where Φ̂1 and Φ̂2 are two semiclassical states and the density matrix ρmax is used to define
the trace. For future uses we have raised the two density operators to a certain power, but
one could in general consider arbitrary functions of those operators.

In order to obtain concrete results we have to make some choices. To begin with we
consider the case where one density matrix ρΦ̂ is associated to a semiclassical state while
the second corresponds to the same state evolved in time

τ
(
ρΦ̂

)
= e − i tHρΦ̂ e i tH . (4.3)

In this case a natural observable is the entropy. Let S =
∫

s des be the spectral resolution
of the entropy observable S = − log ρΦ̂. Then

ρα

Φ̂ =
∫

e −αs des ,

τ
(
ρ1−α

Φ̂

)
= e − i tHρΦ̂

∫
e αs des e i tH . (4.4)
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This implies that we can write the above correlators as

Tr
(
ρα

Φ̂ τ(ρ1−α

Φ̂
)
)

=
∫

e −α(s′−s) Tr
(

e − i tHρΦ̂ des e i tHdes′

)
. (4.5)

A remark on the spectral theorem. Above we have used the spectral theorem to find
an explicit form of the correlator (4.5). However for the purpose of keeping this note short
and to the point, it is useful to resort to a discrete description, even if approximate. This
is mostly for notational convenience in order to simplify the mathematical jargon involved
in the two-time measurement scheme in the following. However let us present a heuristic
justification for this. Let X be a generic observable. We decompose it as

X =
∫

x dex =
∫

x Π(x)dx (4.6)

where we have interpreted the spectral measure as Π(x)dx, where Π(x) is not a projection
but a projection density, i.e. Π(x)Π(x′) = δ(x − x′)Π(x). Let us however assume that
our observable is slowly varying and that our measure instrument has a finite accuracy
∆ = xj+1 − xj . We can write

X =
∑

j

∫ xj+1

xj

x Π(x)dx ∼
∑

j

xj

∫ xj+1

xj

Π(x)dx =
∑

j

xjΠj (4.7)

where now Πj =
∫ xj+1

xj
Π(x)dx are standard projections ΠiΠj = δijΠi and we have approxi-

mated the value of the observable x with its average over the interval ∆. In this case the
spectral theorem has the same heuristic expression as the spectral decomposition in finite
dimensional quantum systems. In most of this note we will use this form of the spectral
theorem, occasionally referring to the more correct expression.

Now we can summarize the above discussion about (4.5) as

Tr
(
ρα

Φ̂ τ(ρ1−α

Φ̂
)
)

=
∑
s,s′

e −α(s′−s) Tr
(

e − i tHρΦ̂Πs e i tHΠs′

)
=
∑
s,s′

e −α(s′−s) ⟨Ψmax| e − i tHρΦ̂Πs e i tHΠs′ |Ψmax⟩ , (4.8)

where we have used the definition of the trace. The advantage of this expression will be
apparent momentarily. It should be clear how to revert to the language of spectral measures;
mathematically inclined readers are encouraged to do so.

Time reversal. We will now assume that the particular states we are considering are
invariant under time reversal. As discussed in [17, 18, 36] in quantum gravity time reversal
is a gauge symmetry. Furthermore in the presence of an observer it acts on the observer
as well since she is entangled with the quantum fields.

We assume the existence of an anti-linear involution ϑ which acts as ϑ ◦ τ t = τ−t ◦ ϑ.
This involution acts on the operators via a unitary Uϑ so that ϑ(a) = UϑaU−1

ϑ . In particular
for a time reversal invariant state ω we must have ϑ(ω) = ω. A more detailed discussion of
time invariance, close to our scope, is for example in the appendix C of [32].
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Now in our case we assume that the Hamiltonian of the fields is time reversal invariant
ϑ(H) = H and that the same holds for the semi-classical state ρΦ̂. The assumption of time
reversal invariance implies that

Tr
(
ρα

Φ̂ τ t(ρ1−α

Φ̂
)
)

= Tr ϑ
(
ρα

Φ̂ τ t(ρ1−α

Φ̂
)
)

= Tr
(
ρα

Φ̂ τ−t(ρ1−α

Φ̂
)
)

. (4.9)

By using cyclicity of the trace we then find the identity

Tr
(
ρα

Φ̂ τ(ρ1−α

Φ̂
)
)

= Tr
(
ρ1−α

Φ̂
τ(ρα

Φ̂)
)

(4.10)

which we will use later on.

Measurements and entropy production Assume now that the system is in a semiclassical
state ρΦ̂ and that the observer is measuring the entropy observable S = − log ρΦ̂. Note
that the maximum entropy state Ψmax is not a semiclassical state in the sense of [9], and
is therefore excluded from the following analysis. As before let S =

∑
s s Πs be the spectral

decomposition of the entropy observable.
Suppose the observer performs a measurement at time t = 0 and observes the eigenvalue

s. After the measurement the state of the system is updated to

ΠsρΦ̂Πs

TrΠsρΦ̂
=

ρΦ̂Πs

TrΠsρΦ̂
, (4.11)

since Πs is also in the spectral decomposition of ρΦ̂. Here p(s) = Tr ΠsρΦ̂ is the probability
of observing s. This state evolves in time according to

τ t

(
ρΦ̂Πs

TrΠsρΦ̂

)
= e − i tH

ρΦ̂Πs

TrΠsρΦ̂
e i tH . (4.12)

The conditional probability of observing s′ at time t > 0 is then

Tr
(

Πs′ e − i tH
ρΦ̂Πs

TrΠsρΦ̂
e i tH

)
. (4.13)

Then the probability of observing both values is given by

p(s′, s) = p(s′|s)p(s) = Tr
(
Πs′ e − i tHρΦ̂Πs e i tH

)
. (4.14)

We can ask what is therefore the probability of observing an average change of entropy
s = s′−s

t in the time t

Pt(s) =
∑
s′,s

δ
((

s − s′
)
− ts

)
⟨Ψmax|Πs′ e − i tHρΦ̂Πs|Ψmax⟩ (4.15)

where we have used the definition of the trace and the fact that HΨmax = 0.
Note that it follows from (4.8) that

Tr
(
ρα

Φ̂ τ(ρ1−α

Φ̂
)
)

=
∑

s

Pt(s) e −tαs . (4.16)
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Now under our assumptions of time-reversal invariance we can use the identity (4.10) to obtain∑
s

Pt(s) e −tαs =
∑

s

Pt(s) e −t(1−α)s , (4.17)

or equilvalently ∑
s

[
Pt(s) − Pt(−s) e ts

]
e −tαs = 0 . (4.18)

Since this identity holds for arbitrary values of α and t we conclude that

Pt(−s) = e −tsPt(s) . (4.19)

This is our first fluctuation theorem. Physically it implies that negative entropy fluctuations
are exponentially suppressed respect to positive entropy fluctuations. Of course this is
expected on physical grounds. Note however that no assumption of thermal equilibrium was
made. This result is fully general and holds also outside of thermal equilibrium.

Remark. The above equality is usually called the Jarzynski identity [37]. In stochastic
thermodynamics one writes

⟨ e −s⟩ =
∫

e −sPt(s) =
∫

Pt(−s) = 1 , (4.20)

since a probability distribution is normalized. If we write s = −β∆F + βW , which expresses
the entropy in terms of the free energy and work, this is precisely the standard form of
the Jarzynski equality [37]. We refer the reader to [32] and reference therein for a more
complete discussion.

General fluctuation theorems. The general form of the fluctuation theorem comes by
comparing a transition probability with the probability of the same process but time reversed,
in a suitable sense. Consider a classical-quantum state Φ̂ as before. Let now Y be an arbitrary
observable in A. Let Y =

∑
y y Λy be its spectral decomposition. The probability for the

observer to measure the value y0 at time t = 0 and the value yτ at time t = τ is

P [yτ , y0] = Tr
(
Λyτ e − i τHΛy0 ρΦ̂ Λy0 e i τHΛyτ

)
. (4.21)

We will consider now the “time-reversed” probability. By this we mean the following situation:
we take as initial state the time evolved density matrix ρtr

Φ̂
= e − i τHρΦ̂ e i τH and define the

time-reversed evolution ρtr

Φ̂
(t) = e i tHρΦ̂ e − i tH so that ρtr

Φ̂
(τ) = ρΦ̂(0).

Reasoning as before, the corresponding two-times measurement statistics is given by
the probability

P tr[y0, yτ ] = Tr
(
Λy0 e i τHΛyτ ρtr

Φ̂ Λyτ e − i τHΛy0

)
. (4.22)

Define now the quantity

Ξ[yτ , y0] = log P [yτ , y0]
P tr[y0, yτ ] = −Ξtr[y0, yτ ] . (4.23)
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By averaging over the probabilities and using that a probability distribution is normalized,
we see immediately that

⟨ e −Ξ⟩ =
∑

yτ ,y0

P [yτ , y0] e −Ξ[yτ ,y0] = 1 (4.24)

which, by using Jensen’s inequality ⟨ e J⟩ ≥ e⟨J⟩ implies ⟨Ξ⟩ ≥ 0.
If we define the probabilities

p(Ξ) =
∑

yτ ,y0

P [yτ , y0] δ (Ξ − Ξ[yτ , y0]) ,

ptr(Ξ) =
∑

yτ ,y0

P tr[yτ , y0] δ
(
Ξ − Ξtr[y0, yτ ]

)
, (4.25)

we obtain the relation

p(Ξ) =
∑

yτ ,y0

P tr[yτ , y0] e Ξ[yτ ,y0] δ (Ξ − Ξ[yτ , y0])

= e Ξ ∑
yτ ,y0

P tr[yτ , y0] δ
(
Ξ + Ξtr[y0, yτ ]

)
= e Ξptr(−Ξ) . (4.26)

This expression is an abstract fluctuation theorem. As it is stated it is purely formal.
To find something more useful have to make some assumptions on the state ρΦ̂ in order
to express Ξ in terms of physical quantitites. We assume we can write it as the following
coarse-grained spectral decomposition

ρΦ̂ =
∑

y

py

dy
Λy , (4.27)

where py = TrρΦ̂Λy and dy is the Murray-von Neumann coupling constant, or dimension,
of the projection, defined as TrΛy = dy. Here dy ∈ [0, 1] and can be interpreted as the
dimension of the projection in a continuous sense, meaning that it measures how much of
the identity the projection covers. We have introduced this number to ensure that TrρΦ̂ = 1.
We call this a coarse-grained spectral decomposition as the general projection may depend
on other labels, which however here are summed over since they are not measured. This
implies that dy can be thought of as the “number of states” for which the value y is observed,
even if this number is in general not an integer. Physically this is because the trace is
appropriately renormalized to subtract an infinite constant. Note that these properties are
characteristic of a type II1 algebra.

By using this assumption we find

P [yτ , y0] = Tr
(

Λyτ e − i τHΛy0

∑
y

py

dy
ΛyΛy0 e i τHΛyτ

)
= Tr

(
Λyτ e − i τHΛy0 e i τH

) py0

dy0
,

(4.28)
where we have used the cyclicity of the trace and the properties of the projections. A similar
computation holds for the time reversed process. By comparing the probabilities of the
forward and reversed process we find

log P [yτ , y0]
P tr[y0, yτ ] = log

TrρΦ̂Λy0

TrρΦ̂Λyτ

dyτ

dy0
, (4.29)
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where the universal terms Tr
(
Λyτ e − i τHΛy0 e i τH

)
cancel out in the ratio due to the cyclicity

of the trace. Note that P [yτ , y0] is essentially the probability of observing the transition
from the state labelled by the value y0 to the state labelled by yτ in the time τ . Then
the above results is a quantum counterpart of the result in classical statistical mechanics
that such a transition is proportional to the volume of phase space occupied by the initial
coarse grained state. In this case what takes the place of the size of phase space is the
projection acting on the Hilbert space.

Let us express more explicitly the probabilities TrρΦ̂Λ. To begin with we note that

TrρΦ̂Λ log ρΦ̂Λ = TrρΦ̂Λ log ρΦ̂ (4.30)

since TrρΦ̂Λ log Λ vanishes because a projection has eigenvalues zero or one. Then using (3.8)
and (3.9) we can write

TrρΦ̂Λ log ρΦ̂Λ = TrρΦ̂Λ
[
−hΦ|Ψ − βx + log |f(x)|2 − log β

]
(4.31)

= TrρΦ̂ΛhΨ|Φ − TrρΦ̂ΛhΦ − TrρΦ̂Λ (βx + hΨ) + TrρΦ̂Λ log |f(x)|2

− log βTrρΦ̂Λ ,

where we have used the identity hΦ|Ψ = hΨ + hΦ − hΨ|Φ. Since hΦ |Φ⟩ = 0 we arrive at

TrρΦ̂Λ = 1
log β

[
−S(ρΦ̂Λ) + TrρΦ̂ΛhΨ|Φ − TrρΦ̂Λ (βx + hΨ) + TrρΦ̂Λ log |f(x)|2

]
. (4.32)

In this expression, if we neglect Λ, the terms on the right hand side are the von Neumann
entropy, the relative entropy between the semiclassical state and the maximum entropy state,
and the observer’s energy. The last term combines with the left hand side to form the entropy
of the fields exterior to the horizon as the horizon cut goes to future infinity. By reintroducing
Λ these terms maintain their significance, but the relevant state is now ρΦ̂Λ, the semiclassical
state where a particular value of the observable Y was measured.

It is easy now to compute directly the ratio of the transition probabilities. We however
follow another route, in order to find a more compact result. Let us introduce the normalized
density matrix

ρy = e −H Λy

Tr e −H Λy
, (4.33)

where we have defined H = − log ρΦ̂. Then

S

( e −H Λy

Tr e −H Λy

)
= log Tr e −H Λy + Tr e −H Λy

Tr e −H Λy
H . (4.34)

So we can write

S(ρy) = log TrρΦ̂Λy + TrρyH . (4.35)

Then we have

log P [yτ , y0]
P tr[y0, yτ ] = log

TrρΦ̂Λy0

TrρΦ̂Λyτ

+ log dyτ

dy0

= [S(ρy0) − S(ρyτ )] − (Trρy0H − Trρyτ H ) + log dyτ

dy0
. (4.36)
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These terms have the following physical interpretations, which differ significantly from the
standard quantum thermodynamics setup. The first term represents the difference in von
Neumann entropy between the two states. Typically, this difference indicates which of the
two processes is thermodynamically favoured. The second term represents the difference
between the expectation values of the modular Hamiltonian associated with Φ in the two
projected states. This is akin to the relation found in [12], which governs the energy balance
in nonequilibrium self-replicating systems. The key difference here is that the modular
Hamiltonian, rather than the ordinary Hamiltonian, is involved.

As in standard quantum thermodynamics, equilibrium quantities — such as the modular
Hamiltonian and entropy — determine the probability of a process, even when it is out of
equilibrium. The physical interpretation, similar to that in [12], suggests that the second
term can counterbalance the entropy change indicated by the first term. Consequently, a
process that would otherwise be disfavored due to entropy considerations might occur with
higher probability because of the shift in the modular Hamiltonian.

The last term is unique to the structure of type II1 algebras: since the projection
dimensions dy can be arbitrarily close to zero, this term can potentially dominate the first
two. Note that this effect is a direct consequence of having incorporated the observer in
order to gravitationally dress the physical observables and would not have been present
otherwise. Therefore we predict that in this setup there are processes that are entropically
suppressed but can still be favoured due to this offset. Investigating the physical implications
of this result would be very interesting.

5 Quantum channels and subfactors

In this section, we describe the relationship between quantum channels and subfactors. A
quantum channel is a map that transforms density matrices into density matrices and repre-
sents the most general set of manipulations that an observer can perform on a density matrix.

In [29], the relationship between quantum channels and von Neumann algebras was
explored in detail. The author explained how a quantum channel is associated with a
subfactor (or, more generally, a specific bimodule) and used modular theory to investigate
certain thermodynamic properties. In particular, general results were established concerning
the positivity of entropy, along with explicit expressions for the free energy. This construction
is quite general and implies some of our results.

However, our discussion in this section takes a different approach from [29]. Instead of
following their method, we will use the specific structure of type II1 factors as introduced
in [24]. Our aim is to take some steps towards providing a physical interpretation of the
structures revealed in [24] within the context of quantum channels. We will now construct a
family of quantum channels using Jones’ theory of subfactors [24].

In the Heisenberg picture, it is more natural to view a quantum channel not as a map
between states but as a map between algebras of observables. The usual picture can be
recovered by taking the dual and considering states defined on these algebras [31]. The
process of mapping one density matrix to another, such as through a noisy channel, can be
modeled as a map from one algebra of observables to another. We interpret a subalgebra
as analogous to a subsystem, meaning that only a subset of observables can be measured.
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For instance it can happen that observables that are distinguishable in the algebra A may
not remain distinguishable when restricted to a subalgebra.

We will not consider the most general quantum channel. However, starting with a von
Neumann algebra, we can naturally construct quantum channels by examining subalgebras.
Specifically, given a von Neumann algebra, there exists a canonical set of maps known
as conditional expectations, which are trace-preserving and completely positive, thereby
corresponding physically to quantum channels. We have seen in (2.7) how conditional
expectations relate to Kraus operators and thus to quantum channels.

Consider a von Neumann factor A. We require our subalgebra to include the identity.
Furthermore we want it to be a factor to enjoy the same causal properties of A. Therefore
we require the map E : A −→ B to be a projection onto a subfactor B ⊂ A, that is

E(x) = x , ∀ x ∈ B , (5.1)

which is also B-linear

E (x a y) = x E(a) y , ∀ x, y ∈ B and ∀ a ∈ A . (5.2)

A B-linear projection which is also positive is called a conditional expectation. One can
show that any conditional expectation is completely positive and is therefore a quantum
channel (see for example Chapter 9 of [33]).

We will now specialize to the type II1 hyperfinite factor R which governs the algebra
of observables in de Sitter. Let S ⊂ R a subfactor. Then there exists a unique conditional
expectation E compatible with the unique (up to rescaling) faithful normal trace. In other
words specifying a conditional expectation on R is equivalent to give a subfactor S; in this
sense we can interpret every subfactor as a quantum channel.

Let us review a few basic facts about subfactors. If S ⊂ R is a type II1 factor, the
Jones index of S in R is

[R : S] = dimS L2(R) . (5.3)

The index measures how much smaller is S within R and it is ≥ 1 with equality iff R and
S coincide. Since R is hyperfinite, every subfactor with finite index is hyperfinite as well
(and therefore isomorphic to R). In particular if [R : S] < 4, then S is irreducible, that is
S ′ ∩ R = CI. Jones famously proved in [24] that if [R : S] < 4, then

[R : S] ∈
{

4 cos2
(

π

n + 2

)
: n = 1, 2, 3, . . .

}
. (5.4)

We refer the reader to [34] for detailed derivations of this and other claims that we will
use in this note.

The conditional expectation E : S −→ R is completely determined by the orthogonal
projection eS : L2(R) −→ L2(S) in B(L2(R)), in the sense that for every x ∈ R we have

E(x)eS = eS x eS , (5.5)

which says that E(x) and eS x eS agree on L2(S). We can think of L2(R) as the Hilbert
space arising from the GNS construction, with a cyclic vector Ω, so that eS projects onto
the subspace S Ω.
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The subfactor S is characterized by its basic construction. This works as follows. Define
the algebra

R1 = {R ∪ {eS}}′′ ⊂ B
(
L2(R)

)
. (5.6)

The algebra R1, usually denoted by ⟨R, eS⟩ is the algebra generated by R and by the
projection eS in B

(
L2(R)

)
, and is called the basic construction for S. Since S has finite

index in R, then R1 is a type II1 algebra which includes R as a subfactor. Note however
that it is not a “new” algebra, but a subalgebra of B

(
L2(R)

)
.

We can iterate this construction and define the Jones’ tower of subfactors:

S ⊂ R
e1⊂ R1

e2⊂ R2
e3⊂ R3 · · · (5.7)

where each factor is defined inductively as Ri+1 = ⟨Ri, ei+1⟩, and ei+1 ≡ eRi+1 : L2 (Ri+1) −→
L2 (Ri) is the projection. The purpose of this construction is to fully characterize the subfactor
S. While the first projection eS contains partial information, the whole tower is necessary
to construct invariant objects that completely specify the subfactor. The sequence of larger
algebras and projections refines the description of how S sits inside R. Several sophisticated
methods (such as the standard invariant and planar algebras) can be used to classify subfactors
(see, for example, [34]). For our purposes, we only need to know that a subfactor, representing
a quantum channel, is characterized by a series of maps. What is the physical meaning
of these maps?

We propose the following interpretation: the tower of algebras Ri and projections ei are
needed to fully specify the subfactor S, i.e., the quantum channel type. A quantum channel
can be seen as a generalized measurement where the outcome is not recorded [31]. Thus, the
objects needed to specify a channel are similar to those needed for a generalized measurement.
In the finite-dimensional setting, an observer needs an auxiliary Hilbert space (like the ancilla
discussed in section 2) and extra operators (like the Kraus operators) to perform a generalized
measurement. In other words, the observer requires additional structures beyond their Hilbert
space. Similarly, new Hilbert spaces L2(Ri) and projections ei between them are needed to
fully specify the channel. Unlike the finite-dimensional case, where a single extra Hilbert
space may suffice, the entire Jones tower is necessary here.

The overall picture is appealing: as in the finite-dimensional case without gravity, the
observer requires additional structures to perform measurements or specify the quantum
channel. The new operators correspond to more sophisticated models of the observer, equipped
with increasingly advanced instruments. Each new algebra models the algebra of quantum
fields along with the observer and an increasingly sophisticated experimental apparatus.
Note that the algebra R already represents the full algebra of observables in the static
patch. In order to construct more refined quantum channels, the observer needs access to
additional structures. This does not alter the physical picture: each new algebra can be found
within B(L2(R)), and each new Hilbert space arises from a GNS construction. This means
the observer does not need new fields or particles of an unknown type; the measurement
instrument is simply an auxiliary sector constructed from already accessible physical objects.

We defer the problem of constructing a more precise model of an observer, which could
reproduce the full Jones tower. Possibly the construction outlined in [1, 11, 14, 22] is the
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correct formalism to use. It would also be interesting to explore the general properties of
quantum channels for gravitational systems using the formalism discussed above. We hope
to report soon on these issues.
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