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A B S T R A C T

Exploring the behavior of complex industrial problems might become burdensome, especially in high-
dimensional design spaces. Reduced Order Models (ROMs) aim to minimize the computational effort needed
to study different design choices by exploiting already available data. In this work, we propose a methodology
where the full-order solution is replaced with a Proper Orthogonal Decomposition based ROM, enhanced by a
multi-fidelity surrogate model. Multi-fidelity approaches allow to exploit heterogeneous information sources,
and consequently reduce the cost of creating the training data needed to build the ROM. To explore the
multi-fidelity ROM capabilities, we present and discuss results and challenges for an automotive aerodynamic
application, based on a geometric morphing of the DrivAer test case with multi-fidelity fluid-dynamics
simulations.
1. Introduction

Nowadays, the necessity to explore bigger and wider parameter
spaces is growing, especially in industrial design problems, such as
external aerodynamics. The optimizations increase in complexity and
so does the need for considerable amounts of Computational Fluid
Dynamics (CFD) simulations. When dealing with High-fidelity (HF) sim-
ulations and many parameters, the complexity tends to be intractable.
To reduce this burden, approximation techniques have been developed,
such as Reduced Order Models (ROMs). In recent years ROMs have
been applied in different fields, from CFD [1,2] to experimental fluid-
dynamics [3,4], structural analysis, and many other fields [5–7]. A
ROM aims to approximate full-order solutions of a given problem,
usually discretized on mesh, or on a finite set of points in space. Con-
sequently, ROMs demonstrate proficiency in approximating diffused
quantities, such as velocity and pressure fields, when applied in the con-
text of fluid dynamics. In particular, Proper Orthogonal Decomposition
(POD)-based ones showed great results so far [8,9]. With POD ROMs
it is possible to approximate the full-order CFD solution. Once trained,
these models are characterized by a remarkable accuracy, robustness

Abbreviations: CAD, Computer Aided Design; 𝐶𝐷, Coefficient of Drag; CFD, Computational Fluid Dynamics; DL, Deep Learning; DoE, Design of Experiment;
GP, Gaussian Process; HF, High-fidelity; LF, Low-fidelity; LHS, Latin Hypercube Sampling; MLE, Maximum Likelihood Estimation; NARGP, Non-linear
AutoRegressive multi-fidelity Gaussian Process regression; NI, Non-Intrusive; NN, Neural Networks; PDE, Partial Differential Equation; POD, Proper Orthogonal
Decomposition; RBF, Radial Basis Function; ROM, Reduced Order Model; SVD, Singular Value Decomposition
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and almost real-time predictions.
Nevertheless, a certain amount of offline HF simulations are still

required to train the POD ROM. This has a significant impact on
the overall cost of the model. In this work, we aim to exploit multi-
fidelity methods to lower the number of HF simulations. Multi-fidelity
models leverage Low-fidelity (LF) data and their relationship with HF
information in order to improve our knowledge of the HF problem. To
give a better understanding of the methodology, especially regarding
its potentialities and technical complexities, we present alongside it an
application for an industrial problem.

Most research on multi-fidelity regression models has focused on the
development of multi-fidelity surrogates of a single quantity of interest.
There are multi-fidelity kriging approaches, where the key point is
the covariance matrix between LF and HF model [10]. In [11,12] the
cokriging algorithm of [10] was reformulated in a recursive manner to
reduce computational complexity.

Alternative approaches for the creation of the covariance matrix
between LF and HF models are proposed in hierarchical kriging mod-
els [13,14] and the Non-linear AutoRegressive multi-fidelity Gaussian
https://doi.org/10.1016/j.jocs.2024.102511
Received 27 August 2024; Received in revised form 10 December 2024; Accepted 1
vailable online 6 January 2025 
877-7503/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
8 December 2024

rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/jocs
https://www.elsevier.com/locate/jocs
https://orcid.org/0009-0006-9255-9195
mailto:fausto.dicech@phd.units.it
https://doi.org/10.1016/j.jocs.2024.102511
https://doi.org/10.1016/j.jocs.2024.102511
http://creativecommons.org/licenses/by/4.0/


F. Dicech et al.

d

m
m
j
I
H

i
p
N

p
t
k

r
o

n

m
e
i
f
m

i
c

a
r
a

i

s

C

r

m

P

R

D
e
t
i

e

o

Journal of Computational Science 85 (2025) 102511 
Process regression (NARGP) [15]. There are correction-based meth-
ods, where a bridge function or scaling function models the differ-
ences between HF and LF models [16–18]. More recently, multi-fidelity
stochastic radial basis functions metamodel [19], multi-fidelity NN
models [20,21], multi-fidelity deep NN models [22–24], multi-fidelity
eep operator networks [25,26], and multi-fidelity Physics Informed

Deep NN with transfer learning [27,28] have been explored.
The adoption of multi-fidelity approaches for surrogate models of

parametrized fields is a fairly new trend, as shown below by some
techniques found in the literature.

In [29] the main idea is to use a POD ROM to encode the difference
between the field solution obtained on two different grids, a coarse
one and a fine one. An approximation of the fine grid solution is
obtained summing a coarse grid solution and the POD approximation.
Similarly, [30,31] proposed Gappy POD and constrained Gappy POD

ethod, respectively. In [32,33] a multi-fidelity non intrusive POD
ethodology is presented, appending the POD basis with LF modes pro-

ected on the complementary space spanned by the HF data available.
n [34] a multi-fidelity surrogate model using POD is proposed, where
F and LF data are combined to build the snapshot matrix, and trained

the ROM with a multi-fidelity RBF. This methodology does not take
nto account differences in the meshes, consequential to the geometrical
arameterization, or different refinements between LF and HF meshes.
onetheless, in [7,35,36] a manifold alignment method is presented

to fuse inconsistent fields from HF and LF simulations by individually
rojecting their solution onto a common shared latent space. To train
he ROM, different models have been employed, such as hierarchical
riging, and multi-fidelity RBF.

In [37–40] kriging meta-models to approximate the POD coeffi-
cients are extended to a multi-fidelity context. A non-intrusive (NI)
reduced basis method for parametrized nonlinear partial differential
equations was introduced in [41], where multi-fidelity Gaussian process
egression is employed to approximate the combination coefficients
f the reduced basis. In [42] an artificial neural network mapped

the relationship between the POD coefficients from different fidelity
solutions. In [43] a comparison of utilizing kriging and artificial neural
etwork to map this relationship can be found.

Furthermore, [44] proposed a multi-fidelity multi-step Neural Net-
work (NN) model, [45] a multi-fidelity multi-step Bayesian NN, [46]

ulti-fidelity concatenated NN, [47] multi-fidelity convolutional auto-
ncoders, [48] multi-fidelity deep NNs for Bayesian model updat-
ng, [49,50] transfer learning for field reconstruction based on multi-
idelity solutions. Other methods have different approaches to the
ulti-fidelity problem, such as [51]. Here, a deep-learning (DL) -

based POD ROM is presented and exploits multi-fidelity information
n the pretraining stage of the DL model, thereby reducing offline
omputational effort.

Recently, [52] has proposed a multi-fidelity surrogate based on
Galerkin-POD model, interpreting closure problem to compensate for
the contribution of the truncated scales onto the resolved ones as a
multi-fidelity problem and using a multi-fidelity deep operator network
(DeepONet) framework to address it.

With this in mind, the proposed POD multi-fidelity ROM wants to
ddress sparse HF problems, eventually characterized by large geomet-
ical deformations, which implies non-coherent mesh discretizations
nd requires a mapping strategy. In addition, we opted to use the

NARGP [15] unlike the other prevalent multi-fidelity models, resulting
n an enhanced level of the ROM’s flexibility. Furthermore, mixing

different fidelity snapshots in the decomposition of the snapshot space
has been investigated. This approach has been developed in view of
tackling industrial problems, i.e. external aerodynamics, where POD
ROMs might be highly beneficial, especially for topology optimization
and simulating fluid–structure interactions in multi-physics simula-
tions [53], or any application requiring multiple queries from a CFD
olver.
2 
Here, the performance of the proposed POD multi-fidelity ROM has
been quantified on an automotive-based benchmark for external aero-
dynamics problems, namely the DrivAer [54,55], for the pressure distri-
bution prediction when having geometrical deformations. Through this
application, it is possible to comprehend how this multi-fidelity ROM
addresses challenges inherent to industrial design processes for external
aerodynamics, such as wide-ranging geometries and heterogeneous

FD simulation results.
The paper is structured as follows. In Section 2 the methodology

is presented. Successively, the results are shown in Section 3, where
the test case is illustrated in 3.1, the model set up in 3.2, and then the
esults achieved in 3.3. Finally, in Section 4 the previous results are

discussed and the conclusions given.

2. Method

Below, in Sections 2.1 and 2.2 the fundamental components of the
odel are introduced, the POD-based ROMs and multi-fidelity models

respectively. The actual POD multi-fidelity ROM is detailed in Sec-
tion 2.3, with emphasis on the process and the mapping of non-coherent
snapshots.

2.1. POD-based reduced order models

In order to design a ROM, a dimensionality reduction is often
required. One of the most common alternatives is the POD [56], also
known as Karhunen–Loeve Expansion. In this work we will employ the
OD, as in Section 2.1.1.

Subsequently, ROMs can be classified into intrusive ROMs and NI
OMs. When the dimensionality reduction technique has access to

the problem governing equation, usually a set of discretized Partial
ifferential Equations (PDEs), we refer to it as intrusive ROM. A typical
xample is Galerkin or Petrov–Galerkin projection ROMs. Access to
he source code for the simulation is a fundamental requirement for
ntrusive models. By doing so, intrusive ROMs are strongly related to

the physical description of the problem. However, this is not always
a viable option. On the other hand, NI ROMs are purely data-driven
since they require only the fields resulting from a CFD simulation or
any other source, independently of the used tool.

NI ROMs are based on machine learning algorithms, where the most
common are RBF interpolation, GP regression, or NN. By combining
these regression models with the encoded representation obtained with
the POD, or other dimension reduction techniques, a ROM can be
trained. The proposed POD multi-fidelity ROM will be part of the NI
ROM class.

2.1.1. Proper orthogonal decomposition
POD describes a high-dimensional dataset through a set of orthogo-

nal basis functions [56,57]. Formally, these basis functions are obtained
as the solution of an optimization problem to capture most of the
nergy norm associated with the basis.

Let 𝐒 = {𝐮1,… ,𝐮𝑛} be a set of vectors, each one representing a
target field 𝐮𝑖 ∈ R𝑁 ∀ 𝑖 ∈ [1,… , 𝑛], where 𝑁 is the mesh dimension
in the CFD context. In POD, the vectors 𝐮𝑖 are called snapshots, and we
refer to 𝐒 as the snapshot matrix. Usually, each snapshot is associated
to a given parameter of the problem, as can be seen in Section 2.1.2.

Successively, a eigenproblem for 𝐒 is solved, often through an SVD,
r other decomposition techniques. A set Ψ = {𝝍 𝑗}𝑗=1,…,𝑛𝑚𝑜𝑑 𝑒𝑠 of

orthonormal linearly independent generators of 𝐒 is found

Ψ
𝑆 𝑉 𝐷
←←←←←←←←←←←←←←←←←←←←←← 𝐒 (1)

so that for all the elements 𝝍 𝑗 of the basis, called modes, is true that

𝐒𝐒𝑇𝝍 𝑗 = 𝜆2𝑗𝝍 𝑗 . (2)
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𝜆𝑗 ∈ R is the singular value of 𝐒 associated to the 𝝍 𝑗 mode, which
has the same dimensionality of a snapshot, namely 𝝍 𝑗 ∈ R𝑁 , ∀𝑗 =
,… , 𝑛𝑚𝑜𝑑 𝑒𝑠. A common practice is to truncate the basis, and the number
f modes is reduced to 𝑟, often having significantly fewer modes than
napshots, so that 𝑟 < 𝑛𝑚𝑜𝑑 𝑒𝑠 ≤ 𝑛. For this truncation, different criteria
xist, but the most common approach is to sort in decreasing order all
he modes from the most energetic one and put a threshold to the POD
nergy 𝜀, defined as

𝜀(𝑟) =
∑𝑟

𝑗=1 𝜆
2
𝑗

∑𝑛
𝑗=1 𝜆

2
𝑗

. (3)

The reduced number of modes 𝑟 is set so that 𝜀(𝑟) ≤ threshold.
Even though truncating the basis Ψ means to waste some potential
nformation, the lowest energy modes are associated to high-frequency
ehaviors, sometimes related to data noise.

Once the modes are obtained, an encoding of the snapshots can
be performed. To do so, the snapshots have to be projected on the
educed basis Ψ, obtaining a scalar value 𝛼 for each snapshot and for
ach mode. Let us consider the snapshot 𝐮𝑖 and project it on the modes
[𝝍1,… ,𝝍 𝑟]

𝛼𝑖𝑗 = 𝐮𝑖 ⋅ 𝝍 𝑗 ∀ 𝑗 = 1,… , 𝑟 (4)

where ⋅ represents the scalar product. The set {𝛼𝑖𝑗}𝑗=1,…,𝑟 is the POD
representation of the snapshot 𝐮𝑖. Since 𝑟 ≪ 𝑁 , where 𝑁 was the mesh
dimension, the POD operate a substantial compression of the informa-
tion with a controlled trade-off on the accuracy. The approximation of
a snapshot with the POD basis becomes

𝐮𝑖 ∼ 𝐮∗𝑖 =
𝑟
∑

𝑗=1
𝛼𝑖𝑗𝝍 𝑗 (5)

2.1.2. Non-intrusive reduced order model
Historically, POD snapshots are a function of time 𝑡, so it is com-

mon to associate them to it. Each snapshot 𝐮(𝑡) is representative of
a certain instant of time 𝑡, and the snapshot matrix is given by 𝐒 =
{𝐮𝑡=0,… ,𝐮𝑡=𝑇 }. If we generalize this concept, switching from the time
to a latent space parametrized by 𝝁 ∈ R𝑑 , where 𝑑 is the number
of parameters of the problem, the snapshot matrix now becomes 𝐒 =
{𝐮(𝝁1),… ,𝐮(𝝁𝑛)}. Therefore, the POD coefficients 𝛼𝑖𝑗 associated to the
training snapshots can be written as a function of the parameter 𝝁, since
for each mode 𝑗 = 1,… , 𝑟
𝛼𝑗 (𝝁) = 𝐮(𝝁) ⋅ 𝝍 𝑗 (6)

However, 𝐮(𝝁) is known only for the 𝑛 training snapshots in 𝐒. As
 result, we have information of the functions 𝛼𝑗 (𝝁) only for specific

parameter values 𝝁.
To approximate the POD coefficient function 𝛼𝑗 (𝝁) it is possible to

use a regression model 𝛼̂𝑗 (𝝁). The model is fit on the known values
𝛼𝑗 (𝝁𝑖) for the parameters 𝜇𝑖 ∀𝑖 = 1,… , 𝑛, and the process can be
repeated for each POD coefficient 𝛼𝑗 (𝝁) ∀𝑗 = 1,… , 𝑟 [58].

With the approximated POD coefficients 𝛼̂𝑗 (𝝁), unknown solutions
𝐮(𝝁) ∉ 𝐒 can be reconstructed, similarly to Eq. (5)

𝐮(𝝁) ∼
𝑟
∑

𝑗=1
𝛼̂𝑗 (𝝁)𝝍 𝑗 (7)

Different techniques can be employed to approximate the POD
coefficient functions, such as GPs, NNs or RBFs.

2.2. Multi-fidelity

To achieve the objective of this research, we employ a multi-fidelity
regression model [10,11], a framework appealing for its cost-efficiency
when studying complex problems due to its ability to balance com-
putational resources and accuracy. This methodology leverages LF
3 
information to enhance the HF representation of a given phenomenon.
Often, LF data derives from strong approximations of the HF formu-
lation of the problem and, by itself, it is not suitable for the purpose.
On the other hand, the associated cost lowers significantly, when it is
ompared to the HF information.

For the purposes of this research, a kriging-based multi-fidelity
regression model has been selected, namely the aforementioned NARGP

odel, presented in [15].

2.2.1. Gaussian process regression
GP regression, also known as kriging, is an approximation model

f a function 𝑦(𝐱), with 𝐱 ∈ R𝑑 , given a set of observations of 𝑦 for
different values of the latent variable 𝐱. The main idea is to fit a GP on
some known data, where a GP is collection of random variables, any
finite number of which have a joint Gaussian distribution [59]. A GP
is fully defined by a covariance function 𝑘(𝐱, 𝐱′), also known as kernel,
and a mean function 𝑚(𝐱). A common notation for GP is
𝑦 ∼ 

(

𝑚(𝐱), 𝑘(𝐱, 𝐱′)) (8)

A kernel is a positive semi-definite function, representing the co-
variance of two random variables belonging to the stochastic process.
quared Exponential kernel and Matern 3/2 kernel are two frequent
hoices.

𝑘𝑀 𝑎𝑡32(𝐱, 𝐱′) = 𝜎2
(

1 +
√

3‖𝐱 − 𝐱′‖
𝑙

)

exp

(
√

3‖𝐱 − 𝐱′‖
𝑙

)

(9)

𝑘𝑆 𝐸 (𝐱, 𝐱′) = 𝜎2 exp
(

−1
2
‖𝐱 − 𝐱′‖2

𝑙2

)

(10)

where 𝜎2, 𝑙 are the variance and the lengthscale of the GP, which are
hyperparameters of the model. Using automatic relevance determina-
tion [59] is possible to have anisotropic kernels with 𝑑 lengthscale
yperparameters, where 𝑑 is the dimension of the parameter 𝐱, and
mprove the flexibility of the GP. To do so, we can consider a generic
istance function 𝑟𝑀 between two locations 𝐱, 𝐱′

𝑟𝑀 (𝐱, 𝐱′) =
√

(𝐱 − 𝐱′)𝑇𝑀(𝐱 − 𝐱′) (11)

where 𝑀 is a semi-definite positive matrix. Now Eqs. (10) and (9) can
be rewritten in a more general form, such as

𝑘𝑀 𝑎𝑡32(𝐱, 𝐱′) = 𝜎2
(

1 +
√

3𝑟𝑀 (𝐱, 𝐱′)
)

exp
(
√

3𝑟𝑀 (𝐱, 𝐱′)
)

(12)

𝑘𝑆 𝐸 (𝐱, 𝐱′) = 𝜎2 exp
(

−1
2
𝑟𝑀 (𝐱, 𝐱′)2

)

(13)

For the purpose of this work we consider only diagonal matrices 𝑀 ,
where [𝑀]𝑖,𝑖 = 1∕𝑙2𝑖 and 𝑙𝑖 is the 𝑖th lengthscale hyperparameter. If
𝑖 = 𝑙 ∀ 𝑖 = 1,… , 𝑑 then the anisotropic kernels in Eqs. (12) and

(13) are the same of isotropic kernels in Eqs. (9) and (10). On the
ther hand, the mean function assumes real values, and represents the
xpected values of the GP random variables. To train the actual GP

regression model, a maximum likelihood estimation (MLE) problem for
the hyperparameters, based on the training points, is solved.

Usually there is no prior knowledge on the mean function shape,
herefore we can assume without loss of generality its prior to be
(𝐱) = 0. As a consequence, the choice of the kernel formulation and its
yperparameters values is pivotal. Usually, lengthscale hyperparame-
ers are the most challenging to set. Similarly, a well posed optimization
roblem for the MLE is crucial: to find the best hyperparameters con-
iguration it is mandatory to dial the hyperparameters constraints and
hoose the proper optimization algorithm set-up. Common choices for
he algorithm are gradient-based algorithms, since the log-likelihood
s easy to differentiate and leads to faster convergence. However, it
hould be kept in mind that poor hyperparameter constraining can
ave a heavy impact on gradient descend-like algorithms. A noise
yperparameter can be added alongside the kernel to handle noisy data.

Once the MLE has been performed, the shape of the kernel is fixed
and, assuming without loss of generality a zero mean prior, the GP is
fully defined.
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Prediction. Let us call 𝐗 = [𝐱1,… , 𝐱𝑛] ∈ R𝑛×𝑑 the matrix of training
inputs, and 𝐲 = [𝑦(𝐱1),… , 𝑦(𝐱1)] ∈ R𝑛 the vector of training outputs,
while 𝐗∗ ∈ R𝑛∗×𝑑 and 𝐲 ∈ R𝑛∗ are the input and output matrices for the
∗ unknown target values. If we want both 𝐲 and 𝐲∗ to belong to the
ame GP, they have a joint Gaussian distribution so that
[

𝐲
𝐲∗

]

= 
(

𝟎,
[

𝑘(𝐗,𝐗) 𝑘(𝐗,𝐗∗)
𝑘(𝐗∗,𝐗) 𝑘(𝐗∗,𝐗∗)

])

(14)

where the kernel 𝑘 applied to a set of inputs, such as 𝐗,𝐗∗, gives back
he covariance matrix for the given points. Since the kernel shape is
nown, and the inputs for both training and target points 𝐗,𝐗∗ are
nown too, the unknown posterior distribution of 𝐲∗, can be computed
nalytically
𝐲∗|𝐗∗,𝐗, 𝐲 =  (𝑘(𝐗∗,𝐗)𝑘(𝐗,𝐗)−1𝐲,
(𝐗∗,𝐗∗) − 𝑘(𝐗,𝐗∗)𝑘(𝐗,𝐗)−1𝑘(𝐗∗,𝐗))

(15)

where with | we refer to the conditional probability. The mean of the
posterior distribution in Eq. (15) represents the approximation of the
arget outputs 𝐲∗, while the principal diagonal of the covariance matrix
(𝐗∗,𝐗∗) gives the variance associated to the prediction for each target.

2.2.2. NARGP
In this work we used the NARGP [15] model for the multi-fidelity

pproximation of the POD coefficients. This model is based upon GP re-
ression models, detailed in Section 2.2.1. It can be seen as an evolution

of cokriging models [10,11], able to handle non-linear relationships
between LF and HF information.

The NARGP has a recursive structure, so an arbitrary number of
idelity levels can be considered. For the sake of simplicity, we will

consider only two fidelity levels, LF and HF, respectively. The LF
nd HF models take the same inputs 𝐱, and we call their outputs

𝑦𝐿𝐹 (𝐱), 𝑦𝐻 𝐹 (𝐱)with 𝐱 ∈ R𝑑 . We will assume that the LF information is
ore abundant than the HF data, and the LF and HF training points are
ested, even though the latter is not mandatory.

𝐗𝐿𝐹 = {𝐱𝑖}𝑖=1,…,𝑛𝐿𝐹

𝐗𝐻 𝐹 = {𝐱𝑗}𝑗=1,…,𝑛𝐻 𝐹 ⊂ 𝐗𝐿𝐹

𝐿𝐹 ≫ 𝑛𝐻 𝐹

First of all, to train a NARGP, a single fidelity GP regression needs to
be performed on the LF information. With the LF model 𝑦̂𝐿𝐹 (𝐱) ∼ 𝑦𝐿𝐹 (𝐱)
it is possible to approximate the LF function in every point of the latent
variables domain. Consequently, we can evaluate the posterior mean of
the LF function in the HF training points, obtaining

𝐦𝐻 𝐹
𝐿𝐹 = 𝑦̂𝐿𝐹 (𝐗𝐻 𝐹 ) (16)

where here 𝐦𝐿𝐹 stands for the LF GP posterior mean. For the HF model,
𝐦𝐻 𝐹

𝐿𝐹 is exploited to enrich its input. This input will be:

𝐗𝐗𝐻 𝐹 = [𝐗𝐻 𝐹 , 𝐦𝐻 𝐹
𝐿𝐹 ] ∈ R𝑛𝐻 𝐹 ×𝑑+1 (17)

In order to handle this multi-fidelity input 𝐗𝐗𝐻 𝐹 , a special kernel
or the HF model is required. Since products and sums of positive semi-

definite functions are in turn positive semi-definite, the combination of
kernel

𝑘𝐻 𝐹 ((𝐱,𝐦𝐿𝐹 (𝐱)), (𝐱′,𝐦𝐿𝐹 (𝐱′))) = 𝑘𝜌(𝐱, 𝐱′) ⋅𝑘𝑓 (𝐦𝐿𝐹 (𝐱),𝐦𝐿𝐹 (𝐱′)) +𝑘𝛿(𝐱, 𝐱′)

(18)

is still a valid kernel. In general, 𝑘𝜌 and 𝑘𝛿 will be modeled with
anisotropic kernels, while 𝑘𝑓 has to be isotropic since it handles 1D
inputs. It is possible to notice that different dimensions of the input are
managed by different parts of the kernel. Through the optimization of
the kernel shape solving the MLE problem, the HF GP is able to learn
the relationship between LF and HF data without making any prior
4 
assumption on the relation between the two. On the other hand, the
omplexity of the model is relatively high due to a more complex kernel
nd therefore more hyperparameters to optimize.

Prediction. The advantage of optimizing a kernel which exploits also LF
outputs, stays in the prediction. When we want to find the prediction
or a set of unknown input values 𝐗∗, it is possible to evaluate the LF
utput from the known approximation 𝑦̂𝐿𝐹 (𝐗∗). Since the model has
lready been trained, the process is straightforward, as in Section 2.2.1.

The LF prediction now can be added to the actual input 𝐗∗, similarly
to what has been done in Eq. (17), obtaining the composed input
𝐗𝐗∗ = [𝐗∗, 𝑦̂𝐿𝐹 (𝐗∗)]. This input is coherent to the kernel 𝑘𝐻 𝐹 defined
in Eq. (18), and the prediction can be evaluated. Due to the structure
of the kernel, the addition of LF information to the input leads to better
prediction in unknown zones of the parameter domain, if compared to
single fidelity approaches.

Keeping in mind that there is a certain uncertainty associated to the
F prediction, quantified by the variance of the GP, it is important to
ample a certain amount of times from the joint distribution of the LF
P, instead of using the mean of the LF GP as an approximation of the
F posterior mean. By doing so it is possible to properly propagate the
ncertainity in the LF model.

It is worth noticing that for NARGP, and for GPs in general, it is not
lways feasible to have large training data sets. According to Eq. (15),
ach time the model has to predict a new output it has to load all

training data. Therefore, these regression models are better suited for
modest databases, while POD-based ROMs are more convenient for
distributed quantities.

2.3. POD multi-fidelity ROM

The proposed POD multi-fidelity ROM is a multi-fidelity extension
f NI POD-based ROMs. The multi-fidelity concept concern both the
OD computation and the training of the regression models used for

POD coefficients approximation.
In the flowchart in Fig. 1, the model structure is presented. First of

all, a parameterization is needed. Usually, in the field of fluid dynam-
ics, latent variables commonly employed include different boundary
conditions, geometrical parameterization, time, or physical properties
of the fluid. An adequate Design of Experiment (DoE) is mandatory
to ease the model training. To this end, techniques such as Latin
Hypercube Sampling (LHS), random sampling, or factorial methods are
often applied. These allow a better exploration of the latent variable
domain, simultaneously reducing the computational cost associated to
the offline ROM’s phase.

Then, a subset of the designs will be evaluated with the HF solver,
reating the HF snapshots. With the LF solver, the LF snapshots are
btained in a similar way. Usually, design configuration associated to
he HF database are evaluated with both the solvers, since multi-fidelity
egression models benefit from nested low-high fidelity designs.

Subsequently, the POD can be computed on the obtained snapshots.
In light of different solution grids between different fidelity levels
or due to different geometrical parameterizations, a mapping on a
reference mesh of the solutions might be required. POD-like methods
call for coherent snapshots to assemble the snapshot matrix 𝐒, meaning
that all the results must came from meshes with the same amount of
nodes and with a fixed connectivity. Otherwise, the POD cannot be
computed, or it may produce non-significant results. The mapping will
be detailed in Section 2.3.1. Under the hypothesis that all snapshots
are defined on the same reference mesh, it is possible to compute
the POD. To accomplish this, there are two possibilities: use only the

F snapshots to compute the POD, or use a mixture of LF and HF
snapshots. Inevitably, in the first case the representativeness of the
POD basis occurs to be limited. On the other hand, if LF snapshots
were to be added to the matrix of snapshots, the subspace to which
the HF snapshots belong is better spanned, given a LF solver capable to
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Fig. 1. Flowchart representing the structure of the proposed POD multi-fidelity ROM.
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describe at least partially the problem. Nevertheless, since LF snapshots
by definition are less informative, part of the HF information might
be lost in the process. Keeping in mind that multi-fidelity methods are
particularly effective when dealing with sparse HF databases, in most
cases, it is beneficial to prefer the mixture of low and high fidelity
snapshots. In Sections 3 and 4 this behavior will be deeply discussed.

Once the POD modes are determined, it is possible to project both
the LF and HF snapshots onto the basis, obtaining the LF and HF
representation of the POD coefficients, respectively. Then a multi-
fidelity map from the latent space variables to the HF POD coefficients
can be estimated with the NARGP. This process is repeated for each
mode in the POD basis. Owing to the multi-fidelity regression, a better
approximation of the HF POD coefficients is possible. Improvements
re expected especially for the first modes coefficients, since it is more
ikely to find a relationship between their LF and HF POD coefficients.
he underlying reason appears to be that the most energetic modes
re associated to more macroscopic physical phenomena, that both LF
nd HF solver usually are able to catch, even-though with some slight
ifferences. On the other hand, high frequency behaviors, spanned by
he high frequency modes, are prerogative of HF snapshots, while LF
napshots have from few to zero related information.

Since for the less energetic modes coefficients a multi-fidelity model
might not be required, a single-fidelity equivalent can be used instead.
From a practical standpoint, a naive criterion based on the correlation
between nested LF-HF designs can be used to decide in advance how
5 
many POD modes coefficients might benefit from a multi-fidelity mod-
eling. However, it should be kept in mind that there is no universal
approach which is valid for every problem. Since a properly trained
NARGP should perform at least as well as a single-fidelity GP in absence
of relationship between different fidelity levels, the aforementioned
criterion is not mandatory, even though it lowers the online compu-
tational cost being NARGP heavier than single-fidelity GPs. If there
is no relationship between LF and HF data, looking to Eq. (18), we
expect the amplitude of 𝑘𝜌 ⋅ 𝑘𝑓 tends to 0 during the optimization
of the hyperparameters. The amplitude is given by the product of
he variances of the two kernels 𝑘𝜌, 𝑘𝑓 , and the kernel of the NARGP
ransition to a kernel of a simple single fidelity GP regression model,
uch as in Eq. (19), ignoring the LF output.

𝑘𝐻 𝐹 =���⁓ 0𝑘𝜌 ⋅ 𝑘𝑓 + 𝑘𝛿 ∼ 𝑘𝛿 (19)

After the coefficients models are trained, the prediction of new and
unknown design configurations is straightforward. For each mode, a
multi or single-fidelity prediction of the POD coefficient is evaluated,
nd subsequently a linear combination of the modes is performed,
here the weights are given by the approximated POD coefficients

𝛼̂𝑗 (𝝁) ∀𝑗 = 1,… , 𝑟. If we assume that the first 𝑗∗ < 𝑟 modes are relevant
or the multi-fidelity approximation, for any value of 𝝁 we obtain that

𝐮(𝝁) ∼
𝑗∗
∑

𝛼̂𝑗 ,𝑚(𝝁)𝝍 𝑗 +
𝑟
∑

𝛼̂𝑗 ,𝑠(𝝁)𝝍 𝑗 (20)

𝑗=1 𝑗=𝑗∗+1
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where 𝛼̂𝑗 ,𝑚, ̂𝛼𝑗 ,𝑠 refer to the multi-fidelity and single-fidelity POD coef-
icient models, respectively. As it will be discussed in Section 3.2, not

all the POD modes coefficients can leverage the benefits of a multi-
idelity model since usually the last modes do not carry any significant

information for the LF snapshots. Therefore, it is possible to model the
last POD modes coefficients with single-fidelity models as in Eq. (20)

ithout affecting significantly the approximation.

NARGP motivation. The choice of using NARGP over other multi-
fidelity regression models based on GPs, such as Cokriging [10] or
ierarchical Kriging [13], is due to the NARGP flexibility. First of all,

the LF-HF POD coefficient correlations will be different depending on
the considered problem, and are affected by the LF-solver choice too.
Secondly, each POD mode will show, in general, a different correlation
n its LF-HF POD coefficients. Therefore, unless there is prior knowledge

to similar use-cases, it is not possible to make a priori assumption on the
LF-HF POD coefficients correlations. Indeed, this can affect the capabil-
ities of models like Cokriging, which can leverage only close to linear
correlations. On the other hand, NARGP is meant to handle non-linear
correlations between fidelities, overcoming this limitation [15,60]. As
 consequence, NARGP has more hyperparameters than Cokriging-

like models to exploit more complex LF-HF relationships, being more
rone to overfit. With this in mind, the flexibility offered by NARGP
ver other multi-fidelity GP-based models is particularly fit to handle
eal-world problems.

2.3.1. Mapping
The adoption of the mapping strategy is pursued to have all snap-

hots with a coherent discretization. To perform the POD, the cardinal-
ty of each snapshot must be identical. In addition, the indexing must be
one so that the connectivity is preserved between different snapshots.
ere the mapping approach employed in this work will be discussed,
nd an overview of the whole process can be found in Algorithm 1.

In particular, there will be a focus on an external aerodynam-
ics problem for a road vehicle that has completely different meshes
between both different designs and different fidelity levels. For in-
stance, the deformations of the car are consequent to its geometrical
parameterization, while more refined grids account for the different
fidelity levels. Due to the geometrical deformations that have been
introduced, the proposed mapping approach is bound to analogue
external aerodynamic problems.

Given a finite volume method CFD simulation, the values of the flow
ield are known in the internal cells centers, and on the face centers
or the boundary ones. Without loss of generality, we suppose that

the quantities of interest for the ROM are distributed on the external
surface of the vehicles, such as the pressure field.

The mapping consists of three main steps: the generation of a com-
on reference mesh; the morphing of an undeformed triangulated ge-

metry; the interpolation of the solution field onto the reference nodes.
eing the relation between parameterization and deformation explicitly
nown, this method differs from geometry registration techniques [61].

Since the boundary fields of all car designs need to be coherent, the
results have been mapped on a reference mesh. The reference mesh
as to be appropriate for both LF and HF snapshots. Moreover, since
ach vehicle grid has been generated independently, the position of
he nodes is unpredictable. Therefore, it is advisable to have a fine
eference mesh, even more refined than the HF ones. Otherwise, some
oss of information might occur. Regarding the shape of the reference
ar, the baseline geometry was used.

Let 𝑐 𝑎𝑟 ⊂ R3 be the external surface of the baseline car, and 𝛷(𝑥;𝝁)
the function that deforms its points, given a geometrical parameteriza-
tion 𝝁 ∈ R𝑑 and the coordinates 𝑥 ∈ 𝑐 𝑎𝑟, the deformed geometry is
given by:

 ′
𝑐 𝑎𝑟 =

{

𝑥′ ∶ 𝑥′ = 𝛷(𝑥;𝝁), ∀𝑥 ∈ 𝑐 𝑎𝑟
}

(21)

where  ′
𝑐 𝑎𝑟 represents a set of points 𝑥′ ∈ R3 that belong to the surface

of the deformed car. In Fig. 2, there is a schematic representation of
6 
the effect of a generic deformation 𝛷 when applied on a mesh.
In this work, the deformations were obtained with Optimad’s soft-

are mimic1 for each different car. This software is able to manipulate
surface features and propagate the deformation field smoothly around
the features themselves, while preserving imposed geometrical con-
straints. To do so, a Laplacian equation of the deformations is solved.
Consequently, the acquired deformed designs manufacturability per-
sists unaltered. An example of its usage is presented in Fig. 5 for the
proposed test case, where six feature edges are displaced, propagating
the deformation to the rest of the vehicle surface. For further compu-
tations, each car target field (e.g. pressure) is interpolated from the
boundary face centers to the nodes of the solution grid.

When the computational grid does not share the same connectivity
through each design and geometrical deformations are involved, the
nowledge of the deformation field, or a surrogate of its, is mandatory
o train a ROM. If the deformations are known, this procedure can be
eneralized and extended to any similar problem.

For a given deformed car, the reference mesh points are projected on
the deformed car, exploiting the knowledge of the deformation field, as
in Fig. 3. The resulting set of points will then include both the reference
mesh points and the projected ones, living on the deformed geometry.

Each projected point of the reference mesh will now belong to a
ingle face of the deformed car’s solution grid. With respect to the
ertices of this face, the reference point’s barycentric coordinates can
e evaluated by:

[

𝑤𝑉𝑖
𝑃

]

𝑖=1,…,𝑁𝑉
=

[

1
‖𝑥𝑉𝑖 − 𝑥𝑃 ‖2

]

𝑖=1,…,𝑁𝑉

(22)

where 𝑉𝑖 represent the 𝑖th vertex of the face, 𝑁𝑉 is the number of
vertices of the face, with 𝑥 we indicate the position of a point in space,
and

[

𝑤𝑉𝑖
𝑃

]

𝑖
are the barycentric coordinates of P in respect of the vertices

of the face.
With the barycentric coordinates of every reference point and the

values of the target field, it is possible to interpolate the deformed car
target field values onto the reference mesh:

𝑝𝑟𝑒𝑓 (𝑥𝑃 ;𝝁) =
𝑁𝑉
∑

𝑖=1
𝑤𝑉𝑖

𝑃 ⋅ 𝑝𝑑 𝑒𝑓 (𝑥𝑉𝑖 ;𝝁) (23)

where 𝑝𝑟𝑒𝑓 , 𝑝𝑑 𝑒𝑓 are respectively the target fields on the reference mesh
and the deformed one. By doing so, homogeneous snapshots of the
target fields can be collected, even if the number of mesh cells differs, or
the grid’s connectivity changes. In Fig. 3, it is illustrated the mapping
of a node from the reference mesh to the deformed geometry, when
having different discretizations.

Both the barycentric interpolation and the geometry deformation
techniques are well known and have been used for many applica-
tions. In particular, the geometry deformation is based on Free-from
deformations, and in the context of ROMs they are used to move the
computational mesh nodes according to a deformation field applied to
the geometry itself [62]. However, to the authors knowledge, using this
techniques to map surface fields from non-coherent boundary tessella-
tions is novel. Therefore, this approach allows to use computational
meshes that were generated separately for each design configuration.
This enables POD-based workflows, which have strict requirements
on their elements order and cardinality, to handle larger geometry
deformations.

1 mimic: Geometry parameterization and mesh deformation software. https:
//www.optimad.it/mimic-geometry-parameterisation-and-mesh-morphing.

https://www.optimad.it/mimic-geometry-parameterisation-and-mesh-morphing
https://www.optimad.it/mimic-geometry-parameterisation-and-mesh-morphing
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Fig. 2. Schematic representation of the effect of the geometrical deformations on a mesh. 𝛷 represents the function of the transformation,  the original grid, 𝑃 ∈  a point,  ′

and 𝛷(𝑃 ) are their respective transformations.
Fig. 3. Schematic representation of the mapping of a reference (ref ) mesh node to the deformed (def ) geometry . (𝑎) the ref and def geometries with meshes; (𝑏) the transformation
of the point 𝑃 on the ref mesh to the def geometry; (𝑐) vertices of the face to which 𝛷(𝑃 ) belongs to the mesh of the def geometry.
Algorithm 1 Overview of the full mapping process
1: Create a database of deformed car geometries (mimic)
2: Solve the CFD problem for the deformed cars (openFOAM)
3: Define a reference surface mesh from the undeformed vehicle
4: Deform the reference surface mesh
5: Interpolate the results from the CFD solution to the deformed

reference mesh
6: Map the solution on the deformed reference mesh back to the

undeformed reference mesh

3. Results

3.1. Test case

Parameterization. To validate the model, the DrivAer test case was
used. Starting from the fastback configuration of the DrivAer, a total
of 6 geometrical deformations were applied. In Fig. 4, there is a
representation of the DrivAer in fastback configuration.

As already described in Section 2.3.1, the software mimic was used
to apply the deformations, which are related to 6 software scalar
parameters respectively. These deformations will be representing the
geometrical parameterization of the problem, and their effect can be
found in Fig. 5. The deformations introduced with mimic inherently pa-
rameterize the geometry, directly on the triangulated vehicle boundary,
not requiring a canonical parametric Computer Aided Design (CAD)
software. Thanks to that, the deformation functions 𝛷 for the vehicle
7 
Fig. 4. DrivAer in fastback configuration: on top — side view; on bottom from left to
right — front and back views.

meshes are known:

𝛷
(

𝑥; [𝜇1,… , 𝜇6]
)

= 𝑥′ (24)

where [𝜇1,… , 𝜇6] represent the 6 deformations applied to the unde-
formed DrivAer body.

Simulation set-up. In this work, we selected as snapshots the pressure
fields on the vehicles boundary. To obtain the pressure fields for each
deformed car, a CFD simulation has been computed. A box domain
around the halved car was considered, as in Fig. 6, with dimensions
10.0𝐿 × 2.2𝐿 × 2.5𝐿, where 𝐿 is the car length. The vehicle has been



F. Dicech et al. Journal of Computational Science 85 (2025) 102511 
Fig. 5. Representation of car deformations, in clock-wise order from the left: DEF 1 Front window angle; DEF 2 Rear window angle, DEF 3 Roof drop; DEF 4 Greenhouse angle;
DEF 5 Bumper nose extrusion; DEF 6 Bumper nose drop.
Fig. 6. LF mesh slice, side view.
halved to exploit the geometrical symmetry by its length. The solver
set-ups for the LF and HF simulations are identical, except for the mesh
discretization: LF meshes have around 1.8 million cells, while the HF
ones are up to 6 million.

The incompressible steady-state Reynolds-Averaged Navier Stokes
equations are solved together with the Spalart–Allmaras turbulence
model [62–64]. This turbulence model is routinely employed in similar
industrial design thanks to its simplicity and ease of use. However,
some of the considered vehicle designs reflect the behavior typical
of a bluff body, therefore, the Spalart–Allmaras model is not always
reliable enough to adequately capture the flow sensitivity due to some
geometrical changes. In the context of preliminary design choices,
exploring many different geometrical configurations is usually more
important than a high accuracy of the CFD simulations, which is in-
evitably expensive to achieve. We decided to accept this accuracy-cost
compromise, valuing the capability to discern the general performances
of multiple designs.

simpleFoam, embedded in the open-source CFD software open-
FOAM, has been employed to solve the set of governing equations. The
far field air velocity is set to 𝑈0 = 38.89 m∕s leading to a Reynolds
number based on the length of the model of ∼12 ⋅ 106. The solution is
averaged over the last 500 iterations due to the inherent non-steadiness
of the problem, and the pressure fields on the car surface are extracted,
as in Fig. 7.

For what concerns the differences between the low- and high-
fidelity pressure solutions, Fig. 8 shows an example of the LF solution
deviation from the HF one. Given the two snapshots, both represen-
tative of the same design, it is possible to see that they are sensible
differences due to the different discretization. The different capabilities
of the LF and HF solvers can be seen in Fig. 14 too. Here, the LF solver,
over-estimates by a good margin the Coefficient of Drag (𝐶𝐷), defined
as

𝐶𝐷 = 2𝐷
2

(25)

𝐴𝑓 𝜌𝑈0

8 
Fig. 7. HF pressure field on the halved car; side view. Pressure is divided by the
density.

where 𝐷 is the pressure contribution to the drag force on the car body
and 𝐴𝑓 is the frontal area and 𝜌 is the fluid density.

Indeed, Figs. 8 and 14 together show that the LF under-defined
computational mesh effect on the LF solution, specifically the inability
to capture high frequency behaviors at the HF grid scale, which have
a sensitive impact on the car’s body pressure distribution.

3.2. Model set-up

In order to compute the POD, several HF snapshots sets were used,
starting from a maximum of 120 to a minimum of 20 HF snapshots,
using a LHS strategy for the DoE creation. Alongside, 160 LF snapshots
were added for the multi-fidelity implementation, again with an LHS
strategy. The DoE creation is further discussed in Appendix. Part of the
LF snapshots are always matched to the corresponding HF design used,
in order to improve the performances of the NARGP model.

A fixed value for the POD energy was considered, with 𝜀 = 0.999
according to Eq. (3). This choice allows a fair comparison between the
single-fidelity POD ROMs and the proposed multi-fidelity one, as in
Section 3.3.

Since the multi-fidelity approach is sensible to the relationship
between the LF and HF information, only the coefficients associated
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Table 1
Models set up.

Option NARGP

LF model HF model Single-fidelity GP

Optimization algorithm BFGSa BFGS BFGS
Max iterations 2500 2500 2500
Optimization restartsb 10 8 10
Kernel Matern 3/2 𝑘𝜌 : Matern 3/2

𝑘𝑓 : Matern 3/2
𝑘𝛿 : Matern 3/2

Matern 3/2

Lenghtscale boundsc 0.5 ≤ 𝑙𝑖∕𝑑𝑖 ≤ 30 𝑘𝜌 : 0.5 ≤ 𝑙𝑖∕𝑑𝑖 ≤ 10
𝑘𝑓 : free
𝑘𝛿 : 0.5 ≤ 𝑙𝑖∕𝑑𝑖 ≤ 10

0.5 ≤ 𝑙𝑖∕𝑑𝑖 ≤ 10

Gaussian noise variance free free free

a Broyden–Fletcher–Goldfarb–Shanno algorithm.
b Random restarts of the optimization to increase robustness.
c The 𝑖th lengthscale is called 𝑙𝑖 and the 𝑖th input variable range of variation’s amplitude called 𝑑𝑖; different lengthscales are applied only to
anisotropic kernels.
Fig. 8. Scatter plot between HF and LF pressure solutions associated to the same
design; each point correspond to the same location on the vehicle’s surface. Pressure
is divided by the density.

to the first modes are regressed with the NARGP model. This stems
from two factors: firstly, the LF snapshots struggle to capture high
frequency features, due to the coarser computational grid in respect
of the HF case; secondly, the last and less energetic POD modes are
often associated to these high frequency behaviors. Consequently, the
projection of LF snapshots on the last part of the POD basis will not
necessarily be helpful for the multi-fidelity approach. In this work,
the first 4 modes coefficients have been dealt with the multi-fidelity
model. On the other hand, each of the less energetic modes coefficients
have been approximated with single fidelity GP regression models.
As stated in Section 2.3, there is no universal criterion to decide
how many POD coefficients should be modeled with a multi-fidelity
approach, and we decided to use this simple, but effective method. We
observed diminishing returns exceeding the first 4 modes in terms of
reconstruction error (which is defined in Section 3.3) at the cost of a
greater online computational effort.

For each set of snapshots the set up values are similar, except for
the lenghtscale hyperparameters, where the lower and upper bounds
constraints change with the number of snapshots. A summary of these
parameters can be found in Table 1. The single-fidelity GP column
refers to the options for the single fidelity model fitted to the POD
coefficients relative to less energetic modes. Nonetheless, the same
options have been employed also for the single fidelity GP regression
model used for comparison.
9 
3.3. Model results

The results of the multi-fidelity POD ROM application to the test
case described in Section 3.1 are considered for a total amount of 20,
40, 60, 80, 100, 120 HF snapshots, and a constant number of 160 LF
snapshots. The HF snapshots are successive subsets of the starting 120
HF snapshots. A total of 70 HF validation snapshots are reserved for
testing purposes. The sampling of the validation snapshots has been
performed with a random uniform distribution in the parameter space.

The first metric to consider is the POD projection error, defined as:

𝐸 𝑟𝑟𝑝𝑟𝑗 = 1
𝑛𝑣𝑎𝑙

𝑛𝑣𝑎𝑙
∑

𝑖=1

‖

‖

‖

‖

(

∑𝑛𝑚𝑜𝑑 𝑒𝑠
𝑗=1 (𝐮𝑣𝑎𝑙𝑖 ⋅ 𝝍 𝑗 )𝝍 𝑗

)

− 𝐮𝑣𝑎𝑙𝑖
‖

‖

‖

‖2
‖

‖

‖

𝐮𝑣𝑎𝑙𝑖
‖

‖

‖2

(26)

where 𝐮, 𝝍 , 𝑛𝑣𝑎𝑙 and 𝑛𝑚𝑜𝑑 𝑒𝑠 represent respectively a generic snapshot, a
POD mode, the number of validation snapshots and the number of POD
modes, and ‖⋅‖2 ∶ R𝑁 → R is the 𝐿2 norm in R𝑁 . In the context of this
work, the generic snapshot 𝐮 corresponds to the pressure distribution
on the car body.

This error quantifies the capability of the POD reduced basis to
represent the actual validation snapshots. This error metric is inde-
pendent from the POD coefficients regression models, evaluating the
performances of the sole decomposition operator. The projection error
trend for different amount of HF training snapshots is represented in
Fig. 9.

Subsequently, the influence of the POD coefficients regression mod-
els can be introduced by considering the reconstruction error

𝐸 𝑟𝑟𝑟𝑒𝑐 𝑜𝑛 = 1
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‖
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(27)

where 𝛼̂𝑗 (𝝁) is the approximation model of the 𝑗th POD mode coef-
ficient and 𝝁 is the vector of the independent variables. The recon-
struction error trend for different amount of HF training snapshots is
represented in Fig. 10. Here, it is possible to evaluate the capabilities of
the entire model to approximate an unknown snapshot. The 𝐿2 norm is
widely used to evaluate the ROM’s error metrics [41,53] and allows to
measure the intensity of the absolute error field relative to the original
solution.

In Figs. 11 and 12, the detailed distributions of projection and
reconstruction errors have been represented for both the extreme con-
figurations with 20 and 120 HF training snapshots. Conversely to
Figs. 9(a) and 10(a), outliers are represented too.

The reconstruction errors of the ROMs in Fig. 12 allow to compare
the results of the multi- and single-fidelity ROMs. However, to assess
whether or not they are a good approximation of the HF CFD solution,
namely the full-order model, the results can be compared with the LF
CFD solutions, presented in Fig. 13. Here, the LF solutions are used to
directly approximate the HF snapshots reserved for validation, and it
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Fig. 9. Projection error comparison between single/multi-fidelity PODs for different numbers of HF snapshots.
Fig. 10. Reconstruction error comparison between single-fidelity ROM and multi-fidelity ROM for different numbers of HF snapshots.
Fig. 11. Comparison of single/multi-fidelity projection error distributions on 70 HF validation snapshots.
can be seen that both single- and multi-fidelity ROMs are better HF
surrogates than the LF solver. To measure the LF approximation error
in Fig. 13, the error was computed as in Eq. (28), similarly to Eqs. (26)
and (27).
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‖

‖2
‖

‖

‖
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‖

‖

‖2

(28)

where 𝐮𝐿𝐹 ,𝑣𝑎𝑙 is the LF representation of the 𝑖th validation snapshot.
𝑖

10 
With the LF approximation error in Fig. 13, integral quantities
related to the pressure deviates as in Fig. 14, where the 𝐶𝐷 values are
presented for the same designs. Similarly to Fig. 8, Fig. 14 underlines
the LF solver difficulty to match the HF solver performances.

Tables 2 and 3 report the time needed for both the CFD simulation
and the ROMs. Each CFD solution is 4 times more expensive than the
LF one. On the other hand, the ROMs training is at least 1 or 2 order
of magnitude less time consuming than a single CFD solution, without
taking into consideration the necessary off-line CFD evaluations. Be-
ing in the order of milliseconds, the prediction time is negligible for
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Fig. 12. Comparison of single/multi-fidelity reconstruction error distributions on 70 HF validation snapshots.
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Fig. 13. LF approximation of 70 HF validation snapshots; mean error of 18.2%.

Fig. 14. HF and LF 𝐶𝐷 values for the validation designs. The frontal area is kept
constant, equal to reference vehicle frontal area.
s
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Table 2
CFD solvers solution time. All calculation on 96 CPU cores (AMD EPYC 7413).

Low-fidelity High-fidelity

Wall time Core hours Wall time Core hours

Average solution time 24 m 59 s 39.97 h 1 h 39 m 09 s 158.64 h
Time ratio respect LF 1 3.97

able 3
OMs wall time — 20 HF snapshots (plus 160 LF snapshots for the multi-fidelity).

Single-fidelity Multi-fidelity

Decomposition time 1.2 s 42.1 s
Training time 24.2 s 2 m 45 s
Number of modes 15 99
Prediction time (1 snapshot) 5.3 ⋅ 10−4 s 2.4 ⋅ 10−3 s
Total time 25.4 s 3 m 27 s

oth the single, and the multi-fidelity ROM, enabling almost real-time
apabilities.

In Table 2 it is possible to see that the major contributor to the ROM
ime cost is the off-line CFD phase. If we look at the projection and
econstruction errors in respect to the core hours needed for the off-
ine phase, the results are like in Fig. 15. In terms of projection error,
ig. 15a shows that the mixing of LF and HF snapshots in the POD is
eneficial also from an efficiency standpoint. On the other hand, the
econstruction error in Fig. 15b shows that the multi-fidelity approach
mproves the efficiency of the ROM only after 40 HF snapshots. This
s due to the cost of computing 160 LF solutions and it is specific to
his test case. Other LF formulation for different test cases can lead
o different efficiencies, however, we want to focus on the fact that
oor quality LF information can improve the HF representation of the
roblem. This can be seen in Fig. 15b, and it is even more evident in
ig. 10(b).

. Conclusion

The purpose of the multi-fidelity POD ROM presented in this work is
o improve accuracy of single-fidelity ROMs by means of multi-fidelity
trategies, while reducing the amount of HF information needed to
rain the model. Moreover, the proposed industrial problem allowed to
ddress close to real-world technical challenges, providing a qualitative
emonstration of the capabilities of the multi-fidelity POD ROM. Due to
he nature of the test-case, all of the previous objectives were pursued
hile handling non coherent information sources and a wide range of
eometrical deformations. In light of the results showed in Section 3.3,
everal conclusions can be inferred.
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Fig. 15. Projection (a) and reconstruction (b) errors versus the off-line core hours needed for the CFD solutions. Numbers indicate how many HF snapshots are used. All multi-fidelity
errors are obtained with the same 160 LF snapshots.
Table A.4
Input parameters range of variation and baseline configuration. Actual values depend
on the software definition.

Range Baseline Normalized range

DEF 1 [−0.25, 0.35] 0 [0, 1]
DEF 2 [−0.2, 0.4] 0 [0, 1]
DEF 3 [−0.1, 0.1] 0 [0, 1]
DEF 4 [0.7, 1.2] 1 [0, 1]
DEF 5 [−0.15, 0.15] 0 [0, 1]
DEF 6 [−0.15, 0.15] 0 [0, 1]

First of all, the addition of LF snapshots at the decomposition stage
had a great impact on the reduced basis representability of unknown
snapshots. This is easily noticeable in Fig. 9, where the single-fidelity
POD produces projections between 1% to 3% less accurate than the
multi-fidelity POD, where LF snapshots were mixed with the HF ones.

Secondly, not only the overall representation capabilities of the ba-
sis improved, but the multi-fidelity POD is able to reduce the projection
error also in the outlier configurations. Being the configurations with
the highest errors, is advantageous to enhance the modes capability to
represent them.

Finally, there is an improvement in the reconstruction error too,
especially with fewer HF snapshots which was the actual purpose of
using the multi-fidelity POD ROM. The increased accuracy can be seen
in Fig. 10, where the multi-fidelity approach reaches lower reconstruc-
tion errors with fewer HF snapshots. It is important to observe that
with respect to the formulation of the NARGP in Section 2.2.2, the LF
snapshots have to be nested with the HF training ones. As mentioned
in Section 3.2, 160 LF snapshots were added each time to the 𝑛𝐻 𝐹 HF
training snapshots, therefore only 160 −𝑛𝐻 𝐹 LF snapshots actively con-
tributed to better explore the design space. This justifies the superior
improvements with fewer HF snapshots and, consequently, the lessened
ones when approaching 120 HF training snapshots. Furthermore, this
behavior suggests a certain degree of robustness of the POD to the
LF information, since it does not deteriorate the quality of the HF
representation.

Given all these considerations, the proposed multi-fidelity POD
ROM was able to augment the capabilities of analogue single-fidelity
NI-ROMs, both in terms of representability and accuracy. The advan-
tages in terms of computational costs are inevitably related to the
choice of the LF model, and, as a downside, the snapshots mapping
strategy has to be tailored to the specific test-case. In the proposed ap-
plication the computational cost-accuracy ratio breaks even around 40
HF snapshots, while adding more HF information diminish the returns
of the multi-fidelity model with the given LF snapshots. Nevertheless,
with this experiment we proved that the HF approximation of a ROM
could benefit from otherwise useless LF information.
12 
CRediT authorship contribution statement

Fausto Dicech: Writing – original draft, Visualization, Soft-
ware, Methodology, Data curation, Conceptualization. Konstantinos
Gkaragkounis: Writing – review & editing, Software. Lucia Parussini:
Writing – original draft, Supervision, Conceptualization. Anna
Spagnolo: Writing – review & editing, Conceptualization. Haysam
Telib:Writing – review & editing, Resources, Conceptualization.

Funding

This research did not receive any specific grant from funding agen-
cies in the public, commercial, or not-for-profit sectors.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix. Design of experiment

The training DoE used for the problem presented in Section 3 is
based upon a LHS, where the input parameter values, corresponding
to the 6 software deformation values, are normalized in [0, 1], see
Table A.4. The same normalization has been used for the validation
random DoE.

For each deformation parameter the two extreme configurations are
represented in Fig. A.16. Each image was obtained starting from the
baseline drivAer model. In Fig. A.16 the darker colored car is obtained
when the normalized 𝑖th deformation parameter is 1, while the lighter
colored one when the normalized 𝑖th deformation parameter is equal
to 0.

Training DoE. The training DoE was obtained a priori with a LHS
strategy, and each design configuration was evaluated with both HF
and LF solvers. To add incrementally new designs in a meaningful way
when exploring the performances of the ROMs varying the number of
HF snapshots, the designs were opportunely ordered. Starting from a
first random design, the next designs are added recursively so that for
any design, the last one is at maximum distance from the previous ones.
This is achieved evaluating the minimal Euclidean distance in R6 from
all the previous designs. Referring to Figures like 9 and 10, the first 20
HF snapshots are contained in the first 40 HF snapshots and so on. Since
the LF solutions were obtained for the same design configurations, the
160 LF snapshots used have the first 𝑛𝐻 𝐹 snapshots nested to the 𝑛𝐻 𝐹
HF snapshot used for each ROM.
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Fig. A.16. Extreme deformations for all 6 deformation parameters applied separately to the baseline geometry. (a) Front window angle (b) Rear window angle (c) Roof drop (d)
Greenhouse angle (e) Bumper nose extrusion (f) Bumper nose drop.
Validaiton DoE. The validation DoE is composed of 70 HF snapshots
randomly sampled from the design space, with a uniform random
distribution.

The LHS choice for the training DoE represents a good balance
between a even coverage of the input parameter domain, while not
needing too many desings [65]. This is possible thanks to the pseudo-
random nature of the LHS strategy which is adequate also for high
dimensional input parameter domains. For the use-case presented in
Section 3, the domain is 6-dimensional, so other techniques such as
full- and reduced-factorials would not be feasible. On the other hand,
a random sampling of the domain, in general, does not fill the space
evenly, which is preferable for a training DoE.

Data availability

Data will be made available on request.
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