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Abstract. Due to the high production of complex data, the last decades
have provided a huge advance in the development of similarity search
methods. Recently graph-based methods have outperformed other ones
in the literature of approximate similarity search. However, a graph
employed on a dataset may present different behaviors depending on its
parameters. Therefore, finding a suitable graph configuration is a time-
consuming task, due to the necessity to build a structure for each parame-
terization. Our main contribution is to save time avoiding this exhaustive
process. We propose in this work an intelligent approach based on meta-
learning techniques to recommend a suitable graph along with its set of
parameters for a given dataset. We also present and evaluate generic and
tuned instantiations of the approach using Random Forests as the meta-
model. The experiments reveal that our approach is able to perform high
quality recommendations based on the user preferences.

Keywords: Proximity graphs - Nearest neighbor search -
Meta-learning + Auto configuration

1 Introduction

Dealing with complex data (images, long texts, audios, and etc.) is a typical
task in different application areas, such as pattern recognition, image retrieval,
data mining, etc. In general, complex data is represented through feature vectors
composed of measures and properties extracted from the intrinsic content of the
data and retrieved using dissimilarity relations between pairs of feature vectors.
Those are known as similarity queries, as they retrieve the elements from the
dataset that satisfy a given similarity-based criterion, such as the k-Nearest
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Neighbors query (k-NNg), which retrieves the k most similar elements the query
element [20].

There are several access methods suitable for indexing complex data in the lit-
erature. These methods can be divided into four groups: tree-based [13], hashing-
based [12], permutation-based [2], and graph-based [24]. In this paper, we focus on
graph-based methods as recent works have shown that this method type has often
outperformed other methods types in approximate similarity search [10,17,19].

Graph-based methods are very sensitive to user-defined parameters for both
construction and querying. The graph structure is mainly affected by the number
of neighbors an element (vertex) should be connected to. More edges in the
graph generate shorter paths to be traversed. However, more edges increase the
memory footprint, as well as the cost of vertex expansion during the search,
since the adjacency of each vertex is larger. Additionally, depending on the
graph structure, the query algorithm may not be able to find a path from the
query element to every element that is part of the answer. A common approach to
alleviate this problem is to execute a parameter defined number of traversals each
of which is starting from a different source vertex. The number of traversals, or
restarts, is also a sensible parameter as it allows improving the result accuracy
at the cost of degrading the execution time. Setting suitable values for these
parameters is hard as they depend on several factors, including the type of graph-
based method, the dataset properties and the optimization goal (e.g., query time
or memory requirements).

Recent works showed that there are no default parameters for graph-based
methods (see [24] and the references therein). Considering the difficulty to repro-
duce experimental results for approximate nearest neighbor (ANN) algorithms
in general, Aumdiiller et al. [3] proposed an automated benchmarking system
for evaluating existing tree-based, hash-based, and graph-based methods. The
authors performed experiments on different datasets so that future users can use
it as a starting point for their applications. In our previous work, we performed a
deep behavior analysis of graph-based methods given its settings, regarding sev-
eral metrics, such as search and construction time, recall, and memory usage [24].
Our results indicated that it is not possible to assert that there is a better type
of graph for all cases. Although these works identified general patterns that are
useful to guide the choice of the type of graph and its parameters, it is hard to
find good parametrizations for a variety of cases. Usually, a grid search proce-
dure is employed to define a suitable graph configuration. However, this is time
consuming and limited to the tested combinations.

In this paper, we propose a machine learning approach to recommend a suit-
able graph-based method as well as its main parameters for a given dataset and
similarity query requirements. Our approach employs meta-learning techniques
for providing high-performance configurations for each graph-based method by
examining its dataset pattern. This work presents an instantiation of this app-
roach for recommending parameters for dimensional datasets. The dataset char-
acterization includes descriptions such as embedding and intrinsic dimensional-
ity, cardinality, and statistical and information-theoretical measures. The pre-
diction targets include query quality (in terms of query recall) and execution



time, both measured using different types of graph-based methods over a col-
lection of real and synthetic datasets. We trained a meta-model to predict the
performance of the graph-based methods according to the dataset properties
and query requirements to quickly evaluate characterizations to recommend the
best predicted one. Our results using a Random Forest regressor have achieved a
high-quality recommendation for most situations, which means that our proposal
is able to generalize datasets to provide suitable configurations for graph-based
methods for similarity retrieval of image databases.

This work is organized as follows. Section 2 describes the problem of param-
eter setting for graph-based methods for similarity searches as well as related
works. Section 3 presents our approach based on meta-learning, and Sect. 4
presents the experimental evaluation and results. Lastly, on Sect. 5, we present
our conclusion and future works.

2 Parameter Setting for Graph-Based Indexing Methods

The most common type of graph used for similarity searches is the proximity
graph [24]. A proximity graph is a graph in which each pair of vertices (v,u) € V
is connected by an edge e = (u,v), e € E, if and only if u and v satisfy a given
property P, called neighborhood criterion, which defines the type of the graph.

Among the graph-based methods for similarity searches, the k-Nearest Neigh-
bor Graph (k-NNG) [10,21] and the navigable small-world graph (NSW) [17] are
two important types of graphs. The k-NNG has well-known properties that are
useful for performing similarity searches and has been used as the base for sev-
eral other graph-based methods. The brute-force construction of the k--NNG has
a quadratic computational cost, other construction algorithms with lower cost
have been proposed in the literature [22]. These construction algorithms gener-
ate an approximated version of the actual k-NN graph in a shorter time than
the brute-force construction. One remarkable method is the NN-Descent [8] in
which the main algorithm idea is “the neighbor of a neighbor is probably a neigh-
bor”. The Navigable Small World graph (NSW) is a recent proposal that is also
based on connecting elements to their nearest neighbors, however, it uses short-
and long-range undirected edges that grant the graph small-world properties [17].
The main advantages of the NSW are fast and highly precise approximate search
execution thanks to the small-world properties, and its fast construction algo-
rithm. Both the k&-NNG and the NSW are sensible to construction parameters,
particularly the number of neighbors of each vertex (NN)!, which defines the
number of edges in the graph. The parameter NN impacts both the query qual-
ity and the execution time since it affects the number and length of paths in the
graph as well as the cost of evaluating the adjacency of each vertex.

There are different strategies to search for similar data in proximity graphs.
The fundamental approach is to use spatial approximation, introduced by [20].

! In this paper we use NN to define the construction parameter number of neighbors of
the graph-based methods, and k to define the query parameter number of neighbors
in a k-NN query.



The spatial approximation property allows, starting the search from a source
vertex traverse iteratively the graph using greedy steps to get spatially closer and
closer to objects that are most similar to the query element. The Graph Nearest
Neighbor Search (GNNS) is an effective algorithm that executes multiple greedy
searches based on spatial approximation and aggregates the partial results into
the final result [10]. In the GNNS, the multiple searches are called restarts (R),
whose number is a user-defined parameter. The R parameter allows improving
the quality of the result as each search starts from a different source and traverses
a different path in the graph. Nevertheless, the number of restarts also impacts
query execution time.

2.1 The Impact of Parameters for Graph-Based Methods

This section shows that defining suitable values for these parameters has a major
impact on the effectiveness and performance of the methods and is a challenging
problem. Our discussion considers typical scenarios.

The first scenario states that the user makes a careless choice and uses the
same configuration across different datasets. This scenario usually happens when
a configuration provides a good result for a given dataset. Then, for simplicity,
the user replicates the “good” configuration for other datasets. To illustrate this
scenario, we fixed the configuration, built a graph-based method for different
datasets, executed k-NN queries using these indices, and analyzed the results.
We ran this test using several configurations varying the graph type, and the
construction and query parameters. Figure 1(a) shows results of a representative
example, which corresponds to a NN-Descent graph set with NN = 25 running
k-NN queries with k = 30 using the GNNS algorithm with R = 10 for all
datasets used in this work (see details in Subsect. 3.1). The figure shows the
distribution of the average recall rates throughout all datasets, being the recall
rate for each dataset computed as the average recall for 100 queries with random
query elements. The recall rate of a query is the fraction of the true k-nearest
neighbors to the query element that is retrieved by the query. It is noticeable
that the same set of parameters for distinct datasets leads to completely different
quality rates for queries. Similar reasoning is also valid regarding query time.

The second scenario considers a single dataset. In this scenario, the user has
to set the ideal parameters for the dataset subject to some constraints. Figure
1(b) presents the distribution of the average execution time for 30-NN queries
using the GNNS search in the NN-Descent, considering different parameters, for
the dataset Color Histogram, whose features are the 32-bin color histogram of a
set of 68,040 images. The goal here is only to define the parameters NN and R for
the NN-Descent for this dataset. The constraint is that the query should have a
recall of at least 0.95. Analyzing the query time distribution, we can notice that
almost two-thirds of the tested combinations of NN and R do not lie the first
bucket, which means that the execution time is at least twice larger than the
time demanded by the best configurations. The figure also shows the histogram
of the configurations that lie in the first bucket. We can see that the variance
regarding the average execution time is also large for the best configurations.



175 0.200

1.50 > 0.175
- o /V

orNWAMGO

g 1.25 g 0.150
3
@ o 0125
3 1.00 3
T & 0100
@ 075 04 06 0.8 1.0 1.2 14
- 0.075
0:50 0.050
0.25 0.025
0.00 5 o 0.000 0 10 20 30
0.00 025 050 0.75 1.00 Query time
Recall
(a) (b)

Fig. 1. Distribution of (a) recall rates given a fixed configuration over several datasets
and (b) query times with recall > 0.95 varying configurations.

Additionally, regarding only the top-15 configurations, the methods present a
variation of up to 50% in the execution time, which is significant.

The third scenario is the more complete one as it requires to choose the best
graph type and its configuration for a given dataset. Figure 2 shows how the
graph types NSW and k-NNG behave for increasing values for the NN parameter
for the dataset Texture, which has texture features of 68,040 images. The figure
shows the results for the k-NNG built using two construction algorithms: NN-
Descent and brute-force (Brute-kNNG). Each point in the plots corresponds to
the smallest number of restarts and, consequently, the smallest query time, for
the corresponding type of graph and NN value that returned results subject
to the constraint of having a recall of at least 0.95. Analyzing the plots, if the
optimization goal is memory (i.e., the configuration that satisfies the constraint
that consumes less memory), the best option is the NSW with NN = 5. On the
other hand, if the optimization goal is query time (i.e., the fastest configuration
that satisfies the constraint), we have two configurations that tie: NSW with
NN = 100, and NN-Descent with NN = 130, being the latter the best cost-
benefit option as it demands less memory than the former option. We can also
see that choosing the graph type that is the fastest in general, which is the NSW
in this case, but with a poor configuration (e.g., NN = 70), may be the worst
option among the graph types. The opposite is also true since the Brute-kNNG
is the slowest method in general, however, it is the fastest for NN = 150. Finally,
the plots indicate that every method has an optimal configuration, which varies
for different datasets and constraints. All of these reasons reinforce that the
problem of recommending optimal parameters to configure graph-based methods
is important and challenging.

2.2 Related Work

Works in the literature of similarity searches have defined such parameters based
either on the user intuition or exhaustive evaluation. These approaches lead to
suboptimal configurations and/or are excessively time consuming since the iden-
tification of adequate parameters is a challenging problem. Some works in the
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Fig. 2. a) Smallest number of restarts for each graph and NN value. b) Query time
for the corresponding configurations of the plot on the left.

literature present extensive evaluations of access methods for similarity search.
For instance, Li et al. performed a comprehensive experimental study on Approx-
imate Nearest Neighbor (ANN) algorithms to provide a better understanding of
their general behavior [16]. Similarly, the ANN-Benchmark was proposed to
standardize the evaluation among ANN algorithms [3]. This benchmark works
as a tool that enables comparing a wide range of ANN algorithms and its con-
figuration over several real datasets. Specifically for graph-based methods, we
performed an experimental evaluation in a previous work [24]. In this evalua-
tion, we showed relevant trade-offs in the behavior of each graph according to
several construction and search parameters. Although the performance patterns
presented in these works can be useful, it is clear the difficulty of finding the ideal
set of parameters for each algorithm considering the trade-offs among metrics,
such as query time, and memory usage.

In the literature, there are works making use of machine learning concepts
to advancing the state-of-the-art in database management [5,14]. However, none
of them addresses parameter auto-configuration or algorithm selection. To the
best of our knowledge, the only method of auto-selecting a suitable algorithm
configuration for similarity searches was proposed by Muja and Lowe [18]. Their
purpose is to minimize a cost function based on query time, indexing time, and
memory usage. This is performed in two steps: first, a grid search strategy is
used to find the parameter values that minimize the function; subsequently, a
local exploration is realized to fine-tune the parameters obtained. A limitation
of this work is the fact it only accepts tree-based methods.

Algorithm and parameter recommendation for machine-learning methods is
an active research topic, and many successful approaches have relied on meta-
learning [1,25]. Meta-learning differs from traditional learning methods (a.k.a.
base-learning) in the notion of what to learn. Instead of producing a predic-
tive function over a single problem domain, meta-learning attempts to gather
knowledge from several domains to find patterns among them and provide suit-
able solutions for future problems. We can formally define meta-learning as fol-
lows [26]. Considering a task ¢; € T (set of all tasks) along with its algorithm
configuration #; € © (configuration space), we have a set of evaluations P, where



P;; = P(t;,0;) is the task t; solved by the algorithm configuration #; according
to a performance metric, e.g. accuracy or recall. The evaluations P refer to meta-
instances, which are described through meta-features with the properties of the
data enabling learning algorithms to find patterns among them, and the per-
formances obtained by the evaluated algorithms/configurations in the different
cases are the corresponding meta-targets. The meta-dataset is the set of meta-
instances. A meta-model can be induced through P using the meta-dataset to
predict or recommend a suitable algorithm configuration for a given new task. In
this context, the novelty of our proposal is to apply meta-learning to recommend
configurations of graph-based methods for similarity search.

3 A Meta-learning Approach for Proximity Graph
Parameter Recommendation

This section presents a proposal of an intelligent system to recommend suitable
configurations for proximity graphs, given a dataset, the optimization goal, and
the search properties and constraints. Our approach employs meta-learning to
induce regression meta-models able to predict the performance of query execu-
tions grounded on graph-based methods from complex data. A representative
collection of datasets and diverse configurations of graph-based methods was
applied to obtain a robust and general regression meta-model.

Gathering meta-knowledge
Datasets Graph Conﬁguratlons

For each dataset and
@ @ graph configuration Performance
H Measurement
[Characterlzatlon Meta-features
)
Preferences
Recall, Query Time, Meta-model —> ﬁ
Memory Usage
Recommendation

Fig. 3. Induction and usage of our proposed meta-learning recommender.

Meta-dataset

User

New dataset

Figure 3 summarizes the process of the proposed recommender. It illustrates
the steps of gathering meta-knowledge, inducting the meta-model, and generat-
ing the recommendations. The input is a set of datasets, a set of graph-based
methods, and a set of parameter values. For each input dataset, we do a simple
data augmentation by generating sub-datasets of smaller cardinalities and adding



them to the set of datasets. The set of graph configurations are combinations
of graph type and values for the considered parameters. For each dataset in the
set of datasets, the recommender generates meta-instances that are composed of
meta-features extracted from the dataset (Characterization) and a graph con-
figuration. The meta-dataset is generated by meta-instances that associate the
meta-features to meta-targets. A meta-target is a measure (e.g., average query
time or recall) obtained by running batteries of queries using the graph-based
method built for the dataset using the meta-instance’s construction and query
configuration values (Performance Measurement).

Then, the recommender applies a meta-learner to induce a meta-model, which
is one or more regressors trained using the meta-dataset. To obtain a recommen-
dation, a user provides a new dataset and some requirements, which include the
constraints to be satisfied (e.g., minimum recall), and the optimization goal
(e.g., query time or memory usage). The recommender establishes a set of meta-
instances simulating different parametrizations for the input dataset and infers
the corresponding performance measures (meta-targets). Finally, it ranks the
meta-instances according to the performance measure and optimization goal
and returns the top parametrization to the user. Notice that even though the
performance measurement is hardware-dependent, an induced meta-model using
meta-targets from this performance measurement should be effective for other
hardware as our recommender is based on relative performances using ranking.

3.1 Overview of a Recommender Instantiation Using
Random-Forests

This section details the main aspects of an instantiation of the proposed rec-
ommender for graph-based methods to index image datasets. For this work, we
selected the graph-based methods Brute-kNNG, NN-Descent, and NSW because
of their importance as base methods for approximate similarity search. We con-
sidered k-NN queries using the GNNS algorithm because it is efficient and flexi-
ble to improve the recall besides being applicable to all types of graphs selected.
These types of graphs have the construction parameter NN in common, which
refers to the number of neighbors each element is connected to in the graph.
The NN-Descent and the NSW also have specific construction parameters whose
impact is not as important to the methods’ performance as the impact of the
NN parameter [24]. Thus, we arbitrarily fixed these parameters values, being
p = 0.5 for the NN-Descent, and efConstruction = 100 for the NSW. Therefore,
given the user input, our proposal recommends the graph type, the construction
parameter NN, and the query parameter R.

Input Datasets. We have employed real and synthetic datasets to analyze
the behavior of each graph-based method for different configurations. The real
datasets contain features from images: Color Moments, Texture, and Color His-
togram are feature vectors extracted from 68,040 photos obtained from Corel,
with dimensionalities 9, 16 and 32, respectively; MNIST, the pixels of a collection
of 70,000 images of handwritten digits comprising 784 dimensions; and ANN-
SIFT1M, which is a collection of 1,000,000 SIFT features (128 dimensions). The



63 synthetic datasets employed were generated following a Gaussian distribution,
varying the size, the dimensionality, the number of clusters, and the distribution
standard deviation, using the Python library Scikit-learn?.

Meta-dataset. To build our meta-dataset we first performed the characteriza-
tion of each dataset. Most of the meta-features employed were based on general
(cardinality, dimensionality), statistical (sd, skewness, t_mean, var, nr_norm,
nr_outliers, median, min, range, iqrange, kurtosis, mad, maz, mean), and
information-theoretical (attr_ent, inst_to_attr) measures®. We also included the
Intrinsic Dimensionality (ID) of the datasets as it has often been employed in the
field of similarity search to measure a dataset complexity [4]. We used the Maxi-
mum Likelihood Estimation [15] to estimate the ID, and the tool PyMFE [23] to
extract the remaining measures from the datasets. Finally, the graph type and
its configuration were also employed as meta-features.

The average query time and recall obtained by each configuration of
each graph-based method were used as meta-targets in the meta-dataset.
The performance measurement was performed using implementations in the
C++ library NMSLib (Non-Metric Space Library) [6]. The queries employ
the Euclidean distance (L2). We used a superset of the results of the exper-
iments carried on a previous work, which includes executions for combina-
tions of the parameters NN € {5,10,25,40,55,70,100,130,150} and R €
{1, 5,10, 20,40, 80,120, 160, 200, 240}. For additional details on the experiment
settings, refer to [24].

Meta-model. We used the implementation for Random Forest on Scikit-learn
(with the following parameters: n_estimators = 100, criterion = “mse”,
and min_samples_split = 2), to induce the meta-models, and a 5-fold Cross-
Validation strategy to validate them. We selected the RF for its great prediction
performance, reported in several recent works [9,11], simple parameterization [7],
and capacity to evaluate feature importance. The recommender is composed by
two Random Forests; one induced to predict the recall of a k-NN query using a
specific graph configuration over a dataset, and the other to predict the query
time. The recall is employed to filter the configurations that satisfy the user
constraint about the minimum acceptable result quality while the query time
is used for ranking the configurations according to the provided optimization
(memory or query time).

4 Experimental Results

4.1 Analysis of Meta-feature Importance

Here we present an analysis of the importance rate of each meta-feature to
predict the meta-target. These rates were measured by the meta-models per-
forming a 5-fold cross validation over the meta-dataset. Results are presented in

2 https://scikit-learn.org/.
3 A detailed description of the general, statistical and information-theoretical meta-
features is available in https://pymfe.readthedocs.io/en/latest/api.html.
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Fig. 4. The importance rate of each meta-feature per meta-target and category: (a)
graph configurations, (b) general and info-theoretical, and (c) statistical.

Fig. 4. Overall, for both meta-targets evaluated, the most relevant meta-features
were the construction parameter NN, the search parameters R and k and, the
graph type. Nonetheless, other features also contribute to the prediction. In the
meta-models, for each tree split from a set of descriptors, all the following splits
depend on the graph type and its parameters, as these are the meta-features
that refine and determine the final behavior of the proximity graph over a given
set of dataset descriptors. Regarding recall, we can observe that the most rele-
vant meta-feature is the construction parameter NN. This is implied by the fact
that the more edges a graph has, the better its query recall rate is. Similarly,
for query time, we have the query parameter R as the most important meta-
feature as the higher the number of restarts R is, the longer the query execution
time is, and vice-versa. Moreover, the high importance rate of the ID measure
for recall analysis is an interesting result. Excluding the graph configuration
meta-features, the ID had the highest rate, thus, the embedding dimensionality
showed no relevance in this case.

4.2 Prediction Accuracy of the Meta-models

Subsequently, we present our results on the prediction accuracy of the meta-
models regarding the real datasets used in this work. The synthetic datasets
were added to the meta-database to provide a wider diversity of dataset char-
acteristics. We evaluated our approach by using three different strategies: i)
generic meta-model (GMM) — all meta-instances of our meta-dataset regarding
all datasets were used for meta-training, except for the meta-instances regarding
the goal dataset, which was used for meta-testing; ii) tuned meta-model using
grid search (TMM-GS) — all meta-instances of our meta-dataset regarding all
datasets (except for the ones regarding the goal dataset) plus meta-instances
generated by the grid search performed over the goal dataset were used for

10



Table 1. Relative performances of the generic and tuned meta-models.

Goal Dataset| GMM TMM-GS TMM-S

Recall Query Time |Recall Query Time |Recall Query Time
r? RMSE|r2 RMSE r2 RMSE 12 RMSE|r2  |RMSEr?2 |RMSE
Histogram |0.350(0.135 |0.980/0.249 |0.605/0.130 |0.961|0.338 |0.996/0.012 |0.998|0.068

MNIST 0.765/0.111 ]0.694/1.097 [0.617/0.173 0.920|0.559 |0.997/0.014 |0.998/0.068
Moments 0.955|0.034 ]0.989/0.179 |0.973/0.031 0.979|0.241 |0.991/0.019 |0.998/0.065
SIFT 0.807/0.132 |0.932|0.524 |0.568|0.247 |0.803/0.932 |0.983/0.049 |0.984/0.260
Texture 0.978/0.024 ]0.962/0.344 [0.990/0.022 0.951|0.378 |0.996/0.012 |0.998/0.058

meta-training and the goal dataset was used for testing; and iii) tuned meta-
model using subsets (TMM-S) — meta-instances of our meta-dataset regard-
ing all synthetic datasets (except for the ones regarding the goal dataset) plus
meta-instances of subsets of the real datasets were used for meta-training, the
remaining meta-instances were used for meta-testing. The first strategy simu-
lates generating a recommendation for an unseen input dataset; the second one
simulates a fine tuning of the meta-models by increasing the meta-dataset with
meta-instances generated by a grid search with a limited parameter space; and
lastly, the third one simulates a scenario in which the meta-model already knows
datasets with similar properties to the input dataset.

Table 1 presents the relative performance achieved by each induced meta-
model considering two evaluation metrics: the Coefficient of Determination (r?)
and the Root Mean Squared Error (RMSE). Both measure the predicted values
by meta-models against true values (reached by the graph-based methods). Good
fits for these metrics are, respectively, high and low values. From the results, we
can observe that the strategy using the generic meta-models (GMM) reached
good scores for query time and fair scores for recall for most of the datasets.
This is because meta-features were more supplementary for query time than for
recall. For TMM-GS, it was expected a small improvement compared to the
GMM. Although in the most cases the performance was relatively similar, at
final recommendation the TMM-GS outperformed GMM (further details in the
next section). On the other hand, the most tuned meta-model TMM-S achieved
high scores for both recall and query time. Therefore, by investing some effort
to generate meta-instances of the goal dataset, the user can achieve a superior
recommendation.

4.3 Effectiveness of the Recommendation

Lastly, we discuss the effectiveness of the recommendation provided by our
approaches compared to a Grid Search (GS). We emulated a grid search using
the subset of entries in the meta-dataset such that NN = {1, 25, 70, 150} and R
={1, 10, 40, 120}. These were the same parameters used to evaluate the TMM-
GS. In this analysis, we set the constraint of achieving a minimum average recall
of 0.90 and evaluated two optimization criteria: (a) the shortest query time, and

11



(b) the lowest memory usage. Figure 5 presents the recommendations provided
by the differents strategies according to each criteria. The figures (a)—(c), refer to
memory optimization, and the figures (d)—(f) refer to query time optimization.

Figure 5(a) and (d) show recommendations for subsets of Color Histogram,
and Fig. 5(b) and (e) of Color Moments. For memory optimization, the GMM
overcame the GS in all cases, reaching the optimal most times. For query time
optimization, the GMM performed worse than GS around i of the times, where
one of them was a wrong recommendation. We consider a wrong recommendation
when the method fails to satisfy the recall constraint due to a poor prediction.
In these cases, the NN or the query time provided by the meta-models may be
smaller than the optimal values (e.g., Fig. 5(e) for 8k instances).
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Fig. 5. Comparison of the recommendations provided by the methods.

Figure 5(c) and Fig. 5(f) show recommendations for the complete datasets
provided by all the methods, including the meta-models TMM-GS and TMM-S.
Overall, the TMM-GS outperformed the GMM, and the TMM-S was the best
strategy, consistently reaching the optimal. For the datasets Color Moments,
Texture and Color Histogram, our meta-models were more effective than the
GS. However, for the datasets MNIST and SIFT, which are the most complex
datasets used in this work due to their high dimensionality, the GMM and the
TMM-GS provided wrong recommendations while the TMM-S achieved optimal
results.

To better understand how much the strategies provide wrong predictions, Fig.
6 shows the true recall rates with their corresponding predictions split into inter-
vals. In Fig. 6(a), we can observe that the GMM is able to provide predictions
very close to the true values for most of the tested cases, however, it falls short
for SIFT (Fig. 6(b)). Nevertheless, Fig. 6(c) presents the performance reached
by the TMM-S where there was a huge improvement. Such a behavior not only
reinforces the need of continuously enhancing the meta-dataset to improve the
model generalization, but also highlights the power of our tuning proposal.
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Fig. 6. Accuracy of the predictions of the meta-models per recall interval.

5 Conclusion and Further Research

In this paper, we proposed an intelligent approach capable of recommending a
graph-based method and its configurations to perform similarity searches. The
main idea consists in using meta-learning techniques to estimate the relative per-
formance of different graph configurations for the given dataset to select the most
suitable one. We presented an Instantiation of our approach for image databases
using Random Forests. We also evaluated three variations of this instantiation,
GMM, TMM-GS and TMM-S, and compared them to a standard grid search.

Our results showed that, for many situations, the generic approach GMM
tied or outperformed the grid search, without requiring the user to execute per-
formance measures on the goal dataset. However, it failed to provide valid recom-
mendations for the most complex datasets tested. The tuned approach TMM-GS
improved over GMM, nevertheless, it still provided a few invalid recommenda-
tions. On the other hand, the approach tuned with subsets, TMM-S, approached
the optimal results, but it is an expensive approach though.

For future works, we intend to generate other instances of our approach
with richer meta-databases, exploring more meta-features to describe the input
datasets and including other meta-targets, such as construction time and real
memory usage to store the structure.
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