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Abstract—The design of charging strategies for lithium-ion
(Li-ion) batteries depends on the application. In electric vehicle
applications, high charging speed and long battery life are
essential requirements. However, with the advent of vehicle-to-
grid (V2G) and potential remuneration for electric grid support,
maximum user profit could gain increasing interest through effi-
cient operation that also optimizes battery health. Conventional
constant-current constant voltage (CCCV) and constant-power
constant-voltage (CPCV) charging strategies do not include the
optimum efficiency of the battery and charging stations. In this
paper, a charging strategy is introduced aiming at maximizing
the instantaneous efficiency (ηmax) of the Li-ion battery and
the charging station which minimizes the energy waste. For
this purpose, 18650 Li-ion cells and a dual-active-bridge (DAB)
converter are considered in the simulations and experimental
validations. The results show that the ηmax-charging strategy
outperforms conventional CCCV and CPCV charging strategies
in terms of efficiency and material-lifetime compatibility.

Index Terms—Lithium-Ion Battery, Charging Strategy, DAB
Converter, Maximum Efficiency, Vehicle to Grid (V2G)

I. INTRODUCTION

The growth of the number of electric vehicles (EVs) not
only introduces new challenges on the electrical grid but also
brings some advantages and possibilities to stabilize the grid
under the significant variability of the energy demand and
production [1]. One of the advantages is to utilize EV batteries
as distributed energy storage with the so called ancillary
services where, in some situations, the profit of the consumer
is the priority [2]. Therefore, new battery systems including
power electronic converter and battery pack shall be developed
targeting the aforementioned objectives.

From the hardware point of view, building blocks of bat-
tery systems (i.e. power semiconductors and battery cells)
require different thermal operating conditions and using the
same package challenges the design of battery packs [3].
Nonetheless, battery current can be controlled to a pre-defined
reference overtime (or different state of charges, SOCs) using
suitable control software which is mainly referred as charging
strategy or charging protocol [4].

The existing charging strategies are mainly developed con-
sidering cell performance improvements. Since a battery is a
complex system of chemo-physical phenomena, its charging
strategy can be impacted by multiple factors such as:

• Cell stack shape [5]
• Material composition of electrodes, separator, and elec-

trolyte [6],
• Electro-thermal quantities [7], [8]
• Battery manufacturing processes [9]
• Mechanical stresses [10], [11]

These are the motivations for many of existing charging
strategies [12] which lead to a gradual improvement in battery
lifetime. The direct impact of charging strategy on the lithium
ion batteries is very well identified in the literature [13].
However, a battery system is made of numerous cells and
power electronic converters and it is not clear that if such
charging strategies could lead to an optimum performance
for battery systems. Charging strategies for battery packs
comprising of multiple cells also might be different from that
of a single cell [14], [15]. These studies do not consider power
losses of fast charging stations which influences the overall
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Fig. 1. Charge strategies of Li-ion Batteries: (a) CCCV [16], (b) CPCV [17], (c) Multistep CCCV [18], (d) Pulse charging [19], (e) Boost Charging [20], (f)
universal voltage protocol (UVP) [21], (g) Constant temperature constant voltage (CTCV) [22] , (h) AC-ripple charging [23], (i) constant incremental capacity
dQ/dV [24], (j) MPC [25], (k) six-step 10-minute (6S-10M) charging strategy based on machine learning [26], and (l) proposed ηmax.

efficiency of the system.

Power electronic converters are different for grid integration
of EV charging station. Type of the upstream grid, AC or
DC could also impact on the power electronic converter
topology [27], [28]. State-of-the-art charging strategies are
rarely designed for maximizing the profit by minimizing the
energy losses [16]. Round-trip efficiency of the Li-ion battery
storage system and its interface power electronic converters
for grid applications are studied in [29]. Authors of [30]
have optimized the round-trip efficiency of a 50 kW charging
station. A similar study on an unidirectional on-board EV
charger reveals the possibility to save more than 40% energy
losses in entire 12kWh battery and 3.3 kW power converter
system [31]. However, the power converters are based on the
full-bridge topology and cannot be used in V2G applications
where power flow is bidirectional. In [32], charger losses are
added to the battery losses aiming at minimizing the total
losses using a dynamic programming algorithm. However,
a commercial DC source is utilized as the charger where
the topology of the converter and operational details are not
provided. Therefore, the applicability of the results for V2G
application remains questionable. Results of a study on the
system level energy losses analysis in [33] shows that the
total energy losses could be decreased if adaptive charging
current is selected in an optimization process. Nonetheless, the
charging current evolution is not sufficiently elaborated versus
the state of charge (SOC) as an index of material compatibility
for fast charging strategies. Therefore, the existing gap in the
energy efficient charging strategies shall be addressed.

This paper proposes ηmax-charging strategy for V2G ap-
plications where EVs are directly interfaced to an LV grid
through a bidirectional dual active bridge (DAB) converter.

Comprehensive analysis is performed to identify the optimal
efficiency characteristics of the DAB Li-ion battery system.
Simulations are carried out on a 20 kW 800V DAB converter
at the interface of a 20 kWh battery pack. Simulation and
experiments’ results show that the current profile is compat-
ible with material charge limitations while the efficiency is
preserved at maximum instantaneous value and higher than
CCCV/CPCV methods.

This paper is organized in five sections. Section II gives a
brief overview of charging strategies. The proposed charging
strategy is explained in section III and experimentally vali-
dated in section IV. Conclusions are given in section V.

II. CHARGING STRATEGIES DRIVING MECHANISM

Charging strategies are implemented in a battery system
through a controller. Therefore, charging strategies have been
categorized regarding the control strategy as none-feedback-
based, feedback-based, and intelligent methods [36]. Conven-
tional charge strategies such as CCCV are usually adopted
because of the simplicity of the controller where an internal
current control loop could provide a robust operation of
the power converter [37]. In another classification, charging
strategies are regarded as passive and active methods. Usu-
ally, in passive or none-feedback-based methods, the charging
strategy is implemented based on measurable parameters, i.e.
voltage, current, and temperature. While, in active methods,
the charging strategy control reference is adapted to the status
of the battery desired states. There is a significant literature
on the charging strategies/protocols for lithium ion batteries
that it can be found in [12], [36]–[38].

A charging strategy can be designed to serve an specific
control objective. These protocols can be compared disre-
garding the type, active or passive methods. Indexes such as
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power converter hardware requirement, control and modeling
complexity, impact on the battery lifetime, usability in fast
charging, energy efficiency, and safety might be used to com-
pare these charging strategies quantitatively and qualitatively.
Table I summarizes some of the charging strategies in the
literature.

Charging strategies such as CCCV and CPCV (see Fig. 1 (a)
and (b)) are targeting simplicity both in control and modeling
and therefore a minimal hardware requirements owing to
constant or nearly constant current profile over the power
semiconductors. To establish a meaningful comparison, CCCV
and CPCV are considered as the reference and other methods
are qualitatively compared. Lifetime, speed, efficiency, and
safety are set to ”0” for CCCV and CPCV methods.

Multi-step charging strategy applies an staircase decreasing
overtime as shown in Fig. 1 (c) and therefore high charging
speeds can be achieved [18]. Since a high amount of current
is applied to the cell in a short time, the safety and lifetime
of the cell degrades in comparison to CCCV. Moreover, the
charging station requires switches with higher current ratings.

Pulse charging is based on considering a rest time for
batteries after a time interval of charging with a constant
current [19], [34]. Pulse charging is shown in Fig. 1 (d).
The main drawback is hardware implementation, control and
modeling, while it can improves the battery cell lifetime and
better safety indices due to controlled temperature during the
rest time.

Constant temperature constant voltage (CTCV) charging
strategy, depicted in Fig. 1 (g), has been enabled through
a classical proportional-integral-derivative (PID) controller in
[22]. 20% faster charging speed in comparison to CCCV can
be guaranteed utilizing this method. Since the temperature of
battery cells are directly controlled, high level of safety is
expected.

AC current ripple charging strategies, shown in Fig. 1 (h),
deal with the variable impedance of the battery [23], [35]. The
hypothesis is to apply an AC content to current to charge the
battery at the minimum impedance resulting in the minimum
energy losses. In one hand, the methodology leads to increased
complexity in the hardware of the power converter. On other

hand, the positive impact of this kind of charge strategies is
not strongly verified [39].

A group of charging strategies formulate the charge process
as an optimization problem and try to minimize the impacts
from side reactions while tying to increase the speed of charge
[25], [40]–[43]. Optimal control techniques such as model
predictive control (MPC) and electrochemical models such as
single particle model are dominating in these methods. Main
advantage is to directly act on the lifetime indicators of the
batteries at electrochemical level. An example charging profile
is illustrated in Fig. 1 (j).

Machine learning tools simplify the control and modeling at
the cost of increased need for data and data analysis. Machine
learning tools can be included in all the aforementioned
charging strategies to boost their performance. For example,
machine learning is applied to multi-step charging strategies
resulting in significant performance improvement, in particular
for fast charging purposes in [26]. A 6-step charging strategy
has been developed which is able to charge the cell to 80%
SOC in 10-minute (6S-10M). Beside all the advantages, it
needs higher computational effort for training or to connected
to database and consequently higher hardware requirement.
Due to high speed, i.e. high current level at near zero SOC, the
semiconductor current is overrated in comparison to a normal
CCCV method.

There is a tremendous literature on charging strategies each
targeting an objective which can be studied an compared,
similarly. Table I summarizes a comparison including some
other strategies such as boost charging [20], universal voltage
profile (UVP) [21], and constant incremental capacity dQ/dV
[24] which are shown in Fig. 1 (e), (f), and (i), respectively.

The development of charging strategies capable of con-
trolling electrochemistry of batteries optimally enables highly
reliable and safe batteries at the cost of increased cost of mod-
eling and control complexity while the interfacing hardware
converter does not need significant modification [44], [45]. The
capacity of active materials for absorbing charge decreases at
high current densities which imposes an operation restriction
for batteries [46]. Most of the charging strategies, shown in
Fig. 1, fail their compatibility to material physical limits in

TABLE I
QUALITATIVE COMPARISON OF THE WELL-KNOWN CHARGING STRATEGIES.

Index Reference Method Converter Control Modeling Lifetime Speed Efficiency Safety
a [16] CCCV ++ + ++ 0 0 0 0
b [17] CPCV ++ + ++ 0 0 0 0
c [18] Multistep CCCV + + + −− ++ + −−
d [19], [34] Pule Charging −− − −− ++ ++ + +
e [20] Boost Charging + + 0 + ++ + +
f [21] UVP ++ ++ + + + + +
g [22] CTCV ++ + ++ 0 + + ++
h [23], [35] AC-ripple Charging −− −− − − 0 0 −
i [24] Constant dQ/dV ++ 0 0 + ++ + +
j [25] MPC (Optimal Control) − 0 −− + 0 + +
k [26] Machine Learning −− + − 0 ++ + −
l This paper Proposed ηmax ++ ++ + + + + +

3



MFT
V
DC i,

V
DC o,

1

n

0R

R

R

1

n

C

C

voc

Fig. 2. Battery system consisting of a DC fast charger (DAB converter) and a battery pack composed of serial and parallel connected cells.

handling the current density. Thereby, this paper elaborates
a charge strategy which improves the efficiency performance
of the cell without increased complexity in the control and
modeling and hardware requirements.

III. PROPOSED ηmax-CHARGING STRATEGY

This section describes ηmax-charging strategy where the in-
stantaneous efficiency of the system including DAB converter
and battery pack is minimized at each SOC. For this reason,
a comprehensive losses estimation of both components is also
analysed. Fig. 2 shows the battery system under study.

A. DAB Converter Losses

DAB converter losses can be split into semiconductor
and transformer losses. The former comprise conduction and
switching losses while the latter include both windings and
magnetic core losses.

Power losses of the semiconductors can be averaged over the
fundamental operating frequency of a power converter [47]–
[49]. In DAB, fundamental operating frequency is equal to
the switching frequency, fsw, of the semiconductors. In this
work, parasitic parameter losses such as the output capacitance
COSS is neglected from the calculations as the switching
frequencies is low, i.e. 20 kHz. The conduction losses of a
single semiconductor device can be computed as [48]:

Pcond = fsw

∫ 1

fsw
0

vON

(
iD(ξ), Tj

)
· iD(ξ) dξ (1)

where iD is the current through the device, vON is the
voltage of the semiconductor during the conduction, and Tj is
the junction temperature of the semiconductor.

Switching losses calculation strongly depends on other
nearby parasitic elements. Switching losses in the DAB pri-
mary side H-Bridge can be disregarded if soft-switching
operations are achieved. On the other hand, when voltage
changes during the battery pack’s charge/discharge cycle,
operating points for the secondary side can be found outside
the soft-switching range. A relatively accurate estimation of
the switching losses can be written as follows [49]:

Psw ≈
(
Eon

(
VDC , iD, Tj

)
+ Eoff

(
VDC , iD, Tj

))
fsw (2)

where Eon and Eoff are switching energy losses during on
and off commutation and VDC is the voltage stress over the
semiconductor in off state.

Medium frequency transformers (MFTs), if optimally de-
signed, might dissipate approximately 0.5% of the overall
converter losses. Neglecting the parasitic parameter losses,
copper and core losses can be used for estimating its efficiency.
Due to the behavior of high frequency waveforms, copper
losses are calculated using the well-known Dowell’s equation,
which takes into account the proximity and skin effect in the
transformer windings. In particular, the total copper losses
PCu,loss can be computed as:

PCu,loss = I2RMS ·
(
Rac,p +Rac,s · n2

T

)
(3)

where IRMS is the transformer RMS current for each
specific operating point, Rac,p and Rac,s are the primary and
secondary transformer AC resistance, respectively, and nT is
the transformer ratio.

The so-called AC resistance factor is used to determine the
primary and secondary winding resistances [50], which can be
computed as:

FRx
= Rac,x/Rdc,x =

= A

(
sinh(2A) + sin(2A)

cosh(2A)− cos(2A)
+

+

[
2(N2

x − 1)

3

]
sinh(A) + sin(A)

cosh(A)− cos(A)

) (4)

where A = df/δ is the winding conductor thickness
normalised with respect to the conductor skin depth, Nx is
the number of winding layers and Rdc,x is the DC winding
resistance where x denotes the primary or secondary winding.

The magnetic flux density within the transformer core and
the core materials affect core losses. Due to the non-sinusoidal
nature of the primary and secondary voltages, as well as
the flux density, it is necessary to compute losses using the
Improved Generalized Steinmetz Equation (iGSE) [51] rather
than the original Steinmetz Equation (OSE). If the trapezoidal
waveform of the flux density B(t) for single-phase shift (SPS)
modulation is considered, its maximum value decreases as the
phase shift increases and its derivative cancels at the instants
where the voltages have opposite values as described in
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Fig. 3. Representation of ηmax, CCV and CPCV strategies in discharging process of the battery system: (a) battery system efficiency map showing the
existence of the optimum point, (b) comparing the efficiency results at different voltages (SOCs), and (c) current and voltage profile at battery pack terminals.

[52]. Considering the soft ferrite magnetic material properties
considered in this work, the core losses are calculated as:

PCore,loss =
ki
π
(2Bm)β−α

(
VDC,i

2NAc

)α

·

[φ|d− 1|α + (π − φ)(d+ 1)α]

(5)

where Ac is the cross section area of the core column, Vi

the input voltage, N is the primary winding turns number,
d = nTVDC,o/VDC,i is the dc conversion ratio and φ the
phase-shift angle. The constant parameters ki, α and β are
obtained by the core material datasheet.

B. Battery Losses

Typically, battery losses can be split in different contribu-
tions such as ohmic, reversible and irreversible reaction losses.
Different dynamic cell models with different complexity and
accuracy have been used and published [53], [54]. However,
circuit-oriented models, in addition to mathematical and elec-
trochemical ones, have high potential in terms of accuracy,
parametrization and usefulness. The terminal behavior of the
battery can be described by a series of RC-pairs where the
power losses can be estimated by internal resistance values
and current measurements. In this work, a model with three
RC cells in series with an inductance and a resistance are
used as suggested in [55]. Parameters estimation techniques
are applied to derive the RC time constant values dynami-
cally. Therefore, battery losses is directly calculated from the
estimated parameters.

The battery losses are calculated by adding the Joule’s losses
as follows:

Pbat,loss = Pcell,loss ·Ntot = Rbat,eq · i2o =

=
3∑

j=0

Rj ·
Nsc

Nps
· i2o

(6)

where Rj is the j-th resistive element, io is the total battery
current, Nsc is the number of series cells, Nps is the number
of parallel strings, Rbat,eq is the equivalent battery pack
resistance and Ntot = Nsc ·Nps is the total number of cells.

Temperature, SOC and C-rate are the main parameters that
cause internal battery pack resistance. For this reason, a good

estimation method for battery resistance during operations is
mandatory in order to estimate power losses. In this work, the
existence of an internal management system typically called
the Battery Management System (BMS) is assumed which,
in addition to providing the battery SOC, also estimates its
internal impedance during the operation. Several techniques
can be used for online estimation of the internal battery
impedance as a function of temperature and SOC [56]–[58].

C. ηmax-Charging Strategy Implementation

The analysis given in this paper is valid for a DAB con-
verter configuration constructed from the results of a design
optimization process. In a DAB converter with power design
optimization, the power losses could be significant both in
power semiconductors or MFT. Therefore, as an initial step,
a design optimization is carried out to achieve an optimum
combination of the semiconductors and magnetic components.

To evaluate the converter and battery system energy effi-
ciency, the converter voltage at battery side is varied from 600
to 800 V and the battery current from 0 to the rated power of
the converter. Total calculated efficiency of the DAB converter
and a 20 kWh battery are shown in Fig. 3 (a). As it can be
seen from figure, for each voltage level (i.e. SoC) there is a
unique optimum point and, since the behavior is convex, the
optimum point can be tracked using a local search algorithm.

The optimum points respectively determine the ηmax-
charging strategy control commands as in Fig. 3 (b). The
charging strategy is the result of a compromise between
converter losses and the battery losses. Utilizing this charge
strategy in a DAB converter with high losses might push the
battery system toward higher losses and negatively impact on
the battery lifetime.
ηmax-charge strategy presents superior performance in term

of energy losses in a full cycle charging in comparison to
CCCV and CPCV charging strategies. Moreover, the achieved
current profile, Fig. 3 (c), is inline with the material physical
limits as a function of SOC therefore extended lifetime is also
expected.

The implementation of ηmax-charging strategy is straight-
forward. Fig. 4 illustrates the implementation of the proposed
ηmax-charge strategy in the DAB converter controller. The
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(a) (b) (c)
Fig. 5. Experiment results for ηmax, CCCV and CPCV charging strategies in discharging process of the battery system: (a) DAB converter photograph of
the 800 V 10 kW DAB Converter unit, (b) Measured efficiencies, and (c) single-cell current and voltage charging profiles.

efficiency of the DAB converter can be measured directly from
the measured DC voltage and currents from grid and battery
side. The efficiency of the battery pack can be estimated from
the the parameters delivered by battery management system
(BMS). A simple proportional integral (PI) controller is used to
control the current or voltage to a reference set point which as
routine in the field of power electronics. The outer loop which
is responsible for the maximum efficiency tracking is much
more slower than the inner current control loop. Therefore,
computationally efficient maximum efficiency tracking points
can be easily implemented. The details of the algorithm used
in this paper is the topic of the next publication related to this
project.

IV. EXPERIMENTAL VERIFICATION

To correctly validate the proposed method a DAB converter
is build using optimum solutions and presented analysis in
the previous section. Moreover, the operation of the converter
tuned to achieve soft switching during the commutation of the
SiC power semiconductors. The implemented DAB converter
ensures the correctness of the experiments as it is expected
from the analytical analysis. A 10 kW DAB converter is
realized which can be scaled to high powers by paralleling
sufficient number of 10 kW units. A photograph of the built
DAB converter is depicted in Fig. 5 (a). To simplify the test
procedure and save time, two 10kW bidirectional DC sources
(EA-PSB 9750-40 3U), are used to emulate the behavior of the

grid and also the battery. The efficiency of the converter can be
easily measured by a power analyzer form the DC ports. Power
analyzer YOKGAWA WT1800 is used in the experiments of
this paper. Battery cell tester, Biologic VSP3e is utilized for
characterizing 18650 cells. The internal loop current controller
and the outer loop maximum efficiency tracking algorithm
are implemented in the dSPACE SCALEXO environment.
Switching frequency of the converter is 20kHz and physical
RC filters are used to cancel the measurement noises at the
input of the dSPACE ADCs.

The starting point for the experiments is the battery em-
ulation. Dynamic stress tests are performed to validate the
equivalent circuit parameters of the battery. Considering that
a lithium ion terminal voltage varies from 2.6 to 4.2 V from
0 to 100% SOC, the battery pack voltage will vary between
500 to 800 V where 191 cell are connected in series. The
dynamics of battery is emulated using a bidirectional source
so both charging and discharging modes can be studied. Input
voltage of the converter was fixed at 800 V and the secondary
side to the battery pack emulators. Therefore the converter
and battery efficiencies can be experimentally measured at
different discrete SOCs or over a continuous variation of
voltage profile.

Fig. 5 (b) shows the measured efficiencies of the DAB
converter and battery pack at 5 different SOCs, i.e. battery
pack voltage set VS ∈ {600V, 650V, 700V, 750V, 800V }. This
figure demonstrates that the proposed method is able to
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maintain the highest efficiency for the converter in comparison
to CCCV and CPCV methods. In particular when the battery
is at very low or very high SOCs, the proposed ηmax-charging
strategy shows superior performance as expected from the
numerical simulations. Fig. 5 (c) shows the current and voltage
profiles for a single cell inside the battery pack. The current
profile decreases monotonously as the battery SOC increase
and vice versa. This behavior is similar to multistep charging
strategies suitable for fast charging stations. Therefore, it can
be concluded that the proposed method is materiel compatible
and not only can be used for V2G application but also for fast
charging purposes. The obtained experimental results confirm
the correctness of the conducted numerical studies in previous
section. ηmax-charging strategy saves more than 1% losses,
particularly at very high and low SOCs in comparison to
CCCV and CPCV charging strategies which is a significant
improvement.

V. CONCLUSION

The Li-ion battery voltage is a function of SOC and impacts
the efficiency of the power electronics converters. Thereby,
a charging strategy based on the instantaneous maximum
efficiency of dual-active-bridge (DAB) converter and battery
(ηmax) is proposed in this paper to minimize energy waste,
particularly in V2G applications. Preliminary simulation and
experiment results show that ηmax-charging strategy saves
more than 1% power losses in comparison to CCCV and
CPCV charging strategy in a charge/discharge of the battery.
Moreover, the current profile imposes less stress on the mate-
rial by modifying the current density as a function of SOC.
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