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1 Augustin Cauchy and Joseph Liouville

In 1844, in a concise communication published in the C. R. Acad. Sci., Paris, Augustin Cauchy unveiled the
original version of what we now recognize as the Liouville theorem concerning bounded analytic functions.
Within this work, Cauchy proposed that any entire function of a single complex variable, bounded throughout
its entire domain, it is necessarily constant. This publication marks the initial introduction of the theorem later
attributed to Liouville (Jesper Lutzen, Joseph Liouville 1809–1882: Master of Pure and Applied Mathematics,
Studies in the History of Mathematics 15 1990, Springer) as recorded in (C. R. Acad. Sci. Paris, 19 1377–1384
(1844)). It emphasizes the fundamental claim that any bounded entire function of a single complex variable is
constant. The narrative surrounding Joseph Liouville’s involvement in this theorem is both intriguing and
complex, warranting a more indepth examination.

A few weeks before the Cauchy note appeared, Liouville announced to the academy his first results for
doubly periodic functions, for which he is justly famous (C. R. Acad. Sci. Paris, 19 1262 (1844)). This announce-
ment includes, without proof, a weak version of the Cauchy theorem, namely the statement that a doubly
periodic holomorphic function must be constant. Cauchy was entirely aware of the relation of his result to that
of Liouville, as he writes (C. R. Acad. Sci. Paris, 19 1379 (1844)), If one considers separately the case of doubly
periodic functions, one recovers the special theorem regarded with reason, by one of our honorable associates,
as particularly applicable to the theory of elliptic functions. Three years later, Liouville gave a series of informal
lectures on his theory for F. Joachimsthal and C. W. Borchardt; these lectures, containing the previously cited
weak version of the Cauchy result, but with no reference to Cauchy, were transcribed and edited by Borchardt
and (much later) published in J. Reine Angew. Math., 88 277–310 (1880). This is the complete published record
of the Liouville work, except for the first announcement and one later note (see below), but it is surprising that
it does not contain Liouville own proof, but instead an alternate discussion due to Borchardt. In 1851, Cauchy
again wrote explicitly that his work of 1844, “furnished the fundamental principle invoked by Joseph Liouville
for doubly- periodic functions” and went on to restate his result of 1844 (see C. R. Acad. Sci. Paris, 32 452–454
(1851); Ouvres completes,tome XI, 373–376).
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At about the same time, Liouville gave a well-prepared course of lectures at College de France on doubly
periodic functions, which contained a relatively simple proof of his doubly periodic theorem, but did not cite
Cauchy’s contribution again. Liouville was clearly much concerned with what he considered his priority to the
doubly- periodic result, indeed in J. Math. Pures Appl., 20, 201–208 he republished his 1844 remarks together
with a later comment of 1851 containing much the same material; indeed, he even went on to refer explicitly to
his lectures at the College de France in the second semester of the year 1850–1851. This degree of concern
almost certainly stems from the remarkable fact that near the end of his mathematical notebook for the year
1844 he had written the following “Remarque d’analyse”:

Soit f(z) une fonction bien determinee de z. Si le module de f(z) ne depasse jamais M, on a f(z) = Constante.
It is clear that he comprehended the function f z( ) that was given on the entire complex plane, which is clearly
the general result! The proof sketch is limited to one line and is only tentative. From internal evidence, it seems
highly likely that these words were written prior to the announcement of 1844. Liouville then devoted his
effort to finding a proof of the doubly periodic result, and, upon finding a (difficult) demonstration, he reported
this (but only this) result to the academy. He never afterwards referred to the Remarque. Liouville saw the
utility and centrality of the doubly periodic theorem for elliptic function theory, but in his preoccupation with
this he missed the elegance and beauty of the main result. Cauchy, like all subsequent writers, understood its
importance immediately. Liouville was clearly saddened by the outcome and did not mention Cauchy’s
theorem. Despite the irony, Liouville’s name is still associated with the theorem.

2 The classical Liouville theorem

Theorem 2.1. Let ≥u 0 be a harmonic function on RN , i.e.

=u in RΔ 0 .N

Then

≡u in Rconst. .N

In 2006, a notably straightforward proof [6], possibly already familiar to many, was devised for this significant
result. The proof relies on a lemma, presented herein, which appears to hold intrinsic interest on its own
merits.

Lemma 2.2. Let ∈u L RN
loc

1 ( ), ≥u 0 a.e. on RN . Define for ∈x R ,N

∫≔u x
B x

u y y
1

d .R
R

B xR

( )
∣ ( )∣

( )

( )

(2.1)

Then,

≔ = ∈ +∞
→+∞

l x u xliminf 0,
R

R( ) ( ) ℓ [ ] (2.2)

and

≔ = ∈ +∞
→+∞

L x u x Llimsup 0,

R
R( ) ( ) [ ] (2.3)

are independent of ∈x RN .

Proof. Let ∈x y R, N be such that < − =x y δ0 ∣ ∣ . Since ≥u 0 a.e. on RN , we have

≤ ⎛
⎝

+ ⎞
⎠ +u x

R δ

R
u yR

N

R δ( ) ( )
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and then

≤l x l y .( ) ( )

Changing the role of x and y, it follows that ≤l y l x( ) ( ). Thus, =l x l y .( ) ( ) Similarly =L x L y( ) ( ). □

Theorem 2.3. Let ∈u L RN
loc

1 ( ) be a nonnegative and superharmonic function on RN , i.e., ≥u 0 a.e. on RN and for
any >R 0,

≥ ∈u x u x a.e. x R .R
N( ) ( ) (2.4)

Then,

=
→+∞ ∈

u x u xlim essinf .
R

R
x RN

( ) ( ) (2.5)

If equality holds in (2.4), that is, u is harmonic, then u is constant a.e. in RN .

Proof. We have
≥ ≥

∈
u x u x u xessinf ,R

x RN
( ) ( ) ( ) (2.6)

and from the above lemma we deduce

≥ ≥ ≥
∈

u x L l u xessinf .
x RN

( ) ( ) (2.7)

This completes the proof. □

Theorem 2.4. Let u be a harmonic function on RN , i.e.,

=u in RΔ 0 .N

If for some ≥p 1 we have

∫ ∇ →
B

u y y
1

0
d 0

R
B

p

0R

∣ ( )∣
∣ ( )∣

( )

as → ∞R , then

≡u in Rconst. .N

Proof. Since u is harmonic it follows that for every =i n1 … , ∂
∂

u

xi
is harmonic too. Thus, applying the Hölder

inequality to the identity

∫∂
∂

=
∂
∂

u

x B x

u

x
y y

1
d ,

i R
B x

i
R

∣ ( )∣
( )

( )

(2.8)

we obtain

∫∇ ≤ ∇ →u x
B x

u y y
1

d 0,p

R
B x

p

R

∣ ( )∣
∣ ( )∣

∣ ( )∣

( )

and the claim follows from Lemma (2.2).
Note that by following the same idea we have that.

Theorem 2.5. Let u be a harmonic function on RN , i.e.,

=u in RΔ 0 .N

If for some ≥p 1 we have

∫ →
B

u y y
1

0
d 0,

R
B

p

0R

∣ ( )∣
∣ ( )∣

( )
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as → ∞R , then

≡u in R0 .N

Once again this follows from

∫=u x
B x

u y y
1

d .
R

B xR

( )
∣ ( )∣

( )

( )

Indeed by Hölder’s inequality, we obtain

∫≤u x
B x

u y y
1

d ,p

R
B x

p

R

∣ ( )∣
∣ ( )∣

∣ ( )∣

( )

and the claim follows as above. □

Summarizing,

Theorem 2.6. Let ≤ < ∞p1 . If u is harmonic and

∈ ∇ ∈u L or u LR R ,p N p N( ) ∣ ∣ ( )

then we have, respectively,
(i) ≡u in R0 ,N

(ii) ≡u const. in R .N

In the case = +∞p , we have, respectively,
(i) ≡u const. in R ,N

(ii) = +u x a x b,( ) ( ) for some ∈a RN and ∈b R.

3 A generalized form of the classical Liouville theorem

Theorem 3.1. Let u be a harmonic function on RN , i.e.,

=u in RΔ 0 .N

If

≥
→+∞

u x

x
liminf 0,

x

( )

∣ ∣∣ ∣

then

≡u in Rconst. .N

The proof can be easily obtained from the characterization of the harmonic functions, i.e.,

∫=u x
B x

u y y
1

d .
R

B xR

( )
∣ ( )∣

( )

( )

(3.1)

Several generalizations of the above results (in a very general context) are contained in the book [5].
For further results in a more general context than sub-Riemannian, as well as for stationary and evolution

problems, refer [24–26].
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Definition 3.2. Let ⊂ RΩ N be a domain. A function ∈u C Ω2( ) is called superharmonic (subharmonic) in Ω if,

≤ ≥uΔ 0 in Ω.( ) (3.2)

Theorem 3.3. (Hadamard three circles/spheres theorem) Let = ∈ < <A x ρ x RR : .N{ ∣ ∣ } Let →u A R: be sub-
harmonic and let

→M ρ R R: , ,( )

→V ρ R R: , ,( )

be defined by

= =M r u x x Rmax :( ) { ( ) ∣ ∣ }

and

= =V r r if Nlog 2,( )

= >−V r r if N 2.N2( )

Then, M is a convex function of V, i.e.,

≤
−
−

+
−
−

M r M a
V b V r

V b V a
M b

V b V r

V b V a
( ) ( )

( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )

for < < < <ρ a r b R. Moreover,

= + ⇔ = +M r α βV r u x α βV x( ) ( ) ( ) (∣ ∣)

for all ∈α β R, and ∈x A.

By using an argument based on Hadamard’s three circles theorem [20],1 it is not difficult to see that.

Theorem 3.4. Let u be a nonnegative superharmonic function in R .2 Then,

=u in Rconst. .2

Note. The stated result does not hold when ≥N 3. To see this, it is enough to consider

≔ + −
u x x1 .2

N2

2( ) ( ∣ ∣ )

An analysis of the proof of the three circles theorem gives:

Theorem 3.5. (Generalized form) Let u be a superharmonic function in R .2 If

≥
→+∞

u x

x
liminf

log
0,

x

( )

∣ ∣∣ ∣

then

≡u in Rconst. .2



1 In the paper of Hadamard, there is no proof. For a detailed and interesting discussion, see Murray H. Protter, Hans F. Weinberger,
Maximum Principles in Differential Equations, Prentice-Hall, London 1967.
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4 The ring condition: recent results for higher order operators

The following results have been obtained jointly with Caristi et al. [7]. See also [14] for earlier results on
second-order degenerate elliptic operators in a more general context.

By (5), we know that if u is a superharmonic function which is bounded below, then

∫ − =
→+∞ B x

u y l ylim
1

d 0,
R R

B xR

∣ ( )∣
( ( ) )

( )

(4.1)

where = ∈l u xessinf .x R
N ( )

Of course, this implies that

∫ − =
→+∞

≤ − ≤
R

u y l yliminf
1

d 0.
R

N

R x y R2

( ( ) )

∣ ∣

(4.2)

This motivates the following,

Definition 4.1. Let ∈u L R .N
loc

1 ( ) We say that u satisfies the ring condition if there exists ∈l R such that

∫ − =
→+∞

≤ − ≤
R

u y l yliminf
1

d 0
R

N

R x y R2

∣ ( ) ∣

∣ ∣

(4.3)

holds for every ∈x R .N

Definition 4.2. Let ≥m 1 be an integer and >N m2 . Let μ be a positive Radon measure on RN . We say that
∈u L RN

loc

1 ( ) is a distributional solution of

− =Δ u μ Ron ,m N( ) (4.4)

if for any function ∈ ∞φ C RN
0 ( ), we have

∫ ∫− =u y Δ φ y y φ y μ yd d .m

R R
N N

( )( ) ( ) ( ) ( ) (4.5)

The following property plays a crucial role when studying several questions related to polyharmonic
problems.

Definition 4.3. Let ≥m 1 be an integer and >N m2 . A function ∈u L RN
loc

1 ( ) is calledweakly polysuperharmonic
or polysuperharmonic in the distributional sense, if for any =i m0,…, and for every nonnegative ∈ ∞φ C RN

0 ( )

we have

∫ − ≥u Δ φ 0.i

R
N

( ) (4.6)

Remark 4.4. Note that in Definition 4.3, we do not assume that ∈Δ u L Ri N
loc

1 ( ) ( =i m1,… ). Indeed, by Theorem
6.22 of [27], the distribution −Δ ui( ) is a positive Radon measure μi, that is,

∫ ∫− = − =Δ u φ u x Δ φ x x u x μ x, d di i
i

R R
N N

⟨( ) ⟩ ( )( ) ( ) ( ) ( )

for any test function ∈ ∞φ C RN
0 ( ).

The following results generalize to polyharmonic inequalities the classical Riesz representation theorem
for superharmonic functions.
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Theorem 4.5. Let ≥m 1 be an integer and >N m2 . Let μ be a positive Radon measure on RN and ∈l R. The
following statements are equivalent:
(a) u is a distributional solution of (4.4) and for a.e. ∈x R ,N

∫ − =
→+∞

≤ − ≤
R

u y l yliminf
1

d 0.
R

N

R x y R2

∣ ( ) ∣

∣ ∣

(4.7)

(b) u is a distributional solution of (4.4), =u lessinf and u is weakly polysuperharmonic.
(c) ∈u L RN

loc

1 ( ) and we have

∫= +
−

∈−u x l c m
μ y

x y
a.e. x R2

d
,

N m
N

R

2

N

( ) ( )
( )

∣ ∣
(4.8)

where, for general, >α 0 with < <α N0 , ≔ ⎛
⎝

⎞
⎠

− ∕
−

c α πΓ 2 Γ
N α α N α

2

2

2

1

( ) ( ) ( ) .

Theorem 4.6. Let ≤ < +∞p1 and >N m2 . Let ∈u L Rp N( ) be a distributional solution of the equation

− =Δ u in R0 .m N( )

Then, ≡u 0 a.e. on RN .

Corollary 4.7. Let ∈u L RN
loc

1 ( ) be a distributional solution of the inequality − ≥Δ u 0m( ) in RN satisfying (4.7).
Then,

∫= +
−

∈−u x l c m
μ y

x y
a.e. x R2

d
, ,

N m
N

R

2

N

( ) ( )
( )

∣ ∣
(4.9)

where μ is the unique positive Radon measure such that

∫ ∫= = − = − ∈ ∞ϕμ x T ϕ Δ u ϕ Δ ϕ x u x x ϕ C Rd , d , .m m N

R R

0

N N

( ) ( ) ⟨( ) ⟩ ( ) ( ) ( ) ( )

Remark 4.8. The existence of the integral

∫ − −
μ y

x y

d

N m

R

2

N

( )

∣ ∣

for a.e. ∈x RN , is a byproduct of Theorem 4.5.

Remark 4.9. Since >N m2 , the constant c m2( ) is positive. Hence, if ≥l 0, then by (4.9), it follows that ≥u x 0( )

a.e. on RN . In particular, if =l 0 a strong maximum principle holds. More precisely, from (4.9) it follows that
either ≡u 0 a.e. on RN or >u 0 a.e. in RN .

We also note that the following Liouville theorem holds: if − =Δ u 0m( ) on RN and (4.7) holds, then =u x l( )

a.e. in RN .

Theorem 4.10. Let ≥m 1 be an integer and >N m2 . Let >p 1 and let ∈u L RN
loc

1 ( ) be a distributional solution of
the inequality − ≥Δ u 0m( ) on RN satisfying (4.7) with =l 0.

Then,
(i) If ∈u L Rp N( ) with − ≤N m p N2( ) , then ≡u 0 a.e. in RN .
(ii) If ∈u L Rw

p N( ) with − <N m p N2( ) , then ≡u 0 a.e. in RN .2



2 We recall that the weak Lp space (also known as Marcinkiewicz’s space) L Rw
p N( ) is defined as the space of all measurable

functions f such that > < ∞> x f x αsup : .α 0
p
1

∣{ ∣ ( )∣ }∣
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Remark 4.11. Theorem 4.10 cannot be improved. Indeed, if (i) holds and > −q
N

N m2
, then the function

=
+ −

u x
x

1

1

,
m2 q

1

1

( )
( ∣ ∣ )

satisfies − ≥Δ u R0 onm N( ) and belongs to L Rp N( ) for any > −
p

N q

m

1

2

( ) .

Observe that >−
−

N q

m

N

N m

1

2 2

( ) is equivalent to > −q
N

N m2
.

To see the sharpness of claim (ii), it is enough to consider the fundamental solution = −u x x .m N2( ) ∣ ∣ Clearly,
we have ∈u L Rw

p N( ) with − =N m p N2 .( )

5 Nonlinear extensions

In recent years, there has been an increased interest in the question of whether a differential inequality of
second (or higher) order in a domain admits only constant solutions. The main reason for this is the diverse
implications of this problem in different fields, such as differential geometry, subelliptic theory, Riemannian
geometry, and so on.

Certainly, the utilization of negative powers of solutions, combined with special test functions as multi-
pliers, constitutes the foundation of Moser’s iteration method. This method is particularly employed in estab-
lishing the Harnack inequality for nonlinear elliptic problems in divergence form. Moser’s iteration plays a
crucial role in obtaining important estimates and insights into the regularity of solutions in such contexts.

One important example is given by the minimal surface operator in nonparametric form and its related
minimal surface equation,

⎛

⎝
⎜

∇
+ ∇

⎞

⎠
⎟ = ∈

u

u
x Rdiv

1

0 .N

2∣ ∣

This is a classical problem as we shall see during the course of this review. We will bound ourself to simple
cases showing the need to develop a general method to solve this general question when Harnack’s type
inequalities are not available.

6 The Bernstein theorem

“Bernstein’s theorem is one of the most fascinating results in the theory of nonlinear elliptic differential
equations”3

A celebrated result obtained by S. N. Bernstein in 1915 is the following:

Theorem 6.1. [1] Let ∈u C R2 2( ) be a solution of the minimal surface equation in R2, i.e.,

⎛

⎝
⎜

∇
+ ∇

⎞

⎠
⎟ = ∈

u

u
x Rdiv

1

0, .
2

2

∣ ∣

Then, the graph of u is a plane.



3 Ulric Dierkes, Stefan Hildebrant, Albrecht Küster and Ortwin Wohlrab, Minimal Surfaces I, Grundlehren der Mathematischen
Wissenschaften, Vol. 295, Springer Verlag (1992).

8  Enzo Mitidieri



Theorem 6.2. [33] Let ∈u C RN2( ) be a solution of

⎛

⎝
⎜

∇
+ ∇

⎞

⎠
⎟ = ∈

u

u
x Rdiv

1

0, .N

2∣ ∣
(B)

Suppose further that u has bounded gradient in R .N Then, u is an affine function.

Despite the fact that the mean curvature operator does not satisfy the Harnack property for the solutions
of the minimal surface equations, if a solution has bounded gradient, then it can be show that an ad hoc
argument based on the Harnack inequality can be applied.

We briefly recall that if L is a second-order uniformly elliptic second-order operator in divergence form
and bounded coefficients and ∈u C Ω1( ) is a positive solution of the equation

= ∈ ⊂Lu x R0, Ω N (6.1)

and ⊂B x ΩR2 ( ) , then

≤
∈ ∈

v x c v xSup Inf ,

x B x B
R R

( ) ( )

where c is a universal constant depending only on N .

Let = ∂
∂v x x

u

xi
( ) ( ) for =i N1 … . It is not difficult to check that that if u satisfies B ,( ) then

⎜ ⎟
∂

∂
⎛
⎝

∂
∂

⎞
⎠

=UE
x

a x
v

x
x 0

i
ij

i

( ) ( ) ( )

and

=
+ ∇ −

+ ∇
∈

∂
∂

∂
∂

∕
∞a

δ u

u
L R

1

1
.ij

ij
u

x

u

x
N

2

3 2

i j
( ∣ ∣ )

( ∣ ∣ )
( )

Since ∇u∣ ∣ is bounded on RN , it follows that for every ∈ζ RN , we have

≤α ζ a x ζ ζj,ij i
2∣ ∣ ( )

for some suitable constant >α 0. This means that UE( ) is uniformly elliptic. Since v is bounded, the function

≔ −w v vinf
R

N

is a non-negative solution of UE( ). By Harnack’s inequality, it follows that

≤
∈ ∈

w x c w xSup Inf ,

x B x B
R R

( ) ( )

where c is independent of R.

The claim of the theorem follows by taking the limit as → ∞R in the above inequality.

Theorem 6.3. [8] Let ∈ ∞u C R3( ) be a solution of

⎛

⎝
⎜

∇
+ ∇

⎞

⎠
⎟ =

u

u
div

1

0.
2∣ ∣

Then, u is an affine function.

Theorem 6.4. [3] Let ⊂ RΩ .N Let ∈u C Ω2( ) be a solution of

⎛

⎝
⎜

∇
+ ∇

⎞

⎠
⎟ = ∈

u

u
xdiv

1

0, Ω.
2∣ ∣
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Let ∈x Ω0 and < ∂R d x , Ω .0( ) Suppose further that

> − <u x in x x R0 .0( ) ∣ ∣

Then

≤ ⎛
⎝

⎞
⎠Du x c c

u x

R
exp ,0 1 2

0
∣ ( )∣

( ) (E)

where c c,1 2 depend only on N .

Corollary 6.5. (Liouville theorem) Let ∈u C RN2( ) be a positive solution of

⎛

⎝
⎜

∇
+ ∇

⎞

⎠
⎟ = ∈

u

u
x Rdiv

1

0, .N

2∣ ∣

Then

=u const in R. .N

This is indeed a consequence of the exponential estimate (E). This result was announced by Ennio De
Giorgi [28].

Another important consequence of the exponential estimate of the gradient of the solution gives the
extension of Bernstein’s theorem to higher dimensions.

Theorem 6.6. [[2]] Let ∈u C RN2( ) be a solution of

⎛

⎝
⎜

∇
+ ∇

⎞

⎠
⎟ = ∈

u

u
x Rdiv

1

0, .N

2∣ ∣

Then, either ≥N 8 or the graph of u in a hyperplane.

In the above article, it is proved that if ≥N 8, then there exists an entire solution of the minimal surface
equation whose graph is not a hyperplane.

7 Recent contributions: the nonlinear capacity method

The general idea of the method was indeed founded by Stanislav I. Pohozaev in 1997 (and developed jointly
until 2013). The rough idea of this method is to associate with a pair (L f, ), where L is a differential operator
and f is a given function, a number (nonlinear capacity). If the capacity is finite, then the problem

=Lu f u( )

has no non-trivial solutions. The distinctive advantage of this method lies in its applicability to various types of
equations and inequalities, including elliptic, parabolic, hyperbolic, nonlocal problems, and systems. What sets
this method apart is its independence from comparison principles or any form of maximum principle to derive
the results. Notably, within the specific class of problems under consideration, the results achieved through
this method are typically sharp, providing precise and accurate information on the solutions. The root of this
idea relies on a sophisticated use of test functions. An account of the results and different implications up to
2001 appears in the book:

Ref. [31], and for more recent results in, Ref. [18].
Let us consider a simple contribution in this direction.
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Problem: Let u be a C R1 2( ) solution of the inequality

⎛

⎝
⎜

∇
+ ∇

⎞

⎠
⎟ ≤ ∈

u

u
x Rdiv

1

0, .
2

2

∣ ∣

Suppose that u is bounded below. Is it true that

≡u Rcost. on ?2

In 1996, during a meeting in Perugia, I presented this question to Mario Miranda. Initially, his impression
was pessimistic. Nonetheless, I was aware that the result held true under the additional assumption that the
function u is radial. After multiple attempts to construct a nonradial counterexample and persistent efforts, in
2001, we successfully resolved the problem affirmatively. Importantly, the solution went beyond the initial
scope, addressing a much more general form of the problem. See [32].

Definition 7.1. Let

→+ +A R R:

be a continuous function. Suppose that there exists >C 0 satisfying:

< ≤ ≥A t C t0 for every 0.( )

Then, the divergence operator acting (weakly) on C1 functions:

∇ ∇A u udiv( (∣ ∣) )

is said to generate an operator of “mean curvature type.”

Theorem 7.2. Suppose that A generates an operator of mean curvature type. Let ∈u C R1 2( ) be a weak solution of
the problem,

∇ ∇ ≤ ∈A u u x Rdiv 0 .2( (∣ ∣) )

If u is bounded below, then ≡u cost in R. .2

We just mention another result that involves as special case the p-Laplacian inequality:

≔ ∇ ∇ ≤ ∈−Δ u u u x Rdiv 0, .p
p N2(∣ ∣ )

Definition 7.3. Let × × →R R R R: N N NA be a continuous function. We say that A generates an SpC( )

operator if there exist >a b, 0 such that

≥ ≥ ′x t ξ ξ a ξ b x t ξ, , , , , ,m mA A( ( ) ) ∣ ∣ ∣ ( )∣

for every ∈ × ×x t ξ R R R, , ,N N( ) where >p 1 and + =′ 1.
p p

1 1

The divergence operator defined by

∇x u udiv , , ,A( ( ))

and acting (weakly) on C1-functions is called the differential operator generated by .A

Theorem 7.4. Let ≥N 1 and suppose that A generates an SpC( ) operator. Let ∈u C RN1( ) be a weak solution of
the problem,

∇ ≤ ∈A x u u x Rdiv , , 0 .N( ( ))

If u is bounded below, and ≥p N , then ≡u in Rcost. .N

A view on Liouville theorems in PDEs  11



Corollary 7.5. Let ≥N 1. Let ∈u C RN1( ) be a weak solution of the problem,

∇ ∇ ≤ ∈−u u x Rdiv 0, .p N2(∣ ∣ )

If u is bounded below, and ≥p N , then ≡u cost in R. .N

In the proof of the above results, we do not use any argument related to the Harnack inequality.
The question of classifying the solutions of the equation,

∇ ∇ = ∈A u u x Rdiv 0, N( (∣ ∣) )

for general functions A that generate an operator of mean curvature type and for solutions that are a priori,
bounded above or below, remains completely untouched in higher dimensions ( >N 2). Very likely “Bernstein’s
type” theorems hold for these equations with dimensional obstructions ( =N 7, for the mean curvature
operator), depending on the structure assumptions on the function A. Similar problem for operators of
p-Laplacian type is also widely open. An example in this direction is given by the p-harmonic equation,

∇ ∇ = ∈−u u x Rdiv 0, .p N2(∣ ∣ )

An interesting question (yet unknown the answer) is the following: Consider the problem

∇ ∇ = ∈−u u x Rdiv 0, .p N2(∣ ∣ ) (7.1)

Suppose that ∈u C RN1( ) is a solution of (7.1) such that

≥
→+∞ −

u x

x
liminf 0

x
p 1

( )

∣ ∣∣ ∣

holds. Is it true that ≡u Rconst. in ?N

However, the following immediate consequence of the quasilinear version of Harnack’s inequality for the
p-Laplacian operator (see Moser-Trudinger-Serrin, see for instance [36]) or [21] is known.

Theorem 7.6. (Classical Liouville theorem) Let >N p. Let ∈u C RN1( ) be a weak solution of the problem,

∇ ∇ = ∈−u u x Rdiv 0, .p N2(∣ ∣ )

If u is bounded from below, then ≡u const. in R .N

Proof. Let = ∈l u xinf .x R
N ( ) Then, ≔ −v x u x l( ) ( ) is nonnegative and satisfies

∇ ∇ = ∈−v v x Rdiv 0, .p N2(∣ ∣ )

From Harnack’s inequality, it follows that

≤
∈ ∈

v x c v xSup Inf ,

x B x B
R

R

( ) ( )

where c is a universal constant depending only on N and p. Clearly,

=
∈

v xInf 0,
x R

N
( )

and the claim follows from H( ) by passing to the limit as → ∞R .

Another interesting contribution to this problem in “low-dimensions” has been obtained by James Serrin
in 2011. See Ref. [37]. □

Suppose that the function A satisfies the following properties:
(i) >p 1,

(ii) ∈ ∞A C 0,[ ) with >A 0 0,( )

(iii) −t A tp 1 ( ) is strictly increasing for >t 0.
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Theorem 7.7. Let ∈u C RN1( ) be a weak solution of the problem,

∇ ∇ ∇ ≤ ∈−A u u u x Rdiv 0, .p N2( (∣ ∣)∣ ∣ )

If u is bounded below and ≥p N , then ≡u const. in R .N

When the function A is continuously differentiable, condition (iii) can be dropped. Indeed, the following
result holds:

Theorem 7.8. Suppose that the function A satisfies:

∈ ∞ > ≥A C with A t for t0, 0 0.1[ ) ( )

Let ∈u C RN1( ) be a weak solution of the problem,

∇ ∇ ∇ ≤ ∈−A u u u x Rdiv 0, .p N2( (∣ ∣)∣ ∣ )

If u is bounded below and ≥p N , then ≡u const. in R .N

The clever idea used in the article is a sophisticated quasilinear variation of the three sphere Hadamard’s
theorem.4

8 Problems with a source: positivity results and related Liouville
theorems

These are some samples of the results proved in [10]. Throughout this section, we will consider solutions of
class C R .N1( )

Theorem 8.1. Let >p 1 and >N 1. Let →f R R: be a continuous function such that

> < −∞f t if t f is non increasing in0 0, , 0( ) ] [ (8.1)

and

∫ ∫
⎛

⎝
⎜

⎞

⎠
⎟ < +∞

−∞

− − −

f s s td d .

t

1 1 p
1

( ) (8.2)

If u is a solution of

− ∇ ∇ ≥−u u f u in Rdiv ,p N2(∣ ∣ ) ( ) (8.3)

then ≥u 0 on RN . Moreover, if ≥f t 0( ) for ≥t 0 then, either ≡u 0 or >u 0 in RN .

Corollary 8.2. Let >p 1. Let →f R R: be a continuous function such that ≥f t C t q( ) ∣ ∣ for <t 0. Let u be a
solution of

− ∇ ∇ ≥−u u f u in Rdiv .p N2(∣ ∣ ) ( ) (8.4)

If > −q p 1, then ≥u 0 in RN . Moreover, if ≥f t 0( ) for ≥t 0, then, either ≡u 0 or >u 0 in RN .



4 For the standard versions of the three sphere theorem, see Murray H. Protter, Hans F. Weinberger, Maximum Principles in
Differential Equations, Prentice-Hall, London 1967.
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In the case of the mean curvature operator, the above results can be improved. Indeed, the claim follows
without the assumption (8.2) on f , see the Figure 1 below.

Theorem 8.3. Let →f R R: be a continuous function satisfying (8.1). Let u be a solution of

−
⎛

⎝
⎜

∇
+ ∇

⎞

⎠
⎟ ≥

u

u
f u in Rdiv

1

.N

2∣ ∣
( ) (8.5)

Then, ≥u 0 in RN .

A first important consequence of the above results is the following a priori estimate.

Theorem 8.4. Let >p 1 and >N 1. Let →f R R: be a continuous function such that there exists ∈α β R, , ≤α β

such that

>−∞f and nonincreasing0 ,α,] [ (8.6)

<+∞f and nonincreasing0 ,β,] [ (8.7)

and

∫ ∫
⎛

⎝
⎜

⎞

⎠
⎟ < +∞

−∞

−

f s s td d ,

α

t

α p
1

( ) (8.8)

∫ ∫
⎛

⎝
⎜ −

⎞

⎠
⎟ < +∞

∞ −

f s s td d .

β β

t p
1

( ) (8.9)

If u is a solution of

− ∇ ∇ =−u u f u in Rdiv ,p N2(∣ ∣ ) ( ) (8.10)

then u is bounded and ≤ ≤α u x β( ) for any ∈x RN .

Again, for the mean curvature operator, we can require more general assumptions on f .

Theorem 8.5. Let →f R R: be a continuous function such that

>
→−∞

f tliminf 0.
t

( )

Figure 1: Piecewise [ < ∕ >x x x x x x, 0, sin 1 sin , 02 4[ ] [ ] ], x , 2, 2].

14  Enzo Mitidieri



If u is a solution of (8.5), then f has at least a zero, and set ≔α the first zero of f (i.e., ≔α Smin where ≔ −S f 01 ( ))
we have ≥u α. In particular if >f 0, then (8.5) has no solution.

Moreover, if

<
→+∞

f tlimsup 0

t

( )

and u solves

−
⎛

⎝
⎜

∇
+ ∇

⎞

⎠
⎟ =

u

u
f u on Rdiv

1

,N

2∣ ∣
( ) (8.11)

then u is bounded and ≤ ≤α u x β( ) for any ∈x RN , where ≔β last zero of f (i.e., ≔β Smax ).

A direct consequence of Theorems 8.4 and 8.3, 8.5 is the following Liouville theorem.

Corollary 8.6. Let >p 1 and >N 1. Let →f R R: be a nonincreasing continuous function such that

> < < >f t if t and f t if t0 0, 0 0,( ) ( ) (8.12)

and

∫ ∫
⎛

⎝
⎜

⎞

⎠
⎟ < +∞

−∞

− − −

f s s td d ,

t

1 1 p
1

( ) (8.13)

∫ ∫
⎛

⎝
⎜ −

⎞

⎠
⎟ < +∞

∞ −

f s s td d .

t

1 1

p
1

( ) (8.14)

If u is a solution of

− ∇ ∇ =−u u f u on Rdiv ,p N2(∣ ∣ ) ( ) (8.15)

then ≡u 0 in RN .
In particular, if > −q p 1 and u is a solution of

= −Δ u u u in R ,p
q N1∣ ∣ (8.16)

then ≡u 0 in RN .

9 Coercive problems: weak solutions, possible sign-changing
solutions

It is well known that when looking for Liouville theorems of noncoercive nonlinear equations or inequalities,
the fact that the nonlinearity has definite sign is of fundamental importance. This is because, in general,
examples of this type show that when the nonlinearity changes sign, the problem may possess infinitely many
solutions with no a priori bound. A canonical example in this direction is the following:

− = −u u u RΔ in .q N1∣ ∣ (9.1)

Indeed, it is well known that if < < +
−q1

N

N

2

2
, >N 2, (9.1) admits infinitely many radial solutions with

increasing number of zeroes.
Conversely, when the problem is coercive, the situation may be completely different as the following

striking result due to Brezis [4] shows.
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Theorem [4] Let >q 1. If ∈u L R
q N
loc( ) is a distributional solution of

≥ −u u u in RΔ ,q N1∣ ∣ (9.2)

then ≤u 0 a.e. on R .N In particular, if equality holds in (9.2), then ≡u 0 a.e. in R .N

It is worth pointing out that, besides the quite general functional framework (distributional solutions),
there are no assumptions on the behavior of the possible solutions of (9.2) at infinity.

Brezis’ technique is based on a form of Kato’s inequality [4,22] and on a construction of a suitable
Loewner-Nirenberg barrier function [23,35].

Some generalizations of Brezis’s result for quasilinear elliptic inequalities of second order have been
obtained in [9,10,17] and more in a series of articles by Farina and Serrin [15,16].

One common aspect in these recent contributions is that from the technical point of view, none of them
use a form of Kato’s inequality. This is why they required strong condition on the regularity of the solutions.

Thus, one natural question is the extent to which Kato’s inequality might be satisfied in the quasilinear
case. A positive answer to this problem will allow us to develop a general strategy for proving positivity-type
results, Liouville theorems, and uniqueness results for wide classes of quasilinear equations and inequalities.
This will bring together some aspects of qualitatively different problems, namely, coercive and noncoercive
quasilinear elliptic inequalities of second order.

In what follows, we shall assume that × × →R R R R: N l lA is a Caratheodory function, that is, for each
∈t � and ∈ξ Rl the function ⋅ t ξ, ,A( ) is measurable; and for a.e. ∈x RN , ⋅ ⋅x , ,A( ) is continuous.

We consider operators L “generated” by A, that is

= ∇L u x x u x u xdiv , , .L A( )( ) ( ( ( )) ( ))

Our model cases are the p-Laplacian operator, the mean curvature operator and some related generalizations.
See the Examples below.

Definition 9.1. Let × × →R R R: N l lA � be a Caratheodory function. The functionA is calledweakly elliptic if
it generates a weakly elliptic operator L, i.e.,

⋅ ≥ ∈ ∈ ∈
= =

x t ξ ξ x t ξ

x ξ x t

R R R, , 0 for each , , ,

, 0, 0 or , , 0 0.

N lA

A A

( )

( ) ( )
(WE)

Let ≥p 1, the function A is called (WpC) (weakly-p-coercive), if A is (WE) and it generates a weakly-p-
coercive operator L, i.e., if there exists a constant >k 02 such that

⋅ ≥−x t ξ ξ k x t ξ, , , ,p p1
2A A( ( ) ) ∣ ( )∣ ((WpC))

∈ ∈ ∈x t ξR R Rfor each , , .N l

Definition 9.2. Let ⊂ RΩ N be an open set and let × × →f R R R: Ω l be a Caratheodory function. Let ≥p 1. We
say that ∈u W Ω

p
loc

1,
( ) is a weak solution of

∇ ≥ ∇x u u f x u udiv , , , , in Ω,L A( ( )) ( )

if ⋅ ∇ ∈ ′
u u L, , Ω

p
locA( ) ( ), ⋅ ∇ ∈f u u L, , Ωloc

1( ) ( ), and for any nonnegative ∈ϕ Ω0

1C ( ) we have

∫ ∫− ∇ ⋅∇ ≥ ∇x u u ϕ f x u u ϕ, , , , .L

Ω Ω

A( ) ( )

Theorem 9.3. (Kato’s inequality: The quasilinear case) Let A be such that

⋅ ≥ ∈ ∈ ∈x t ξ ξ for any x t ξR R, , 0 Ω, , .lA( ) (9.3)

Let ∈f L Ωloc

1 ( ) and let ∈u W Ω
p

loc

1,
( ) be a weak solution of

∇ ≥x u u f indiv , , Ω.L A( ( )) (9.4)
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Then

∇ ≥ +u x u u u f ondiv sign , , sign Ω.A( ( )) (9.5)

Moreover, if

∇ =x u u f indiv , , Ω,A( ( )) (9.6)

then

∇ ≥u x u u u f indiv sign , , sign Ω.A( ( )) (9.7)

In particular, if A is (WE) and u is a weak solution of (9.4), then +u is a weak solution of

∇ ≥+ + +x u u u f indiv , , sign Ω.L A( ( )) (9.8)

If in addition A is odd, i.e.,
− − = −x t ξ x t ξ, , , , ,A A( ) ( ) (9.9)

and u is a solution of (9.6), then u∣ ∣ satisfies

∇ ≥x u u u f indiv , , sign Ω.A( ( ∣ ∣ ∣ ∣)) (9.10)

See Ref. [12].

Examples.
(1) Let >p 1. The p-Laplacian operator acting on suitable functions u by

= ∇ ∇−Δ u u udivp
p 2(∣ ∣ )

is an operator generated by ≔ −x t ξ ξ ξ, , p 2A( ) ∣ ∣ , which is WpC (indeed it is SpC).
(2) IfA is of mean curvature type, that is,A can be written as ≔x t ξ A ξ ξ, ,A( ) (∣ ∣) with →A : � � a positive

bounded continuous function, then A is (W2C).
(3) The mean curvature operator in nonparametric form

≔
⎛

⎝
⎜

∇
+ ∇

⎞

⎠
⎟Tu

u

u
div

1 2∣ ∣

is generated by ≔
+

x t ξ, ,
ξ

ξ1 2
A( )

∣ ∣
. In this case, A is (WpC) with ≤ ≤p1 2.

(4) Let >m 1. The operator

⎟⎜≔
⎛

⎝
∇ ∇

+ ∇
⎞

⎠

−
T u

u u

u
div

1
m

m

m

2∣ ∣

∣ ∣

is (WpC) for ≥ ≥ ∕m p m 2.
(5) Let TM be the operator defined as

≔
⎛

⎝
⎜

∇
− ∇

⎞

⎠
⎟T u

u

u
div

1

.M
2∣ ∣

The operator TM is the mean curvature operator; hence (W2C) in the Lorentz-Minkowski space

≔ ∈ ∈+L x t x tR R, : ,N N1 {( ) }

endowed with the metric − + ∑ =t xd dj
N

j
2

1

2.

The simplest Liouville theorem in this framework is the following:

Theorem 9.4. Let > − >q p 1 0 and let A be (WpC). Let ∈ ∩u W LR R
p N q N

loc

1,

loc( ) ( ) be a weak solution of

∇ = −x u u u u in Rdiv , , , .q N1A( ( )) ∣ ∣ (9.11)
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Then, ≡u 0 a.e. on RN .

By passing we mention a related application of Kato’s inequality and the capacity method to the question
of existence of comparison principles and uniquenees theorems see [13].

The main results (in their simplest form) are the following.

Theorem 9.5. Let < <p1 2, ≥q 1, ∈h L R ,N
loc

1 ( ) then the problem

− + =−Δ u u u h in Rp
q N1∣ ∣

has at most one distributional solution ∈ ∩u W LR R
p N q N

loc

1,

loc( ) ( ). Moreover,

≤ ≤−h u u hinf sup .q

R R

1

N N

∣ ∣

Theorem 9.6. Let ≥q 1, ∈h L RN
loc

1 ( ) then the problem

−
⎛

⎝
⎜

∇
+ ∇

⎞

⎠
⎟ + =−u

u
u u h in Rdiv

1

q N

2

1

∣ ∣
∣ ∣

has at most one distributional solution ∈ ∩u W LR RN q N
loc

1,1

loc( ) ( ). Moreover,

≤ ≤−h u u hinf sup .q

R R

1

N N

∣ ∣

The above results are based on the following comparison principle.

Theorem 9.7.
(1) Let < <p1 2 and ≥q 1. Let ∈ ∩u v W LR R,

p N q N
loc

1,

loc( ) ( ) such that

− ≥ − ′− −Δ v v v Δ u u u in R .p
q

p
q N1 1 �∣ ∣ ∣ ∣ ( ) (9.12)

Then, ≤v u a.e. in RN .
(2) Let ≥q 1. Let ∈ ∩u v W LR R, N q N

loc

1,1

loc( ) ( ) such that

⎛

⎝
⎜

∇
+ ∇

⎞

⎠
⎟ − ≥

⎛

⎝
⎜

∇
+ ∇

⎞

⎠
⎟ − ′− −v

v
v v

u

u
u u in Rdiv

1

div

1

.q q N

2

1

2

1 �

∣ ∣
∣ ∣

∣ ∣
∣ ∣ ( ) (9.13)

Then, ≤v u a.e. in RN .

10 Noncoercive problems

For noncoercive problems, as recalled above the following problem possesses infinitely many solution if

< < +
−q1

N

N

2

2
, >N 2.

− = −u u u RΔ in .q N1∣ ∣ (10.1)

Clearly, when looking for Liouville’s theorems, it is natural to restrict our analysis to positive solutions.

Theorem 10.1. [19] If

< <
+
−

q
N

N
1

2

2
,
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then the problem,

− =u u in RΔ ,q N (10.2)

has no nontrivial positive solutions.

After the publication of the Gidas-Spruck result, the number of papers concerning Liouville’s type results
for semilinear and quasilinear second-order equations increased exponentially. The original proof of this
fundamental result is very long and technically involved. The main idea is to use a kind of Pohozaev’s identity
for a suitable vector field and a clever combination of a priori estimates on the solutions and Harnack’s
inequality. The original idea to use a vector field comes from Morio Obata [34].

The analogue of Gidas-Spruck result for the p-Laplacian equation has been proved by James Serrin and
Henghui Zou in 2001.

Theorem 10.2. [36] Let

− < <
− +
−

p q
N p p

N p
1

1
,

( )

then the problem

− = ∇ ∇ =−Δ u u u u in Rdiv ,p
p q N2(∣ ∣ ) (10.3)

has no nontrivial positive C1- solutions.

The proof of this extraordinary result is based again on the construction of a vector field acting on the
possible solutions, a priori estimates of the type proved in [29,30], and Harnack’s inequality. The highly
nontrivial construction of the vector field uses in a fundamental way the fact that the operator Δp is
homogeneous.

Several results are know to hold in the semilinear and quasilinear context for nonlinearities which are not
pure power functions. We end this brief discussion with a contribution in this direction [11].

Consider the following problem,

⎧
⎨
⎩
− ∇ ≥ ∈

≥ ∈
x u u f u x

u x

R

R

div , , , ,

0, .

N

N

A( ) ( )
(P)

Here, × × →+R R R R: N N NA is a Caratheodory function satisfying the following structure condition: there
exist >a b, 0 and >p 1 such that for every ∈ × ×+x u w R R R, , N N( ) we have,

≥ ≥ ′x u w w b w a x u w, , , , , .p pA A( ( ) ) ∣ ∣ ∣ ( )∣ (SpC)

Here, ′p denotes the conjugate exponent of p.
It appears that one of the crucial assumptions concerning the function f for establishing a priori estimates

of the solutions for inequality (P) is the following.
f is nonnegative and continuous and satisfies the following local condition at zero:

> = ∈ ∞
→ +

q
f t

t
l lthere exists 0 such that liminf , with 0, .

t
q

0

( )
( ] (f0)

The main result on “a priori bounds” on the solutions of (P) is as follows.

Theorem 10.3. Let >N p. Assume that A satisfies (SpC). Let +∞ → +∞f : 0, 0,[ [ [ [ be a continuous function
satisfying ( f

0
) with > −q p 1. Let u be a weak solution of (P) such that =uess inf 0N� . Then, there exists a

constant >c 0 such that for R sufficiently large, the following estimates hold:

(i) ≤ − − +u cRess inf ,BR

p

q p 1

(ii) ∫ ∫≤ ⎛
⎝

⎞
⎠

− −
⧹

−

∕

−

f u x cR f u xd d
B

N p
B BR

N p
q

R R

p
q

1

2

1

( ) ( )
( )

,
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(iii) if < < +s0
σ

σ 1
where − < < −

−p σ1 ,
N p

N p

1( ) then we have

∫
⎛

⎝
⎜ ∇ ⋅∇

⎞

⎠
⎟ ≤ − +

− +
B

x u u u cR
1

, , .
R

B

s

R

sp

q

q p

1

1

1A
∣ ∣

( ( ) ) (10.4)

As a very special case, we mention.

Theorem 10.4. (Liouville theorem) Let >N p. Assume that A satisfies (SpC). Let +∞ → +∞f : 0, 0,[ [ [ [ be a

continuous function satisfying ( f
0
) with < ≤ −

−q0 .
N p

N p

1( ) Let u be a weak solution of (P). Then, the following
statements hold.
(1) If >f t 0( ) for >t 0, then =f 0 0( ) and ≡u 0 a.e. in RN .
(2) If =uess inf 0R

N , then =f 0 0( ) and ≡u 0 a.e. in RN .

Remark 10.5. We emphasize that Theorem 10.4 is sharp even for equations. To see this, consider the problem

⎧
⎨
⎩
− ∇ ∇ = ∈

≥ ∈

−u u f u x

u x

R

R

div , ,

0, .

p N

N

2(∣ ∣ ) ( )
(E)

If > >N p 1, >λ c, 0 and > −
−q

N p

N p

1( )

( )
, then the function u defined by

≔ + − − −
− +u x c λ x

p

p 1

p

q p

1

1( ) ( ∣ ∣ )

is a positive solution of E( ) with ≔ +
− +
−f u u μ uq

pq p

p

1

1( ) , for some suitable >μ 0.
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