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Abstract

Scientific research plays a crucial role in advancing human
civilization, thanks to the efforts of a multitude of individual
actors. Their behavior is largely driven by individual incen-
tives, both explicit and implicit. In this paper, we propose and
validate a multi-agent model to study the complex system of
scholarly publishing and investigate the impact of incentives
on research output. We use reinforcement learning to make
the behavior of the actors optimizable, and guide their op-
timization with a reward signal that encodes the incentives.
We consider various combinations of incentives and prede-
fined behaviors and analyze their impact on both individual
(h-index, impact factor) and overall indexes of research out-
put. Our results suggest that, despite its simplicity, our model
is able to capture the main dynamics of the system. More-
over, we find that (a) most incentives tend to favor productiv-
ity over quality and (b) incentives related to journal perceived
reputation tend to result in waste of research efforts.

Introduction
Scholarly publishing is an essential component of scientific
research and involves interactions among different actors—
authors, reviewers, editors, publishing companies—whose
individual behavior is shaped by different types of incen-
tives, explicit or implicit. It is clearly of the uttermost im-
portance that the behavior emerging from such a system
guarantees the scientific quality of the published works. On
the other hand, there are many opportunities for individ-
ual actors to behave in such a way that their respective in-
centives are maximized without resulting in overall scien-
tific progress. Indeed, the research community as a whole
is increasingly concerned with such forms of questionable
and often plainly fraudulent behaviors (Bartoli et al., 2016;
Byrne et al., 2019; Bartoli and Medvet, 2020; Abalkina,
2021; Cabanac et al., 2021).

In this work we pursue the ambitious objective of inves-
tigating how incentives of single actors may impact the out-
put of the overall scholarly publishing system. To this end
we propose and assess experimentally, by means of simula-
tion, a multi-agent model where the behavior of each agent
is progressively optimized through reinforcement learning,
that is, by means of a reward signal in which we encode the

respective incentive. We analyze several different scenarios
and analyze the resulting output indexes both on the system
as a whole (e.g., amount and aggregate quality of published
works) and at the level of single actors (e.g., author h-index
or journal impact factor).

Although this exploratory work is clearly not sufficient to
draw any firm conclusions regarding the impact of individ-
ual incentives on the emergent behavior of such a complex
system as scholarly publishing, our results appear to be able
to capture the main dynamics of the system. In particular,
they seem to confirm the widespread view that current in-
centives tend to favor productivity over quality (Bartoli and
Medvet, 2014; Ruocco et al., 2017; Baccini et al., 2019).
Moreover, the results suggest that some authors’ incentives,
namely the one based on the reputation of the journal, tend
to result in a waste of scientific production.

Related Work
Due to its complexity, the scholarly publishing system has
many potential issues: Rahal et al. (2023) listed those re-
lated to funding and race to publication venue prestige and
showed that they often lead to questionable research prac-
tices and promote small, catchy papers instead of carefully
planned complex investigations. To examine the shortcom-
ings of the scholarly publishing system, there are two pos-
sible approaches: to measure the quality using bibliometric
indicators (Bornmann and Mutz, 2015) or to simulate the
academic publication process.

Many author-level bibliometric indicators have been pro-
posed, including the h-index, which captures productivity
and citation impact (Hirsch, 2005) and has been found to be
consistent with peer judgment (Van Raan, 2006). However,
criticisms have been made toward the practice of assessing
authors mainly or solely by means of bibliometric indicators
(Ruocco et al., 2017), including the fact that indicators may
be used in a way that does not reflect their actual meaning
(Hicks et al., 2015; Corrall et al., 2013; Barnes, 2017), or
may lead to indicator-based behaviors—e.g., Baccini et al.
(2019); Peroni et al. (2020) revealed how researchers gamed
indicators through self-citations.



Two works investigated critical aspects of the academic
publication process through simulation. Smaldino and
McElreath (2016) presented an evolutionary model that
show how the overemphasis on writing as many articles as
possible can lead to the publication of false scientific dis-
coveries. Medo and Cimini (2016) evaluated the validity of
bibliometric indexes as a representation of authors. These
articles provide insight into the potential dangers of certain
academic incentives and the effectiveness of certain evalua-
tion methods in the scholarly publishing system.

Model
We model the scholarly publishing system as a multi-agent
discrete-time system with two kinds of agents, authors and
editors, and two entities, papers and journals. Authors pro-
duce papers over time and may submit them to journals. Ed-
itors are statically associated with journals, in a one-to-one
relation, and evaluate papers as soon as they are submitted
to their journal—for clarity, we will use the term journal for
denoting both the entity and the associated agent, i.e., the
editor.

Formally, we denote by A the set of authors, by P the set
of papers, and by J the set of journals. When the system
evolves over time A and J are immutable, i.e., they never
change, whereas P may change.

Authors, journals, and papers
An author a ∈ A is an agent defined by two immutable
attributes, the author’s quality q(a) ∈ [0, qmax] and the au-
thor’s productivity δq(a) ∈ [δqmin, δqmax], and by two mu-
table attributes, the author’s working paper pdraft(a) and the
set PA(a) ⊆ P of papers published by the author.

A journal j ∈ J is an agent defined by one mutable at-
tribute, the set PJ(j) ⊆ P of papers published in that jour-
nal.

A paper p is an entity with the following mutable at-
tributes: the current quality q(p) ∈ [0, qmax], the maximum
quality qmax(p) ∈ [0, qmax], the writing time t(p) ∈ N, the
number nrej(p) ∈ N of rejections, the references R(p) ⊆ P ,
and the publication year y(p) ∈ N∪∅, where ∅ means that
the paper has not yet been published.

System evolution over time
Our system evolves over time as a consequence of the ac-
tions of authors and journals. However, the two kinds of
agent perform their actions according to two different tim-
ings. Each author performs exactly one action at each time
step. Each journal performs zero or more actions at each
time step, once for each paper submitted to the correspond-
ing journal.

We here describe how the system changes upon authors’
and journals’ actions. We will describe later how the agents
choose which action to perform, i.e., what are the agents’
policies.

Author’s actions. At each k, an author a performs one of
the following 2+ |J | actions: Restart writing, Keep writing,
or submit to a journal j (briefly, Submit-to-j).

If a performs the Restart action, we set the author’s work-
ing paper p′ = pdraft(a) to a new paper. In detail, we set
qmax(p

′) := [N (q(a), σq)]0,qmax
, i.e., we sample a normal

distribution with parameters q(a), σq (the latter being a pa-
rameter of the model), clamp the value to the proper in-
terval [0, qmax], and assign it to qmax(p

′). We set q(p′) :=
[N (δq(a), σδq)]0,qmax(p′), with σδq being a parameter of the
model. We set the other attributes, with the exception of
the references, to 0 or ∅, i.e., t(p) := 0, nrej(p) := 0, and
y(p) := 0. For the references R(p), we set them by sam-
pling P , extracting papers with a probability proportional to
their recency and quality until we collected nref references,
nref being a parameter of the model. Namely, the probability
of each paper p to become a reference of p′ is proportional
to the sum of normalized quality and recency:

Pr (p) ∝

q(p)

qmax︸︷︷︸
quality

+

[
1−

⌈
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]
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,

where
⌈

k
12

⌉
is the current year and ymax, γref are parame-

ters of the models—the larger γref, the stronger the prefer-
ence for better and more recent papers. Intuitively, hence,
upon the Restart action, the new working paper has an ini-
tial quality which depends on the author’s productivity, a
maximum quality that depends on the author’s quality, and
a fixed number of references selected depending on quality
and recency. Note that we do not add the new working paper
p′ to P (hence it is not citable).

If the author a performs the Keep action, we update
the author’s working paper p′ = pdraft(a). In detail, we
set q(p′) := [q(p′) +N (δq(a), σδq)]0,qmax(p′) and t(p′) :=

t(p′) + 1. Intuitively, upon the Keep action, the working pa-
per quality increases depending on the author’s productivity.

Finally, if the author a performs the action Submit-to-j,
the corresponding journal agent j is triggered and the out-
come of a action depends on j action, as detailed in the next
section.

Journal actions. Whenever an author a with the working
paper p′ performs the action Submit-to-j, j performs one of
the two following actions: accept or reject.

If j performs the accept action, we set the paper publica-
tion year y(p′) :=

⌈
k
12

⌉
and add p′ to the published papers

sets, i.e., for the author PA(a) := PA(a) ∪ {p′}, for the
journal PJ(j) := PJ(j) ∪ {p′}, and overall P := P ∪ {p′}.
Moreover, we set a working paper to a new paper as for the
case of the Restart author’s action. Intuitively, hence, upon
the action combination Submit-to-j and accept, the paper



is published and the authors starts working on a new pa-
per. Note that, after publication, the paper attributes, never
change, becoming in effect immutable.

If, otherwise, j performs the reject action, we update the
paper number of rejections nrej(p

′) := nrej(p
′) + 1. In-

tuitively, upon Submit-to-j and reject, the paper remains a
working paper.

System initialization
We call episode an evolution of the system starting from time
step k = 0 to time step k = kfinal. At k = 0, we initialize the
mutable and immutable attributes of all the authors, papers,
and journals as follows.

For the authors, we compose A by generating nauthors au-
thors, nauthors being a parameter of the model. For each
author a, we set the quality q(a) := qmaxB(αq, βq) , i.e.,
we sample a Beta distribution with parameters αq , βq and
multiply the value by qmax, making it span in [0, qmax]. In
the experiments, we chose the values of αq , βq that corre-
spond to a set of authors including many authors of “low
quality” and few authors with “high quality”. We set a pro-
ductivity δq(a) := δqmin + (δqmax − δqmin)B(αq, βq), i.e.,
by sampling the Beta distribution and re-scaling the value to
[δqmin, δqmax]. We set a working paper to a new paper as for
the case of the Restart author’s action. We set PA(a) := ∅.

For the journals, we simply compose J by generating
njournals empty journals, njournals being a parameter of the sys-
tem. For each journal j, we set PJ(j) := ∅.

Finally, for the papers, we generate npapers, npapers being
a parameter of the model, as follows. For each p, we first
select from A an author a, to be the author of p, by sam-
pling A with a probability proportional to authors’ produc-
tivity, and we update PA(a) := PA(a) ∪ {p}. Then, we
set the max quality qmax(p) := [N (q(a), σδq)]0,qmax

and the
quality q(p) := qmax(p). We set the year y(p) to one of
0,−1,−2, chosen randomly with equal probability. We set
the t(p) := 0, nrej(p) := 0, and R(p) := ∅. Once we com-
pose P with npapers papers as described above, we populate
papers references and “publish” papers to journals as fol-
lows. For the references, we do as described above for the
author’s Restart action, for each paper—note that executing
that procedure incrementally when creating paper, instead of
all-at-once at the end, would have made the recency-quality
random sampling less meaningful for the first papers, when
P is empty or contains few papers. For publishing papers to
journals, we first sort the papers according to their quality,
then partition them in |J | = njournals bins, and finally publish
all the papers in a bin to the same journal j, i.e., for each p
in a bin, we update PJ(p) := PJ(p) ∪ {p}.

Limitations
We acknowledge that our model has several limitations.
Firstly, there is no distinction among disciplines; all the au-
thors and journals behave the same way independently of

their field of research and all the papers can be referenced
by all the other papers.

The authors, in our model, can only work on one project
at a time and there is a simplistic relation between authors’
effort and the resulting paper quality. Another limitation
is that our authors’ quality and productivity do not change
overtime, leaving no space for career improvement or re-
gression. Moreover, there is no co-authorship: each author
works alone and is the sole driving force for advancing the
corresponding working paper.

For what concerns journals, the editors’ role in the schol-
arly publishing system is not taken into consideration, i.e.,
editors are disjoint from authors. Editors evaluate papers
immediately, accepting or rejecting them; no effort is hence
required for evaluating a paper and, in particular, the level
of scrutiny is not related to the reviewing time. Addition-
ally, for both journals and authors, institutions are not repre-
sented.

Overcoming these limitation would have significantly in-
creased the complexity of our model. We selected the traits
of the scholarly publishing system that we believe are more
relevant for our study.

Validation of the model
We performed an experimental evaluation for validating our
model, i.e., for verifying that it is indeed capable of model-
ing the real scholarly publishing system.

To this end, we first defined some indexes useful in char-
acterizing the scholarly publishing system. Then, we defined
some policies governing the behavior of the modeled agents,
i.e., authors and journals: we will call those policies static to
distinguish them from the learnable ones that we will con-
sider later. We created the static policies as a set of fixed
rules that an author or a journal may realistically use, ac-
cording to our experience. We set all the model parameters
to represent at best the reality. And, finally, we performed
many simulations, measured the indexes, and analyzed their
behavior.

Indexes
We consider two sets of indexes: a set of global indexes
characterizing the entire scholarly publishing system and a
set of local indexes characterizing individual agents in the
system.

As global indexes, we define the following: the total
quality qtot =

∑
p∈P q(p), where P is the set of all pub-

lished papers at the end of the episode; the number |P |
of published papers; the rates ρq,low, ρq,mid, ρq,hi of papers
of low, medium, and high quality, i.e., whose quality is in[
0, 1

3qmax
[
,
[
1
3qmax,

2
3qmax

[
, and

[
2
3qmax, qmax

[
, respectively;

and the scholarly publishing system efficiency e. We define
the efficiency as the ratio e = qtot

qtot,max
between the total qual-

ity qtot and the quality qtot,max that the system might have
produced, i.e., if every authors’ effort actually resulted in



published papers: for the latter quantity, we consider the av-
erage productivity δq = δqmin + (δqmax − δqmin)

αq

αq+βq
of

the authors and multiply it by the number |A| of authors and
the duration kfinal of the episode, i.e., qtot,max = δq|A|kfinal.
We remark that in our model there are three sources of in-
efficiency, i.e., three kinds of waste of academic production:
the first kind of waste occurs when authors work too long
on a paper which has already reached the maximum quality
(note that authors’ quality and productivity are not related,
hence low quality authors waste, in general, more); the sec-
ond occurs when the author restarts a new paper, and hence
drops the current one and every effort devoted to it; the third
and last occurs when the author submits a paper which is
(immediately) rejected. In the latter case, the author’s pro-
ductivity of the submission time step does not increase the
working paper quality, nor is used in a new paper.

The above global indexes are meaningful and relevant to
our study objectives, since they characterize the entire pub-
lishing system. However, a real-world counterpart of those
indexes does not exist (maybe with the exception of |P |). It
follows that we cannot use those indexes for quantitatively
validating the model with real data. For overcoming this lim-
itation, we also take in consideration two bibliometric local
indexes which are widely used for assessing research.

Concerning authors, we consider the h-index (Hirsch,
2005), which is defined as the number h of papers by the
author having at least h citations: we denote by h(a) the h-
index of an author a at the end of an episode. We consider
only the published papers when calculating h(a).

For journals, we use the impact factor (Garfield, 1972).
The impact factor IF(j, y) of a journal j at year y is given by
the number of citations received in year y by the papers pub-
lished in j in the two preceding years divided by the number
of such papers:

IF(j, y) =

∑
p′∈Py

|RP (p
′) ∩ (PJ,y−1(j) ∪ PJ,y−2(j))|

|PJ,y−1(j) ∪ PJ,y−2(j)|
,

where Py = {p ∈ P : y(p) = y} is the set of all papers
published in year y and PJ,y(j) = PJ(j) ∩ Py is the set of
papers published in year y by journal j. We denote by IF(j)
the impact factor of a journal j at the end of an episode.

Static policies
We designed the static policies to mimic reasonable behav-
iors for authors or journals. Additionally, we designed some
policies corresponding to random behavior to be used as
baseline.

Authors’ static policies. For what concerns the authors,
we consider a template policy πA that is composed of two
inner policies. The first one, that we denote by πA,T , de-
termines the decision of when stopping writing; the second
one, that we denote by πA,J , is triggered only when πA,T

suggests to submit the paper and determines the decision of

the journal to which the paper has to be submitted. For each
one of πA,T and πA,J we consider a few variants, hence ob-
taining several variants of πA from their combinations.

Regarding πA,T , we consider two variants:

• Fixed time (F). The author a keeps writing the current pa-
per p′ = pdraft(a) for a fixed amount t̂fix of time steps;
when t̂fix is exceeded, a submits p′ only if p′ got less then
n̂rej rejections; otherwise, a starts a new paper—t̂fix and
n̂rej are parameters of this policy. Hence, if t(p′) < t̂fix
then a action is Keep; otherwise, if nrej(p

′) < n̂rej the
action is Submit-to-j (with j determined by πA,J ); other-
wise the action is Restart.

• Reasonable time (R). The author a keeps writing the cur-
rent paper p′ until a satisfactory quality is obtained or
a fixed amount of time t̂max is exceeded; after having
stopped the writing, the author behaves as in the Fixed
case. We use the author’s quality q(a) as the satisfaction
threshold for the paper quality; t̂max and n̂rej are parame-
ters of this policy. Hence, if t(p′) < t̂max ∧ q(p′) < q(a)
then a action is Keep; otherwise, if nrej(p

′) < n̂rej the
action is Submit-to-j (with j determined by πA,J ); other-
wise, the action is Restart.

Regarding the part of the policy πA,J that determines the
journal to submit the paper to, we consider three variants:

• Uniform selection (U). The journal j is chosen randomly
with uniform probability in J .

• Reasonable selection (R). The author a, aware of the qual-
ity of their paper p′, selects a journal which is approx-
imately on the same level. In practice, we first sort all
the journals in ascending order according to their impact
factor and group them in nR

bins bins. Then, we select the i-

th bin, with i = max
(
0,
⌈
q(p′)
qmax

(
nR

bins − 1
)⌉

− nrej(p
′)
)

.

nR
bins is a parameter of this policy. Finally, we pick a jour-

nal j by random choice with uniform probability inside
the i-th bin. Intuitively, the author tailors their ambition
based on the paper quality and lowers it upon each rejec-
tion. This policy, beyond mimicking a sound behavior,
is consistent with the findings of Calcagno et al. (2012),
who showed that authors are overall efficient in targeting
the journal that would eventually publish their paper.

• Eager selection (E). The author selects the (approxi-
mately) best journal possible. In practice, we first parti-
tion the journals in nE

bins bins, as for the Reasonable case,
and the select a random journal, with uniform probabil-
ity, in the i-th bin, with i = max

(
0, nE

bins − nrej(p
′)− 1

)
.

nE
bins is a parameter of this policy.

Summing up, for the authors we consider six different
static policies πA, which are the different combinations of
the variants for πA,T and πA,J . We denote them as F+U,
F+R, F+E, R+U, R+R, and R+E.



Journals static policies. For the journals, which have to
decide whether to accept or reject the submitted paper p, we
define four different static policies πJ :

• Accept all (A). The journal j always accepts p.

• Mild scrutiny (M). The journal j accepts p if q(p) ≥
q25%(j), where q25%(j) is the first quartile of the quality
of the papers PJ(j) published by journal j. Otherwise, j
rejects p.

• Strict scrutiny (S). The journal j accepts p′ if q(p) ≥
q50%(j). Otherwise, j rejects p.

• With citation (C). The journal j accepts p if RP (p) ∩
P (j) ̸= ∅, i.e., if p references at least one paper published
by the journal j.

Model parameters
Simulating a realistic number of authors and journals would
be computationally very challenging. For this reason, we
decided to simulate nauthors = 1000 authors, as was previ-
ously done by Medo and Cimini (2016), and njournals = 60
journals. We set the episode duration to kfinal = 240 because
we associate one time step k to a month and we want our
simulations to last 20 years, which is a reasonable length for
a career in academia.

We set the remaining parameters as follows: npapers =
6000, qmax = 10, δqmin = 1, δqmax = 5, αq = 1, βq = 1.5,
σq = 1, σδq = 1, γref = 5, ymax = 20, nref = 30, t̂fix = 4,
t̂max = 12, n̂rej = 4, nR

bins = 5, and nE
bins = 3.

Validation simulations and results
For each combination of static policies, we performed 10
episodes with different random seeds, measured the global
and local indexes, and averaged them across the episodes.
Table 1 shows the results concerning the global indexes.

Several observations can be done based on Table 1. First,
we see that, in general, when authors employ the Fixed pol-
icy for πA,T , there is a greater number |P | of published pa-
pers and a larger total quality qtot than with the Reasonable
policy—we remark that the efficiency e is linearly depen-
dent on qtot, so F+* results in greater efficiency than R+*
too. Second, the Eager πA,J policy causes a lower num-
ber of papers and a lower total quality; an exception to this
is when the author is eager and the journal requires a cita-
tion to accept the paper. In this case, the acceptance rate is
higher since the authors submit their papers to the best jour-
nals, which will also probably be the journals from where
they took their references. Third, it is interesting to note that
when journals have a strict scrutiny, i.e., πJ is Strict, even
though the proportion of better quality papers grows with
respect to the other πJ policies (and equal authors’ policy),
the total quality produced is lower; i.e., ρq,hi is greater with
S than with M and A.

πA πJ qtot |P | e ρq,low ρq,mid ρq,hi

F+U A 247.6 65.0 40 47 37 16
F+U M 200.6 40.2 32 25 50 25
F+U S 157.5 27.8 25 15 50 35
F+U C 161.2 41.9 26 46 38 16
F+R A 247.3 65.0 40 47 37 16
F+R M 222.9 51.4 36 38 43 19
F+R S 202.7 42.6 32 31 47 22
F+R C 140.6 31.2 23 36 41 23
F+E A 246.2 65.0 39 47 37 16
F+E M 173.7 33.7 28 23 51 26
F+E S 155.4 28.9 25 17 53 30
F+E C 177.6 46.9 28 47 37 16
R+U A 148.2 39.2 24 49 34 17
R+U M 130.1 27.5 21 32 44 24
R+U S 116.3 21.7 19 21 47 32
R+U C 108.7 28.5 17 48 35 17
R+R A 149.4 39.2 24 49 33 18
R+R M 141.9 33.2 23 41 38 21
R+R S 134.2 29.9 22 37 41 22
R+R C 97.2 21.0 16 36 37 27
R+E A 150.0 39.2 24 48 34 18
R+E M 119.2 23.7 19 28 45 27
R+E S 114.6 22.0 18 22 49 29
R+E C 119.5 31.3 19 48 34 18

Table 1: Results with the static policies. qtot and |P | are in
thousands; e, ρq,low, ρq,mid, and ρq,hi are percentages.

While the above considerations are qualitatively sound,
they cannot be directly used for validating our system with
respect to the reality because in the latter the global indexes
are not available. For this reason, we also measured the local
indexes, starting from the h-index.

Figure 1 shows the relation between h-index and author’s
quality, in the form of scatter plots, for each first episode
(i.e., the episode with random seed 0) of each πA policy,
coupled with the Mild policy for the journals.

From the figure, we can see that the h-index is in gen-
eral well correlated with the author’s quality, a finding that
is consistent with the literature on bibliometrics (Van Raan,
2006). Moreover, the authors’ h-index is impacted more by
πA,T than by πAJ

, i.e., more by when to submit than by
where to submit to. We can also note that with the Reason-
able journal selection there are no authors with h-index equal
to 0. This happens because authors choose more quality-
appropriate journals to send their papers to, hence also the
worst authors are able to publish some papers (on the worst
journals).

To attempt to perform a quantitative validation of our
model with real data, we compared the distributions of our
h-index against the real one. For the latter, we collected
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Figure 2: Distribution of the h-index h(a) for real data and
simulation (with R+R/M at k = 0 and k = kfinal).

real data querying the Semantics Scholar API for the h-
index of 3000 random authors, selecting the first 1000 re-
sults for each of the following queries for the author’s last
name: Smith, Gupta, and Li. Figure 2 compares the real
distribution against two simulated ones for the R+R/M pol-
icy combination: at the beginning of episode and at the end.
We chose the R+R/M policy combination because it appears
to be the more realistic one: however, we verified that the
distributions for most of the other policy combinations were
qualitatively similar.

From Figure 2, we can see that our system starts with a
h-index distribution which is very similar to the real one,
and then flattens. This can be explained by the fact that in
our model (a) all authors employ the same policy and (b) all
authors have the same career duration. We speculate that, in
the real data, a vast majority of the authors are in the initial
stage of their career.

We performed a similar quantitative validation for the
journals impact factor. We collected journals bibliometric
data relative to the year 2018 obtained from Scopus and
compared them to simulated data, in terms of distribution.
Figure 3 shows the results of this analysis, similarly to Fig-
ure 2.

From Figure 3, we can see that throughout the simulation
our system maintains a distribution comparable to the real
one, validating our model.

Finally, we analyzed the relation between the quality of a
journal j, measured as the median quality q(j) of the papers
published in j at the end of the episode, and the impact factor
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Figure 4: Journals impact factor IF(j) vs. quality q(j) for
eight static policy combinations, one point for each journal
of the first episode.

IF(j) of j. Figure 4 shows the results of this analysis in
the form of four scatter plots, once for each of the journal
policies: for each πJ , the color of the markers encode one of
the two authors’ policies F+U and R+R.

From Figure 4, we can see that when the journals have
the All policy and the authors have a F+U policy, the im-
pact factor is not representative of the quality of a journal.
This is what we would have expected, since all journals pub-
lish whatever paper they receive and the authors behave ran-
domly. Both the Mild and Strict policies, results in a good
correlation between journals quality and impact factor, with
Mild appearing very robust with respect to the authors’ be-
havior. Finally, the Citation policy appears to favor a corre-
lation between impact factor and quality only if the authors
behave accordingly to reasonable choices.

Incentives and their impact
The results we obtained with the static policies are interest-
ing, but our main focus is on the effects of authors’ incen-
tives on the scholarly publishing system. In order to investi-
gate this, we need to make authors behave driven by an ex-
ternally dictated incentive. To this end, we learn the authors’
policy with reinforcement learning (RL), instead of using a
static one, and use a reward that encodes the incentive when
learning.

In particular, we define an RL problem where the goal is
to maximize a given reward function. We learn an authors’
policy using an RL technique. Finally, we use the learned
policy for performing a number of simulations where the
leaning does not occur anymore and measure the global and



local indexes as we did for the static policies. We repeat this
procedure with five different reward functions representing
different incentives.

Learnable template policy
We define a learnable template policy ℓ for the author that
is based on the idea of author’s current ambition m ∈
{1, . . . ,mmax}. We embed an RL agent inside the author.

At each time step, the RL agent performs one among
the following five actions: keep writing and decrease ambi-
tion (Keep-m-), keep writing and leave ambition untouched
(Keep-m=), keep writing and increase ambition (Keep-m+),
Restart writing, and Submit the current paper. The first three
actions of the RL agent trigger a Keep action of the author
agent and modify the value of m accordingly (clipping it to
its domain); the Restart action triggers a Restart action; the
Submit action triggers a Submit-to-j action where the jour-
nal j is selected similarly to the Reasonable πA,J policy, but
based on the ambition m for binning and choosing the bin:
we partition the journals in mmax bins and take one random
journal in the m-th bin, i.e., the bin corresponding to the
author’s current ambition.

As RL agent observation, we use the tuple
(m, τq, τrej, tquart), where m is the current ambition,
τq ∈ {0, 1} is a binary indication about the current
paper quality compared to the author’s quality, i.e.,
τq = 1(q(p′) ≥ q(a)), τrej ∈ {0, 1} is a binary indi-
cation about the paper being already been rejected, i.e.,
τrej = 1(nrej(p

′) ≥ 1), and tquart ∈ {0, 1, 2} is a ternary
indication on the time spent on the current paper, with
tquart = min

(
2,
⌊
1
4 t(p

′)
⌋)

.
Summarizing, ℓ takes actions based the internal RL agent

actions and on m, which represents the current author am-
bition. Internally, m is modified by the RL agent that takes
one among five actions based on one among mmax(2·2·3) =
12mmax possible observations.

In our experiments, we initialize the author’s ambition at
k = 0 to m =

⌊
1
2mmax

⌋
and we set mmax = 5.

Incentive-encoding reward
We experiment with the following reward variants.

The reward is a number r ∈ R made available to the RL
agent embedded in ℓ at each time step. In all cases, we set
r = 0 in the time step following a Keep-m* or Restart au-
thor’s action. The reward variants differ in the value they get
upon a Submit action:

• Acceptance/rejection reward (ARx). We set r = 1 upon
acceptance and r = −x upon rejection. We experimented
with x ∈ {0, 1

2 , 1}.

• Quality reward (Q). We set r = q(p) upon acceptance of
the submitted paper p and r = 0 upon rejection.

• Impact factor reward (IF). We set r = IF(j) upon accep-
tance by a journal j and r = 0 upon rejection.

Intuitively the three reward variants represent, respec-
tively, the case (ARx) in which an author is happy or sad just
for the journal response, regardless of the paper and journal
quality, the case (Q) in which an author is happy with accep-
tance proportionally to the quality of the accepted paper, and
the case (IF) in which an author is happy with acceptance
proportionally to the impact factor of the accepting journal.

We denote the policies learned with these rewards as
ℓAR0, ℓAR 1

2
, ℓAR1, ℓQ, and ℓIF.

Learning the learnable policies
We stated the RL problem with discrete action and obser-
vation spaces. Hence, we use the Q-learning RL algorithm
(Watkins, 1989), which is a natural choice for this kind of
problems.

In brief and intuitively, Q-learning expresses the pol-
icy in a tabular form, with rows corresponding to actions,
columns corresponding to observations, and cells contain-
ing a value that says how convenient is to perform an action
(cell row) given an observation (cell column). Whenever
the Q-learning agent has to take an action given an obser-
vation, it simply selects the one of the observation column
with the largest cell value or, only while learning and with a
small decaying probability ϵ, a random action—this is done
to balance between exploration and exploitation. Moreover,
while learning, values in the cells are increased or decreased
based on the reward obtained at the next time step. We refer
the reader to (Watkins, 1989) for more details.

In our work, we use Q-learning in a multi-agent system.
That is, several agents share the same policy and, at each
time step, receive different observations, different rewards,
and take different actions. We exploit the availability of
many triplets (observation, reward, action) at each time step
for learning the policy faster. In particular, after each time
step, for each cell of the tabular policy we average the modi-
fications resulting from all the triplets collected by the agents
and apply one single modification that will impact the policy
at the next time step.

For each of the five rewards described above, we learned
5 learnable policies by performing 200 consecutive policies
with a reduced size model with 500 authors (instead of 1000)
and the Mild policy for the journals—we chose this policy
as it proved to be the most robust with respect to authors’
behavior, as shown in Figure 4. We hence obtained 25 learn-
able author policies: for each of them, we performed other
simulations keeping the policy steady, i.e., without learning.
We set Q-learning as follows: decaying probability ϵ = 1

j ,
learning rate λ = 1

j+1 , and discount rate γ = 0.95, where
j ∈ {1, . . . , 200} is the index of the episode.

Results
Like we did for the static policies, for each one of the op-
timized learnable policies, we performed 10 episodes with
1000 authors. This means that, for each reward function, we



πA qtot |P | e ρq,low ρq,mid ρq,hi

ℓAR0 150.4 42.9 24 49 48 3
ℓAR 1

2
232.9 67.1 37 49 49 2

ℓAR1 160.0 34.8 26 32 49 19
ℓQ 198.1 56.7 32 48 49 3
ℓIF 70.1 17.4 11 38 50 12

Table 2: Results with the learnable policies. qtot and |P | are
in thousands; e, ρq,low, ρq,mid, and ρq,hi are percentages.
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Figure 5: System efficiency e vs. paper mean quality qP for
all the episodes with all πA and πJ = M.

averaged the results of 50 simulations; 10 for each one of
the 5 learned policies. Table 2 shows the results in terms of
the global indexes.

We note that the ℓAR 1
2

policy is the one which leads to the
highest amount of science produced, i.e., qtot, and hence the
greatest system efficiency e: on the other hand, ℓAR 1

2
results

in the lowest portion of papers of high quality. Increasing
the penalty for the rejections with the ℓAR1 policy, we see
that the number of published papers decreases, but the por-
tion of better quality publications is the highest. For what
concerns ℓQ, we can see that the authors prefer to publish
many lower or median quality papers, rather than publishing
a few good quality works; the same holds for ℓAR0, which
is not surprising, since both cases reward acceptance and do
not penalize rejections. Finally, we can see that when the
authors are incentivized to publish on the most prestigious
journals, i.e., with ℓIF, the lowest number of papers and the
lowest total quality is produced, with a huge waste of scien-
tific production.

Figure 5 shows the results obtained with the static and
learnable author policies (and the Mild journal policy) in a
disaggregated form, with a scatterplot having one point per
simulation. In particular, it shows the efficiency e vs. the
paper mean quality qP = qtot

|P | .
The figure makes apparent the trade-off between overall

efficiency and mean paper quality. Some of the author poli-
cies place on the Pareto frontier, including ℓAR1, F+R, and
others. The figure also shows that not all the policies learned
with the same behavior actually resulted in the same global
indexes: e.g., some of the five ℓAR1 policies correspond to
simulations not being on the qP , e Pareto frontier.

πA hlow hmid hhi

F+U 15 18 20
F+R 18 21 23
F+E 13 17 18
R+U 13 14 15
R+R 14 16 18
R+E 11 13 14

πA hlow hmid hhi

ℓAR0 8 13 18
ℓAR 1

2
13 20 28

ℓAR1 11 14 18
ℓQ 11 17 25
ℓIF 3 7 11

Table 3: Mean h-index h for the three categories of authors
based on their productivity tertile, with all πA.

Finally, we analyzed how the authors’ productivity δq im-
pacts their h-index with different author policies. To this
end, we divided the authors in tertiles based on their δq and
computed the mean h-index of each tertile (hlow, hmid, and
hhi). Table 3 shows the results of this analysis for a all the
static and learnable author policies.

Table 3 shows that, in all cases, there is a positive corre-
lation between the authors’ h-index and their productivity.
However, the learnable policies tend to make the difference
between least and most productive authors more apparent, in
particular ℓIF. Since authors’ quality and productivity are,
in our model, independent, this means that incentives tend
to make more productive, rather than better, authors stand
out.

Concluding remarks
We proposed a multi-agent model of the scholarly publish-
ing system and we used it for studying, through simulation,
the overall impact of author’s incentives on the output of
the system. We used reinforcement learning for modeling
agents whose behavior is driven by an incentive, encoding
the incentive in the reward function.

We validated our model through several experiments with
different hand-written agent policies and found that it ap-
proximates the dynamics of the real counterpart. We then
experimented with different incentives (including those rep-
resenting personal satisfaction upon paper acceptance, qual-
ity of one’s paper, or reputation of the journal) and obtained
interesting findings. Namely, we found that (a) regardless
of incentives, quantity tends to be favored over quality and
(b) when the journal reputation is the incentive, there is a
waste of authors’ effort.

While our model cannot capture all the many facets of
scholarly publishing, we believe that it proves that the over-
all behavior of human communities can be approximated by
multi-agent systems.
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The possibility of systematic research fraud targeting under-
studied human genes: Causes, consequences, and potential
solutions. Biomarker Insights, 14.
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