
How the Morphology Encoding Influences the Learning Ability
in Body-Brain Co-Optimization

Federico Pigozzi
University of Trieste

Trieste, Italy
federico.pigozzi@phd.units.it

Federico Julian Camerota Verdù
University of Trieste

Trieste, Italy
federicojulian.camerotaverdu@phd.units.it

Eric Medvet
University of Trieste

Trieste, Italy
emedvet@units.it

ABSTRACT
Embedding the learning of controllers within the evolution of
morphologies has emerged as an effective strategy for the co-
optimization of agents’ bodies and brains. Intuitively, that is how
nature shaped animal life on Earth. Still, the design of such co-
optimization is a complex endeavor; one issue is the choice of the
genetic encoding for the morphology. Such choice can be crucial
for the effectiveness of learning, i.e., how fast and to what degree
agents adapt, through learning, during their life. Here we evolve
the morphologies of voxel-based soft agents with two different
encodings, direct and indirect while learning the controllers with
reinforcement learning. We experiment with three tasks, ranging
from cave crawling to beam toppling, and study how the encoding
influences the learning outcome. Our results show that the direct
encoding corresponds to increased ability to learn, mostly in terms
of learning speed. The same is not always true for the indirect
one. We link these results to different shades of the Baldwin effect,
consisting of morphologies being selected for increasing an agent’s
ability to learn during its lifetime.

CCS CONCEPTS
• Computing methodologies → Evolutionary robotics; Rein-
forcement learning.

KEYWORDS
Evolutionary reinforcement learning, Encoding, Plasticity, Embodi-
ment

1 INTRODUCTION
Starting from the seminal work of Sims [45], researchers have re-
sorted to evolution for co-optimizing embodied agents’ bodies and
brains. Still, the embodied cognition paradigm [39], which posits

a deep entanglement between the brain and the body, challenges
our ability to do so: parent agents often beget offspring having a
mismatch between the morphology and the inherited controller [9].
On the other side, learning alone is myopic since adapting the
morphology is also essential [17]. As a result, co-optimization, by
embedding the learning of controllers within the evolution of mor-
phologies [15, 27], has come into practice, since it gives time for
controllers to adapt to their morphologies. Intuitively, that is how
nature shaped animal life on Earth. How to design a co-optimization
setting is however a complex endeavor; the designer must select—
among the others—the genetic encoding for the morphology, which
is of crucial importance for evolution [5, 54].

In this work, we evolve the morphologies of voxel-based soft
agents using Evolutionary Algorithms (EAs) [8] while learning
the controllers with Reinforcement Learning (RL) [50]. We resort
to voxel-based soft agents as they provide so many more degrees
of freedom and flexibility than traditional robots, providing ideal
testbeds for theories related to embodied cognition [26]. We ex-
periment with two genetic encodings for the morphology, a direct
and an indirect, and focus our analysis on how phenotypic plastic-
ity, which is the result of the interaction between evolution and
learning in embodied agents, affects evolution in the two encodings.

In biology, phenotypic plasticity is the capacity of a phenotype
to describe a trajectory in the phenotype space during its lifetime;
in other words, plasticity enables an agent to explore neighbor-
ing regions of the phenotype space. Plasticity smooths the fitness
landscape since it eases climbing to peaks [41]. Themost straightfor-
ward instance of plasticity is lifetime learning [24], also known as
the epigenetic timescale of adaptation [46]. Thus, learning defines
an epigenetic space, the subset of points in the phenotype space that
a starting phenotype (i.e., right after genotype-phenotype mapping)
can reach through lifetime learning. We illustrate the intuition for
plasticity in Figure 1.

Plasticity is relevant because it does impact evolution: learning
smooths the fitness landscape, but it also incurs in costs, as it is time-
consuming and relies on trial-and-error, and there is evidence that
biological evolution selects for morphological traits that reduce the
cost of (i.e., speed up) learning [57]. In other words, if there is an ad-
vantage to making a behavior “rigid” (or, not plastic), it will usually
be advantageous to do so, since rigid behaviors are less expensive
than plastic (learned) ones. As a homage to its first supporter, James
Mark Baldwin, this phenomenon has been labeled—on how plastic-
ity impacts evolution—the Baldwin effect [1, 2]. We remark that the
Baldwin effect is not an instance of Lamarckism [53].

We experimentwith three tasks from the EvoGymbenchmark [3],
consisting of bridge walking, beam toppling, and cave crawling, and
analyze how the direct and indirect morphology encodings affect

1

https://orcid.org/0000-0003-3315-6768
https://orcid.org/0000-0003-3030-5772
https://orcid.org/0000-0001-5652-2113
https://doi.org/10.1145/3583131.3590429
https://doi.org/10.1145/3583131.3590429

genotype space

𝑔1

𝑔2

phenotype space

𝑝1

𝑝2

𝑝′1

𝑝′2

epigenetic space

Figure 1: The intuition of plasticity. As a matter of example,
we show a two-dimensional genotype space together with a
two-dimensional phenotype space. A genotype 𝑔𝑖 maps to a
phenotype 𝑝𝑖 , which is plastic: through learning, it can visit
any point in its epigenetic space (the shaded circle) during
its lifetime, to finally settle to a learned phenotype 𝑝′

𝑖
. The

learning trajectories (the dotted lines) need not be straight.

plasticity, namely, the ability to learn. To do so, we measure the
trend for speed of learning, i.e., how quickly a phenotype travels
in the epigenetic space, but also how much the agent can learn,
measured as the radius of the epigenetic space.

Our results highlight differences: the direct encoding results in
increased learning ability, while the same is not always true for
the indirect encoding. We link these results to the Baldwin effect:
apparently, the direct encoding is better suited at facilitating it. We
attribute the reason to the lower locality [43] and heritability [7]
of the indirect encoding: since similar genotypes do not always
correspond to similar phenotypes, it is more difficult for evolution
to select for morphological traits that reduce the cost of learning.

We believe our work to be a stepping stone on the road toward
a better understanding of the interactions between evolution and
learning. In particular, our work can reveal insights into the choice
of morphology encoding when co-optimizing agents’ bodies and
brains with evolution and learning.

2 RELATEDWORK
Hinton et al. [19] first exposed how evolution and learning can
complement each other. In their seminal study, learning made it
possible for evolution to search on a deceptive fitness landscape.
Since then, researchers have investigated the marriage between
the two for—among the others—evolving reward functions [35],
population-based training [21], evolving instinctive behaviors for
RL [16], and optimizing neural networks [49].

However far-reaching they might be, only a few of those works
considered the interaction between evolution and learning in the
case of embodied agents. Those that do usually embed a learning
loop inside an outer evolutionary loop, as happened with RL [15],
inherited controller archives [13], inner evolutionary optimiza-
tion [30], adaptive weights [10, 33, 40], or even Lamarckian evolu-
tion [22], and these works are undoubtedly groundbreaking. Still,
there are even fewer works that consider how evolution impacts
plasticity; and even fewer considering explicitly the ability to learn.
Gupta et al. [15] detected signs of a Baldwin effect in tree-based
robots and Luo et al. [27] in modular robots. Kriegman et al. [26]

studied how morphological development leads to differential canal-
ization of morphological and behavioral traits. Thus, to the best
of our knowledge, no other work has explored how phenotypic
plasticity changes according to the encoding of the morphology,
that is precisely the aim of this work.

There are, however, other studies that compared different en-
codings for the morphology (and, in some cases, for the controller
too) for robotic agents. Ferigo et al. [11] studied the interplay be-
tween evolvability and fitness for voxel-based soft robots that are
evolved with four different encodings: similarly to our study, they
compared direct and indirect encodings, but they did not consider
learning, nor any other form of plasticity. Nadizar et al. [32] did,
instead, consider a form of plasticity: they studied morphological
development schedules for voxel-based soft robots and they experi-
mentally compared a few encodings for both the controller and the
morphology. Less recently, Veenstra et al. [54] compared a direct
and a generative encoding for a different kind of modular robots, in
particular in terms of their ability to foster the evolution of robots
composed of different number of modules.

3 AGENT MODEL
We employ the open-source discrete-time and continuous-space
simulator Evolution Gym (EvoGym) [3], which also provides a
number of benchmark tasks. In EvoGym, agents are 2D voxel-based
soft robots, composed as aggregations of elastic squared blocks, the
voxels. EvoGym models each voxel as a spring-and-mass system,
with point masses at the vertices and springs to join them. Each
voxel can be of one of four different materials:

(a) rigid inactive, that does not change its area;
(b) soft inactive, that passively contracts or expands under the

contact with external bodies;
(c) horizontal actuator, that actively contracts or expands hori-

zontally according to an actuation signal;
(d) vertical actuator, that actively contracts or expands vertically

according to an actuation signal.
Figure 2 depicts one of the EvoGym agents. For an agent, we denote
the total number of voxels made of one of the materials as𝑛pass-rigid,
𝑛pass-soft, 𝑛act-h, and 𝑛act-v. Moreover, a morphology has a total of
𝑛 point masses.

An agent has a morphology (i.e., a body), described by a matrix
𝑴 ∈ {∅, pass-rigid, pass-soft, act-h, act-w}𝑤×ℎ , where𝑤 and ℎ are
the width and height of the largest grid enclosing the morphology.
𝑴𝑖 𝑗 , the element at position 𝑖, 𝑗 , tells which of the four materials
the voxel at position 𝑖, 𝑗 is made of, or takes the value ∅ if no voxels
are present at that position.

An agent also has a controller (i.e., a brain), described by a func-
tion taking as input 𝒐 (𝑘) and outputting 𝒂 (𝑘) , where 𝒐 (𝑘) ∈ R𝑝 is
an observation vector at time step 𝑘 , with 𝑝 task-specific inputs,
while 𝒂 (𝑘) ∈ [0.6, 1.6]𝑛act-h+𝑛act-v is an action vector at time step 𝑘 ,
with one action for every actuator. 𝑎 (𝑘)

𝑖
corresponds to the action

for the 𝑖-th actuator at 𝑘 and instructs an instantaneous change
in springs that is 𝑎𝑖 times their resting length, thus causing the
actuator to contract or expand accordingly.

Finally, the agent performs a task, described by the environment
(including terrain and objects). EvoGym models terrain and objects
as aggregations of inactive voxels (either rigid or soft). The task

2

Figure 2: A voxel-based soft agent. The voxel color stands
for the material: black is rigid inactive, gray is soft inactive,
orange is a horizontal actuator, and cyan is a vertical actuator.

provides a reward signal 𝑟 (𝑘) ∈ R that is task-specific and capture
the completeness of the task by the agent. The task also defines
what observation 𝒐 (𝑘) to feed the controller with. Observations
are task-specific and can be sensor readings (e.g., velocity), terrain
information (e.g., distance from cave ceiling), or goal information
(e.g., distance from an object to manipulate).

We instantiate the controller using a Multi-Layer Perceptron
(MLP), having as many input neurons as the number of observations
for the task and as many output neurons as the number of actuators;
in this way, the controller is closed-loop and can exploit sensor
readings, that are fundamental for complex tasks like walking on
uneven terrain or object manipulation [51]. Following [3], we set
the architecture to have two hidden layers with 64 neurons each,
and tanh as the activation function for all neurons (we then rescale
the output to [0.6, 1.6]).

4 CO-OPTIMIZATION OF MORPHOLOGY AND
CONTROLLER

Since we focus on the interaction between learning and evolution,
we cast the problem of optimizing an agent for a task as a co-
optimization problem: an outer optimization loop searches in the
space of morphologies, and an inner optimization loop searches
in the space of controllers (for a given morphology). We resort to
EAs for the outer optimization, as they are gradient-free algorithms
and can effectively handle discrete spaces [8], as well as generating
emergent patterns for the morphology of virtual creatures [5, 6].
Since we have access to a reward signal over the agent’s lifetime, we
resort to RL for the inner optimization; moreover, RL has achieved
state-of-the-art results with neural controllers [31] and there is
evidence it mimics learning in the animal brain [34].

In particular, the EA optimizes a fixed-size population of 𝑛pop
genotypes by iterating over generations. At every generation, we
map genotypes to morphologies and optimize the controller of
each morphology for 𝑛RL-iters iterations of RL. After ranking and
selecting the parent morphologies with a fitness function, we beget
an offspring. We use as fitness function the mean reward of an
episode (i.e., a simulation of the agent in the environment starting

population

morphology
evolution

morphology

fitness value

task

controller
learning

Figure 3: Overview of the co-optimization.

from a task-specific initial condition) of 𝑛sim time steps, done “off-
line” at the end of RL:

𝑓 =
1

𝑛sim

𝑛sim∑︁
𝑘=1

𝑟 (𝑘) (1)

We iterate until 𝑛f-evals fitness evaluations have been done. Figure 3
is a schematic view of our co-optimization.

To investigate how the morphology encoding affects plasticity,
we experiment with two variants of encoding (a direct and an indi-
rect encoding), while employing the same outer-inner optimization
scheme.

4.1 Evolution
For the morphology, evolutionary robotics researchers usually re-
sort to either direct encodings, where there is a one-to-one mapping
between the genotype and the phenotype, or indirect (also known
as generative) encodings, where the mapping is non-trivial. Albeit
less intuitive, indirect encodings can allow for the emergence of
complex patterns (e.g., “tissues” in [5]); moreover, they strive to
emulate the biological genome [37, 52], which is capable of com-
pressing a whole phenotype with just a “few” genes (generally, in
the order of thousands [14, 38]) while still fostering phenotypic
variation [12]. We experiment with one variant for each type.

4.1.1 Direct encoding. Our direct encoding represents a morphol-
ogy with the matrix 𝑴 of Section 3 as genotype; then, each matrix
entry encodes one voxel of the morphology.

For evolving 𝑴 , we employ a simple genetic algorithm [8]. It
evolves a fixed-size population of 𝑛pop individuals iterating the
following two steps until 𝑛f-evals have been done. First, it initializes
the first population with randomly generated matrices, where each
element is chosen with uniform probability in the proper domain.
Then, at every generation, (i) it takes the best 0.2𝑛pop individuals
(i.e., those with the best fitness), selects them as parents and (ii) it
builds the offspring, i.e., the population for the next generation,
by copying the parents to the offspring (a form of elitism) and
by generating 0.8𝑛pop individuals by mutating randomly chosen
(with uniform probability) parents. For the mutation, we change
each element of the matrix to another material, with 0.1 proba-
bility. To decode the genotype into a morphology, we retain the
largest connected component of non-empty voxels. We used the
implementation of [3].

4.1.2 Indirect encoding. Several indirect encodings exist in the lit-
erature that are suitable for voxel-based soft agents, e.g., L-systems

3

[20], gene regulatory networks [23], tree-based [32], and Gauss-
ian mixtures [18], but we rely on the work of Cheney et al. [5] as
it proved very effective at evolving morphologies specifically for
multi-material voxel-based soft agents.

The genotype is a Compositional Pattern Producing Network
(CPPN) [47], a feed-forward neural network with three input neu-
rons and four output neurons. To map a CPPN to a morphology, we
query the CPPN for every voxel (in the maximum enclosing grid
of the morphology) by inputting the 𝑥- and 𝑦-coordinates of the
voxel as well as its Euclidean distance from the center of mass of
the maximum enclosing grid. The output of the CPPN is a one-hot
encoding telling which material to fill the voxel with (5 output
neurons, one for the no-material case). Finally, we retain the largest
connected component of non-empty voxels.

We evolve CPPNs with the NeuroEvolution of Augmenting Topo-
logies (NEAT) [48] algorithm, an established EA that incrementally
evolves the topology, the weights, and the activation functions of
neural networks, begetting CPPN-NEAT. NEAT employs speciation
to protect innovations and overcome the “competing conventions”
problem [4] of evolving neural networks. NEAT also employs ge-
netic operators specific for network structures (e.g., crossover with
innovation); we refer the reader to Stanley and Miikkulainen [48]
for details. We used elitist selection as with GA. We used the imple-
mentation of [29] and the same hyperparameters of [3], with the
exceptions of 𝑛pop and 𝑛f-evals, for which we use the same values
as for the direct encoding case.

4.2 Learning
For the controller, we resort to RL in order to explore a rich search
space for the policy (i.e., the controller) and allow the agent to
perform complex behaviors, that would hardly be achievable with
other approaches [5].

In particular, we employ the Proximal Policy Optimization (PPO)
[44] algorithm, a policy gradient method that has reached state-of-
the-art performance in many continuous control tasks [36] while
being simple to implement. PPO iterates for 𝑛RL-iters iterations. At
each iteration:

(1) it collects environment interactions (i.e., triplets including
the observation, the action, and the reward) with the current
policy;

(2) it updates the policy by minimizing a cost function, that
takes into account the observed reward and ensures that
the deviation from the current policy is relatively small, in
order to eschew the high variance of other policy gradient
methods.

In detail, PPO performs 𝑛RL-episodes episodes in parallel, each last-
ing 𝑛sim time steps, and interrupting them every 𝑛sim-RL-iter time
steps to perform an iteration—this way, 𝑛RL-episodes𝑛sim-RL-iter in-
teractions are available for updating the policy. When the episodes
reach the end, PPO restarts a batch of 𝑛RL-episodes until 𝑛RL-iters it-
erations have been performed. We used the implementation of [25]
and the same hyperparameter settings of [3]: in particular, we set
𝑛RL-episodes = 32 and 𝑛sim-RL-iter = 128.

(a) BridgeWalker (b) BeamToppler (c) CaveCrawler

Figure 4: Three frames of agents performing the three tasks
we considered in this paper.

5 EXPERIMENTS
We carried out an experimental campaign aimed at answering the
following research question: how do a direct and an indirect encod-
ing for the morphology affect the agent’s ability to learn?

We perform a set of experiments, i.e., optimizations of voxel-
based soft agents, with both the direct and indirect encoding and
three different EvoGym tasks, differing by scope and hardness:
BridgeWalker, BeamToppler, and CaveCrawler.

For both encodings, we set 𝑤 = 5, ℎ = 5, 𝑛pop = 25, 𝑛RL-iters =
1000, and 𝑛f-evals = 500; for CaveCrawler, which turned out more
difficult to solve, we set 𝑛f-evals = 1000. Pure evolutionary optimiza-
tion would rely on more fitness evaluations; still, we remark that, in
our co-optimization, every fitness evaluation amounts to a full RL
inner optimization, increasing not only the computational burden
but also the likelihood of discovering effective solutions earlier in
evolution. We thus found the above values to work well, in line
with [3].

For each experiment, we performed 10 evolutionary runs vary-
ing the random seed for the EA and PPO. For a given agent, all
simulations are deterministic. We performed statistical tests with
the Mann-Whitney U rank test for independent samples.

We made the code to repeat and reproduce the experiments
publicly available at https://github.com/federico-camerota/evogym/
tree/baldwin. Each run took approximately 8 h on a Linux virtual
machine with 96 cores at 2.3 GHz and 48 GB of RAM.

5.1 Tasks
In the following sections, we briefly describe the environments
used in our experiments, we refer the reader to [3, Appendix B] for
more details.

5.1.1 BridgeWalker. The agent learns a locomotion pattern that
allows it to travel as far as possible on a soft rope bridge made
up of several sections with different lengths. Let 𝑥 (𝑘)𝑎 and 𝑦 (𝑘)𝑎 be
the 𝑥 and 𝑦 positions of the agent’s center of mass at time step 𝑘 .
The reward scheme provides a positive reward equal to the agent
movement in the positive 𝑥-axis:

𝑟 (𝑘) = 𝑥
(𝑘)
𝑎 − 𝑥

(𝑘−1)
𝑎 , (2)

and a final reward of 1 upon reaching the end of the bridge. Figure 4a
is a sample frame from the task. We adopted this task to be a test
of basic cognition, while not as trivial as walking on flat terrain.

The observation vector 𝒐 (𝑘) ∈ R𝑛+3 contains the current 𝑥 and
𝑦 positions of the 𝑛 point masses (relative to the center of mass), the
𝑥 and 𝑦 velocities of the center of mass, and the orientation of the
center of mass. Episodes in this environment consist of 𝑛sim = 500
steps.

4

https://github.com/federico-camerota/evogym/tree/baldwin
https://github.com/federico-camerota/evogym/tree/baldwin

5.1.2 BeamToppler. The second task consists of flat terrain with
a beam placed over two pegs. The agent’s goal is to push the beam
until it falls. Let 𝑥 (𝑘)

𝑏
and 𝑦

(𝑘)
𝑏

be the 𝑥 and 𝑦 positions of the
beam’s center of mass at time step 𝑘 . The reward is the sum of three
components:

𝑟 (𝑘) = 𝑟
(𝑘)
1 + 𝑟 (𝑘)2 + 𝑟 (𝑘)3 , (3)

with:

𝑟
(𝑘)
1 = |𝑥 (𝑘−1)

𝑏
− 𝑥

(𝑘−1)
𝑎 | − |𝑥 (𝑘)

𝑏
− 𝑥

(𝑘)
𝑎 | (4)

𝑟
(𝑘)
2 = |𝑥 (𝑘−1)

𝑏
− 𝑥

(𝑘)
𝑏

| + 3|𝑦 (𝑘−1)
𝑏

− 𝑦
(𝑘)
𝑏

| (5)

𝑟
(𝑘)
2 = 𝑦

(𝑘−1)
𝑏

− 𝑦
(𝑘−1)
𝑏

, (6)

where 𝑟1 rewards the agent for getting closer to the beam, 𝑟2 for
moving the beam, and 𝑟3 for toppling the beam. Figure 4b is a
sample frame from the task. We adopted this task as a relevant
instance of object manipulation.

The observation vector 𝒐 (𝑘) ∈ R𝑛+7 contains the same positional
information about the point masses as in BridgeWalker, plus the
𝑥 and 𝑦 velocities of the beam, the orientation of the beam, and the
distance of the agent’s center of mass from the beam’s center of
mass. This environment runs for 𝑛sim = 1000 steps.

5.1.3 CaveCrawler. The last task is the most difficult of the three
and requires the agent to both learn a locomotion pattern and
to adapt its shape to traverse caves with non-flat terrain while
avoiding obstacles hanging from above. The reward function is the
same as in BridgeWalker. Figure 4c is a sample frame from the task.
We adopted this task as it is among those classified as challenging
in [3].

The observation vector 𝒐 (𝑘) ∈ R𝑛+24 contains the same po-
sitional information about the point masses as in the previous
tasks as well as the agent’s velocity, plus the lowest 𝑦 positions
of the ceiling and the highest 𝑦 positions of the floor at [𝑥, 𝑥 + 1]
voxels of distance from the agent’s center of mass along the x-
axis, 𝑥 ∈ {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}. As in BeamToppler, also
CaveCrawler consists of 𝑛sim = 1000 simulation steps.

5.2 Results
Our evolutionary reinforcement learning setting co-optimizes effec-
tive solutions for the three tasks. We also analyze how the learning
(in terms of duration and extent) and the morphologies (by means of
a few morphological descriptors) vary over the course of evolution
for the two encodings; witnessing different trends, we link them
to the Baldwin effect and discuss the implications for designing
encodings in the co-optimization of virtual agents with evolution
and learning.

As a first step, we verify whether both encodings are capable of
co-optimizing effective solutions. As the performance index, we use
fitness 𝑓 that, we recall, corresponds to the average reward of the
evolved agent in a single episode. We plot in Figure 5 the fitness for
the best individual of each generation over the course of evolution,
in terms of median ± standard deviation across the evolutionary
runs.

Figure 5 confirms that co-optimization succeeds in finding ef-
fective solutions with both encodings and in all three task envi-
ronments and that most experiments succeed in converging to

a stable minimum. Direct and indirect encodings perform com-
paratively on BridgeWalker and CaveCrawler (𝑝-values not sig-
nificant), while the direct encoding outperforms the indirect in
BeamToppler with 𝑝 < 0.1. Last but not least, we notice that fit-
ness curves follow radically different paths: the direct encoding
co-optimizes monotonously, stepping from one local minimum to
a better one; on the other side, the indirect encoding shows more
erratic performance.

We visually inspected the co-optimized solutions and found
them to be highly adapted to the tasks: a video of the best indi-
viduals can be found at https://youtu.be/jlbBOoprnPA. Not only
do individuals learn adaptive and life-like behaviors, but they also
evolve morphologies that are suited to the task at hand. For ex-
ample, the best individuals for the CaveCrawler task always have
oblong morphologies, ideal for squeezing through tight spaces. In
BeamToppler, champions usually rely on extrusions of their up-
per body to effectively topple the beam, such extrusion proving
a limb evolved ad-hoc for the task of object manipulation. With
the indirect encoding, an outstanding individual jumped high onto
the pegs to hit the beam and cause it to slide. BridgeWalker, on
the other side, saw a greater variety of solutions, being less “con-
strained” than the other tasks. We showcase a sample of the evolved
morphologies in Figure 6 for the direct encoding and Figure 7 for
the indirect one. As observed in [5] and [11], the indirect encoding
evolves much more regular material patterns and shapes than the
direct one.

While the visual inspection and the fitness values achieved by
the best individuals support the claim that our co-optimization
was indeed successful, the trend of the curves of Figure 5 might be
interpreted as a poor convergence or, from another point of view,
as an ineffective evolution. However, we remark that the inner
optimization loop with RL allows sampling a neighborhood in the
phenotype space, greatly increasing the likelihood of discovering
an effective solution during the lifetime of an individual, to the
point that even initial generations can achieve decent fitness.

In order to answer our main research question, in the next sec-
tions we analyze more closely the learning ability of the evolved
agents, both qualitatively and quantitatively. From the qualitative
point of view, we plot the learning curves, showing how the reward
achieved by one individual changes over the iterations performed
by PPO, and compare them at different generations. From the quan-
titative point of view, we measure the learning radius, i.e., the dif-
ference between the reward at the end of learning and the reward
at the beginning, to get an estimate of the radius of the epigenetic
space and, intuitively, a measure of how much a given morphol-
ogy allows to learn. Finally, to get more insights and to attempt to
explain our findings, we analyze systematically the morphologies
being evolved, by computing a few morphological descriptors and
plotting them over the course of evolution.

5.2.1 Qualitative analysis: learning curves. To have an overview
on how individuals learn at different stages of the evolution, we
proceeded as follows. For each task and each evolutionary run, we
took the entire population at four evolution stages: at the begin-
ning, i.e., just after initialization, at 1

3𝑛f-evals, at
2
3𝑛f-evals, and at

the end of the evolution. Then, for each individual in the popu-
lation, we instrumented the PPO learning procedure to compute

5

https://youtu.be/jlbBOoprnPA

0 200 400
0

5

10

Fitness evaluations

𝑓

BridgeWalker

0 200 400
Fitness evaluations

BeamToppler

0 200 400 600 800 1 000
Fitness evaluations

CaveCrawler

Direct Indirect

Figure 5: Median ± standard deviation across the evolutionary runs for the fitness 𝑓 of the best individual over the course of
evolution. Both encodings optimize effective solutions.

(a) BridgeWalker (b) BeamToppler (c) CaveCrawler

Figure 6: Sample morphologies evolved over three tasks with
direct encoding.

(a) BridgeWalker (b) BeamToppler (c) CaveCrawler

Figure 7: Sample morphologies evolved over three tasks with
indirect encoding.

the average reward 𝑟 (𝑗) = 1
𝑛sim

∑𝑛sim
𝑘=1 𝑟

(𝑘) obtained in one “off-line”
simulation performed with the policy available after each 𝑗-th PPO
iteration; intuitively, hence, we computed the “fitness” during the
learning, instead of just at the end of the learning. Finally, we took
a moving average in a window of 10 PPO iterations, obtaining
𝑟 ′(𝑗) = 1

10
∑9
𝑖=0 𝑟

(𝑗+𝑖) , and computed the median 𝑟 ′(𝑗) across all
the individuals in the population. Figure 8 shows the curves of 𝑟 ′
vs. the PPO iteration, briefly learning curves, at different evolution
stages (line color), for the different tasks (columns of plots), and
different morphology encodings (rows of plots).

By observing Figure 8, it can be seen that the learning curves
differ among tasks, encodings, and evolution stages. While for the
BridgeWalker task 𝑟 ′ clearly increases more steeply as evolution
progresses—evolution does matter—for both encodings, probably
due to the task being more basic, the same is not true for the
other tasks. For BeamToppler, learning succeeds in converging
very quickly for both encodings and at every generation; never-
theless, learning curves flatten towards the same local minimum
for the indirect encoding, whereas there is a positive trend for the
direct encoding. In CaveCrawler, the indirect encoding shows the
same trend as in BeamToppler. The direct encoding, on the other
side, succeeds in converging faster as evolution progresses: more

in detail, the initial 𝑟 ′, i.e., the one at the beginning of the PPO
learning, increases over the evolution; moreover, only at the latest
stages of the evolution, the learning appears to be able to escape the
local minimum corresponding to the value of 2 for 𝑟 ′. Interestingly,
for this task and the direct encoding the evolution ends up (violet
line) favoring agents that learn a lot at the beginning of the learning
and stop learning after ≈ 100 PPO iterations; in a previous stage,
namely at 2

3𝑛f-evals fitness evaluations (green line), the learning is
slower at the beginning but then slowly continues for all the 1000
PPO iterations.

Summarizing, the qualitative analysis of the learning curves
shows that (a) the two encodings do differ in how they impact the
ability to learn of the agents and, in particular, that (b) with the
direct encoding, the evolution increases the ability to learn in two
on three cases.

5.2.2 Quantitative analysis: learning radius. While one aspect of
phenotypic plasticity is how a phenotype travels across the epige-
netic space, another is the radius (or, more generally, the size) of
such space: arguably, one can travel very fast if the radius of the
space to be covered is very small, and vice versa.

We compute the radius 𝜌 as the difference 𝑟 ′(𝑛RL-iters)−𝑟 ′(0) of the
reward 𝑟 ′ at the end of learning and the beginning of learning; we
measured 𝜌 at the end of the evolution. While a more sophisticated
measure might be found in the behavior space, we believe our
notion of reward effectively captures enough about an agent’s
phenotype and we leave other measures as future work. Figure 9
visualizes the results as the distribution of 𝜌 across evolutionary
runs for the three tasks and the two encodings. Above each pair
of boxplots, the brackets report the 𝑝-value for the statistical test
against the null hypothesis of equality between the medians.

Indeed, there is no clear difference in Figure 9 between each pair
of boxplots and the 𝑝-values are not significant for all the tasks.
We can thus argue that the size of the epigenetic space is mostly
the same across the two encodings and that the higher speed of
learning observed for the direct encoding in Section 5.2.1 is not the
result of shorter trajectories for the agents.

5.2.3 Morphological descriptors. To corroborate our analysis, we
quantitatively investigate howmorphologies change over the course
of evolution by visualizing a set of morphological descriptors. For

6

0

1

2

3

4

D
ire

ct
𝑟
′

BridgeWalker BeamToppler CaveCrawler

0 200 400 600 800 1 000
0

1

2

3

4

PPO iterations

In
di
re
ct

𝑟
′

0 200 400 600 800 1 000
PPO iterations

0 200 400 600 800 1 000
PPO iterations

0 1
3𝑛f-evals

2
3𝑛f-evals

𝑛f-evals

Figure 8: Moving average 𝑟 (𝑘) as a function of PPO iterations, taken at different generations, for three tasks and two encodings.
Median ± standard deviation across evolutionary runs. Speed of learning increases for the direct encoding, while the same is
not always true for the indirect.

0

2

4

6

8
n.s.

𝜌

BridgeWalker

n.s.

BeamToppler

n.s.

CaveCrawler

Direct Indirect

Figure 9: Distribution of learning radius 𝜌 across evolution-
ary runs. There is no significant difference between the two
encodings.

each morphology, we consider the fraction of non-empty voxels
𝑑size, the fraction of rigid inactive voxels 𝑑rigid, the fraction of soft
inactive voxels 𝑑soft, the fraction of horizontal actuators 𝑑h, and
the fraction of vertical actuators 𝑑v. Then, we compute the average
of each descriptor across all the individuals in the population and
look at how the values change during the evolution. We summarize
the results in Figure 10, in terms of median ± standard deviation
across evolutionary runs.

From Figure 10, we find that the two encodings radically differ
in the trend of the descriptors. Morphological descriptors for direct
encoding mostly follow monotonous paths, signaling there is a
convergence towards some morphological traits. Morphological
descriptors for the indirect encoding, on the other side, show erratic
and less clear paths and exhibit, in general, a larger variability (𝑦-
axis extent of shaded area in the plots). Albeit exhibiting some

trends over the long run, most of the descriptors oscillate between
increasing or decreasing.

We look at Figure 10 also to appreciate how different tasks differ
in terms of selective pressure on the morphologies. For example,
morphologies evolve to be smaller and more “muscular” (i.e., with
less inactivematerial) for the CaveCrawler task, where every excess
voxel might turn out a hindrance when squeezing through tight
spaces. In the BeamToppler task, morphologies evolve to have more
vertical actuators, as the task requires stretching vertically in order
to topple the beam.

Moreover, Figure 10 also suggests that the two morphological
encodings induce different biases. With the direct encoding the
evolution starts with an even distribution of materials across voxels
and then slowly favors materials which make morphologies more
adapted to the task. With the indirect encoding, the morphologies
tend to be larger and, in general, composed mostly of active materi-
als already at the beginning of the evolution (similar observations
have been done by Ferigo et al. [11] with other indirect encodings):
this can be explained by the very nature of the encoding itself, for
which a uniform distribution in the CPPN space does not necessar-
ily correspond to a uniform distribution in the morphology space.
Clearly, big and strong (since composed of many active voxels) mor-
phologies are favored and tend to fill the entire population starting
from the beginning of the evolution. However, they appear to be
harder to control and, hence, make the learning less efficient, as
visible in Figure 8 and discussed in Section 5.2.1.

6 DISCUSSION
The above results suggest that when co-optimizing virtual agents by
evolution and learning, the degree of plasticity of the learned con-
trollers differs across our direct and indirect encodings. In particular,

7

0

0.2

0.4

0.6

0.8

1

D
ire

ct

D
es
cr
ip
to
rv

al
ue

BridgeWalker BeamToppler CaveCrawler

0 200 400
0

0.2

0.4

0.6

0.8

1

Fitness evaluations

In
di
re
ct

D
es
cr
ip
to
rv

al
ue

0 200 400
Fitness evaluations

0 200 400 600 800 1 000
Fitness evaluations

𝑑size 𝑑rigid 𝑑soft 𝑑h 𝑑v

Figure 10: Median ± standard deviation across evolutionary runs for the morphological descriptors (fraction of non-empty
voxels, rigid material voxels, soft material voxels, horizontal actuators, vertical actuators) of the population over the course of
evolution. Paths of morphological descriptors are mostly monotonous for direct encoding, but erratic for indirect encoding.

we find that, in the case of direct encodings, effective controllers
emerge more and more quickly and morphologies converge. In
other words, morphologies “canalize” [55] towards designs that
allow for learning to take place more swiftly [56]. Recalling Fig-
ure 1, we interpret this canalization as evolution that selects for
morphologies that allow for phenotypes to “roll” over canals in the
epigenetic space [56].

We also find the indirect encoding to be less suited for evolv-
ing agents with increased plasticity. We attribute the reason to be
the different locality [42], one of the properties of genetic encod-
ings [43], between the direct and the indirect encoding. We say
an encoding is “local” if it preserves the distances between indi-
viduals when mapping from genotypes to phenotypes. In other
words, a local encoding maps individuals with close genotypes (in
the genotype space) to close phenotypes (in the phenotype space)
and individuals with distant genotypes (in the genotype space)
to distant phenotypes (in the phenotype space). It is likely that
our direct encoding enjoys more locality than the indirect, where
the genotype-phenotype mapping is non-trivial. Moreover, indirect
encodings generally have less heritability [7], with fit parents beget-
ting poor offspring (and vice-versa) more frequently than with a
direct encoding. Altogether, these facts mean that, with an indirect
encoding, it is more difficult for evolution to select morphologies
that lead to canalization. That is exactly what Mayley [28] argued:
for canalization through the Baldwin effect to take place, a small
distance between two individuals in the phenotype space must
imply a small distance in the genotype space.

7 CONCLUSION
The co-optimization of virtual agents, by the evolution of morpholo-
gies and the learning of controllers, despite promising, poses several

challenges. One of these is the choice of the genetic encoding for
the morphology. However, no work to date has ever delved into
how that affects phenotypic plasticity.

That is precisely what we set out to answer with this work. We
evolve the morphology of voxel-based soft agents—whose many
degrees of freedom makes them ideal testbeds—with Evolution-
ary Algorithms (EAs) and, for each morphology, learn a controller
through Reinforcement Learning (RL). For the EA, we test two en-
codings, direct and indirect. We experiment with three tasks from
the Evolution Gym [3] benchmark, consisting of bridge walking,
beam toppling, and cave crawling.

Our results show that the two encodings differ. The direct en-
coding results in increased learning ability and selection of mor-
phological traits that reduce the cost of learning, thus witnessing
a Baldwin effect. The indirect encoding does not always result in
increased learning ability and sustains high levels of morphological
diversity, thus it is difficult to argue in favor of a Baldwin effect. We
conjecture the reason to be the different properties of the encodings,
in particular, the lower locality [42] and lower heritability [7] of
the indirect one: since similar genotypes do not always correspond
to similar phenotypes, it is more difficult for evolution to select for
morphological traits that reduce the cost of learning.

We believe our work delivers key insights into the choice of
morphology encoding, which is crucial for the co-optimization of
agents with evolution and learning. Still, we acknowledge there are
limitations to our work that we will address in future work. For the
sake of generality, we will experiment with more variants for both
the direct and the indirect encoding and, possibly, for learning.

8

ACKNOWLEDGMENTS
The experiments in this work were conducted using virtual ma-
chines provided by Google Cloud Platform granted to F.P..

REFERENCES
[1] J Mark Baldwin. 1897. Organic selection. Science 5, 121 (1897), 634–636.
[2] James Mark Baldwin et al. 2018. A new factor in evolution. Diacronia 7 (2018),

1–13.
[3] Jagdeep Bhatia, Holly Jackson, Yunsheng Tian, Jie Xu, and Wojciech Matusik.

2021. Evolution gym: A large-scale benchmark for evolving soft robots. Advances
in Neural Information Processing Systems 34 (2021), 2201–2214.

[4] Jürgen Branke. 1995. Evolutionary Algorithms for Neural Network Design and
liraining. (1995).

[5] Nick Cheney, Robert MacCurdy, Jeff Clune, and Hod Lipson. 2013. Unshackling
evolution: evolving soft robots with multiple materials and a powerful generative
encoding. In Proceedings of the 15th annual conference on Genetic and evolutionary
computation. ACM, 167–174.

[6] Francesco Corucci, Nick Cheney, Francesco Giorgio-Serchi, Josh Bongard, and
Cecilia Laschi. 2018. Evolving soft locomotion in aquatic and terrestrial environ-
ments: effects of material properties and environmental transitions. Soft robotics
5, 4 (2018), 475–495.

[7] Matteo De Carlo, Eliseo Ferrante, Daan Zeeuwe, Jacintha Ellers, Gerben Meynen,
and AE Eiben. 2021. Heritability inMorphological Robot Evolution. arXiv preprint
arXiv:2110.11187 (2021).

[8] Kenneth A De Jong. 2006. Evolutionary Computation: A Unified Approach. MIT
Press.

[9] AE Eiben and Emma Hart. 2020. If it evolves it needs to learn. In Proceedings of the
2020 Genetic and Evolutionary Computation Conference Companion. 1383–1384.

[10] Andrea Ferigo, Giovanni Iacca, Eric Medvet, and Federico Pigozzi. 2022. Evolv-
ing Hebbian Learning Rules in Voxel-based Soft Robots. IEEE Transactions on
Cognitive and Developmental Systems (2022), 1–1. https://doi.org/10.1109/TCDS.
2022.3226556

[11] Andrea Ferigo, LB Soros, Eric Medvet, and Giovanni Iacca. 2022. On the Entangle-
ment between Evolvability and Fitness: an Experimental Study on Voxel-based
Soft Robots. In ALIFE 2022: The 2022 Conference on Artificial Life. MIT Press.

[12] John Gerhart and Marc Kirschner. 2007. The theory of facilitated variation.
Proceedings of the National Academy of Sciences 104, suppl 1 (2007), 8582–8589.

[13] Léni K Le Goff and EmmaHart. 2021. On the challenges of jointly optimising robot
morphology and control using a hierarchical optimisation scheme. In Proceedings
of the Genetic and Evolutionary Computation Conference Companion. 1498–1502.

[14] T Ryan Gregory, James A Nicol, Heidi Tamm, Bellis Kullman, Kaur Kullman, Ilia J
Leitch, Brian G Murray, Donald F Kapraun, Johann Greilhuber, and Michael D
Bennett. 2007. Eukaryotic genome size databases. Nucleic acids research 35,
suppl_1 (2007), D332–D338.

[15] Agrim Gupta, Silvio Savarese, Surya Ganguli, and Li Fei-Fei. 2021. Embodied
Intelligence via Learning and Evolution. arXiv preprint arXiv:2102.02202 (2021).

[16] Ahmed Hallawa, Thorsten Born, Anke Schmeink, Guido Dartmann, Arne Peine,
Lukas Martin, Giovanni Iacca, AE Eiben, and Gerd Ascheid. 2021. Evo-RL:
evolutionary-driven reinforcement learning. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion. 153–154.

[17] Emma Hart and Léni K Le Goff. 2022. Artificial evolution of robot bodies and
control: on the interaction between evolution, learning and culture. Philosophical
Transactions of the Royal Society B 377, 1843 (2022), 20210117.

[18] Jonathan Hiller and Hod Lipson. 2012. Automatic design and manufacture of
soft robots. IEEE Transactions on Robotics 28, 2 (2012), 457–466.

[19] Geoffrey EHinton, Steven J Nowlan, et al. 1987. How learning can guide evolution.
Complex systems 1, 3 (1987), 495–502.

[20] Gregory S Hornby, Jordan B Pollack, et al. 2001. Body-brain co-evolution using
L-systems as a generative encoding. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001). 868–875.

[21] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki,
Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Si-
monyan, et al. 2017. Population based training of neural networks. arXiv preprint
arXiv:1711.09846 (2017).

[22] Milan Jelisavcic, Kyrre Glette, Evert Haasdijk, and AE Eiben. 2019. Lamarckian
evolution of simulated modular robots. Frontiers in Robotics and AI 6 (2019), 9.

[23] Michał Joachimczak, Reiji Suzuki, and Takaya Arita. 2016. Artificial Metamor-
phosis: Evolutionary Design of Transforming, Soft-Bodied Robots. Artificial Life
22, 3 (2016), 271–298. https://doi.org/10.1162/ARTL_a_00207 PMID: 27139940.

[24] Scott A Kelly, Tami M Panhuis, and AndrewM Stoehr. 2012. Phenotypic plasticity:
molecular mechanisms and adaptive significance. Compr Physiol 2, 2 (2012), 1417–
1439.

[25] Ilya Kostrikov. 2018. PyTorch Implementations of Reinforcement Learning Algo-
rithms. https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail.

[26] Sam Kriegman, Nick Cheney, and Josh Bongard. 2018. How morphological
development can guide evolution. Scientific reports 8, 1 (2018), 13934.

[27] Jie Luo, Aart Stuurman, Jakub M Tomczak, Jacintha Ellers, and Agoston E Eiben.
2021. The Effects of Learning in Morphologically Evolving Robot Systems. arXiv
preprint arXiv:2111.09851 (2021).

[28] Giles Mayley. 1996. Landscapes, learning costs, and genetic assimilation. Evolu-
tionary Computation 4, 3 (1996), 213–234.

[29] Alan McIntyre, Matt Kallada, Cesar G. Miguel, and Carolina Feher de Silva. [n.
d.]. neat-python.

[30] Karine Miras, Matteo De Carlo, Sayfeddine Akhatou, and AE Eiben. 2020.
Evolving-controllers versus learning-controllers for morphologically evolvable
robots. In International Conference on the Applications of Evolutionary Computa-
tion (Part of EvoStar). Springer, 86–99.

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529–533.

[32] Giorgia Nadizar, Eric Medvet, and Karine Miras. 2022. On the schedule for mor-
phological development of evolved modular soft robots. In Genetic Programming:
25th European Conference, EuroGP 2022, Held as Part of EvoStar 2022, Madrid,
Spain, April 20–22, 2022, Proceedings. Springer, 146–161.

[33] Giorgia Nadizar, Eric Medvet, Hola Huse Ramstad, Stefano Nichele, Felice Andrea
Pellegrino, and Marco Zullich. 2022. Merging pruning and neuroevolution:
towards robust and efficient controllers for modular soft robots. The Knowledge
Engineering Review 37 (2022).

[34] Emre O Neftci and Bruno B Averbeck. 2019. Reinforcement learning in artificial
and biological systems. Nature Machine Intelligence 1, 3 (2019), 133–143.

[35] Scott Niekum, Andrew G Barto, and Lee Spector. 2010. Genetic programming for
reward function search. IEEE Transactions on Autonomous Mental Development 2,
2 (2010), 83–90.

[36] OpenAI, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Prze-
mysław Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme,
Chris Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki,
Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim Sali-
mans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang,
FilipWolski, and Susan Zhang. 2019. Dota 2 with Large Scale Deep Reinforcement
Learning. (2019). arXiv:1912.06680 https://arxiv.org/abs/1912.06680

[37] Joachim Winther Pedersen and Sebastian Risi. 2021. Evolving and merging
Hebbian learning rules: increasing generalization by decreasing the number of
rules. In Proceedings of the Genetic and Evolutionary Computation Conference.
892–900.

[38] Jaume Pellicer and Ilia J Leitch. 2019. The Plant DNA C-values database (release
7.1): an updated online repository of plant genome size data for comparative
studies. [" New Phytologist"] (2019).

[39] Rolf Pfeifer and Josh Bongard. 2006. How the body shapes the way we think: a
new view of intelligence. MIT press.

[40] Federico Pigozzi, Yujin Tang, Eric Medvet, and David Ha. 2022. Evolving Modular
Soft Robots without Explicit Inter-Module Communication using Local Self-
Attention. In Proceedings of the 24th annual conference on Genetic and Evolutionary
Computation. ACM.

[41] Trevor D Price, Anna Qvarnström, and Darren E Irwin. 2003. The role of pheno-
typic plasticity in driving genetic evolution. Proceedings of the Royal Society of
London. Series B: Biological Sciences 270, 1523 (2003), 1433–1440.

[42] Franz Rothlauf. 2003. On the locality of representations. None (2003).
[43] Franz Rothlauf. 2006. Representations for genetic and evolutionary algorithms.

In Representations for Genetic and Evolutionary Algorithms. Springer, 9–32.
[44] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[45] Karl Sims. 1994. Evolving virtual creatures. In Proceedings of the 21st annual
conference on Computer graphics and interactive techniques. ACM, 15–22.

[46] Moshe Sipper, Eduardo Sanchez, Daniel Mange, Marco Tomassini, Andrés Pérez-
Uribe, and André Stauffer. 1997. A phylogenetic, ontogenetic, and epigenetic view
of bio-inspired hardware systems. IEEE Transactions on Evolutionary Computation
1, 1 (1997), 83–97.

[47] Kenneth O Stanley. 2007. Compositional pattern producing networks: A novel
abstraction of development. Genetic programming and evolvable machines 8, 2
(2007), 131–162.

[48] Kenneth O Stanley and Risto Miikkulainen. 2002. Evolving neural networks
through augmenting topologies. Evolutionary computation 10, 2 (2002), 99–127.

[49] Jörg Stork, Martin Zaefferer, Nils Eisler, Patrick Tichelmann, Thomas Bartz-
Beielstein, and AE Eiben. 2021. Behavior-based neuroevolutionary training in
reinforcement learning. In Proceedings of the Genetic and Evolutionary Computa-
tion Conference Companion. 1753–1761.

[50] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[51] Jacopo Talamini, Eric Medvet, Alberto Bartoli, and Andrea De Lorenzo. 2019.
Evolutionary Synthesis of Sensing Controllers for Voxel-based Soft Robots. In

9

https://doi.org/10.1109/TCDS.2022.3226556
https://doi.org/10.1109/TCDS.2022.3226556
https://doi.org/10.1162/ARTL_a_00207
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680

Artificial Life Conference Proceedings. MIT Press, 574–581.
[52] Yujin Tang, Duong Nguyen, and David Ha. 2020. Neuroevolution of self-

interpretable agents. In Proceedings of the 2020 Genetic and Evolutionary Compu-
tation Conference. 414–424.

[53] Peter D Turney. 2002. Myths and legends of the Baldwin effect. arXiv preprint
cs/0212036 (2002).

[54] FrankVeenstra, Andres Faina, Sebastian Risi, and Kasper Stoy. 2017. Evolution and
morphogenesis of simulated modular robots: a comparison between a direct and

generative encoding. In European Conference on the Applications of Evolutionary
Computation. Springer, 870–885.

[55] Conrad H Waddington. 1942. Canalization of development and the inheritance
of acquired characters. Nature 150, 3811 (1942), 563–565.

[56] Conrad Hal Waddington. 2014. The strategy of the genes. Routledge.
[57] Bruce H Weber and David J Depew. 2003. Evolution and learning: The Baldwin

effect reconsidered. Mit Press.

10

	Abstract
	1 Introduction
	2 Related work
	3 Agent model
	4 Co-optimization of morphology and controller
	4.1 Evolution
	4.2 Learning

	5 Experiments
	5.1 Tasks
	5.2 Results

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

