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1 Introduction

Singular noncompact Calabi-Yau threefolds are interesting objects both from a mathemat-
ical as well as a physics point of view. In physics, by defining string theory or M-theory
on them, they can provide the framework for modeling effective supersymmetric gauge
theories in four and five dimensions, with gravity decoupled. This can happen via the
branes at singularities paradigm, whereby a bunch of D3-branes probes such a singularity,
or via the geometric engineering paradigm, whereby the field theory content emanates from
membranes wrapping the vanishing cycles of the singularity. We will focus on the latter.

The prototypical example, the conifold, is a threefold that can be described as a hy-
persurface in C4. It admits a so-called small resolution, which means that the singularity
is replaced by a P1 (unlike other singularities where the exceptional locus is of complex
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dimension two). This sphere can flop to negative volume, and a homologically inequivalent
sphere of positive area grows.

The conifold is but the first in a series of threefolds that admit simple flops. Here,
‘simple’ refers to the fact that only one sphere grows after resolution (as opposed to a chain
of spheres). The conifold is known as a simple flop of length one. Here, the length of a flop
refers to a multiplicity that can be attributed to the exceptional P1. If one pulls back the
skyscraper sheaf corresponding to the singular point of the conifold w.r.t. the blow-down
map, one will get the structure sheaf of the exceptional curve.

π∗(Op) = OP1 . (1.1)

It has been known for decades that other lengths are possible, up to l = 6, such that

π∗(Op) = O⊕lP1 . (1.2)

Even though the above definition may appear rather obscure, the length has a very concrete
physical meaning: as we will see later, when we geometrically engineer M-theory on simple
threefold flops described as deformed ADE singularities, we find that the length of the
simple flop is nothing but the maximal flavor charge of the 5d hypermultiplets arising from
M2 branes wrapped on the exceptional P1. We will get into the details of these aspects in
later sections.

In order to construct such higher length flops, the strategy in [1] has been to consider
families of deformed ADE surfaces. In other words, fibering local K3’s over the deformation
parameter space. In general, the total space of the families may or may not be singular.
Resolving the possible singularity inflates part of the exceptional P1’s associated to the
simple roots of the ADE algebra associated with the family. Given such a family, which
will give rise to an n-fold, one can always cut out a complex three-dimensional subvariety,
which will be guaranteed to give a Gorenstein threefold.

In this paper, following [2, 3], we develop a new method to construct simple flops
spanning all the possible values of the length of the exceptional P1 (up to the maximal
value l = 6), based on a gauge-theoretic approach. To this end, we consider M-theory on an
ALE surface with an ADE singularity. The 7d effective theory is a SYM theory with three
adjoint scalars and group G = A,D,E with N = 1 supersymmetry. One can break half of
the supercharges by switching on a BPS vev for the scalar fields in the following way:

• Take the 7d spacetime to be R5 × C. Call w the local coordinate on C.

• Split the tree real scalars into a complex adjoint scalar Φ = φ1+iφ2 and a real adjoint
scalar φ3.

• Take a holomorphic vev for Φ that depends on a coordinate w, transverse to the local
K3.

This preserves only a 5d Poincaré group. The 7d gauge group is broken to the commutant
of Φ. The 7d N = 1 vector multiplet was made up of the gauge field AM (M = 0, 1, . . . , 6)
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and the three scalars φi (i = 1, 2, 3); after giving a vev to Φ, only a 5d N = 1 vector multi-
plet (Aµ, φ3) in the subalgebra H that commutes with Φ survives (these vector multiplets
still propagate in 7d, and are then seen as background vector multiplets from the 5d point
of view). As we will see in detail in the main text, there are also localized Φ-modes at
w = 0 that organize in hypermultiplets charged under H and that propagate in 5d.

The fields Φ and φ3 can be given two physical interpretations: in the A or D series,
the local K3 has a C∗-fibration structure; we can then reduce M-theory to IIA, and regard
them as the three adjoint scalars or a stack of D6-branes. For the E series, we can consider
F-theory on an elliptically fibered K3, giving rise to 8d SYM. Physically, Φ is the adjoint
Higgs on the stack of non-perturbative sevenbranes. By further compactifying on a circle,
we arrive at 7d SYM with exceptional gauge group.

The vev’s of Φ and φ encode the complex structure and Kähler moduli of the local K3,
respectively. When both are zero, the surface is singular. Activating φ blows up spheres
of non-zero Kähler volume. However, activating Φ will switch on versal deformations of
the local K3, which will unfold the singularity according to its Casimir invariants. From
the geometric point of view, we will obtain a fibration of deformed ALE surfaces over
the w-plane, giving rise to a threefold X that admits a simple flop. Reducing M-theory
directly on X produces the 5d spectrum of propagating hypermultiplets and background
vector multiplets outlined before.

Resolving the full fibration is known as a simultaneous resolution. Given the Dynkin
diagram of the gauge algebra in question, a simultaneous resolution corresponds to a choice
of simple roots. This selects, the subspace H of the Cartan subalgebra t of the original
ADE algebra where φ3 lives. The commutant of φ3 tells us what is the form of a generic 〈Φ〉
producing the sought-after family. The M-theory threefold is then obtained by choosing
the w-dependence of the Casimir invariants of Φ, which uniquely fix the defining equation
of the threefold.

At this point, one can compute the number of hypermultiplets of the 5d effective the-
ory, by counting the zero modes of the complex adjoint Φ that are localized around the
singularity. Their number corresponds to the BPS index of M2-states wrapping the van-
ishing P1’s, aka the Gopakumar-Vafa invariants. In this paper, we are able to compute the
charge of each hypermultiplet with respect to the flavor group, which gives us not only the
multiplicity of states, but the actual refined information of the GV invariants, which are
organized by homology classes of the threefold. This furthermore allows us to compute de-
tailed information about the 5d Higgs branch:1 Its dimension is equal to the sum of all GV
invariants while the action of the flavor group is determined by the charges of the hypers.

The paper is organized as follows. In section 2 we review the families of deformed
ADE singularities. In section 3 we explain how the choice of spheres that are blown up in
the simultaneous resolution determines the vev for Φ; by using this Φ we then show how
to extract the hypersurface equation of the threefold and its GV invariants. In section 4
we apply our method to simple flops, by constructing explicitly threefolds with any length

1The study of 5d Higgs branches, via deformations of isolated hypersurface singularities, was initiated
in [4–6].
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from 1 to 6. In section 5 we draw our conclusions. We add four appendices: in appendix A
we outline the Katz-Morrison method to derive the threefold equation; in appendix B we
write some long formulae for the exceptional cases, necessary to compute the corresponding
threefold equations; in appendix C we illustrate a check of our computations by using the
Milnor number of the considered singularities; in appendix D we expose the Mathematica
code we worked out to compute the zero modes once one chooses a specific Φ.

2 ADE families and simultaneous resolution

In this section, we briefly summarize the philosophy and method of [1] for building simul-
taneous resolutions, by fibering ALE surfaces over the Cartan torus of an ADE group.
Consider an ALE surface in C3 with an ADE singularity, defined by the singular hypersur-
face equation f(x, y, z) = 0. The cases in the ADE classification can be presented as:

Ar : x2 + y2 + zr+1 = 0
Dr : x2 + zy2 + zr−1 = 0
E6 : x2 + y3 + z4 = 0
E7 : x2 + y3 + yz3 = 0
E8 : x2 + y3 + z5 = 0

(2.1)

One can deform these equations by adding a certain number of monomials:

f +
k∑
i=1

µigi = 0, (2.2)

where the monomials gi belong to the ring:

R = C(x, y, z)(
∂f
∂x ,

∂f
∂y ,

∂f
∂z

) . (2.3)

The coefficients µi of the monomials gi are coordinates on the space of deformations. One
can construct a space by fibering the deformed ALE space over the deformation space: at
the origin (where all deformation coefficients are zero), the ALE space develops the ADE
singularity. The total space of the fibration may or may not be singular, depending on the
actual fibration structure.

To illustrate the setup in more detail, we focus on an Ar−1 type ALE family. This
machinery is well-developed in [1]. The equation defining the Ar−1 singularity is2

uv = zr . (2.4)

The versal deformation is
uv = zr +

r∑
i=2

(−1)i−1σiz
r−i . (2.5)

2Obtained from (2.1) by the change of variables x = v−u
2 , y = v+u

2i .
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Promoting the σi’s to coordinates, this equation describes a fibration with fiber given by
the (deformed) Ar−1 surface and base the space t/W of gauge invariant coordinates σi
(i = 2, . . . , r)3 on the Lie algebra sl(r), where t is the Cartan torus and W the Weyl group.
The space (2.5), a fibration over t/W, is non-singular. However, by making a base change,
one obtains a singular space whose resolution blows up a subset of the roots of the central
ALE fiber. Let us consider the simplest case, i.e. r = 2. The equation (2.5) becomes

uv = z2 + σ2 , (2.6)

which is perfectly smooth as a total space, even though the central fiber over σ2 = 0 is
a singular A1-surface. If we make the base change σ2 = t2, i.e. we pull-back the ALE
fibration w.r.t. the map:

t −→ t/Z2 (2.7)
t 7→ σ2 = t2 , (2.8)

where, in this case, t ∼= C, we obtain a threefold with a conifold singularity:

uv = z2 + t2 . (2.9)

The small resolution of the conifold blows up the simple root of A1 in the central fiber.
This is called a simultaneous resolution. The family is now fibered over the base t, whose
t is a coordinate.

For generic r one can make an analogous base change by pulling back the family w.r.t.
to the map

t −→ t/W ti 7→ σk(ti) (2.10)

by taking σk’s written as W-invariant functions of coordinates ti on t. This resolves all the
simple roots of Ar−1 in the central fiber. One can also choose a different base change where

t −→ t/W ′ −→ t/W (2.11)
ti 7→ %i(tj) 7→ σi(tj) (2.12)

where W ′ ⊂ W . In this case, the resolution of the family blows up the roots that are left
invariant by W ′, in the central fiber. The base of the fibration is now parametrized by the
r− 1 W ′ invariants, that we call %i (i = 1, . . . , r− 1). The %i’s can also be associated with
W ′-invariant functions of coordinates ti on t.

This line of reasoning can be generalized [1] to all the cases in the ADE classification.
Let us consider the family fibered over t. At the origin of t, the surface develops the
corresponding ADE singularity. At a generic point of t, the singularity is deformed: the
surface admits r non-vanishing S2 intersecting in the same pattern as the nodes of the
Dynkin diagram and whose volume is measured by the holomorphic (2,0)-form. In the
deformed ALE surface, the holomorphic (2,0)-form is along an element t of the Cartan

3For Ar−1, the invariant σi is the i-th elementary symmetric polynomial in the eigenvalues of an element
of the Lie algebra.
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torus, such that volαi =
∫
αi

Ω2,0 = αi[t]. We choose a set of coordinates ti of t such that
the volumes of the simple roots are given by

Ar : volαi = ti − ti+1 i = 1, . . . , r

Dr : volαi =
{
ti − ti+1 i = 1, . . . , r − 1
tr−1 + tr i = r

Er : volαi =
{
ti − ti+1 i = 1, . . . , r − 1
−t1 − t2 − t3 i = r

(2.13)

It is useful to state the explicit form of the versal deformations of the singularities (2.1)
as fibrations of deformed ADE surfaces over the base t (with simultaneous resolution of all
the simple roots):

Ar : x2 +y2 +
r+1∏
i=1

(z− ti) = 0
r+1∑
i=1

ti = 0

Dr : x2 +zy2 +
∏r
i=1
(
z+ t2i

)
−
∏r
i=1 t

2
i

z
+2

r∏
i=1

tiy= 0

E6 : x2 +z4 +y3 +ε2yz
2 +ε5yz+ε6z

2 +ε8y+ε9z+ε12 = 0
E7 : x2 +y3 +yz3 + ε̃2y

2z+ ε̃6y
2 + ε̃8yz+ ε̃10z

2 + ε̃12y+ ε̃14z+ ε̃18 = 0
E8 : x2 +y3 +z5 + ε̂2yz

3 + ε̂8yz
2 + ε̂12z

3 + ε̂14yz+ ε̂18z
2 + ε̂20y+ ε̂24z+ ε̂30 = 0,

(2.14)

where the εi, ε̃i, ε̂i are known functions of the parameters ti ∈ t (see [1] for the explicit
expression of εi, ε̃i and an algorithm to compute ε̂i).

The forms (2.14) admit the blow up of a collection of P1s in the central fiber dual to
all the simple roots of the corresponding ADE algebra. Exactly as for the Ar-families, one
can make a simultaneous resolution of a subset of the simple roots, by choosing a subgroup
W ′ ⊂ W that leaves these roots invariant. The corresponding family is fibered over the
space parametrized by the coordinates %i of t/W ′.

3 Threefolds as ALE families, GV invariants and Φ

The families of ALE surfaces described in the previous section are a natural starting point
for constructing CY three-folds: the coordinates %i ∈ t/W ′ can be chosen so as to depend
(linearly)4 on a single complex parameter w. Such a threefold has then the structure of an
ALE fibration over the complex plane Cw and it will be defined by an equation such as

F (x, y, z, %1(w), . . . , %r(w)) = 0 , (3.1)

where F (x, y, z, %1, . . . , %r) = 0 is the defining equation of the (r + 2)-dimensional family
(r is the rank of the ADE algebra). We will restrict on threefolds X that have isolated
singularities, whose exceptional locus does not contain compact divisors.5

4Other dependences are indeed possible. However, we will stick to linear in order to avoid creating
further singularities in the resulting threefolds.

5One would need a severe degeneration of the ALE surface at the origin, e.g. the ALE surface should
split into several components, while in our cases the ALE surface just develops a singularity.
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In the following we are going to show how to build a threefold family of deformed ADE
surfaces by starting from the requirement that the ALE fibration over Cw presents a specific
partial simultaneous resolution, i.e. a choice of resolved simple roots, say α1, . . . α`. As we
will see, this method can actually produce in principle the full ADE family over t/W ′.

3.1 The Higgs field from the simultaneous resolution

The ADE families over t/W ′ and the corresponding threefolds have been derived and
studied using several methods, such as [1, 7–11]. We are going to use a different (more
physical) approach to construct these spaces that is based on the choice of an element Φ of
the ADE algebra, depending on the coordinate w. Our starting point is M-theory reduced
on an ALE surface with an ADE singularity of type g. M-theory on an ADE singularity
gives rise to a N = 1, d = 7 gauge theory with gauge group GADE and three adjoint scalars
φi (i = 1, 2, 3). With a choice of a complex structure, a vev for Φ ≡ φ1 + iφ2 corresponds
geometrically to a deformation of the singularity, while a vev for φ3 corresponds to a
resolution, with [〈Φ〉, 〈φ3〉] = 0. In particular the coefficients of the deforming monomials
are associated with the Casimir invariants of Φ.

We fiber this background over the Cw-plane by switching on a non-zero w-dependent
vev for the complex adjoint scalar Φ. Geometrically this corresponds to deforming the
singularity differently at different values of w, obtaining a threefold X that is an ALE
fibration over Cw.

We now want to select a vev for Φ that allows the (simultaneous) resolution at the
origin only of a choice of simple roots α1, . . . α` of g. Rephrased in the 7d field theory
language, 〈Φ〉 must be compatible with switching on a vev for φ3 along the subalgebra

H = 〈α∗1, . . . α∗` 〉 . (3.2)

Since [〈Φ〉, 〈φ3〉] = 0, then Φ must live in the commutant of H, that we call L. Such a
subalgebra, that is the commutant of diagonal elements, is called a Levi subalgebra of g.6

Summing up, the choice of the blown up simple roots select an abelian subalgebra
H ⊂ g. This defines a Levi subalgebra L ⊂ g, that is of the form

L =
⊕
h

Lh ⊕H (3.3)

with Lh simple Lie algebras. The Higgs field7 Φ corresponding to the ALE fibration should
be a generic element of L.

The Casimir invariants of the Higgs field Φ tell us how the ALE fiber is deformed.
Since at the origin of Cw the fiber presents the full ADE singularity, we expect that all the
Casimir invariants of Φ vanish at w = 0. This means that at w = 0 the Higgs field should

6At the level of the effective 7d theory, the vev 〈Φ〉 breaks the gauge algebra to its commutant H. It is
important that H is a subspace of the Cartan subalgebra of g. In fact, if the preserved algebra contained a
simple factor g′, the vev 〈Φ〉 would not deform the ADE singularity completely, but the fiber over generic
w would have a singularity of type g′, i.e. X would have a non-isolated singularities.

7For ease of notation, from now on we call Φ the vev of the field corresponding to a given family of ADE
deformed singularities.
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Figure 1. Partial resolution of A3.

be a non-zero nilpotent element of L. In particular, when restricted on each summand Lh
of the Levi subalgebra, Φ must be in the corresponding principal nilpotent orbit, if we do
not want terminal singularities.8

We call the Higgs at the origin X+. The generic Higgs field has then the following
form

Φ = X+ + wY (3.4)

where Y ∈ L can in principle depend on w; in this paper we mainly consider cases with
constant Y .

The Higgs field Φ must deform the singularity outside the origin. At least in a neigh-
borhood of w = 0, we demand that the ALE fiber does not develop any singularity. This
happens when Φ restricted on each summand of L is a non-zero semisimple element of that
summand. For Lh = Am−1, the generic form of Φ, up to gauge transformations is in the
form of a reconstructible Higgs [12].

Φ|Am−1 =



0 1 0 · · · 0
0 0 1 0 0
... 0 . . . . . . 0
0 0 0 0 1

(−1)m−1σ̂m (−1)m−2σ̂m−1 · · · −σ̂2 0


(3.5)

with σ̂j (j = 2, . . . ,m) the Casimirs of Φ|Am−1 (we called them the partial Casimir of
g). There are analogous canonical forms when the summand is a different Lie algebra.
Collecting the Casimirs σ̂j ’s for each summand Lh and the coefficient deformations along
H one obtains the set of invariant coordinates %i that span the base of the family with
simultaneous partial resolution. The total Casimirs of Φ (that appear as coefficients of the
deforming monomials in the versal deformation of the ADE singularity) can be written as
functions of the %i’s. Notice that by formulae like (3.5), we give Φ as a function of the
partial Casimirs %i. The choice of a dependence of %i on w produces a threefold.

We finally notice that the ADE Lie Algebra g can be decomposed into representations
of the Levi subalgebra:

g = L ⊕ . . . =
⊕
p

RLp , (3.6)

where the irreps RLp include the terms in the decomposition (3.3). This will turn out useful
in the following.

8If this does not happen, there will be neutral zero modes of Φ, that, as we will see, will correspond to
hypermultiplets that cannot get mass by going to the Coulomb branch; this corresponds to non-resolvable
singularities.
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A3 example. Let us see how the choice of Φ works in a simple example: a family of
deformed A3 singularity where only the central simple root α2 is simultaneously resolved at
the origin (see figure 1). We then have H = 〈α∗2〉 andW ′ = Z2×Z2. The commutant of H is

L = A
(1)
1 ⊕A

(3)
1 ⊕ 〈α

∗
2〉 (3.7)

where A(i)
1 (i = 1, 3) is generated by the triplet e±αi , hi normalized s.t. the commutation

relations are hi = [eαi , e−αi ] and [hi, e±αi ] = ±2e±αi . Following the prescription (3.5) for
each A1 summand we have

Φ|
A

(i)
1

=
(

0 1
%i 0

)
= eαi + %ie−αi i = 1, 3 (3.8)

where %i (i = 1, 3) is the only Casimir of the s`2 algebra A(i)
1 . Φ can also have a component

along the Cartan α∗2, with generic coefficient %2. %1, %2, %3 are the partial Casimirs rela-
tive to the chosen partial simultaneous resolution, i.e. they are invariant under the Weyl
subgroup W ′. In matrix form, the chosen Higgs field vev is:

Φ =


%2 1
%1 %2

−%2 1
%3 −%2

 (3.9)

One can then take %i = %i(w) in order to obtain a fibration over Cw.

3.2 The threefold equation from Φ

In order to obtain the explicit equation of the threefold we first derive the expression
of the family of ADE surfaces fibered over t/W ′ with coordinates %i. We then let these
coordinates depend on w ∈ C.

Katz and Morrison [1] developed a method for obtaining the hypersurface equation for
an ADE family with a given simultaneous resolution, which we review in appendix A. In the
following, instead, we propose a novel method to read off the explicit equation of the simple
flops in the ADE classification using the Higgs field Φ.9 Although the resulting expressions
match those of [1], this approach tackles the problem from a different perspective, unifying
the physical description via the Higgs field Φ and the algebraic expressions of the deformed
ADE singularities.

We first consider the adjoint quotient map, that associates an element g of the ADE
algebra g of rank r with r independent polynomials χi, whose value gives a point in t/W:

χ : g→ t/W : g 7→ (χ1(g), · · · , χr(g)). (3.10)

The polynomials χi(g) are the Casimirs of g and are defined in the following way. By
choosing a representation of the Lie algebra g, g can be put in a matrix form. Its Casimirs

9Actually, our method works for any CY threefold derived from an ADE family.
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are then given by specific invariant polynomials of this matrix: for the A and D series, the
canonical Casimirs of g are (with g a matrix in the fundamental/vector representation):

Ar Dr

χAi (g) = 1
i+1Tr(gi+1), i = 1, . . . , r χDi (g) = Tr(g2i), i = 1, . . . , r − 1

χDr (g) = Pfaff(g)
(3.11)

For the exceptional algebras Er, one takes g in the following representations: 27 for E6,
133 for E7 and 248 for E8. One then defines the Casimirs of g as [13, 14]:

E6 χ
E6
i (g) = Tr(gki) for ki = 2, 5, 6, 8, 9, 12

E7 χ
E7
i (g) = Tr(gki) for ki = 2, 6, 8, 10, 12, 14, 18

E8 χ
E8
i (g) = Tr(gki) for ki = 2, 8, 12, 14, 18, 20, 24, 30

, (3.12)

and i = 1, . . . , r.
We now need to provide the definition of Slodowy slices. Consider a nilpotent ele-

ment x ∈ g belonging to some nilpotent orbit O: the Jacobson-Morozov theorem ensures
that there exists a standard triple {x, y, h} of elements in g satisfying the su(2) algebra
relations.10 Now, we define the Slodowy slice through the point x as those Lie algebra
elements satisfying:

Sx = {z ∈ g | [z− x, y] = 0}. (3.13)

For our purposes, we are interested in the so-called subregular nilpotent orbit Osubreg, and
in the Slodowy slice passing through it.11

Let us immediately clarify the definitions given so far with a simple example. Consider
the A3 Lie algebra, and a nilpotent element x lying in its subregular nilpotent orbit. The
element x and its Slodowy slice are

x =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , Ssubreg =




a 1 0 0
b a 1 0
c b a d

e 0 0 −3a


∣∣∣∣∣ a, b, c, d, e ∈ C

 . (3.14)

The crucial fact for us is the following: given an algebra g in the ADE classification, and
an element x ∈ Osubreg, the intersection of the Slodowy slice through x with the fiber of the
adjoint quotient map (3.10) is isomorphic to the versal deformation of the corresponding
ADE singularity, namely:

Ssubreg ∩ χ−1(u) ∼= versal deformation of C2/ΓADE, (3.15)

where u is a point in t/W ' Cr with coordinates ui. In particular, the intersection of
Ssubreg and the nilpotent cone12 N = χ−1(0) is isomorphic to the ADE singularity.

10The triple related to x is unique up to conjugation.
11In general, the subregular nilpotent orbit of g is defined as the only orbit of dimension dim(Osubreg) =

dim(g)− rank(g)− 2.
12I.e. the set of all nilpotent elements.
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The isomorphism (3.15) is telling us that the coefficients of the monomials in the
versal deformation can be written in terms of the coordinates ui related to the polynomials
χi. In order to see this explicitly, let us come back to the A3 example. In the A cases,
the Casimir invariants χi are given in (3.11). Considering the elements in the Slodowy
slice (3.14) through the subregular nilpotent orbit, we find:

χ1(Ssubreg) = 6a2 + 2b,
χ2(Ssubreg) = −8a3 + 4ab+ c, (3.16)
χ3(Ssubreg) = 21a4 + 6a2b+ 3ac+ 2b2 + de .

We now compute Ssubreg ∩ χ−1(u):
6a2 + 2b = u1
−8a3 + 4ab+ c = u2
21a4 + 6a2b+ 3ac+ 2b2 + de = u3

⇒ −cd = (3a)4−u1(3a)2+u2(3a)−u3+ u2
1

2 , (3.17)

that is the usual presentation of the deformed A3 singularity: if we set u = c, v = −d, z =
3a, we obtain

uv = z4 − u1z
2 + u2z − u3 + u2

1
2 (3.18)

that matches with (2.5) (up to an invertible redefinition of the coordinates in t/W).13

We now want to describe the ALE families of deformed ADE singularities over Cw.
We have constructed them by the choice of a Higgs field Φ(w), that through its Casimirs is
telling us how the deformation is performed on top of each point of Cw. In other words, take
w ∈ Cw; to see which is the deformed ALE surface over w, we pick Φ(w) and compute its
Casimirs χi(Φ). Their values select a specific point u ∈ t/W and then a specific deformed
ALE surface (with precise volumes of the non-holomorphic spheres (2.13)). The equation
of the threefold is obtained imposing the relations

χi(Ssubreg) = χi(Φ(w)) , i = 1, . . . , r , (3.19)

with χi(g) defined in (3.11) and (3.12), and substituting the resulting χi(Ssubreg) into the
expressions defining Ssubreg ∩ χ−1(χi(Ssubreg)).

In general, if we keep Φ(w) unspecified, (3.19) gives us the versal deformations of the
ADE singularity, with deformation parameters depending on the Casimirs of Φ. We have
worked out these relations for all the ADE algebras. For the Ar and Dr singularities, one
obtains (up to coordinate redefinition) the compact and known form

Ar : x2 + y2 + det(z1− Φ) = 0 (3.20)

and
Dr : x2 + zy2 −

√
det(z1 + Φ2)− Pfaff2(Φ)

z
+ 2y Pfaff(Φ) = 0. (3.21)

For the Er singularities the expression of the deformation parameters εi, ε̃i, ε̂i (appearing
in (2.14)) in terms of the Casimirs (3.12) are given in appendix B.

13The match works for σ2 = u1, σ3 = u2, σ4 = u3 − u2
1/2.
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Hence, given a Higgs field Φ(w), one obtains the threefold equation by simply comput-
ing its Casimirs and then inserting them into the relations (3.20) and (3.21) for the A and
D cases, or using the formulae in appendix B for the E cases.

A3 example. In order to make the procedure explicit, let us apply it to the example of
A3. Take the Higgs field (3.9) and compute its Casimirs:

χ1(Φ) = %1 + %3 + 2%2
2

χ2(Φ) = 2%2(%1 − %3) (3.22)

χ3(Φ) = 1
2(%1 + %3 + 2%2

2)2 − (%2
2 − %1)(%2

2 − %3)

We substitute ui with χi(Φ) in (3.18), obtaining

uv =
(
(z + %2)2 − %1

) (
(z − %2)2 − %3

)
. (3.23)

One can check that the same equation can be obtained using directly (3.20). Later we
will be interested into the threefold given by %1 = −%3 = w and %2 = 0, that leads to
uv = z4 − w2.

3.3 Gopakumar-Vafa invariants of X from zero modes of Φ

In the non-compact Calabi-Yau threefolds studied in this paper, we have isolated singular-
ities whose exceptional locus is given by a bunch of P1’s. These (genus-zero) holomorphic
curves are rigid and the BPS M2-branes wrapped on them generate massless hypermulti-
plets in the 5d theory coming from reduction of M-theory in X. The genus-zero and degree
d = (d1, . . . , d`) Gopakumar-Vafa invariants ng=0

d1,...,d`
count such states. In particular, we

say that

ng=0
d = # 5d hypers with charges (d1, . . . , d`) under the flavor group generated by H .

(3.24)
These numbers are reproduced by counting the zero modes of the Higgs field Φ, that are
localized at w = 0.

Given a vev for Φ, the zero modes are the deformation ϕ ∈ g of the Higgs field up to
the (linearized) gauge transformations

δgϕ = [Φ, g] with g ∈ g . (3.25)

We take Φ = X+ + wY as explained at page 8, where X+ ∈ L is in the principal
nilpotent orbit of each Lh. We need to work out which components of the deformation ϕ
can be set to zero by a gauge transformation (3.25). One then tries to solve the equation

ϕ+ δgϕ = 0 , with δgϕ = [X+ + wY, g] (3.26)

with unknown g ∈ g. As we will see, at special points in Cw, there can be components of ϕ
that cannot be gauge-fixed to zero: these directions in the Lie algebra g support zero modes.

Since the irreducible representations RL of L are invariant under the action of Φ, we
implement the decomposition (3.6) and we solve the equation (3.26) in each representation
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RL at a time, where now g, ϕ ∈ RL ⊂ g. We can write more explicitly the representation
RL of L = H⊕L1 ⊕ L2 ⊕ . . . as

RL =
(
RL1 , RL2 , . . .

)
q1,...,q`

(3.27)

where RLh is an irreducible representation of the simple summand Lh and (q1, . . . , q`) are
the charges under the U(1)` group generated by H. If there are n 5d modes in the represen-
tation RL, there will be other n 5d modes in the conjugate representation R̄L; together these
generate n massless hypermultiplets in the 5d theory localized at the singularity. By using
the correspondence (3.24), we can then say that the GV invariant with degrees (q1, . . . , q`) is

ng=0
q1,...,q` = 1

2 ·# localized zero-modes from RL ⊕ R̄L (3.28)

with RL =
(
RL1 , RL2 , . . .

)
q1,...,q`

.
Let us describe our algorithm to compute the number and the charges of zero modes.

For each representation RL of L with dimension dR, we choose a basis e1, . . . , edR of RL.
In this basis, the equation (3.26) becomes

(A+ wB)ρ = −φ (3.29)

where ρ and φ are the dR-column vectors of coefficients of g and ϕ in the given basis
and A,B are the constant dR × dR matrices representing the linear operators X+ and Y
respectively.

If A + wB is invertible, then there exists a vector ρ (i.e. a g ∈ RL) that completely
gauge fixes ϕ ∈ RL to zero at generic w. At the values of w where the rank of A + wB

decreases, there will be vectors φ that cannot be set to zero, leaving a zero mode localized
at that points.

With the chosen X+, we immediately see that such a special point is (by construction)
the origin w = 0. Here the matrix A + wB reduces to the nilpotent matrix A, that has
non-trivial kernel.14 In the following we only use the fact that A has rank r < dR; hence,
our conclusions are valid also when A is not necessarily nilpotent. What we are going to
say of course applies also for a nilpotent A.

We choose the basis e1, . . . , edR of RL such that A is in the Jordan form. If the rank
of A is r, we then have dR− r rows of zeros and dR− r columns of zeros. We can rearrange
rows and columns such that A takes the block diagonal form

A =
(
Au 0r×(dR−r)
0(dR−r)×r 0(dR−r)×(dR−r)

)
, with Au invertible. (3.30)

Doing the same operations on B, we obtain

B =
(
Bu Br

Bl Bd

)
. (3.31)

14In particular, the kernel is spanned by the vectors |j, j〉, when writing RL in terms of sl2 representations,
where sl2 is generated by the Jacobson-Morozov standard triple associated with X+.
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The equations (3.29) now read{
(Au + wBu)ρu + wBrρd = −φu

wBlρu + wBdρd = −φd
(3.32)

Since (Au + wBu) is invertible (at least in the vicinity of w = 0), from the first set of
equations we see that we can always gauge fix the φu components to zero,15 by setting

ρu = −(Au + wBu)−1 (φu + wBrρd) . (3.33)

Substituting in the second set of equations we obtain

w
[
Bd − wBl(Au + wBu)−1Br

]
ρd = −φd + wBl(Au + wBu)−1φu . (3.34)

We see that the components φd cannot be fixed identically to zero: at w = 0 there can be
a remnant, i.e. a localized mode. Said differently, the best we can do is to cancel from φd
its dependence on w, leaving a constant entry (instead of a generic polynomial in w). This
is possible for all components of φd only when the matrix Bd has maximal rank, i.e. rank
equal to dR − r. In this case, the number of zero modes is

# = dR − r ,

because each component of φd has now a constant entry, i.e. one degree of freedom.
If Bd is not invertible, we can iterate what we have done so far, in the following

way. Let us define for simplicity ρ′ ≡ ρd, φ′tot ≡ φd − wBl(Au + wBu)−1φu, A′ ≡ Bd
and B′ ≡ −Bl(Au + wBu)−1Br. We can decompose φ′tot = φ′0 + wφ′, where φ′0 is φ′tot
evaluated at w = 0. We can then rewrite the equation (3.34) as(

A′ + wB′
)
ρ′ = −φ′ . (3.35)

This has the same form as (3.29), so we can again change the basis such that A′ ≡ Bd
is in the Jordan form and write the equations in this basis. We will obtain a set of
equations in the form (3.32) where we have to substitute (A,B)u,l,r,d → (A′, B′)u,l,r,d and
(ρ,φ)→ (ρ′,φ′).

The matrix A′ will now have rank r′ < dR − r. There will then be r′ components
of φ′ that can be gauge fixed to zero; we correspondingly have r′ zero modes along the
corresponding components of φd. If the matrix B′d has maximal rank (i.e. dR − r − r′),
then the other dR − r − r′ components of φd will be of the form a + bw and hence each
hosts two zero modes. In this case the number of zero modes is

# = r′ + 2(dR − r − r′) . (3.36)

On the other hand, if B′d has rank r′′ < dR− r− r′, then we have to iterate once more
the algorithm above and, provided B′′d has maximal rank (i.e. dR − r − r′ − r′′) we obtain

# = r′ + 2r′′ + 3(dR − r − r′ − r′′) .
15These correspond to all states except |j,−j〉.
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We now have the factor “3” because the dR − r − r′ − r′′ directions of φd are of the form
a+ bw + cw2, i.e. they host three zero modes each.

In conclusion, let us assume that the algorithm stops at the N -th step and let us call
r(k) the rank of the matrix A at the step k, then the number of zero modes is

#zero modes =
N∑
k=0

k r(k) with
N∑
k=0

r(k) = dR (3.37)

where r(0) = r.
If there are other values of w, say w = w0, where the rank of A+wB is not maximal,

one can shift w 7→ w+w0 ending out with the same situation as above, where the new A is
now A+ w0B. Applying the algorithm that we have just outlined, one computes the zero
modes localized at w = w0. In this case the matrix at w = w0 is not necessarily nilpotent.

Notice that this algorithm could never end. This is the case for example when the
A + wB matrix is identically zero at one step. The corresponding directions of ϕ cannot
be gauge fixed at any order in w, leaving a zero mode that lives in 7d.

In conclusion, in this section we have shown that one can reduce the problem of finding
the zero modes to a simple exercise in linear algebra. These computations are algorithmic
and can be done by a calculator in a reasonable amount of time. In appendix D we describe
the implementation of the algorithm in Mathematica, that we used for our computations.

4 Simple flops with l = 1, . . . , 6 and their GV invariants

One-parameter deformations of ADE surfaces admitting a small simultaneous resolution
blowing up a single P1 are known as simple threefold flops. From a mathematical point of
view, they can be classified according to a variety of invariants.

A rich classification of simple flops can be obtained employing the so-called length
invariant, first introduced in [15], that we defined in section 1. It was proven (see [1]) that
the length of a simple flop can only assume discrete values ranging from 1 to 6, and that
examples of any length indeed exist.

From a Lie-algebraic point of view, the length of a simple flop corresponds to the
dual Coxeter label of the node of the Dynkin diagram that is being resolved by the small
simultaneous resolution. Given an ADE algebra g of rank r, a set of simple roots αi, with
i = 1, . . . r, and the highest root θ, the dual Coxeter label of a node is the multiplicity of
the corresponding simple root in the decomposition of the highest root. In other words,
given a node corresponding to a simple root αi0 and the decomposition of the highest root

θ = c1α1 + . . .+ ci0αi0 + . . . crαr (4.1)

then ci0 is the dual Coxeter label of the node. As we will use this fact extensively in the
explicit constructions of simple threefold flops of length up to 6, it is useful to report the
Dynkin diagrams of all the ADE cases, along with the dual Coxeter labels of their nodes
in figure 2, where we have highlighted in black the nodes that are being resolved in the
simple threefold flops that we will analyze in the following sections.
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Figure 2. ADE Dynkin diagrams and dual Coxeter labels of the nodes.

The classification of simple threefold flops based on the length can be further refined
introducing the Gopakumar-Vafa (GV) invariants [16–18]. These invariants can be used to
distinguish between simple flops of the same length.16

In the following, we apply the method discussed in section 3 to construct threefolds with
a simple flop. The threefold will be obtained from a family of deformed ADE singularities
in which only the black node in figure 2 is simultaneously resolved. Let us call it αc. The
subalgebra H is then generated by α∗c , i.e.

H = 〈α∗c〉 , (4.2)

and the Higgs field will correspondingly be chosen in the commutant L of H, i.e. the Levi
subalgebra corresponding to the chosen partial simultaneous resolution. From figure 2, we
see that the simple summands Lh of L are of A-type. The Higgs Φ restricted on these
spaces is then of the form (3.5), and collecting the σ̂’s from each summand Lh gives the
partial Casimirs %i’s that parametrize the base t/W ′. The threefold is obtained by setting
%i = %i(w).

We will construct threefold with different values of length from 1 to 6. For each
manifold we give the Higgs field Φ that produces the desired simple flop threefold X. This
allows us to build the 5d theory realized from reducing M-theory on X. In particular the
flavor group will always be the U(1) group generated by α∗c . The number of hypermultiplets
and their charges under the U(1) flavor group, namely the GV invariants of X and their
degrees, will be derived by counting the zero modes of Φ.

16Even though we will not use it in this paper, it is worth mentioning an even subtler invariant that
can be associated to a simple flop, namely its contraction algebra. It has been proven [19] that there exist
simple flops with the same normal bundle, same length, same Gopakumar-Vafa invariants and different
contraction algebra. Physically, the contraction algebra can be understood, for example, as describing the
quiver relations of the theory on a D3 brane in type IIB probing the singularity, and explicit constructions
of contraction algebras at all lengths can be found in [8].
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4.1 Simple flop with length 1

The simplest example: the conifold. The Conifold threefold is given by

u v = z2 − w2 . (4.3)

This is actually a family of deformed A1 surfaces over Cw, with the simultaneous resolution
of the exceptional P1 at w = 0.

It can be constructed following the previous sections in the following way: A1 has only
one simple root α. We require it to be blown up by the simultaneous resolution (the only
other choice is to blow up no sphere, that would produce a non-singular threefold). The
Levi subalgebra is now simply

L = 〈α∗〉 = H. (4.4)

The partial Casimir is the coefficient % along the Cartan α∗. Choosing % = w, the Higgs
field is

Φ =
(
w 0
0 −w

)
(4.5)

and the threefold equation is easily checked to be (4.3).
This is the simplest example of simple flop, where the flavor group (i.e. the preserved

7d gauge group) is U(1).

Zero modes. Notoriously, M-theory on the conifold gives a free 5d hypermultiplet (local-
ized at w = 0). This can be checked by computing the zero modes of Φ. This computation
has already been shown in [3], by explicitly using the linearized equations of motion in
holomorphic gauge,17 as explained in [12]. In order to illustrate the method outlined in
section 3.3, we apply it to the conifold case to reproduce the result of [3].

The decomposition (3.6) of the A1 algebra in representations of the Levi subalgebra
L = 〈α∗〉 is

A1 = 10 + 1+ + 1−. (4.6)

Let us consider each representation individually. Remember that the matrices A and B

in section 3.3 are the restriction of X+ and Y on the considered representation, where
Φ = X+ + wY .

10: Φ restricted to this representation is zero. Hence, the two ‘matrices’ A and B vanish,
nothing is gauge fixed and then there is one 7d mode.

1+: Φ|1+ = 2w, so A = 0 and it has rank zero, but B = 2 has rank one; then dR − r =
1− 0 = 1 and this gives one localized mode at w = 0.

1−: Φ|1− = −2w, so A = 0 and B = −2 that again gives a localized mode at w = 0.

The two localized zero modes made up one hypermultiplet, as expected. Its charge under
the flavor U(1) can be easily read from the representation where the modes sit. The zero
mode analysis correctly reproduces the GV invariant of the conifold, that is ng=0

1 = 1.
17For the conifold, i.e. a family of deformed A1, that computation was enough. However for more

complicated algebras our method simplifies the calculations and make them more systematic.
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Threefolds with a simple flop of length 1: generic case. We now generalize the
conifold case, by starting from the Lie algebra Ak−1. The simple roots are now α1, . . . , αk−1.
We require that the only root that is simultaneously resolved in the threefold is αp for
a given choice of p ∈ {1, . . . , k − 1} (without loss of generality, we can take p ≥ k

2 ).
Consequently, we have H = 〈α∗p〉. Its commutant is

L = Ap−1 ⊕Ak−p−1 ⊕ 〈α∗p〉 . (4.7)

The Higgs field at w = 0 is (in the principal nilpotent orbit when restricted on the simple
summands of L)

X+ = eα1 + · · ·+ eαp−1 + eαp+1 + · · ·+ eαk−1 . (4.8)

We choose the w-dependence of the partial Casimirs such that the Higgs restricted on each
block is18

Φ|Ap−1 =



0 1 0 · · · 0
0 0 1 0 0
... 0 . . . . . . 0
0 0 0 0 1
w 0 · · · 0 0


and Φ|Ak−p−1 =



0 1 0 · · · 0
0 0 1 0 0
... 0 . . . . . . 0
0 0 0 0 1
−w 0 · · · 0 0


. (4.9)

This means that
Y = e−α1−α2−...−αp−1 − e−αp+1−αp+2−...−α2k−1 . (4.10)

The equation of the threefolds is read form (3.20), by using the chosen Φ = X+ + wY :

u v = (zp − w)(zk−p + w) . (4.11)

When k = 2n is even and p = n, we have the Reid Pagoda of degree n (whose Dynkin
diagram for the simultaneous resolution is depicted in figure 2).

Zero modes. Let us perform the zero mode computation in the case p = n = 2, i.e.
for the Reid Pagoda with degree 2. The Higgs field is actually given by the A3 example
studied before (see (3.9)), where one chooses the following dependence of %i on w:

%1 = w, %2 = 0, %3 = −w .

The A3 algebra decomposes in the following way in representations of the Levi subalgebra
L = s`

(1)
2 ⊕ s`

(3)
2 ⊕ 〈α∗2〉:

A3 = (3,1)0 ⊕ (1,3)0 ⊕ (1,1)0 ⊕ (2,2)+ ⊕ (2,2)− . (4.12)

Let us consider each Levi representation RL individually.
18A different choice would only complicate the equation of the three-fold, without changing its salient

features.
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(3,1)0: the operator X+ is represented in the basis {−eα1 ,
1
2h1,

1
2e−α1} by the matrix

A(3,1)0 =

 0 1 0
0 0 1
0 0 0

 , (4.13)

that has rank r = 2. In the same basis Y is represented by

B(3,1)0 =

 0 0 0
2 0 0
0 2 0

 . (4.14)

We plug them into the expression (3.29) and apply the algorithm: arranging the rows
and columns to arrive to the expression (3.30) is equivalent to taking ρu = (ρ2, ρ3),
ρd = ρ1, φu = (φ1, φ2) and φd = φ3. We can then read

Bu =
(

0 0
0 0

)
, Br =

(
0
2

)
, Bl =

(
2 0
)
, Bd = 0 .

In particular Bd−wBl(Au +wBu)−1Br vanishes identically. This means that at the
second step A′+wB′ = 0 and the corresponding zero mode left by the rank 2 matrix
A is not localized at any w. We have found a 7d zero mode.

(1,3)0: we obtain the same result as above, i.e. one 7d zero mode.

(1,1)0: X+ and Y vanish on this one-dimensional representation, leaving a 7d zero mode.

(2,2)+: the operator X+ is represented in the basis {eα1+α2+α3 , eα1+α2 +
eα2+α3 , eα2 , eα1+α2 − eα2+α3} by the matrix

A(2,2)+ =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 (4.15)

that has rank r = 2. In the same basis Y is represented by

B(2,2)+ =


0 0 0 0
0 0 0 0
0 0 0 2
1 0 0 0

 . (4.16)

We plug them into the expression (3.29) and apply the algorithm: arranging the rows
and columns to arrive to the expression (3.30) is equivalent to taking ρu = (ρ2, ρ3),
ρd = (ρ1, ρ4), φu = (φ1, φ2) and φd = (φ3, φ4). We can then read

Bu =
(

0 0
0 0

)
, Br =

(
0 0
0 0

)
, Bl =

(
0 0
0 0

)
, Bd =

(
0 2
1 0

)
.
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In particular Bd has maximal rank, equal to dR − r = 4− 2 = 2, where r is the rank
of A. This means that φd hosts two constant zero modes localized at w = 0. These
have charge +1 with respect to the U(1) generated by α∗2. Notice that det(A+wB) =
−2w2. Hence there are no other points in the base Cw that host localized zero modes.

(2,2)−: analogously to before, we have two zero modes localized at w = 0 with charge −1
under the preserved U(1) group.

Hence, the number of localized modes at w = 0 is 4, that gives rise to two hypermulti-
plets with charge 1 with respect to the U(1) flavor group. This matches the results of [2, 3],
that were obtained with a different procedure.

For generic k and p, the zero mode counting proceeds analogously as for the Pagoda
with n = 2. The Ak−1 algebra decomposes in the following way in representations of the
Levi subalgebra

Ak−1 = (p2 − 1,1)0 ⊕ (1, (k− p)2 − 1)0 ⊕ (1,1)0 ⊕ (p,k − p)+ ⊕ (p̄,k− p)− . (4.17)

The first three representations host 7d modes, but no localized one. Let us concentrate
on the charged representation (p,k − p)+ of dimension p(k − p). With the choice p ≥ k

2 ,
we have p ≥ k − p. The matrix representing X+ in this representation has kernel with
dimension equal to k − p, then in our algorithm r = (p − 1)(k − p). With a bit of work,
one can check that Bd has rank k − p = dR − r, that gives then k − p modes localized at
w = 0 with charge +1 with respect to the flavor U(1). The other charge representation
hosts again k − p modes localized at w = 0 and with charge −1. In total we then have
k − p charged hypermultiplets, i.e. the GV invariant is

ng=0
1 = k − p . (4.18)

When k = 2n and p = n, we obtain n hypers, that is the result we have found for the
Reid’s Pagodas in [2, 3], i.e. ng=0

1 = n.

4.2 Simple flop with length 2

In this section we consider a family of flops of length 2 arising from a D4 singularity
deformed over the Cw plane. The threefold is singular at the origin (where the fiber
exhibits a D4 singularity) and can only be partially resolved inflating a P1 corresponding
to the central root of the D4 Dynkin diagram. As we can see from figure 2 the central
node has dual Coxeter label equal to 2, and thus its resolution yields a flop of length 2. In
figure 3 we show our conventions for the labeling of the simple roots.

Since we wish to blow up only the central node, we have H = 〈α∗2〉. The Levi subalgebra
L commuting with H is:

L = A
(1)
1 ⊕A

(3)
1 ⊕A

(4)
1 ⊕ 〈α

∗
2〉, (4.19)

where the A1 algebras correspond to the white “tails” in picture 3, generated by the roots
α1, α3 and α4 respectively.
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Figure 3. D4 Dynkin diagram.

Following the prescription (3.5) for each A1 summand we have

Φ|
A

(i)
1

=
(

0 1
%i 0

)
= eαi + %ie−αi i = 1, 3, 4 , (4.20)

where %i (i = 1, 3, 4) is the Casimir of the s`2 algebra A
(i)
1 . Moreover Φ can have a

component along α∗2 with coefficient %2. Although not necessary for the employment of our
machinery, we report for the sake of visual clarity the explicit matrix form of the adjoint
Higgs field corresponding to the choice (4.19), employing the standard basis of [20]:

Φ =



%2 1 0 0 0 0 0 0
%1 %2 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 %3 0 0 0 −1 0
0 0 0 0 −%2 −%1 0 0
0 0 0 0 −1 −%2 0 0
0 0 0 −%4 0 0 0 −%3
0 0 %4 0 0 0 −1 0


. (4.21)

The threefold is found by imposing

%i(w) = w ci(w) for i = 1, 2, 3, 4 , (4.22)

where we take the ci(w)’s such that ci(0) 6= 0. Later we will simply choose the ci(w)’s to
be constant in w.

The Higgs at the origin is then

X+ = eα1 + eα3 + eα4 , (4.23)

while Y is

Y = c1e−α1 + c3e−α3 + c4e−α4 + c2〈α∗2〉 . (4.24)
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The threefold equation is simply obtained by taking the choice (4.22) and the expression
of Φ (4.21) and plugging them into the formula (3.21):19

x2+zy2−z3+w2z
[
c2

1+c2
3+c2

4+4c1c3+4c1c4−2c3c4−2c2
2w(c1−2c3−2c4)+c4

2w
2
]

−2w3
[
c1
(
c2

3+c2
4+c1c3+c1c4−2c3c4

)
+c2

2w
(
c2

3+c2
4−2c1c3−2c1c4−2c3c4

)
+c4

2w
2(c3+c4)

]
−2wz2

(
c1+c3+c4+c2

2w
)

+2w2y(c3−c4)
(
c1−c2

2w
)

=0.

Let’s consider what happens when one of the ci’s vanishes. If c2 = 0, the preserved
gauge group after Higgsing is SU(2) instead of U(1). This says that the ALE fiber has an
A1 singularity for all values of w, i.e. the threefold has a non-isolated singularity. If ci = 0
with i = 1, 3, 4, then the preserved group is still U(1). However, the threefold equation has
an A1 singularity for generic w ∈ Cw: in fact, the threefold equation is the same one would
obtain by taking Φ|

A
(i)
1

identically zero (the equation is insensitive to the “1” in (4.20)).
Such a nilpotent vev for the Higgs field is called a T-brane [12].

Since we want to consider isolated singularities (with a simple flop), avoiding T-brane
configurations, we will take ci 6= 0 ∀i.

Zero modes. We now analyze the 5d zero modes arising from M-theory reduced on the
flop of length 2 defined by (4.22). We keep the ci’s as generic constants.

As in the case of the flops of length 1, the first step consists in determining the decom-
position of the algebra g = D4 into irreps of the Levi subalgebra (4.19), obtaining:

D4 = (3,1,1)0⊕(1,3,1)0⊕(1,1,3)0⊕(2,2,2)1⊕(2,2,2)−1⊕(1,1,1)2⊕(1,1,1)−2, (4.25)

where the numbers in parenthesis refer to representations of the three A1 factors, and the
subscript is the charge w.r.t. the Cartan 〈α∗2〉. Let us examine the zero-mode content of
the Levi representations in (4.25) one by one:

(3,1,1)0: for this representation the story flows identically to the representation (3,1)0
in the A3 example, see (4.13). The operator X+ can be represented in the basis
{−eα1 ,

1
2h1,

1
2e−α1}:

A(3,1,1)0 =

 0 1 0
0 0 1
0 0 0

 . (4.26)

Proceeding as in (4.13) it is easy to show that this representation does not host
any localized 5d zero mode. The same holds for the representations (1,3,1)0 and
(1,1,3)0.

(1,1,1)2: X+ is represented by a 1-dimensional matrix that, in the basis eα1+2α2+α3+α4 ,
reads

A(1,1,1)2 = (0) . (4.27)
19Notice that the threefold expression is not invariant under the exchange of c1, c3 and c4, which are

the Casimirs of the three A1 tails: this can be overcome by a change of variables. In any case, the mode
localization proceeds in a way that is invariant under the exchange of c1, c3, c4.

– 22 –



J
H
E
P
0
8
(
2
0
2
2
)
2
9
2

We also have:
B(1,1,1)2 = 2c2. (4.28)

As a result we find that B has maximal rank, i.e. 1, and so we obtain one localized
5d zero-mode with U(1) charge 2. Analogously, the representation (1,1,1)−2 yields
one 5d zero-mode of U(1) charge −2.

(2,2,2)1: X+, once put in Jordan form in an appropriate basis,20 is represented as the
8-dimensional matrix

A(2,2,2)1 =



0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


, (4.29)

which has rank r = 5. Using the same basis for Y we get:

B(2,2,2)1 =



c2 0 0 0 6c4 − 6c3 0 0 0
c1 − c3 + c4 c2

2(c3−c4)
3 0 0 2c4 − 2c3 0 0

0 0 c2 0 −6(c1 + c3 − 2c4) 0 0 0
2(c1 − c3) 0 −c1+5c3−c4

3 c2 0 −2(c1 + c3 − 2c4) 0 0
0 0 0 0 ρ 0 0 0
0 0 0 0 c1 + c3 + c4 c2 0 0

c3−c1
3 0 2c1−c3−c4

9 0 0 4(c1+c3+c4)
3 c2 0

0 c3 − c1 0 2c1−c3−c4
3 0 0 c1 + c3 + c4 c2


.

(4.30)
Let us pause for a moment and use the results just found to prove that there are
other isolated singularities in the threefold. In fact, these correspond to values of w
where 5d localized modes appear. This happens in the representation under study
when the rank of A(2,2,2)1 + wB(2,2,2)1 drops. Its determinant explicitly reads:

det(A(2,2,2)1 + wB(2,2,2)1) = w4
[
(c2

1 + c2
3 + c2

4 − 2c1c3 − 2c1c4 − 2c3c4)2+

−4c2
2w(c3

1 + c3
3 + c3

4 − c2
1c3 − c2

1c4 − c2
3c1 − c2

3c4 − c2
4c1 − c2

4c3 + 10c1c3c4)+ (4.31)

+2c4
2w

2(3c2
1 + 3c2

3 + 3c2
4 + 2c1c3 + 2c1c4 + 2c3c4)− 4c6

2w
3(c1 + c3 + c4) + c8

2w
4
]
.

It turns out that for generic cis the rank of A(2,2,2)1 + wB(2,2,2)1 drops on top of
w = 0, as well as on further four distinct points with non-zero w. It can be checked
that these additional points correspond to conifold singularities far from the origin.
In addition, if the condition

c2
1 + c2

3 + c2
4 − 2c1c3 − 2c1c4 − 2c3c4 = 0 (4.32)

20The basis explicitly reads: {−eα1+α2 − eα2+α3 , eα1+α2+α4 − eα2+α3+α4 ,
2eα1+α2

3 + eα2+α3
3 +

eα2+α4
3 ,− 1

3eα1+α2+α3 − 1
3eα1+α2+α4 + 2

3eα2+α3+α4 ,−6eα2 ,−2eα1+α2 + 2eα2+α3 + 2eα2+α4 , eα1+α2+α3 +
eα1+α2+α4 + eα2+α3+α4 , eα1+α2+α3+α4}.
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is satisfied, one of the additional singularities collides onto the origin: in this case,
the rank of A(2,2,2)1 + wB(2,2,2)1 drops on w = 0 as well as on three additional
points outside the origin. This signals the appearance of further localized modes at
w = 0, coming from the conifold singularity that has collided onto the origin. We
will explicitly check this claim momentarily, deriving again condition (4.32).
Rearranging rows and columns to get to the form (3.30) we obtain:

Bu =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 c2 0 0
0 0 4(c1+c3+c4)

3 c2 0



Br =


c2 0 6c4 − 6c3
0 c2 −6(c1 + c3 − 2c4)
0 0 c2
0 0 c1 + c3 + c4

c3−c1
3

2c1−c3−c4
9 0



Bl =

 c2 0 2c4 − 2c3 0 0
0 c2 −2(c1 + c3 − 2c4) 0 0

c3 − c1
2c1−c3−c4

3 0 c1 + c3 + c4 c2



Bd =

 c1 − c3 + c4
2(c3−c4)

3 0
2(c1 − c3) −c1+5c3−c4

3 0
0 0 0



(4.33)

Notice that the rank of Bd, which is surely non-maximal, depends on the precise
choice of the partial Casimirs. It drops to one when its determinant is equal to zero.
This happens when

c2
1 + c2

3 + c2
4 − 2c1c3 − 2c1c4 − 2c3c4 = 0 . (4.34)

Let us first examine the case in which the ci’s are generic constants, i.e. Bd has rank
2. Afterwards we see the case when Bd has rank 1. Notice that Bd cannot have rank
zero, otherwise c1 = c3 = c4 = 0, that we excluded.

• Let’s take generic ci’s such that c2
1+c2

3+c2
4−2c1c3−2c1c4−2c3c4 6= 0. Renaming

A′ ≡ Bd and B′ ≡ −Bl(Au + wBu)−1Br we can use equation (3.35) to rerun
the algorithm. A′ is already in a form with a 2 × 2 invertible block and all
other elements equal to zero, i.e. r′ = 2. We can then immediately read B′d by
computing the (33) element of B′. It is

B′d = 3
(
c2

1 + c2
3 + c2

4 − 2c1c3 − 2c1c4 − 2c3c4
)

+ 10
3 wc

2
2(c1 + c3 + c4)− c4

2w
2,

(4.35)
that has rank 1. As a result, according to (3.36), we find that the total number
of zero modes is:

# = r′ + 2(dR − r − r′) = 2 + 2(8− 5− 2) = 4, (4.36)
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where we recall that dR is the dimension of the representation, r is the rank
of (4.29) and r′ is the rank of A′. The zero-modes have charge +1 with respect
to the U(1) generator.
Analogously, we find 4 localized zero-modes with charge −1 in the (2,2,2)−1
representation.

• When the ci’s fulfill (4.34), the rank of Bd drops to 1. This produces a change
in the zero-mode counting. We can parametrize a solution of (4.34) in terms of
two parameters q1, q4 as:

c1 = q2
1, c3 = (q1 + εq4)2, c4 = q2

4 (4.37)

where ε can take the values ±1. Now we have

A′ =

 2q1q4
2
3q1(q1 + 2εq4) 0

−2q4(q4 + 2εq1) 2
3(2q2

1 + 5εq1q4 + 2q2
4) 0

0 0 0

 , (4.38)

When q2
1 + εq1q4 + q2

4 6= 0, the 2× 2 matrix is diagonalizable with the non-zero
eigenvalue equal to 4

3
(
q2

1 + εq1q4 + q2
4
)
. The corresponding B′d is

B′d =

 c2
2 −12c2q1q4(q1+εq4)

q2
1+εq1q4+q2

4

4c2q1q4(q1 + εq4) 0

 . (4.39)

This matrix has rank less than two only when one of the ci’s vanishes (and
consequently the other two are equal to each other), that we excluded.
When q2

1 +εq1q4+q2
4 = 0 (i.e. all the eigenvalues vanish) the 2×2 matrix has still

rank 1 and the corresponding B′d is also forced to have rank 2 (for non-vanishing
ci’s).
We can finally count the localized zero-modes using formula (3.36), finding:

# = r′ + 2(dR − r − r′) = 1 + 2(8− 5− 1) = 5. (4.40)

Notice that, with respect to the case (4.36) in which the Casimirs were totally
generic, we have found an enhancement in the number of modes on a specific
locus in the space of the partial Casimirs. This is the same locus where one
conifold singularity that was at w 6= 0 collides onto the origin.
The representation (2,2,2)−1 gives us further 5 zero-modes of charge −1.

Let us summarize our findings for the modes localized at w = 0 for the simple flop of
length 2 and partial Casimirs given by %i(w) = w ci, with ci constants.

• For generic values of ci’s, we get:

- 8 modes with charge ±1,
- 2 modes with charge ±2.
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In terms of the GV invariants, this means

ng=0
1 = 4 and ng=0

2 = 1 . (4.41)

• For ci’s satisfying the constraint (4.34), we get:

- 10 modes with charge ±1,

- 2 modes with charge ±2.

In terms of the GV invariants, this means

ng=0
1 = 5 and ng=0

2 = 1 . (4.42)

For the other (non-zero) values of w where there are localized modes, we have conifold
singularities and the flop is therefore not of length two: in fact, at these values of w the
D4 is still deformed to a smaller singularity of A-type.

Non-constant ci’s. For simplicity, we have analyzed cases when the partial Casimirs %i
are just a constant ci multiplied by w. Of course, one can also let ci depend on w and
rerun the algorithm.

One can in particular find the dependence of the ci(w)’s such that the threefold X has
only one isolated singularity at the origin. An easy solution is when

c1 = 4a+ b2w , c2 = b , c3 = c4 = a . (4.43)

One can check that for this choice the determinant (4.31) is equal to −256a3b2w5, i.e. it
vanishes only at w = 0. The corresponding threefold has ng=0

1 = 5 and ng=0
2 = 1. For

a = −1/4 and b = 1/2 one actually recovers the Brown-Wemyss threefold [19] in the form
that appeared in [3] (that has the expected GV invariants).

4.3 Simple flop with length 3

In this section we engineer a threefold X with a simple flop of length three. Analogously
to the previous sections, we are going to define a suitable Higgs field, valued in the E6 Lie
algebra, that generates a family of deformed E6 surfaces with an E6 singularity at w = 0.
The resolution of the isolated singularity in the threefold X will blow-up only the trivalent
node of the E6 Dynkin diagram (see figure 2). To achieve this result, we pick the following
Levi subalgebra

L = A
(1,2)
2 ⊕A(4,5)

2 ⊕A(6)
1 ⊕ 〈α

∗
3〉, (4.44)

where the factors A(i,j)
2 are associated, as subalgebras, to the roots αi, αj of the E6 Dynkin

diagram (we follow the labels in figure 4) and A(6)
1 is the algebra associated to the root α6.

Again, we pick X+ ≡ Φ|w=0 to be an element of the principal nilpotent orbit of each
simple factor of L. The partial Casimirs relative to L are the total Casimirs of each simple
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Figure 4. E6 Dynkin diagram, with the root blown up in the length three flop colored in black.

factor of (4.44), plus the coefficient along the Cartan element 〈α∗3〉. I.e. the generic Φ will
be such that21

Φ|
A

(i,j)
2

=

 0 1 0
0 0 1

%
(i,j)
3 %

(i,j)
2 0

 = eαi + eαj + %
(i,j)
2 e−αj + %

(i,j)
3 [e−αj , e−αi ], i < j, (4.45)

Φ|
A

(6)
1

=
(

0 1
%

(6)
2 0

)
= eα6 + %

(6)
2 e−α6 and Φ|〈α∗3〉 = %

(3)
1 〈α

∗
3〉 .

We now explicitly construct a threefold, by making the choice

%
(3)
1 = w c3

%
(6)
2 = w c6

%
(1,2)
2 = 0

%
(4,5)
2 = 0

%
(1,2)
3 = w c12

%
(4,5)
3 = w c45

(4.46)

with c3, c6, c12, c45 constant numbers.
By plugging this choice into the Higgs field vev Φ, and following the procedure de-

scribed in section 3.1, one obtains the threefold as an hypersurface of (x, y, z, w) ∈ C4.
As an example, if we pick c3 = 0, c6 = −3, c12 = 1, c45 = −1, one gets the following

threefold, which is singular at the origin (as well as at other three points with non-zero w):

x2 + y3 + z4 + 27w6

32 + 18w5 +
(

12w3 − 27w4

16

)
y+ 2

(
w2 − 9w3

8

)
z2 + 3wyz2 = 0 . (4.47)

Via a change of coordinates, this exactly coincides with the length 3 threefold explicitly
presented by [8].

Zero modes. We now proceed (with the same procedure of the previous sections) to the
mode counting. The branching of the adjoint representation 78 of E6 w.r.t. L in (4.44) is

21To match the conventions of section 2, one takes {%i| i = 1, . . . , 6} = {%(3)
1 , %

(6)
2 } ∪ {%

(i,j)
3 , %

(i,j)
2 | (i, j) =

(1, 2), (4, 5)}.
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RL C[w]/(w) C[w]/(w2) #zero modes

(8,1,1)0 0 0 0

(1,8,1)0 0 0 0

(1,1,3)0 0 0 0

(1,1,1)0 0 0 0

(3,3,2)1 4 1 6

(3,3,2)−1 4 1 6

(3,3,1)2 3 0 3

(3,3,1)−2 3 0 3

(1,1,2)3 1 0 1

(1,1,2)−3 1 0 1

Table 1. 5d modes for E6 length three simple flop.

given by22

78 = (8,1,1)0 ⊕ (1,8,1)0 ⊕ (1,1,3)0 ⊕ (1,1,2)3 ⊕ (1,1,2)−3 ⊕ (1,1,1)0 ⊕
⊕(3,3,2)1 ⊕ (3,3,1)−2 ⊕ (3,3,2)−1 ⊕ (3,3,1)2 , (4.48)

where the subscripts denote the charges under 〈α∗3〉.
For the E-cases the explicit computations done for length one and two become con-

voluted. We present here only the results. We have worked out a Mathematica routine,
presented in appendix D, that implements the algorithm described in section 3.3 and that
can be used to check the results. Running this code for a generic choice of the parameters
c6, c3, c12, c45, we obtained, for each irreducible representation appearing in (4.48), the 5d
modes shown in table 1. In the table, we also write how many elements of the given repre-
sentation support a mode localized in C[w]/(wk), for each k; we find that k ≤ 2. We get
a total of 20 5d modes:

• one hyper with charge three, inside (1,1,2)3 ⊕ (1,1,2)−3;

• three hypers with charge two inside (3,3,1)2 ⊕ (3,3,1)−2;

• six hypers with charge one inside (3,3,2)1 ⊕ (3,3,2)−1.

In terms of the GV invariants, one then reads

ng=0
1 = 6 , ng=0

2 = 3 and ng=0
3 = 1 , (4.49)

22It can be better understood starting from the one of the maximal subalgebra A(1,2)
2 ⊕A(4,5)

2 ⊕A′2 (with
A′2 containing eα6): 78 = (8,1,1)⊕ (1,8,1)⊕ (1,1,8)⊕ (3,3,3)⊕ (3,3,3). One then selects the subalgebra
A

(6)
1 ⊂ A′2, and correspondingly branches each term of the sum.
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Figure 5. E7 Dynkin diagram, with the root blown up in the length four flop colored in black.

which perfectly coincides with the results of [8].
We can finally check whether there are special choices of the parameters c12, c45, c6, c3

for which the number of 5d modes localized at w = 0 enhances. A necessary condition for
the enhancement of the number of modes is that the rank of the matrix Bd drops for a
special choice of the partial Casimirs. By explicit computation, we find that the rank drops
when c12 = c45 or c6 = 0. However, these choices would create a non-isolated singularity.

4.4 Simple flop with length 4

In the following section we are going to engineer, by means of a Higgs field Φ valued in
the E7 Lie algebra, a flop of length four. By looking at the dual Coxeter labels of the
E7 Dynkin diagram in figure 2, we see that the simultaneous resolution should involve the
trivalent node. Analogously to the previous examples, this means that we have to pick the
Higgs field in the Levi subalgebra

L ≡ A(4,5,6)
3 ⊕A(1,2)

2 ⊕A(7)
1 ⊕ 〈α

∗
3〉, (4.50)

where the superscripts refer to the roots of the E7 Dynkin diagram numbered as in the
figure 5, and α3 is the trivalent root of E7.

Analogously to the E6 case, we choose the Higgs field as follows:

Φ|〈α∗3〉 = c3w〈α∗3〉 (4.51)

and

Φ|
A

(7)
1

=

 0 1

c7w 0

 = eα7 + c7w e−α7 ,

Φ|
A

(1,2)
2

=


0 1 0

0 0 1

c12w 0 0

 = eα1 + eα2 + c12w [e−α1 , e−α2 ],

Φ|
A

(4,5,6)
3

=



0 1 0 0

0 0 1 0

0 0 0 1

c456w 0 0 0


= eα4 + eα5 + eα6 + c456w

[
[e−α4 , e−α5 ], e−α6

]
.
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The corresponding threefold is a hypersurface in C4, that is a family of deformed E7
singularities over Cw. To make the equation of the threefold more readable, we set the
parameters to specific values, picking c3 = 0, c7 = 3, c12 = 1

2 , c456 = −1
2 , obtaining

x2 − y3 + yz3 + 3wy2z + y2 81w2

16 − yzw
2

12 + z2 5w3

8 − y w
3

108 + z
w4

3 + w5

144 = 0. (4.52)

where we neglected terms of high degree, irrelevant for the singularity at w = 0.

Zero modes. We now proceed with the modes counting. We will again perform the
gauge-fixing separately in each irreducible representation of the branching of the adjoint
representation 133 of E7 under the subalgebra L:23

133 = (15,1,1)0 ⊕ (1,8,1)0 ⊕ (1,1,3)0 ⊕ (1,1,1)0

⊕(4,3,2)−1 ⊕ (4,3,2)1 ⊕ (6,3,1)−2 ⊕ (6,3,1)2

⊕(4,1,2)−3 ⊕ (4,1,2)3 ⊕ (1,3,1)−4 ⊕ (1,3,1)4. (4.53)

Running the Mathematica routine described in appendix D, we find the results dis-
played in table 2. As in the E6 case, there are no five-dimensional modes localized in
C[w]/(wk), with k > 2. In total, we find 28 modes localized at w = 0:

• one hyper with charge four, inside (1,3,1)−4 ⊕ (1,3,1)4;

• two hypers with charge three inside (4,1,2)−3 ⊕ (4,1,2)3;

• five hypers with charge two inside (6,3,1)−2 ⊕ (6,3,1)2.

• six hypers with charge one inside (4,3,2)−1 ⊕ (4,3,2)1.

In terms of the GV invariants, one then reads

ng=0
1 = 6 , ng=0

2 = 5 , ng=0
3 = 2 and ng=0

4 = 1 . (4.54)

Finally, we find (as in the E6 case) that no particular choice of the constants ci can
enhance the number of zero modes at w = 0 (without generating non-isolated singularities).

4.5 Simple flop with length 5

A flop with length 5 is obtained from an E8 family over Cw. The node that should be
simultaneously resolved at w = 0 is depicted in figure 6.

We then have H = 〈α∗4〉 and

L = A
(5,6,7)
3 ⊕A(1,2,3,8)

4 ⊕ 〈α∗4〉. (4.55)

23The first entry of each summand is a representation of A(4,5,6)
3 , the second one is a representation of

A
(1,2)
2 , and the third on a representation of A(7)

1 . The subscript is the charge under 〈α∗3〉.
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RL C[w]/(w) C[w]/(w2) #zero modes

(15,1,1)0 0 0 0

(1,8,1)0 0 0 0

(1,1,3)0 0 0 0

(1,1,1)0 0 0 0

(4,3,2)−1 6 0 6

(4,3,2)1 6 0 6

(6,3,1)−2 3 1 5

(6,3,1)2 3 1 5

(4,1,2)−3 2 0 2

(4,1,2)3 2 0 2

(1,3,1)−4 1 0 1

(1,3,1)4 1 0 1

Table 2. Five-dimensional modes for E7 length four simple flop.

Figure 6. E8 Dynkin diagram, with the root blown up in the length five flop colored in black.

We make the simple choice

Φ|〈α∗4〉 = c4w 〈α∗4〉

Φ|
A

(5,6,7)
3

=



0 1 0 0

0 0 1 0

0 0 0 1

c567w 0 0 0


= eα5 +eα6 +eα7 +c567w [[e−α5 ,e−α6 ],e−α7 ]
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Φ|
A

(1,2,3,8)
4

=



0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

c1238w 0 0 0 0


= eα1 +eα2 +eα3 +eα8−c1238w

[[
[e−α1 ,e−α2 ],e−α3

]
,e−α8

]

with constant c’s. We obtain our threefold as an hypersurface in C4. To make the equation
more readable, we pick explicit values for the parameters, setting c4 = 0, c567 = 1, c1238 =
−1:

x2 +y3 +z5 +w7 + w6

864−
23w5z

36 −w
4y

48 −
187w4z2

36 − 13
3 w

3yz− 2w3z3

27 − 1
3w

2yz2 = 0 . (4.56)

Zero modes. We can explicitly perform the branching of the adjoint representation 248
of E8 under the chosen L:24

248 = (1,24)0 ⊕ (15,1)0 ⊕ (1,1)0

⊕(4,10)1 ⊕ (4,10)−1 ⊕ (6,5)2 ⊕ (6,5)−2

⊕(4,5)3 ⊕ (4,5)−3 ⊕ (1,10)4 ⊕ (1,10)−4

⊕(4,1)5 ⊕ (4,1)−5. (4.57)

The result of the zero mode counting is displayed in table 3. There are no modes localized
in C[w]/(wk), with k > 2. We find 48 modes localized at w = 0:

• one hyper with charge five, inside (4,1)5 ⊕ (4,1)−5;

• two hyper with charge four, inside (1,10)4 ⊕ (1,10)−4;

• four hypers with charge three inside (4,5)3 ⊕ (4,5)−3;

• six hypers with charge two inside (6,5)2 ⊕ (6,5)−2;

• eight hypers with charge one inside (4,10)1 ⊕ (4,10)−1.

In terms of the GV invariants, one then reads

ng=0
1 = 8 , ng=0

2 = 6 , ng=0
3 = 4 , ng=0

4 = 2 and ng=0
5 = 1 . (4.58)

Again, we notice that we can not enhance the number of zero-modes at w = 0 without
generating a non-isolated singularity.

24The first number denotes the dimension of the representation of A(5,6,7)
3 , the second under A(1,2,3,8)

4
and the subscript is the charge under the Cartan α∗4.
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RL C[w]/(w) C[w]/(w2) #zero modes

(1,24)0 0 0 0

(15,1)0 0 0 0

(1,1)0 0 0 0

(4,10)1 6 1 8

(4,10)−1 6 1 8

(6,5)2 6 0 6

(6,5)−2 6 0 6

(4,5)3 4 0 4

(4,5)−3 4 0 4

(1,10)4 2 0 2

(1,10)−4 2 0 2

(4,1)5 1 0 1

(4,1)−5 1 0 1

Table 3. Five-dimensional modes for E8 length five simple flop.

Figure 7. E8 Dynkin diagram.

4.6 Simple flop with length 6

In this section we conclude our analysis of simple flops by dealing with the highest length
case, i.e. a flop of length 6 arising from a E8 singularity deformed over the plane Cw. We
choose the Higgs Φ ∈ E8 in such a way to resolve only the central node of the E8 Dynkin
diagram as depicted in figure 7.

According to the principles outlined in previous sections, the Higgs field resolving the
central node must lie in the Levi subalgebra defined by:

L = A
(4,5,6,7)
4 ⊕A(1,2)

2 ⊕A(8)
1 ⊕ 〈α

∗
3〉, (4.59)

where as usual the upper indices label the simple roots. Again we choose Φ of the following
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form:

Φ|A4(4,5,6,7) =



0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

c4567w 0 0 0 0


= eα4 +eα5 +eα6 +eα7−c4567w [[[e−α1 ,e−α2 ] ,e−α3 ] ,e−α4 ] ,

Φ|A2(1,2) =


0 1 0

0 0 1

c12w 0 0

= eα1 +eα2 +c12w [e−α1 ,e−α2 ] ,

Φ|A1(8) =

 0 1

c8w 0

= eα8 +c8w e−α8 ,

Φ|〈α∗3〉= c3w 〈α∗3〉. (4.60)

To make the equation more readily understandable, we set the parameters to a specific
value c3 = 0, c8 = 1, c12 = −1, c4567 = 1. In this way we obtain the threefold

x2+y3+z5−wyz3−w
4

48 y+ w6

864−
7w2

2 yz2−23w4

20 yz−11w3

12 z3−17w4

24 z2+ 47w6

240 z = 0, (4.61)

where we neglected terms of high degree, irrelevant for the singularity at w = 0.

Zero modes. We perform the mode counting explicitly, independently for each irre-
ducible representation arising from the adjoint 248 of E8, branched under the Levi subal-
gebra (4.59). The decomposition reads:

248 = (24,1,1)0 ⊕ (1,8,1)0 ⊕ (1,1,3)0 ⊕ (1,1,1)0

⊕ (5,3,2)1 ⊕ (5,3,2)−1 ⊕ (10,3,1)2 ⊕ (10,3,1)−2

⊕ (10,1,2)3 ⊕ (10,1,2)−3 ⊕ (5,3,1)4 ⊕ (5,3,1)−4

⊕ (1,3,2)5 ⊕ (1,3,2)−5 ⊕ (5,1,1)6 ⊕ (5,1,1)−6

(4.62)

Applying the Mathematica routine presented in appendix D, we find the zero modes in
table 4.

We find a total of 44 localized modes:

• one hyper with charge six, inside (5,1,1)6 ⊕ (5,1,1)−6;

• two hypers with charge five, inside (1,3,2)5 ⊕ (1,3,2)−5;

• three hypers with charge four, inside (5,3,1)4 ⊕ (5,3,1)−4;

• four hypers with charge three inside (10,1,2)3 ⊕ (10,1,2)−3;
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RL C[w]/(w) C[w]/(w2) #zero modes

(24,1,1)0 0 0 0

(1,8,1)0 0 0 0

(1,1,3)0 0 0 0

(1,1,1)0 0 0 0

(5,3,2)1 6 0 6

(5,3,2)−1 6 0 6

(10,3,1)2 6 0 6

(10,3,1)−2 6 0 6

(10,1,2)3 4 0 4

(10,1,2)−3 4 0 4

(5,3,1)4 3 0 3

(5,3,1)−4 3 0 3

(1,3,2)5 2 0 2

(1,3,2)−5 2 0 2

(5,1,1)6 1 0 1

(5,1,1)−6 1 0 1

.

Table 4. Five-dimensional modes for E8 length six simple flop.

• six hypers with charge two inside (10,3,1)2 ⊕ (10,3,1)−2;

• six hypers with charge one inside (5,3,2)1 ⊕ (5,3,2)−1.

In terms of the GV invariants, one then reads

ng=0
1 = 6, ng=0

2 = 6, ng=0
3 = 4, ng=0

4 = 3, ng=0
5 = 2 and ng=0

6 = 1 .

Finally, analyzing the rank of the matrix Bd, we find that no enhancement in the
number of localized modes at w = 0 is feasible without generating a non-isolated singularity.

5 Conclusions

In the present work, we constructed and studied the GV invariants of examples of threefold
simple flops of any length. Building on our previous results based on the M-theory/Type
IIA duality [2, 3], we introduced techniques to deal with intrinsically non-perturbative
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cases, where the Type IIA limit is not available, involving one-parameter families of de-
formed E6, E7, E8 singularities. By means of a group-theoretic computational algorithm
(included in an ancillary Mathematica file), the determination of the GV invariants for
flops of any length has been reduced to a linear algebra problem. Our method is explicit,
and also enables us to detect special cases of threefold simple flops exhibiting enhanced
GV invariants. Our results are compatible with the lower bounds on the GV invariants of
simple flops found in [28].

Furthermore, from a physical perspective, our work allows to study the dynamics of
M-theory on threefold simple flops, which are notably non-toric, characterizing the Higgs
Branches of the resulting 5d SCFTs as complex algebraic varieties. This is possible thanks
to the correspondence between the GV invariants of threefold simple flops and BPS states
arising from M2-branes wrapped on the curve inflated by the resolution of the simple flops.
Indeed, M2-brane states descend to hypermultiplets in 5d, whose charges under the flavor
group are determined by the degrees of the GV invariants, which we computed explicitly in
flops of all lengths. In particular, we are able to fully characterize the action of the flavor
symmetries on the Higgs Branch.

These results pave the way for a range of engaging perspectives. For example, it would
be interesting to apply our methods to the so-called (Aj , Ek) (with k = 6, 7, 8) singularities,
which require an intrinsically non-perturbative description. Furthermore, achieving a more
thorough understanding of the construction of general Higgs backgrounds would prove
hugely profitable for the study of more general one-parameter fibrations of exceptional
singularities.

Acknowledgments

A.C. is a Research Associate of the Fonds de la Recherche Scientifique F.N.R.S. (Belgium).
The work of A.C. is partially supported by IISN - Belgium (convention 4.4503.15), and sup-
ported by the Fonds de la Recherche Scientifique - F.N.R.S. under Grant CDR J.0181.18.
A.S. and R.V. acknowledge support by INFN Iniziativa Specifica ST&FI. M.D.M. acknowl-
edges support by INFN Iniziativa Specifica GAST. The work of A.S. has been partially
supported by the “Fondazione Angelo Della Riccia”. A.S. would like to thank Andrés
Collinucci and the Theoretical and Mathematical Physics Department of the Université
Libre de Bruxelles for hospitality during the completion of this work.

A The threefold equation: the Katz-Morrison method

Let us explain the method for obtaining a simultaneous resolution developed by Katz and
Morrison [1].

One can start from the family over t (2.14), that is the expression of the versal defor-
mation of the ADE singularity in which the deformation parameters are functions of the
ti’s that encode the volumes of the 2-cycles. To write down the equation of the fibration
over t/W ′, one first needs to write the W ′ invariant coordinates %i’s in terms of the ti’s;
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inverting these relations and plugging the result in (2.14) one obtains the hypersurface
equation of the partial simultaneous resolution [1].

Let us immediately clarify this statement with the example of the deformed A3 singu-
larity we have introduced before. According to (2.14) the defining equation reads:

x2 + y2 + (z − t1)(z − t2)(z − t3)(z − t4) = 0 t1 + t2 + t3 + t4 = 0. (A.1)

Now suppose again that we wish to produce a simple flop in which only the central node
is resolved. The original Weyl group W = S4, acts as the permutation group on the four
ti’s. Here, the desired simultaneous resolution defines for us the subgroup W ′ = Z2 × Z2,
which acts by exchange of t1 ↔ t2 and t3 ↔ t4, respectively. It is easy to see that the
W ′-invariant coordinates are:

s̃1 = t1 · t2 , s̃2 = t1 + t2 = −t3 − t4 , s̃3 = −t1t3 − t2t3 − t23 = t3 · t4 (A.2)

and comparing them to the expression (A.1) in terms of the ti it is a matter of mechanical
computation25 to extract the fibration over t/W ′:

x2 + y2 + (z2 − s̃2z + s̃1)(z2 + s̃2z + s̃3) = 0. (A.3)

Finally, choosing a dependence s̃i(w) one gets a simple threefold flop. A well-known ex-
ample is Reid’s pagoda, obtained by choosing:

s̃2 = 0 , s̃1 = −s̃3 = w (A.4)

which gives the hypersurface x2 + y2 + z4 − w2.
In principle, this procedure can be carried out for any deformed ADE singularity and

any resolution pattern, although for the exceptional cases it can get particularly time-
consuming.

B Casimirs for the equation of Er families

Let us consider the deformed En singularities in equation (2.14). In each one, we have n
deformation parameters:

E6 εi for i = 2, 5, 6, 8, 9, 12

E7 ε̃i for i = 2, 6, 8, 10, 12, 14, 18

E8 ε̂i for i = 2, 8, 12, 14, 18, 20, 24, 30

(B.1)

Following section 3.2, one computes their expression in terms of the Casimir χEri (Φ), with
χEri defined in (3.12).

25In practice, once one has the expression of the s̃i as functions of the ti, one can write down the most
general deformed A3 singularity invariant under W ′ in terms of the %i with unfixed coefficients. Comparing
its terms degree by degree in the ti with expression (A.1) the correct coefficients can be easily extracted.
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Let us define (see (3.12))

cki ≡ χ
E6
i (Φ), c̃ki ≡ χ

E7
i (Φ), ĉki ≡ χ

E8
i (Φ) . (B.2)

The result for the E6 case is:

ε2 = − c2
24

ε5 = c5
60

ε6 = c3
2

13824 −
c6

144

ε8 = − c4
2

110592 + 13c2c6
8640 −

c8
240

ε9 = c9
756 −

c2
2c5

11520

ε12 = − c12
3240 + 109c6

2
4299816960 −

847c3
2c6

134369280 + 109c2
2c8

3732480 + 13c2c
2
5

466560 + 61c2
6

933120 .

(B.3)

For the E7 case:

ε̃2 = c̃2
18

ε̃6 = c̃3
2

139968 −
c̃6
72

ε̃8 = − 7c̃4
2

25194240 + 11c̃2c̃6
16200 −

c̃8
300

ε̃10 = −2c̃10
315 + c̃5

2
151165440 −

17c̃2
2c̃6

583200 + c̃2c̃8
1400

ε̃12 = − 16c̃10c̃2
1148175 + c̃12

12150 −
149c̃6

2
10579162152960 + 167c̃3

2c̃6
3401222400 + 737c̃2

2c̃8
881798400 −

31c̃2
6

437400

ε̃14 = 8303c̃10c̃
2
2

14935460400 −
2201c̃12c̃2
217314900 + 4c̃14

62601 + 11083c̃7
2

24082404724998144 −
11609c̃4

2c̃6
5530387622400

− 1289c̃3
2c̃8

1433804198400 + 353c̃2c̃
2
6

142242480 −
31c̃6c̃8

1463400

ε̃18 = 12182634587c̃10c̃
4
2

77806514663884339200 −
564449c̃10c̃2c̃6
3418744644000 + 1844c̃10c̃8

3956880375 −
27233975c̃12c̃

3
2

11321053720935552

+ 301c̃12c̃6
452214900 + 307855c̃14c̃

2
2

13588370378352 −
2c̃18

1507383 −
886993691c̃9

2
313644160640867419847393280

+ 4713945967c̃6
2c̃6

72026602145995788288000 −
14715122551c̃5

2c̃8
2334195439916530176000 −

579011753c̃3
2c̃

2
6

23156700792822720000

+ 2313866297c̃2
2c̃6c̃8

222355151645760000 −
77393c̃2c̃

2
8

3376537920000 −
15011c̃3

6
97678418400 . (B.4)
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For the E8 case:

ε̂2=
ĉ2

120

ε̂8=
13ĉ4

2
24883200000

−
ĉ8

5760

ε̂12=
ĉ12

181440
+

101ĉ6
2

3224862720000000
−

ĉ2
2ĉ8

64512000

ε̂14=−
71ĉ12ĉ2

798336000
+

ĉ14

1108800
−

2531ĉ7
2

9029615616000000000
+

103ĉ3
2ĉ8

696729600000

ε̂18=−
4451ĉ12ĉ3

2
689762304000000

+
1523ĉ14ĉ2

2
12454041600000

−
ĉ18

47174400
−

26399ĉ9
2

2080423437926400000000000

+
4747ĉ5

2ĉ8

722369249280000000
+

331ĉ2ĉ2
8

1672151040000

ε̂20=
191071ĉ12ĉ4

2
2121019084800000000

+
127ĉ12ĉ8

174569472000
−

1165063ĉ14ĉ3
2

612738846720000000
+

236627ĉ18ĉ2

434023349760000

+
10249681ĉ10

2
61414099887587328000000000000

−
2994007ĉ6

2ĉ8

35540567064576000000000
−

323371ĉ2
2ĉ

2
8

82269831168000000
−

ĉ20

220809600

ε̂24=−
193ĉ2

12
17793312768000

+
228270563ĉ12ĉ6

2
29320967828275200000000000

+
234189517ĉ12ĉ2

2ĉ8

945465467240448000000

−
9171869023ĉ14ĉ5

2
52675933174824960000000000

−
23281ĉ14ĉ2ĉ8

9150846566400000
+

561557071ĉ18ĉ3
2

8291582073815040000000

+
8268193432181ĉ12

2
580761207304971815485440000000000000000

−
20976434911ĉ8

2ĉ8

3055351469407469568000000000000

−
16935675593ĉ4

2ĉ
2
8

33005339947302912000000000
−

666323ĉ2
2ĉ20

721337268326400000
+

ĉ24

10061694720
−

593ĉ3
8

887354818560000

ε̂30=−
636328729ĉ2

12ĉ
3
2

367646783551116410880000000
−

189107437ĉ12ĉ14ĉ2
2

277976001893990400000000
+

2521ĉ12ĉ18

31907254579200000

+
122785779721089347ĉ12ĉ9

2
5354576379380206927872000000000000000000

+
374760114643099ĉ12ĉ5

2ĉ8

685159914799807856640000000000000

−
199931513ĉ12ĉ2ĉ2

8
94458563710156800000000

+
28501673ĉ2

14ĉ2

3860777804083200000000
−

1634513578407571229ĉ14ĉ8
2

3206548401263100769075200000000000000000

−
3442332938170993ĉ14ĉ4

2ĉ8

593805259493166809088000000000000
+

1223ĉ14ĉ2
8

112201334784000000
+

15587535288859801ĉ18ĉ6
2

76346390506264304025600000000000000

−
1051350791ĉ18ĉ2

2ĉ8

1243310844834938880000000
+

38736013334814563129113ĉ15
2

919171413254131073937239231692800000000000000000000000

−
966205043352894287ĉ11

2 ĉ8

46497194159854305977303040000000000000000000
−

53516928494297557ĉ7
2ĉ

2
8

42002885419922588958720000000000000000

−
2159242595767ĉ5

2ĉ20

737984035215212544000000000000
+

21328481ĉ3
2ĉ24

58332071437516800000000
+

225239997090599ĉ3
2ĉ

3
8

119591548765057371340800000000000

+
72667ĉ2ĉ20ĉ8

4518107320320000000
−

ĉ30

1978376400000
. (B.5)

C Milnor number and zero modes

From the point of view of the 5d theory coming from M-theory reduced on the singular
space X, the number of massless hypermultiplets gives the dimension dHB of the Higgs
Branch (HB). This is due to the fact that for the threefolds we consider in this paper, there
is no gauge symmetry (as the exceptional set has no codimension-1 loci).

The dynamics of M-theory on X admits an alternative description in terms of the
complex structure deformations of the threefold. When the singularity is deformed, a
number µ of compact three-cycles blow up. Some of them intersect each other pairwise
(these are called paired), while the other do not intersect any other compact three-cycle
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(these are called unpaired). µ is called the Milnor number of the singularity F (x, y, z, w) =
0 and it is the dimension, as complex vector space, of the Jacobian ring

J ≡ C[x, y, w, z]
(F, ∂xF, ∂yF, ∂wF, ∂zF ) . (C.1)

The dimension of the Higgs branch is given by counting appropriately the number of
independent, dynamical complex structure deformations that smooth the singularity. For
non-compact Calabi-Yau varieties, the number dHB of independent, dynamical complex
deformations coincides with [21–23]

dHB = µ− `
2 + `, (C.2)

where µ is the Milnor number and ` the number of “unpaired” three-cycles.
On general grounds, ` coincides with the number of two-cycles inflated in the resolution,

that in our case coincides with the dimension of H in (3.2). For the simple flop cases studied
in this paper ` = 1 and hence dsimple flop

HB = µ−1
2 + 1.

We have used this formula to check our results: we first compute the Milnor number
for the examples in section 4 to compute the Higgs branch dimension dsimple flop

HB ; we then
checked that this number coincided with the total number of hypermultiplets we computed.

D Mathematica code for computing the zero modes

In this section we will describe the ancillary Mathematica code, which can be found at
the arXiv page of this paper. We loaded, together with the paper, a zipped folder. The
folder contains nine text files containing the positive and negative roots of the exceptional
algebras26 and a basis of the Cartan subalgebras. We used, to produce these matrices, the
results of [24–26]. These text files should be saved in one of the folders of the variable
$Paths of Mathematica. In the folder, one can find also the notebook file “CodeHiggs-
BranchData.nb” which is divided into two sections. The first section “Main Code” contains
the routines that we used to produce the Higgs branch data having, as input, the Higgs
field describing the type IIA dual of M-theory on the considered threefold. The second
sections “Examples” contains the application of the functions defined in the section “Main
Code” to the simple flops we analyzed in this paper. We now describe the main routines
of the ancillary Mathematica code.

HbData function. The main routine contained in the code is

HbData[ADE, rank, listhiggs, coeffhiggs, cartanhiggs, coeffcartan, listlevi].

The arguments of the function are

• ADE: is a Symbol to be picked among “A, DD, E6, E7, E8” and specifies the type of
ADE algebra associated to the threefold.

26For the E6 algebra, the root vectors are in the 27 representation. For the E7, E8 algebras the root
vectors are in the adjoint representation.
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• rank: is a positive Integer that specifies the rank of the ADE algebra associated to
the threefold.

• listhiggs: is a List of Lists. Each sublist represents a root such that the Higgs
field has a non-zero coefficient along the corresponding root-vector in g. The root
vectors considered here do not lie in the Cartan subalgebra: the elements in the
Cartan subalgebra will be separately input with the variables cartanhiggs and
coeffcartan. The roots are described by their integer coefficients decomposition
with respect to the simple roots. For example, keeping the notations in section 4.5,
the root vector v = [[e−α5 , e−α6 ] e−α7 ] appearing in (4.56) is expressed as

{0, 0, 0, 0,−1,−1,−1, 0} .

To order the roots, we followed the labelling of figures 4, 5, 6 and 7 for the exceptional
algebras. We labelled roots from the left to the right in the Ar Dynkin diagram. For
the Dr case, the first r− 3 integers are associated to the Ar−3 subalgebra associated
to the longest tail of the Dr Dynkin diagram (again, labelling roots from left to right),
the third last integer number appearing in the sublists of listhiggs is associated to
the trivalent root, the last two integers are associated to the two A1 short tails of the
Dr diagram.

For example, if we again consider the Higgs field of section 4.5, we have to insert, as
input

listhiggs =
{
{0, 0, 0, 0, 1, 0, 0, 0} , {0, 0, 0, 0, 0, 1, 0, 0} , {0, 0, 0, 0, 0, 0, 1, 0},
{0, 0, 0, 0,−1,−1,−1, 0}, {1, 0, 0, 0, 0, 0, 0, 0} , {0, 1, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 0, 0, 0, 0} , {0, 0, 0, 0, 0, 0, 0, 1} , {−1,−1,−1, 0, 0, 0, 0,−1}

}
,

where the red elements correspond to Φ|
A

(5,6,7)
3

, and the blue elements to Φ|
A

(1,2,3,8)
4

in (4.56).

The root system, in our convention, can be printed on screen calling the function
PrintRootSystem[ADE,rank] (the first argument being again the ADE type of g,
and the second argument its rank).

• coeffhiggs: is a List containing the coefficients corresponding to the elements of
listhiggs. If we again consider the Higgs field of (4.56) we have

coeffhiggs = {1, 1, 1, wc567, 1, 1, 1, 1, wc1238} .

• cartanhiggs: is a List of positive Integers ni, with ni = 1, . . . , rank, describing
the elements of the Cartan subalgebra C of g along which the Higgs field has a non-
zero coefficient. The generators of the Cartan subalgebra has been chosen as the dual
elements α∗j of the simple roots. For example, let’s consider again the E8 algebra. We
know by construction that the Higgs field has to preserve the Cartan element dual
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to α4 in figure 6. This Cartan element is defined as the one that commutes with all
the simple root vectors different from eα4 , and

[α∗4, eα4 ] = 1.

In order to pick a Higgs field with a non-zero component along α4 we then input

cartanhiggs = {4} .

For non-simple flops, where we have more than one P1 resolved, the input

cartanhiggs = {n1, . . . , nf} ,

corresponds to turning on a Higgs v.e.v. along the roots α∗n1 , . . . , α
∗
nf
.

• coeffcartan: is a List of Symbols describing the coefficients corresponding to the
elements of cartanhiggs. In the previous example, if we input

cartanhiggs = {4} , coeffcartan = {wc4} ,

we picked the Higgs to have a coefficient wc4 along α∗4.

• listlevi: is a List of Integers describing the simple roots that labels the Levi
subalgebra. In the previous example, we picked the root vectors all residing in the
Levi subalgebra labeled by all the roots of E8 but the resolved one. The fact that the
Levi subalgebra associated to the Higgs field (4.55) is L = A

(5,6,7)
3 ⊕ A(1,2,3,8)

4 ⊕ 〈α∗4〉
is explained in details in section 4.5 but can be also read off from our choice of
the variable listhiggs. Indeed, the simple roots labeling the Levi subalgebra (in
this case, {1, 2, 3, 5, 6, 7, 8}) are the minimum amount of simple roots we need to
generate (with integer coefficients) all the root we input in listhiggs. All the Levi
subalgebras contains [20] the Cartan subalgebra, hence the data cartanhiggs and
coeffcartan do not modify the Levi subalgebra datum.

The function has a void output and prints all the data we need to determine the
action of the spontaneously broken flavor symmetry on the Higgs Branch (or, in other
words, the Gopakumar-Vafa invariants of the small resolution of the singularity, labeled by
their degrees).

As an example we report here a part of the output of the length-five simple flop case
we analyzed in section 4.5. The whole output is contained in the Examples section of the
ancillary Mathematica file. In this case, the output contains many blocks (one for each
irreducible representation of the branching of g with respect to the Levi subalgebra (4.55))
of the following type:
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The first three lines report the number of five-dimensional modes localized in the considered
irreducible representation. In this case, we read the list {6, 1, 0}, this means that we have
six modes localized in C[w]/(w), one mode localized in C[w]/(w2) and zero in C[w]/(wk)
with k > 2. The overall number of complex-valued modes is, hence, 6∗1+1∗2 = 8 (indeed,
a mode inside C[w]/(wk) counts for k complex-valued five-dimensional degrees of freedom).
The last three lines tell us:

• The complex dimension of the considered irreducible representation. In the example,
we have 40.

• The Dynkin indices of the highest weight state of the representation. In the example,
we read

{0, 0, 1, 1, 0, 0, 0} .

Since the variable listlevi is {1, 2, 3, 5, 6, 7, 8}, the output is telling us that the
lowest weight has weight 1 with respect to the third root of figure 6, 1 with respect
to the fourth root and zero with respect to all the other roots labelling the Levi
subalgebra.

• The charges of these modes with respect to the flavor group generators. The generators
of the flavor group are the Catan elements α∗i that are dual to the roots that gets
resolved. In this case, we see that all the five-dimensional modes in the considered
irreducible representation have weight one with respect to the u(1) flavor symmetry
associated to the resolved node of figure 6. This implies, in terms of the Higgs Branch
geometry, that there is a spontaneously broken u(1) symmetry, that acts with charge
one on the modes localized in the considered irreducible representation.

ExtractRootDec function. The second main routine is

ExtractRootDec[ADE, rank, higgs].

The routine can be used to analyze, in the language of this paper, the Higgs fields we
presented in [3, 27]. The first two arguments of the function are again, as in the HbData
function, the ADE type of g and its rank. The third argument is a matrix, representing
the Higgs field. The Higgs field has to be input

• in the fundamental representations for the Ar, Dr cases (following the notations
in [20]);
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• in the 27 representation for the E6 case;

• in the adjoint representation for the E7, E8 cases.

The output is a List containing the arguments of the function HbData (ordered as in
the function call process). In other words, the first argument of the output List will be ADE,
the second will be rank, the third listhiggs and so on. The function does not output the
datum listlevi, which has to be added manually by the user when HbData is called. We
remark again that the simple roots labelling the Levi subalgebra are the minimum amount
of simple roots we need to generate (with integer coefficients) all the roots in listhiggs
(namely, appearing in the third element of the output of ExtractRootDec[ADE, rank,
higgs]).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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