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Noninterferometric experiments have been successfully employed to constrain models of spontaneous
wave function collapse, which predict a violation of the quantum superposition principle for large systems.
These experiments are grounded on the fact that, according to these models, the dynamics is driven by noise
that, besides collapsing the wave function in space, generates a diffusive motion with characteristic
signatures, which, though small, can be tested. The noninterferometric approach might seem applicable
only to those models that implement the collapse through noisy dynamics, not to any model, that collapses
the wave function in space. Here, we show that this is not the case: under reasonable assumptions, any
collapse dynamics (in space) is diffusive. Specifically, we prove that any space-translation covariant
dynamics that complies with the no-signaling constraint, if collapsing the wave function in space, must
change the average momentum of the system and/or its spread.
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Introduction.—Searching for the potential limits of
validity of the quantum superposition principle is of highest
relevance for the foundations of quantum mechanics and in
general for our understanding of nature [1–4], and more
pragmatically also for the scalability of quantum technol-
ogies. One further motivation is provided by models of
spontaneous wave function collapse [5–8], which predict a
progressive breakdown of quantum linearity and the
localization in space of physical systems as their size
increases, thus justifying the emergence of a classical world
from quantum constituents.
The most natural way of testing the superposition

principle is via “interferometric experiments,” and several
platforms have been employed or proposed for this scope,
including atoms [9,10], molecules [11,12], optomechanical
systems [13], crystals [14], and nitrogen-vacancy centers
[15]. The difficulty in performing such experiments is that
it is hard to generate and maintain a macroscopic spatial
superposition in a (almost) decoherence-free environment,
and check whether over time it survives or decays. The
current world record for a matter wave delocalized in space
is about 0.5 m, obtained with cold atoms [10], while the
largest mass that interfered with itself weighs about
105 amu [12]. We are still far away from probing the
quantum nature of the macroscopic world, but impressive

technological development makes the goal less far away in
the future [16–18].
Meanwhile, a different strategy has been successfully

employed to test models of spontaneous wave function
collapse, which consists of “noninterferometric experi-
ments” [19]. The basic principle lies in the observation that
in all these models the collapse of the wave function is
triggered by noise, which shakes the particles’ dynamics,
whether their wave function is localized or not. As such,
particles undergo a characteristic diffusion process, which
can be tested through high-precision position measure-
ments; these, although demanding, are easier to perform
than the interferometric ones. Examples of these kind of
experiments are the precise monitoring of themotion of cold
atoms [20], cantilevers [21,22], or gravitational wave
detectors [23,24]. Another consequence of the collapse-
induced diffusion is that atoms emit an extra radiation,
which is not predicted by standard quantummechanics; also
this effect has been used to test collapse models [25–28].
The bounds on the phenomenological parameters of the
continuous spontaneous localization model [6] resulting
from noninterferometric experiments are 6 orders of mag-
nitude stronger than the best bounds set by interferometric
experiments [29]. Moreover, a recent experiment based
on precise measurements of the radiation emitted from
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germanium ruled out the parameters-free version of the
Diósi-Penrose model [31].
An apparently weak side of noninterferometric experi-

ments is that they seem not to represent a direct test of the
quantum superposition principle, but only of the models so
far proposed, which explicitly violate it. This leaves the
possibility open to formulate a model where the wave
function does collapse, without inducing diffusion on the
system. Here, we show that this is not possible: any
dynamics that localizes the wave function in space also
changes the momentum. We call this “diffusion” because in
all current collapse models it manifests as such, but in this
Letter it is meant to signify any change in the momentum of
the system. Since a change in momentum can be (at least in
principle) detected by noninterferometric experiments, our
result shows that they represent a test of the quantum
superposition principle in a stronger sense than one might
suppose.
We consider a general situation: we assume that physical

systems are associated with a wave function ψ , which is
subject to a generic norm-preserving (possibly, nonlinear)
dynamics. The requirements on the dynamics are as
follows: (i) it does not allow for superluminal signaling,
and (ii) it is space-translation covariant, at least at the
statistical level. The first assumption implies that the
dynamics for the wave function ψ also provides a well-
defined dynamics for the density matrix ρ̂, which in general
is not true for a nonlinear evolution [32]. Then, by
construction, the dynamics for ρ̂ is linear, completely
positive, and trace preserving (see Supplemental Material
[33]). The second assumption amounts to requiring that the
map for ρ̂ is space-translation covariant and has the same
physical motivation on which all physical fundamental
theories are based. We will prove our result for a single
particle, where by particle we also (and mostly) mean the
center of mass of a composite system.
To fix the notation, we will consider a particle in a box of

size L, with periodic boundary conditions; this choice will
avoid potential problems when dealing with plane waves.
Let p̂i be the momentum operator along direction
ið¼ x; y; zÞ, and ð2πℏ=LÞni its eigenvalues, with ni ∈ Z;
let n ¼ ðnx; ny; nzÞ. The average value of the momentum
operator for a given state ρ̂ is denoted as p̄i;ρ̂ ¼ Trðp̂iρ̂Þ and
its variance as Δpi;ρ̂ ¼ Trðp̂2

i ρ̂Þ − ½Trðp̂iρ̂Þ�2. Last, let n̂ ¼
jnihnj be the state of definite momentum ð2πℏ=LÞn.
We will prove the following theorem. Consider a particle

in a box of size L with periodic boundary conditions for its
wave function. Consider a dynamical map for the wave
function satisfying the conditions (i) and (ii), and let Φ be
the associated map for the density matrix ρ̂ [49]. Assume
that the average momentum is conserved along the three
directions: p̄i;Φ½ρ̂� ¼ p̄i;ρ̂ for any ρ̂. Then, Δpi;Φ½n̂� ¼
Δpi;n̂ ∀ n if and only if Φ is a function of the momentum
operator only, in which case plane waves do not collapse in

space. Moreover, if Δpi;Φ½n̂� ≠ 0 for some n, then
Δpi;Φ½ρ̂� > Δpi;ρ̂ for any ρ̂ such that hnjρ̂jni ≠ 0.
Before proceeding with the proof, some comments are at

order. We assume that the average momentum p̄i is
conserved for all states because, if this is not true for a
certain ρ̂, then a noninterferometric experiment is immedi-
ately available, namely to measure the change of p̄i induced
by Φ on the ρ̂. Most collapse models in the literature
conserve the average momentum. An exception are the
dissipative models, as for example the dissipative continu-
ous spontaneous localization model [50]; however, also in
this case, for generic states Δpi;ρ̂ changes due to the
collapse, i.e., there is diffusion. This is discussed in detail
in the Supplemental Material, Sec. C [33].
Plane waves are the most delocalized states, and a

sensible collapse model is expected to collapse them in
space. In that case, Δpi changes for all of them (it is 0
before the collapse, and not 0 after); then the theorem tells
us that Δpi will increase for any ρ̂. This means that any
sensible collapse model must induce an increase of Δpi of
the system for any state (delocalized or not). When the map
acts repeatedly over time, the increase of Δpi amounts to
some form of diffusion.
Our proof is valid for free particles as well as for particles

interacting with an external potential. In the second case, in
general, the change in Δpi cannot be easily separated into
the contribution coming from the interaction potential and
that coming from the collapse. However, all experiments
are such that this separation is possible, either because the
particle is free or because the effect of the interaction
potential can be estimated.
The theoremmight seem a manifestation of Heisenberg’s

uncertainty principle: a collapse in position must increase
the spread in momentum; this is true for plane waves, but it
is not necessary when the state is not a minimum uncer-
tainty state (the vast majority of them are not). Yet the
theorem says that also in that case the spread in momentum
increases [33].
Proof.—As discussed in the Supplemental Material [33],

the map Φ is linear, trace preserving, and completely
positive. Then Kraus’ theorem [51] states that it is of the
form

Φ½ρ̂� ¼
X
k

Âkρ̂Â
†
k; ð1Þ

where the operators Âk satisfy the condition
P

k Â
†
kÂk ¼ 1.

The structure of translation covariant maps is charac-
terized by Holevo’s theorem [52], whose essence is the
following. A map is covariant under a space translation
amounting to a displacement x if, for any ρ̂,

e−
i
ℏp̂·xΦ½ρ̂�ei

ℏp̂·x ¼ Φ½e− i
ℏp̂·xρ̂e

i
ℏp̂·x�: ð2Þ
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By multiplying the two sides of this equation on the left by
eði=ℏÞp̂·x and on the right by e−ði=ℏÞp̂·x and using Eq. (1), one
finds that

Φ½ρ̂� ¼
X
k

ÂkðxÞρ̂Â†
kðxÞ ð3Þ

with

ÂkðxÞ ¼ e
i
ℏp̂·xÂke−

i
ℏp̂·x: ð4Þ

By requiring the covariance in Eq. (2) to hold for any
possible displacement x with xj ∈ ½−L=2; L=2�, one even-
tually finds

Φ½ρ̂� ¼ 1

L3

Z þL
2

−L
2

dx
X
k

AkðxÞρ̂A†
kðxÞ; ð5Þ

with AkðxÞ given by Eq. (4) and

X
m

X
k

jhmjAkjnij2 ¼ 1 m; n ∈ Z3: ð6Þ

Equation (5) represents the general space-translation covar-
iant Kraus map inside a box.
Since we are assuming that the average momentum does

not change, the change of its spread is given by

Di;ρ̂ ≔ Trðp̂2
iΦ½ρ̂�Þ − Trðp̂2

i ρ̂Þ; ð7Þ

which, according to Eq. (5), is equal to (see Supplemental
Material [33])

Di;ρ̂ ¼
X
m;n

Pðm; nÞm̃2
i hnjρ̂jni; ð8Þ

where m̃i ≔ ð2πℏ=LÞmi and

Pðm; nÞ ≔
X
k

jhmþ njAkjnij2: ð9Þ

The requirement that the map Φ does not lead to diffusion
is equivalent to asking that Di;ρ̂ ¼ 0 for any ρ̂. We now
prove that a map fulfilling this condition cannot collapse
the wave function in space. By assuming that Di;ρ̂ ¼ 0 for
any statistical operator of the form ρ̂ ¼ jn0ihn0j, we
conclude that

X
m

Pðm;n0Þm̃2
i ¼ 0 ∀ n0: ð10Þ

At this point, it is convenient to introduce the marginal
distributions of Pðm; n0Þ given by

Piðmi; n0Þ ≔
X
mj≠i

Pðm; n0Þ; ð11Þ

which allows one to rewrite Eq. (10) as

X
mi

Piðmi; n0Þm2
i ¼ 0 ð12Þ

for all n0. Equations (6) and (9) imply that Pðm; nÞ is a
probability distribution for the variables m, for any fixed n.
It follows from Eq. (12) that the marginals Piðmi; n0Þ are
probability distributions with zero variance, which implies

Piðmi; n0Þ ¼ δmi;0 ∀ n0: ð13Þ

Since this is true for all the marginals of Pðm; n0Þ, then

Pðm; nÞ ¼
X
k

jhmþ njAkjnij2 ¼ δm;0 ∀ n: ð14Þ

The equation above implies that

jhmþ njAkjnij2 ¼ ckðnÞδm;0 ∀ n; ð15Þ

with ckðnÞ generic non-negative functions such thatP
k ckðnÞ ¼ 1. By writing the matrix element in the form

hmþnjÂkjni¼Rkðm;nÞeiφkðm;nÞ one finds that Rkðm; nÞ ¼ffiffiffiffiffiffiffiffiffiffiffi
ckðnÞ

p
δm;0 and therefore

Âk ¼
X
m;n

jmþ nihmþ njÂkjnihnj

¼
X
n

ffiffiffiffiffiffiffiffiffiffiffi
ckðnÞ

p
eiφkð0;nÞjnihnj ¼ Âkðp̂Þ; ð16Þ

where the last equality signifies that the operators Âk are
functions of the momentum operator only. As such, the
map Φ becomes

Φ½ρ̂� ¼
X
k

Âkðp̂Þρ̂Â†
kðp̂Þ: ð17Þ

Typical examples of maps of this kind contain only one
Kraus operator and are the free evolution [Âðp̂Þ∼
exp½−ip̂2=2m�] and spatial translations [Âðp̂Þ ∼ exp½ip̂ · a�],
which do not modify the spread in momentum.
It is trivial to check that a map like Eq. (17) does not

change the momentum distribution, and that plane waves
ρ̂ ¼ jn0ihn0j are stationary states, which implies that the
map Φ is not capable of collapsing such fully delocalized
states in position.
Coming to the second part of the theorem, let us assume

that the map changes the spread in momentum of a given
momentum eigenstate jn0i; this implies that

X
m

Pðm; n0Þm̃2
i > 0: ð18Þ
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Then from Eq. (8) it is clear that for all states ρ̂ such that
hn0jρ̂jn0i ≠ 0 the spread in momentum also increases
under the action of the map. This completes the proof.
The proof presented here is applied to a single quantum

operation, but clearly holds for a sequence of them. A proof
of the theorem for Lindblad’s dynamics is given in the
Supplemental Material [33].
Discussion.—The no-faster-than-light signaling require-

ment, which implies that the dynamical map for the density
matrix is uniquely identified and is linear, sets a very strong
constraint on the possible collapse dynamics. In particular,
it tells us that the dynamics must be such that, at the
statistical level (i.e., Φ), it acts on the density matrix in the
same way, whether the underlying mixture is made of
delocalized states (which should collapse) or of localized
states (which are not expected to further collapse). This
excludes the possibility of having a collapse dynamics that
takes place only when the system is in a superposition and
is suspended when the system is not; in this second case the
effect might be small or null for some specific states, but the
dynamics as such is there.
Since the time when a superposition is created is not

specified a priori, and since Φ is “blind” to the states
forming a statistical mixture, the dynamics must act
repeatedly in time with a sufficiently high rate to make
sure that superpositions do not live too long (in the
Markovian limit, one typically has a Lindblad dynamics).
Note that such dynamics implies a time directionality

(see Ref. [53] for further discussion). At the statistical level
this is clear since pure states evolve into statistical mixtures.
At the wave function level, time directionality arises
because spatial superpositions collapse to localized states,
while the opposite does not occur. The collapse occurring
in position implies energy nonconservation.
Space-translation covariance enters as follows. Consider

(in one dimension) a partition of the real line into small
enough intervals and let Âk be the projection operators
associated to the intervals. The associated Kraus map Φ in
Eq. (1) is not covariant under space translations. When
applied to a generic superposition, it collapses it and changes
the spread inmomentum,while preserving its average;when
the map is applied any other time, the state does not change
anymore (here we are neglecting the Hamiltonian dynam-
ics). In this case diffusion does not occur, apart from the
change in momentum in the very first instance. Space-
translation covariance requires that there are no privileged
points in space, so no privileged partition of space; therefore
no state, however localized (except for the pathological—
and unstable under the free evolution—case of a Dirac
delta), can remain unaltered by a repeated application of the
map because there is always the chance that it is further
localized by the action of an operator Âk associated to an
interval that does not entirely contain the statewhen the map
acts. This is the source of diffusion.

We implicitly framed our theorem in a nonrelativistic
setting, but we do not see any fundamental obstacle in
extending it to a relativistic scenario.
Conclusions.—Modifying the quantum dynamics pro-

vided by the Schrödinger equation is tricky and easily
generates nonphysical situations. One of the most common
problems is superluminal signaling with arbitrarily high
speed; collapse models are designed to avoid this problem.
Our theorem shows why the no-signaling constraint,
together with space-translation covariance, requires that
collapse in position always comes with diffusion. For this
reason, noninterferometric experiments are equally good as
interferometric ones for testing these models; as anticipated
in the introduction, the first type of tests are easier to
perform and have already set significantly stronger bounds
on the collapse parameters, ruling out some of them.
The same logic applies to any open-quantum-system

dynamics: typical environments induce decoherence in
position [54] and the resulting dynamics is space-transla-
tional covariant because most interactions depend on the
relative distances among particles—all fundamental ones
do; as such they must also generate diffusion. This is
reflected by the Lindblad structure of the most common
master equations: when the Lindblad operators depend on
position, the expectation value of p̂2 is not constant.
This fact has consequences, for example, regarding

recent proposals for searching for dark matter signals using
matter-wave interferometers [56–58], which are sensitive to
the decoherence induced by dark matter particles. Equally
well, one can propose noninterferometric experiments [57],
which are sensitive to the diffusion generated by the
particles; the application of noninterferometric techniques
to collapse models proved that they hold the potential for
providing stronger results.
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