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A B S T R A C T

The paper focuses on the development of a vision system to automate the position control of a cultivator
used for crop weeding. The vision algorithm allows monitoring of the cultivator’s misalignment with respect
to crop rows, with real-time processing. The key content includes the introduction of a self-generated digital
twin of the field model for numerical validation of different computer vision solutions and a comparison of
three vision algorithms for measuring deviation. The objectives of the study are to improve the precision of
misalignment measurements and ensure safe and accurate movement of the cultivator. The rationale behind
the study is to address constraints such as camera installation and crop color, and to emphasize the importance
of a confidence estimation feature for accurate measurement. The paper also provides an overview of related
works in the literature, highlighting the two phases of plant identification and deviation measurement. Tests
carried out on soybean and maize crops demonstrate the improvements allowed by the proposed algorithm in
terms of higher measurement precision, even in the presence of high weed infestation or a significant number
of missing plants. Additionally, the paper suggests analysis simplifications to enhance the algorithm’s speed
while maintaining satisfactory measurement accuracy.
1. Introduction

The weeding operation of crops is essential for soil aeration, water
drainage, and removing unwanted herbs. Traditionally, trailed culti-
vators with furrows spaced according to the inter-row distance are
implemented. However, aligning the cultivator with the sown rows
require manual correction by the tractor operator or by a second
operator on the cultivator.

This paper aims to study a vision algorithm able to monitor the
displacement of a cultivator from the crop rows. The output of the
measurement is a displacement/correction signal that is likely imple-
mentable to let an on the go electromechanical or pneumatic control
of cultivator movement, allowing a single operator to concentrate
exclusively on tractor steering within the sown field. Some alterna-
tive solutions have been recently published to this end by different
research groups. In some case the approach to trajectory definition
relies on GNSS mapping of the tractor’s movement during the seeding
phase (see e.g. Machleb et al. (2020)). Other researchers opt for the
identification of single plants in the row through specifically trained
convolutional neural networks (Liu et al., 2024; Zheng et al., 2023)
or implementing other specific segmentation techniques (Wang et al.,
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2022). Differently from previous bibliography, the present paper intro-
duces a novel computer vision approach based on pattern matching,
which provides real-time measurement of the cultivator’s misalignment
with respect to the crop rows. The paper focuses on the development,
testing and optimization of the misalignment measurement system, to
be implemented as a feedback for the mechanical displacement actuator
of the cultivator. Testing of mechanized operation is not included in the
analysis; a system is hypothesized with a self-propelled chassis only in a
transverse direction with respect to the tractor’s travel, with numerical
movement, capable of measuring the position of the mobile chassis,
with a closed loop digital control that takes the deviation measurements
produced by the proposed algorithms as an error function.

The system assumes the use of a front-mounted monocular camera,
fixed to the cultivator’s frame. The camera captures the field before
cultivation, providing a coarse central perspective as the tractor usually
runs parallel to the crop rows. By analyzing the video stream, the
system determines the position of the crop rows relative to the fixed
frame, enabling the calculation of the cultivator’s deviation from the
correct sowing position, typically within a few tens of centimeters. This
information is crucial for the final mechanical positioning system.
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Several constraints are assumed for the measurement system’s de-
velopment, including knowledge of the coarsely defined inter-row dis-
tance, fixed camera installation geometry, parallel movement of the
camera with the tractor, and distinguishable color of the crop from
the soil. Additionally, the proposed system is designed to provide
a confidence estimation, allowing the control system to weigh the
misalignment measure differently, particularly in critical areas.

The proposed study is focused on maize and soybean plants (Egli,
2023). These crops were considered to be properly representative in
terms of cultivated area (they are respectively the most widespread ce-
real and oilseed crops), inter-row spacing (normally 0.75 and 0.45 m),
plant density (7–10 plants/m2 and 40–50 plants/m2 respectively) and
lso size and shape of the plant during the first cultivation phases. Ad-
itionally spacing and density pose relevant issues in the management
f weeds (Singh et al., 2020).

Real-world scenarios may include areas with crossing lines from the
owing phase or sections where the sowing pattern is unrecognizable.
n these situations, the confidence index is expected to provide a
ow value, allowing the control system to temporarily deactivate the
ovement system.

The following sections present similar works found in the literature,
ighlighting how the vision problem can be divided into two phases:
lant identification and measurement of deviation from the sowing
eference.

.1. Color segmentation - Related works

Having assumed the use of a single monocular camera, neither a
irect mapping of the depths nor an estimate of it is possible since, by
ypothesis, the displacement occurs longitudinally to the framed plane.
aving hypothesized that the plants have a known color different

rom the soil, their identification therefore passes through a color
egmentation.

Typically the background is brown–gray and in most cases the
lants to be recognized are green, a color similar however to weeds.
ome crops, on the other hand, have a red–purple color.

An intuitive approach is to use a color space different from the
cquisition RGB, a space on which a rule can be easily defined to
ilter the image. For example, it is possible to use the HSV space, as
roposed in (Li et al., 2009), or the Lab space, as proposed in Correa
t al. (2011) and Aden Darge (2019), to select only the pixels with the
esired hue: for both proposed color spaces, the chromatic variation
ue to the different lighting of the scene it affects a different channel
rom those used to segment according to color, making these solutions
ore robust to lights and shadows.

As already discussed in several works, some color conversions are
f interest for this purpose to convert an RGB image into gray levels in
hich the subjects to be identified are emphasized. The useful methods
sed to recognize the green on the soil are: ‘2G-R-B’ (Søgaard and
lsen, 2003), an integer combination pixel by pixel of the values of the

hree RGB channels, ‘Excess Green’ (ExG = 2g-r-b) (Woebbecke et al.,
994), where the color coordinates r,g,b are identified for each pixel
y normalization (so r+g+b = 1), and ‘Modify ExG’ (MExG = 1.262g-
.884r-0.311b) (Burgos-Artizzu et al., 2011), where the values of the
hromatic coordinates are weighted according to coefficients identified
y a genetic algorithm optimization on a dataset. Also in this case
he ExG and MExG methods, which normalize the brightness pixel by
ixel, are more robust to the different lighting conditions of the scene.
nother identified approach consists in using a near infrared bandpass

ilter after camera lens (Tillett et al., 2002) thus emphasizing the
ontrast between the plant and the soil, regardless of their colors, using
simply monochrome camera. Similarly, multispectral input systems

an be evaluated.
The segmentation of the image in the HSV and Lab color spaces

an be obtained simply by applying one or more thresholds to the

olor values, which can be defined a prior if the lighting conditions

2 
are controlled and know. The other proposed approaches, on the other
hand, produce a grayscale image where the texture to be recognized
is emphasized but need to identify optimal threshold values for their
segmentation. In Zong et al. (2020) propose a study on maize plants
in which they compare six most common segmentation algorithms,
identifying the most accurate and fastest the minimum cross entropy (Li
and Lee, 1993) and Otsu (Otsu, 1979) algorithms. Among the works
analyzed, the Otsu method is the most used for identifying the optimal
segmentation threshold since it is assumed that to distinguish two well
separated color classes (the soil and the vegetation).

In Burgos-Artizzu et al. (2011) propose a computationally simple
method for calculating the threshold with respect to the Otsu algorithm,
that is, they calculate the average intensity of an image converted with
the MExG method to threshold it. In Montalvo et al. (2012) instead
propose a double segmentation, each applying the Otsu method: with
the first threshold of the ExG image, the soil is separated from all that
is green; with this result the ExG image is masked and re-segmented in
order to separate the shades of green to distinguish the crop from the
weeds.

The work (Li et al., 2020) compares different segmentation algo-
rithms evaluating them in terms of recognition accuracy on different
crops and different lighting conditions. The results show that the seg-
mentation method based on the Lab color space allows obtaining, on
average, good results on all the cases analyzed.

Finally, image processing techniques such as filtering or morpho-
logical operators are often proposed to refine the boundary obtained
from the segmentation. Further proposals to improve the recognition of
rows with respect to weeds can be found in Burgos-Artizzu et al. (2011)
where they propose a temporal logic product of the last ten segmented
frames.

1.2. Seeding pattern estimation — related works

Having obtained a binary image represented the crop rows, the
search for the seeding pattern to estimate the misalignment of the
cultivator was addressed in different methods with 2D camera. Many
identified works aim to look for the dominated lines of the binary
image, that is, the lines that define each crop row.

The popular tool for this purpose is the Hough transform (Fisher
et al., 2003): before its calculation, the edge of the binary image must
be extracted. In Correa et al. (2011) identifying the edge detection
algorithm that maximizes the accuracy of the lines identified with the
Hough transform, suggesting to use the Roberts (Roberts, 0000) algo-
rithm. The work (Nicholls and Green, 2017) instead proposes a method
of filtering the different lines identified with the transformation, consid-
ering only those with an almost vertical direction and joining similar
lines. To reduce the computational load of the transform (Ji and Qi,
2011) propose the use of its variant, the Random Hough transform,
observing a temporal speed up and more accuracy with sparse plants.
In Winterhalter et al. (2018), instead, propose a variant of the trans-
form, the Pattern Hough transform, based on the recognition of the set
of equidistant parallel lines: note the parallel spacing to be searched
for, the proposed algorithm allows to identify angle and lateral offset
of the identified plot. A last variant identified is in the work of Ericson
and Åstrand (2010) where they use an omnidirectional camera (camera
with fisheye or catadioptric lens) and identify the rows in the space of
the Hough transform calculated in spherical coordinates.

Another approach for the search of the dominant lines passes from
the analysis of the vertical histograms of the binary image. In García-
Santillán et al. (2018), Jiang et al. (2015) and Romeo et al. (2012)
the binary image is divided into horizontal bands on which are com-
puted the vertical histograms and finally are analyzed for identify the
position of the peaks: the set of points identified represent the center
of gravity of the rows in each horizontal band. From these centers of
gravity (García-Santillán et al., 2018; Jiang et al., 2015) look for the

equation of the lines representing the lines by regression while Romeo



L. De Bortoli et al. Computers and Electronics in Agriculture 227 (2024) 109509 
et al. (2012) calculates for each lower barycenter all the possible lines
connected with the upper barycentres to select only the one that mostly
cover the green area.

Okamoto et al. (2001) instead proposes a preliminary perspective
correction of the acquired image from which, once binarized according
to color, it is split into horizontal bands, find the peaks of crop rows and
calculate by regression the dominant lines from which estimate rotation
and offset of the captured sowing pattern.

Always analyzing the vertical histograms of the division into hor-
izontal bands of the binary image (Vidović et al., 2016; Søgaard and
Olsen, 2003) they also take into consideration the geometry of the
system, calculating in advance the expected position of the seeding
pattern to better identify the deviation. Søgaard and Olsen (2003)
breaks the vertical histograms according to the sowing period and
sum the various pieces of histograms in order to obtain the average
histogram of the period: on this signal it searches for the position of
the maximum to identify the deviation of the rows with respect to
the calculation reference. Vidović et al. (2016) instead creates periodic
signals at three levels, for each horizontal band, representing the ideal
trend of the crop rows according to the perspective in which they
are taken: each signal is correlated with the corresponding vertical
histogram in order to identify the best horizontal shift.

A last variant identified for search the seeding pattern deviation is
in the works (Hague and Tillett, 2001; Tillett et al., 2002) where they
propose the use of a bandpass filter derived from the period of the
seeding geometry: they divide the image into horizontal bands, filter
the histogram of each band by setting the center band corresponding
to the seeding period in perspective and finally find the displacement
by look for the maximum of the filtered signal.

Eventually the digital reconstruction of plant rows, or utilizing
a few representative rows, has become prevalent in recent studies,
including those published in Computers and Electronics in Agriculture.
This method is favored for its flexibility and ability to simulate different
field conditions and complexities, especially during training phases Ban
et al. (2024), Zhang et al. (2022) and de Silva et al. (2024).

2. Materials and methods

As explained in the introduction, together with the measurement
of the deviation of the seeding pattern we want a confidence in-
dex capable of discriminating the capture of anomalous field. In the
identified works this information is often overlooked. For example,
with the proposals based on the identification of dominant lines, a
confidence index could be evaluate by analyzing how many lines were
detected along certain directions. With the methods that calculate
vertical histograms, instead, it is possible define a confidence index
by analyzing the histograms: they are a periodic functions with max-
ima and minima defined by the presence or absence of vegetation
respectively; both from the analysis of the period of this function and
from the variance between maximums and minimums it is possible to
numerically estimate the framing of an ideal or less sowing pattern. In
particular, the histogram already represents a vertical average of the
framed vegetation therefore weeds and missing plants, if with limited
extension, bring a low interference to the signal representative of the
crop rows: it is possible to hypothesize a maximum modulation of the
histogram for ideal sowing patterns to go down to minimum or zero
values of modulations in the case of capture of strongly degraded or
absent patterns.

Furthermore, in the reported works, except (Ericson and Åstrand,
2010) that it used a heavily distorted lens, the possibility of operating
on distorted images due to the use of wide-angle lenses is not taken into
consideration; works that analyze the image in horizontal bands they
discard the most distorted ones at the base. A wide angle lens can be
useful to limit the installation height of the camera, and therefore the
vibrations induced on it, either to frame more than a couple of crop
rows or to capture crops with high spacing. In these cases, making
3 
a single vertical histogram of the image leads to misalignments of
the data which would require a geometric correction of the captured
frame, that is a time consuming operation. On the other hand, if the
calculation of the vertical histograms is performed on several bands,
the error is minimized even if a function with some alteration of the
period is obtained: in this case, however, the computation complexity
is greater than the analysis of a single histogram because the period
analysis operations are performed several times.

In order to develop a system for measure the deviation of seeding
pattern together with a confidence index, that works in real time, with
the aim of minimizing the calculations to be repeated for each image
and taking into account the hypothesized working constrains (fixed and
defined camera, known sowing geometry) we proposes an alternative
method to those identified in the literature based on template matching:
pre-calculate the ideal sowing pattern, taking into account the volume
of plants, the perspective and the distortion of the camera lens, in
order to identify its displacement in the video stream. In the realistic
hypothesis of shooting and running parallel to the crop rows, the search
for the position of the reference pattern occurs in a single dimension,
i.e. across the rows; operating with a one-dimensional correlation thus
greatly limiting the computation. With this method, the measurement
is expected to be feasible even if only partially capturing two rows
of plants up to the limit of taking a single row. Furthermore, it is
possible to optimize the calculation of the correlation index using
binary operators as it operates on two binary images, the acquired
frame segmented according to color and a reference frame that can be
defined with only two levels. The proposed algorithm will be detailed
below.

To validate the proposal, two algorithms are compared in terms of
measurement precision of the deviation: a literature algorithm based
on the vertical histogram has been taken as a reference, some of its
variants have been proposed in order to improve the measurement
accuracy. The analyzed proposals are summarized below, which we will
explain in the following paragraphs.

1. Reference: algorithm that calculates deviation of the crop
rows on 10 horizontal bands, analyzing 10 vertical histograms,
as described in Søgaard and Olsen (2003). To homogenize the
results we obtained a single displacement value, calculated as
the average of the estimated deviation on the 10 bands. The
algorithm has been rated on a dataset of test images:

(a) note the barrel deformation introduced by the optics
(b) the same images with digitally lens distortion correc-

tion

2. Proposed variant: apply a perspective correction to the images
so that the rows are displayed parallel, then calculate the
displacement as described in Søgaard and Olsen (2003) but on
a single vertical histogram: in this way the information of the
whole image is averaged in the histogram before calculating
the phase. The algorithm has been rated on a dataset of test
images:

(a) note the barrel deformation introduced by the optics
(b) the same images with digitally lens distortion correc-

tion

3. Proposed algorithm based on pattern matching. In this case it
is not necessary to estimate the loss of precision due to lens
distortion as it is already taken into account in the reference
template. The algorithm has been rated on a dataset of test
images:

(a) note the barrel deformation introduced by the optics
(b) limiting the analysis to only 10 or 20 equidistant lines

of the test images
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A deep learning approach was not chosen for the algorithm as it
would require a large amount of data on which to train a model: as we
will highlight later, creating a significantly large and varied dataset is
not trivial.

2.1. Color segmentation adopted

For practical reasons, we have opted for a segmentation based on
color (not just green crops), in order to recognize a greater variety
of crops. Furthermore, compared to systems that seek a segmentation
threshold based on the dual color distribution, we believe the solution
of identifying the hue to be more robust for the confidence index in the
presence of anomalous images: if a completely covered with plants or
totally absent is taken coherent binary images are obtained (all detected
or nothing) which maintain the desired sense of the confidence index,
pushing it to low values.

Following the result of Li et al. (2020) that show the segmentation
method based on the Lab color space allows obtaining, on average,
good results over different crops and different lighting conditions,
the strategy is considered convenient. In Lab color space ‘L’ channel
represents the brightness, ‘a’ channel determines the green–magenta
ratio while ‘b’ channel the yellow–blue ratio. Following Duarte-Correa
et al. (2023) a portion of the area of interest in the image is selected
on which the average value of channel ‘a’ and ‘b’ is calculated (target
tint): the segmentation of the ROI takes place by selecting the pixels
of the image which have values in the plane ‘a,b’ in a neighborhood
of the target tint. For this purpose, the Euclidean distance between the
points in the ‘a,b’ plane can be used to identify the neighborhood.

The evaluation of the segmentation method was empirical based
on the comparison between the acquired images in the field (with
different raspberry cameras (https://www.raspberrypi.com/products/),
camera module v1, v2, v3, HqCam) and the area obtained with the
segmentation. For a quantitative evaluation it is necessary to create,
manually for a large dataset of collected images, the reference ground
truth of the area covered by the plants. The experimental qualitative
test has been verified that using a small distance threshold for ‘a’
channel allows to better discriminate plants from weeds while a greater
distance threshold for ‘b’ channel allows to identify image areas with
different light temperatures from the medium gray defined by AWB,
i.e. identify in the same image ROI both in shady areas than sunny: in
this way the set of points similar to the target tint in the ‘ab’ plane are
contained in an ellipse instead of a circle. The method allows different
degrees of freedom, to be analyzed experimentally as a function of the
hardware and the crop.

Fig. 1 shows two examples of real images acquired in the field,
partially shaded, which show the segmentation results discussed, su-
perimposed in green.

2.2. Lens distortions

A lens, especially with wide-angle, introduces distortions to the
acquired image. The phenomenon can be sufficiently described with
radial distortion with respect to the distance from the center of the
lens, using the first terms of the series expansion as a function. It
is therefore possible to apply a computer vision algorithm (https://d
ocs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_
calibration.html, https://docs.wand-py.org/en/0.6.7/guide/distortion.
html#barrel) at the captured video stream to correct its geometry,
increasing the computational load. For specific needs there are also
hardware solutions, i.e. manufacturers of lenses suitably designed and
worked to reduce distortions.

In the algorithms that we are going to described and analyze below,
the methods based on the histograms used the theoretical period of
the seeding spacing calculated as a function of the installation geom-
etry of the camera: if the distortion introduced by the lens becomes
significant the histogram loses its periodicity, introducing error in the
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determination of the phase information as the algorithm is based on
the assumption of analyzing a periodic signal with a known frequency.
With the proposed algorithm based on template matching instead it is
possible to precalculate the template with distortion: in this way the
computational load on the video stream is not increase by a geometric
transformation of the video stream and the measurement precision
remains almost unchanged.

In the tests that we are going to propose, we will evaluate the mea-
surement error with and without optical distortion correction assuming
the use of a C-mount 6 mm lens with a FOV of 45◦ × 60◦.

2.3. Analyzed algorithms

Considering having processed a binary image representative of the
ROI of the video stream, below we describe and compare some methods
of calculating the displacement of the camera with respect to the crop
rows.

The methods are based on the assumptions described in the intro-
duction, in particular: the sowing geometries are known, the camera
installation geometry is fixed and defined, the camera moves parallel
to the crop rows. In these hypotheses it is possible to calculate a priori
the 2D perspective representation of the capture field, maintaining as
the only degree of freedom the transverse displacement of the camera in
the field, a value to be measured to implement the automatic inter-rows
guidance.

2.3.1. Algorithm based on multiple vertical histograms
The first algorithm follows the work (Søgaard and Olsen, 2003).

The image to be analyzed is divided into 10 horizontal bands, for
each one the vertical histogram is calculated, i.e. the pixels values are
added by columns (Fig. 2). Then each band is divided into its estimated
sowing period in pixel, adding these last portions together we obtain
the histogram representing the average period of the band. Finally
taking as reference the maximum of the histogram, which corresponds
to the thickening of the vegetation, the phase is calculated with respect
to the period in order to estimate the position of the center row.

In the proposed work we introduce two variants: the first one we
calculate the average phase from the phases of each band, from which
we estimate the displacement. Second, we introduce a confidence
index of the pattern, obtained as the difference of the maximum and
minimum value of the average histogram normalized according to the
maximum theoretical value of histogram (Eq. (1)); as for the phase, the
overall index is the average of the indexes on the different bands. This
index is normalized between 0 and 1, tends to one if it identifies an
ideal sowing pattern (without weeds, camera parallel to the rows) and
tends to 0 for patterns that are not representative of a row crop (it is
not possible to distinguish the rows or with wrong direction).

𝐶𝑜𝑛𝑓 .𝐼𝑛𝑑𝑒𝑥𝑖 =
𝑚𝑎𝑥(𝑀𝑒𝑎𝑛𝐻𝑖𝑠𝑡𝑖) − 𝑚𝑖𝑛(𝑀𝑒𝑎𝑛𝐻𝑖𝑠𝑡𝑖)
𝑦𝑃 𝑖𝑥𝑒𝑙𝐶𝑜𝑢𝑛𝑡𝐻𝑖𝑠𝑡𝑖 ∗ 𝑚𝑎𝑥𝐷𝑎𝑡𝑎𝑉 𝑎𝑙𝑢𝑒

(1)

2.3.2. Algorithm based on single vertical histogram
Following the idea of Okamoto et al. (2001) a prospective transfor-

mation was applied to the acquired image in order to obtain the ground
representation of the field; eliminating the perspective effect the rows
appear parallel (first row of Fig. 3).

After that, following what was done with the previous algorithm, a
single vertical histogram was computed and on it (second row of Fig. 3)
and the phase and the confidence index were calculated.

In this case, since all lines of the transformed image have the
same metric on the ground, it is possible to make a single average
of the histogram and calculate the phase over a single period. In this
way, from a computational point of view, only one phase search is
performed.

In Fig. 3 we wanted to report the vertical histogram of the image
without applying the perspective transformation (bottom left) to high-
light a typical disturbed signal lacking information; a similar signal is
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Fig. 1. Example of a field with soybean (a) and maize (c); highlighted in green over image their respective segmentations by Lab color space in (b) and (c).

Fig. 2. Example of Søgaard and Olsen (2003) on a maize field. The binarized image is divided into 10 horizontal bands (a) and the vertical histogram is calculated for each (b);
Considering previous knowledge of the period (expressed in pixels) for each band, the algorithm averages the histogram data over the presumed periods (c) to calculate the phase
shift for each band.
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Fig. 3. Example of a maize field data: segmented image with respective vertical histogram (in blue) and average histogram on the knowing period (in red). (a) captured image,
(b) image with only perspective transform, (c) image with both perspective transform and optical distortion correction.
obtained whenever the sowing pattern is strongly degraded or capture
does not parallel with the crop rows. The next two histograms show
how, with an appropriate perspective transformation, a signal with
useful information emerges, with well-defined peaks in correspondence
of the crops rows: if the correction of optical distortion is also applied
(below right) the histogram improves, becoming less scattered.

2.3.3. Algorithm based on pattern matching
The algorithm that we are going to propose, as anticipated, is based

on the creation of a template known the geometry of sowing and of
the camera through which to estimate the deviation of the crop rows
respect to a reference. It is required that the following are known
in advance: height and angle of inclination respect to the ground of
the camera, vertical and horizontal FOV of the optics, coefficients of
distortion of the lens; for the crop, the sowing pitch of the rows,
the average height and width of the plants. For the specific weeding
application to which the project is addressed, these data are certainly
known a priori and are invariant during work; the same data are
also necessary for the calculation of the theoretical period in the two
previous algorithms. With these information, by means of trigonometric
calculations and scaling the metric quantities in pixels, it is possible to
identify the row centers on the ground and their perspective vanishing
point, that is centered in width as the rows are travel lengthwise. With
the dimensional information of the plant, as a function of their state
of growth, the volume occupied around the sowing line is estimated,
again using a perspective representation. With these data the reference
image – the template – is created (Fig. 4); finally it is distorted radially
to simulate the artifact of the lens. Obviously, similarly to what happens
with the previous algorithms in which the period to be searched is
defined, the template refers to the ideal case with a camera that capture
crop rows aligned to the vertical and perfectly straight. Slight rotations
or curvatures of the rows are tolerated and will lower the maximum
correlation value and confidence index.

The estimation of the displacement between camera and field takes
place by searching for the displacement of the template that maximizes
the correlation with the video stream. Since the field is travel parallel
to the rows, the movement of the cultivator can only perpendicular to
the crop rows: the search for the seeding template takes place only
in one dimension of the image, along the 𝑥 axis. Since moving the
shot changes the position at the base of the rows while the vanishing
point remains unchanged, it is necessary to generate a template for
each movement and not simply move it spatially in the 1-D convolution
operation. For these reasons, a set of templates is created beforehand
for a certain number of movements. Having fixed a reference configu-
ration, for example in which the rows assume vertical symmetry i.e. the
6 
camera is centered in the inter-row space, templates can be generated
for displacements of one centimeter up to displacements of 20 cm,
an area in which maximum precision is desired, to switch to milder
movements to cover greater distances, up to covering the periodicity of
the crop rows. For this algorithm, the confidence index was calculated
as the ratio between the difference and the sum of the maximum and
minimum correlation value over the shifts (Eq. (2)), always to obtain an
index in the 0–1 range with values tending to one for well recognizable
fields.

𝐶𝑜𝑛𝑓 .𝐼𝑛𝑑𝑒𝑥 =
𝑚𝑎𝑥(𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) − 𝑚𝑖𝑛(𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛)
𝑚𝑎𝑥(𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) + 𝑚𝑖𝑛(𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛)

(2)

2.3.4. Proposed simplification
Having to work with a binary input image as it is segmented by

color, it is advisable to create templates with binary values and define
the multiplicative part of convolution with binary operator in order to
speed up the calculation, especially if on dedicated hardware. Using
the boolean algebra, the multiplicative part of correlation operation
corresponds to an XNOR. Since several templates have already been
calculated at the same resolution as the image to be analyzed, the
XNOR operation is performed pixel by pixel between each template and
the image; the similarity score (the correlation value) for each template
is obtained by counting how many pixels have XNOR to one (Fig. 5)
that is, with an addition operation. So the in-phase template will
have the maximum correlation index while it will be minimal for the
quadrature template. Obviously, using the primitive boolean operator
XOR the phase estimate passes from the search for the minimum of the
XOR sums.

To limit the number of operations, which tend to increase using a
wide number of templates to have better measurement resolution, it
is proposed to limit the analysis to a few tens of equally spaced lines
of the image, since the vertical information is redundant (Fig. 6). This
expedient leads to a lesser loss of measurement precision if a median
filtering followed by a dilatation is applied to the captured image before
to be processed by lines so as to preserve, in the few lines analyzed,
information on the surrounding discarded pixels (Fig. 7); obviously,
still with a view to reducing the computational load, filtering can be
limited only around the lines that will be analyzed.

The Fig. 8 shows a flowchart of the proposed algorithm with the
simplifications described. The algorithm is applied to each frame ac-
quired by the camera so its execution time must be less than the frame
rate of the video stream. The mechanical movement control system of
the weeder will receive data at the frame rate cadence: it will have to
interpret the confidence value in order to block the movement or move
the weeder elements according to the deviation measurement received.
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Fig. 4. Binary image to be analyzed (in black and white) with the created reference template superimposed in yellow. (a) the crop rows are in phase with the chosen template,
(b) the crop rows are out of phase with the chosen template (reference template shifted by 180◦ i.e. by half a row-space).
Fig. 5. (a) example of a maize field with a reference mask superimposed in yellow; the crop rows was located slightly to right respect the reference. (b) graph of the normalized
sums of the XNOR calculated for different displacements of the template; using the XNOR operator, the estimated displacement corresponds to the maximum sum value: the peak
of the graph is shifted to the right like the crop rows.
Fig. 6. Binary image to be analyzed (in black and white) with the created reference template superimposed in yellow. (a) computing only 20 lines of image 5, (b) analyzing only
10 lines.
Fig. 7. Graph of the normalized sums of the XNOR calculated for different displacements of the template. (a) computing on the whole image, (b) analyzing only 20 lines of image,
(c) analyzing only 10 lines.
Fig. 8. Flowchart of the proposed algorithm.
2.4. Dataset

In order to compare and validate the vision algorithms considered
and proposed, it is necessary to have a dataset of images:

• which allows to numerically analyze and compare different
algorithms referring to the same data;
7 
• which allows to tune an algorithm under development;
• that has significant variance to obtain a measurement statistic.

For this purpose a shared dataset of images of a crop rows fields
with similar characteristics to the cultivator problem under study was
not found.
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Fig. 9. Example of plant templates used to generate the dataset.
One possibility is to create it through field acquisitions with con-
trolled movement of a camera. This strategy, however, brings some
problems:

• it is difficult to automatically generate the corresponding
ground truth;

• it is difficult to find or create a sown field with certain char-
acteristics, such as a certain predetermined number of missing
plants;

• the positioning errors of the camera respect to the field will
enter in the validation measurement chain;

• in the validation measurement chain also enter the capture
system’s artifact errors i.e. the sensor color profile, rolling
shutter artifacts, white balance, lens distortion.

The last point can be corrected with image pre-processing, tech-
niques closely related to the vision system used. Furthermore, culti-
vating a field to create a dataset presents practical difficulties related
above all to seasonality and crop development times.

To achieve uniformity in the comparison of vision algorithms and
to be able to explore specific aspects, it was therefore decided to
create a dataset of synthetic images with the desired characteristics.
A digital twin of a sown field was then created, allowing its param-
eterization during generation. This two-dimensional dataset is a valid
representation of the video stream that the algorithms will process.

In particular, an algorithm capable of generating synthetic images
with a certain degree of diversity was written by parameterizing some
geometric characteristics of the problem. The parameters of the camera
are defined such as FoV, height and angle from the ground, while
for the field are defined the row, inter-row spacing and height of the
plants, percentage of missing and double plants, having first generated
a certain number of synthetic plants for each variety (Fig. 9 shows
some examples, obtained by manually segmenting BW photos with
GIMP); finally the algorithm is capable of generating images at different
displacements of the camera with respect to the inter-row center. All
algorithms developed and analyzed for this work were written by the
authors in Python, using the Numpy and OpenCV libraries.

Similarly to what was done to create the sowing template, the grid
on the ground of the base of the plants is calculated trigonometrically
to then place images of plants (about thirty different images, with
slight random rotation, random axial flip, color alteration and dither
respect theoretical position) suitably scaled in perspective height. The
digital twin created is a two-dimensional dataset (image), a valid
representation of the video stream, captured with a camera subjected
to precise constraints, on which the algorithms operate.

Two datasets were created one with maize plants on a brown soil,

about 50 cm tall sown at 20 cm with a row spacing of 75 cm, and one

8 
with soybean plants, about 30 cm tall sown at 4 cm with a 45 cm row
spacing. Realistically, we plan to use a camera 1.1 m high from the
ground inclined towards the horizon of 45◦, with FOV 45◦ × 60◦.

These datasets were generated with displacements of up to ±60%
of the row spacing at 1 cm steps, 50 images are generated for each
displacement by varying: the positioning of the plants, adding a noise
of ±5◦ of the vanishing point, adding interrow weeds randomly (with
color similar to plants so as to disturb the segmentation), randomly
removing some plants and adding partial shading or light flare to the
image. For both crops, combinations were generated by varying the
cover of weeds (in terms of 5%, 20%, 40%, 60%, see Figs. 10, 11)
and the number of missing plants (in the order of 5%, 40%, 60%, see
Fig. 12).

In the examples shown in the preceding figures, the greens of
plants and weeds are diversified for clarity. To analyze the different
algorithms, the datasets were segmented according to color, in order
to obtain a binary image: to maintain the sense of the different tests,
i.e. verify the robustness of the algorithms as weeds grow, the seg-
mentation was conducted by greatly expanding the colors to recognize,
accepting almost all green pixels.

Fig. 13 intended to show the similarity of the digital model com-
pared to some photos taken in the field with the same settings, thus
visually validating its representativeness.

2.5. Measures

The images of the dataset have been segmented according to the
described Lab method, using a wide color threshold so that all weeds
appear together with the plants in the binary images: the aim is to eval-
uate the sensitivity of the algorithms to different levels of disturbance.
Similarly, simulating missing plants on lightly infested land serves to
evaluate the robustness of the algorithms in critical situations. For a
more realistic simulation it was preferred to generate a color dataset
with the various noises explained and segmented it rather than use
ideal binary image.

A first evaluation of the algorithms was conducted by applying
them to the entire datasets: the 50 images were used to calculate the
mean and variance of the measure for each shifts. The graph of these
values shows the linearity and measurement dispersion of the methods,
highlighting when the method begins to be affected by the periodicity
of crop rows.

Since limited displacements around the reference are of interest for
automatic guidance, the subsequent characterization measurements of
the algorithms were carried out for displacements within ±30% of the
row spacing, i.e. approximately within ±20 cm around the row plants.

For this type of measurement, the 50 images per displacement were
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Fig. 10. Example of soybean dataset with different levels of weed coverage.

Fig. 11. Example of maize dataset with different levels of weed coverage.

Fig. 12. Example of maize dataset with different levels of dead plants.
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Fig. 13. Examples of maize and soybean field compared with their digital twin.

used to obtain the statistical data of variance; to define the precision of
the system, double the average value of standard deviations over the
analyzed displacement interval is considered, therefore corresponding
to the dispersion of 95% of the measurements. For comparison we do
not consider interest the, limited, mean value as it represents the offset
of the measurement system. For these tests, in addition to the precision
value, the value of the index 𝑟2 (Devore, 2011) is reported, representing
the linearity of the measurement.

This last test was conducted on the two datasets, maize and soy-
beans. The two algorithms based on the vertical histograms were
evaluated on the dataset images both without and with optical distor-
tion in order to evaluate how much degrades the measurement accuracy
when saving the computational load of correcting the distortion. For
the proposed algorithm, based on template matching, the precision is
evaluated in the case of processing the full image or only 20 or 10 of its
lines; as mentioned, since the template is already predistorted, it makes
no sense to evaluate the effect of optical distortion. Finally, the result
of the proposed algorithm will be shown on real images captured in the
field, in order to highlight the consistency of the numerical validation
carried out on the synthetic dataset.

3. Results and discussion

The results proposed below were obtained by processing images
at a resolution of 240 × 320 pixels. This resolution was chosen be-
cause it offers a good compromise between measurement accuracy and
computational load.

3.1. Measurement feature

The results of the first type of tests, where the response of algo-
rithms are evaluated for a wide range of displacements, are reported in
Figs. 14, 15, 16. For this test, the database generated with the lowest
number of weeds and missing plants was used, in order to globally
evaluate a non-borderline case. For the algorithms based on the analysis
of vertical histograms, the figures on the left show the response over
the shifts using images without lens distortions while on the right the
response of algorithms if distorted images are used.

Instead, for the proposed algorithm based on template matching, the
response are reported if the whole image is processed (on left), only 20
equidistant lines (in center) or only 10 lines (on right).

This test highlight the linear response of the different algorithms
for an extended range of displacements from the reference; only at
the limits of the range considered, correctly, the measurement error
increases due to the periodicity of the sowing pattern. Furthermore
these test highlight, for the algorithms based on histograms, how the
use of an image corrected by optical distortion improves the measure-
ment limiting their dispersion while, for the template matching method,
the measurement does not suffer great dispersion in precision when
analyzing only a limited set of lines of the image.
10 
3.2. Accuracy

The results of the second type of test, in which the measurement
accuracy is evaluated for limited movements around the central row,
are reported in the Tables 1, 2, 3, 4 in terms of measurement precision,
considering double the average value of standard deviations, and mea-
surement linearity, using the index 𝑟2. For better overall readability,
the data are displayed graphically in the Figs. 17–24.

These tests want to highlight the measurement accuracy for move-
ments around the target position; if the deviation is high, as the tests in
the previous section have shown, the systems are still able to provide
a correction value for the position, albeit with less precision.

In particular these tests highlight two borderline cases that can be
encountered in the real problem of driving cultivator, both of which
make it difficult to recognize the sowing pattern and therefore make
an incorrect estimate of its displacement: an increase in weeds or an
excess of missing plants.

The results show, for both crops and for both field anomalies, a
trend consistent with expectations, i.e that the correction of the optical
distortion leads to a more accurate measurement while limiting the
pattern matching analysis to a few lines degrades the accuracy.

It is interesting to highlight how working on images with optical
distortion weighs heavily on the analysis method with multiple ver-
tical histograms, since the phase information obtained in the more
peripheral bands is strongly wrong: as the reference paper suggests,
the maximum accuracy is obtained in the central band, where the
optical distortion is less. By first correcting the perspective instead and
calculating a single histogram there are two advantages: the distortions
at the high edges are eliminated in the affine transformation, the
distortions that remain have little weight in the single vertical average.

The proposed pattern matching method shows greater measurement
precision in all tests, with acceptable values even in highly borderline
cases. Even in the case of limiting the analysis to only 10 of the 240
lines of the images, precision indexes are comparable to the methods
taken as a reference. It has been estimated that filtering the segmented
images with a median filter (in the order of 7 × 7 pixel on 320 × 240
pixel image size) does not improve the reported indices except for the
method based on pattern matching when the analysis is limited to a
few rows, in which case the use of the filter improves the precision by
up to 5 mm: this is due to the effect of the median filter, which also
carries information from the surrounding lines which are omitted in the
calculation.

On the other hand, if the resolution of the image is increased from
240 × 320 to 480 × 640 or 600 × 800 pixel, there are no significant
increases in the two precision indexes considered, so we do not believe
that increase the computational load.

3.3. Confidence index

The results shown in the Tables 5, 6, 7, 8 refer to the same
type of test as in the previous section: they complete the analysis of
the proposed measurement algorithms, highlighting when they are no
longer able to reliably recognize the seeding pattern. For better overall
readability, the data are displayed graphically in the Figs. 25–28.

The aim is to identify a unique threshold for the confidence index
such as to switch off the position control system when the deviation
measurement loses its meaning.

Similarly to precision, the confidence index also decreases as the
non-ideal nature of the analyzed image increases. In particular, for
methods based on vertical histograms there is a rapid drop in the
confidence index together with an increase in the measurement error,
making it difficult to find a threshold value that also includes cases with
disturbances.

For the proposed method based on pattern matching, on the other
hand, against a drop of tens of percentage points in the confidence
index, proving that the sowing pattern captured is irregular, it is still
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Fig. 14. Algorithm based on multiple vertical histograms: response over a wide range of displacements. Blue stars: scatter measures; red bars: std over 50 images. Test using: (a)
images without correction of lens distortions, (b) corrected images.
Fig. 15. Algorithm based on a single vertical histogram: response over a wide range of displacements. Blue stars: scatter measures; red bars: std over 50 images. Test using: (a)
images without correction of lens distortions on left, (b) corrected images on right.
Fig. 16. Algorithm based on pattern matching: response over a wide range of displacements. Blue stars: scatter measures; red bars: std over 50 images. (a) process all lines of
image on left, (b) only 20 lines in middle, (c) only 10 lines in right.
Table 1
Comparison of accuracy on maize dataset by varying the level of weeds.
Algorithm Variant 5% weed 20% weed 40% weed 60% weed

precis. 𝑟2 precis. 𝑟2 precis. 𝑟2 precis. 𝑟2

Hists With Dist. 57 mm 0.94873 57 mm 0.94440 68 mm 0.91358 74 mm 0.87669
Hists No Dist. 32 mm 0.98337 35 mm 0.98062 45 mm 0.96834 53 mm 0.95465

Hist With Dist. 22 mm 0.99277 28 mm 0.98796 40 mm 0.97599 56 mm 0.95586
Hist No Dist. 20 mm 0.99365 26 mm 0.98941 35 mm 0.98051 49 mm 0.96411

Pattern All Lines 18 mm 0.99370 20 mm 0.99187 25 mm 0.98776 30 mm 0.98308
Pattern 20 Lines 19 mm 0.99260 23 mm 0.98960 28 mm 0.98482 38 mm 0.97505
Pattern 10 Lines 26 mm 0.98637 30 mm 0.98181 40 mm 0.96936 50 mm 0.95404
Table 2
Comparison of accuracy on maize dataset by varying the level of missing plants.
Algorithm Variant 5% missing 40% missing 60% missing

precis. 𝑟2 precis. 𝑟2 precis. 𝑟2

Hists With Dist. 57 mm 0.94444 89 mm 0.86888 112 mm 0.76167
Hists No Dist. 35 mm 0.98062 55 mm 0.95192 77 mm 0.89855

Hist With Dist. 28 mm 0.98796 43 mm 0.97230 70 mm 0.93146
Hist No Dist. 26 mm 0.98941 33 mm 0.98307 50 mm 0.96774

Pattern All Lines 20 mm 0.99187 27 mm 0.98470 39 mm 0.96795
Pattern 20 Lines 23 mm 0.98960 31 mm 0.98142 41 mm 0.96615
Pattern 10 Lines 30 mm 0.98181 41 mm 0.96597 56 mm 0.93459
11 
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Table 3
Comparison of accuracy on soybean dataset by varying the level of weeds.
Algorithm Variant 5% weed 20% weed 40% weed 60% weed

precis. 𝑟2 precis. 𝑟2 precis. 𝑟2 precis. 𝑟2

Hists With Dist. 94 mm 0.87739 92 mm 0.95203 83 mm 0.82214 92 mm 0.82077
Hists No Dist. 15 mm 0.99095 22 mm 0.98014 27 mm 0.96887 38 mm 0.93465

Hist With Dist. 17 mm 0.98889 17 mm 0.98862 19 mm 0.98626 27 mm 0.97411
Hist No Dist. 16 mm 0.99132 17 mm 0.98956 18 mm 0.98778 22 mm 0.98123

Pattern All Lines 9 mm 0.99640 10 mm 0.99548 12 mm 0.99304 20 mm 0.98445
Pattern 20 Lines 11 mm 0.99489 12 mm 0.99363 15 mm 0.99113 22 mm 0.98017
Pattern 10 Lines 13 mm 0.99233 17 mm 0.98808 23 mm 0.97901 35 mm 0.95429
Fig. 17. Comparison of accuracy, in term of average precision, on maize dataset by
varying the level of weeds.

Fig. 18. Comparison of accuracy, using the 𝑟2 index, on maize dataset by varying the
level of weeds.

Fig. 19. Comparison of accuracy, in term of average precision, on maize dataset by
varying the level of missing plants.

possible to maintain good precision on the deviation measurement.
Also for this index, limiting the analysis to a few lines of the image
maintains the original information content. From the proposed tests,
the new method is therefore more robust in simulated borderline cases.
12 
Fig. 20. Comparison of accuracy, using the 𝑟2 index, on maize dataset by varying the
level of missing plants.

Fig. 21. Comparison of accuracy, in term of average precision, on soybean dataset by
varying the level of weeds.

Fig. 22. Comparison of accuracy, using the 𝑟2 index, on soybean dataset by varying
the level of weeds.

3.4. Time analysis

The proposed comparative tests were analyzed on a PC with i5-
4440 4 × 3.10 GHz processor, described in Python language using



L. De Bortoli et al. Computers and Electronics in Agriculture 227 (2024) 109509 
Fig. 23. Comparison of accuracy, in term of average precision, on soybean dataset by
varying the level of missing plants.

Fig. 24. Comparison of accuracy, using the 𝑟2 index, on soybean dataset by varying
the level of missing plants.

Fig. 25. Comparison of the average confidence index on maize dataset by varying the
level of weeds.

Fig. 26. Comparison of the average confidence index on maize dataset by varying the
level of missing plant.
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Table 4
Comparison of accuracy on soybean dataset by varying the level of missing plants.

Algorithm Variant 5% missing 40% missing 60% missing

precis. 𝑟2 precis. 𝑟2 precis. 𝑟2

Hists With Dist. 92 mm 0.95203 92 mm 0.82214 92 mm 0.66026
Hists No Dist. 22 mm 0.98014 27 mm 0.96887 38 mm 0.93465

Hist With Dist. 17 mm 0.98862 19 mm 0.98626 27 mm 0.97411
Hist No Dist. 17 mm 0.98956 18 mm 0.98778 22 mm 0.98132

Pattern All Lines 10 mm 0.99548 13 mm 0.99304 20 mm 0.98445
Pattern 20 Lines 12 mm 0.99363 15 mm 0.99113 22 mm 0.98017
Pattern 10 Lines 17 mm 0.98808 23 mm 0.97901 35 mm 0.95429

Table 5
Comparison of the average confidence index on maize dataset by varying the level of
weeds.

Algorithm Variant 5% weed 20% weed 40% weed 60% weed

Hists With Dist. 0.6955 0.7666 0.7914 0.6837
Hists No Dist. 0.8486 0.8800 0.8438 0.6983

Hist With Dist. 0.8811 0.8003 0.5996 0.4009
Hist No Dist. 0.9267 0.8320 0.6145 0.4114

Pattern All Lines 0.6897 0.5830 0.4061 0.2490
Pattern 20 Lines 0.6897 0.5832 0.4095 0.2541
Pattern 10 Lines 0.6818 0.5814 0.4154 0.2678

Table 6
Comparison of the average confidence index on maize dataset by varying the level of
missing plant.

Algorithm Variant 5% missing 40% missing 60% missing

Hists With Dist. 0.7666 0.6920 0.6190
Hists No Dist. 0.8800 0.7618 0.6590

Hist With Dist. 0.8003 0.6192 0.4778
Hist No Dist. 0.8320 0.6451 0.4986

Pattern All Lines 0.5830 0.4480 0.3376
Pattern 20 Lines 0.5832 0.4518 0.3433
Pattern 10 Lines 0.5814 0.4541 0.3486

Table 7
Comparison of the average confidence index on soybean dataset by varying the level
of weeds.

Algorithm Variant 5% weed 20% weed 40% weed 60% weed

Hists With Dist. 0.5481 0.5530 0.5236 0.4619
Hists No Dist. 0.5974 0.5958 0.5406 0.4605

Hist With Dist. 0.8976 0.7393 0.5065 0.3016
Hist No Dist. 0.9581 0.8021 0.5571 0.3342

Pattern All Lines 0.6892 0.6101 0.4555 0.2494
Pattern 20 Lines 0.6742 0.5978 0.4488 0.2506
Pattern 10 Lines 0.6613 0.5859 0.4404 0.2499

Fig. 27. Comparison of the average confidence index on soybean dataset by varying
the level of weeds.
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Table 8
Comparison of the average confidence index on soybean dataset by varying the level
of missing plant.

Algorithm Variant 5% missing 40% missing 60% missing

Hists With Dist. 0.7666 0.6920 0.6190
Hists No Dist. 0.8800 0.7618 0.6590

Hist With Dist. 0.8003 0.6192 0.4778
Hist No Dist. 0.8320 0.6451 0.4986

Pattern All Lines 0.5830 0.4480 0.3376
Pattern 20 Lines 0.5832 0.4518 0.3433
Pattern 10 Lines 0.5814 0.4541 0.3486

Fig. 28. Comparison of the average confidence index on soybean dataset by varying
the level of missing plant.

Fig. 29. Comparison of the average execution time per frame of the algorithms at
different resolutions of the input image.

OpenCV and Numpy library. Table 9 shows the average execution
times per frame of the described algorithms, time including color
segmentation and displacement estimation; the data is displayed graph-
ically in the figures the data is displayed graphically in Figs. 29 and
30. Together with the simulation execution time the table shows the
estimates computational complexity for each image, in terms of floating
point operations per frame (FLOPF), to give a hardware independent
comparison.

The times measured in the simulations, however, do not follow
the ratios indicated by the FLOPF estimates: this is due to the code
optimizations with which the used libraries have been developed for
the specific hardware architecture.

A good saving of time is observed in analyzing a single vertical
histogram instead of analyzing several bands of the image, highlighting,
on a microprocessor system, how the perspective transformation weight
much less time consuming than calculating the phase several times on
the different bands. Even the optical distortion correction weighs little
in the overall time, allowing an increase in measure precision.

The pattern matching method, on the other hand, is very time-
consuming if applied to the entire image; however, the various tests
proposed show how limiting the pattern analysis to only 20 lines of
the image leads to a considerable speedup of the code, both in terms
of time and computation, decreasing the measurement precision by
only a few mm. In conclusion, the proposed algorithm allows to obtain
14 
Fig. 30. Comparison of FLOP per frame of the algorithms at different resolutions of
the input image.

greater precision than the two methods compared with execution times
comparable to the fastest algorithm. Surely if the pattern matching
algorithm were implemented on dedicated hardware, the possibility of
performing XOR at the bit level would lead to a further speedup.

Versions of the 20-line pattern matching algorithm and the single
vertical histogram algorithm were tested on a Raspberry PI4 SBC
(Single Board Computer) with a CSI RaspyCam, showing real-time
capability up to 15 fps on a 240 × 320 pixel video stream.

3.5. Proposed algorithm

A qualitative validation of the presented algorithm is proposed by
applying it to real images captured in the field, using a camera setup
identical to the parameterization used to generate the digital dataset.
For this analysis, videos were saved and subsequently processed on
the PC in order to evaluate the tuning of the free parameters such as
the color segmentation threshold, resolution and lines to be analyzed.
Fig. 31 shows some significant frames of these videos taken in the field,
highlighting on the side the position identified for the sowing pattern
and the confidence index.

The examples (a–d) demonstrate accurate row identification: the
overlay of the pattern chosen by the algorithm shows its validity in
estimating the displacement of the crop rows respect to the camera
with good tolerance to weeds and gaps. Furthermore, in these cases the
algorithm calculates a high confidence index which reflects the quality
of the sowing.

Conversely, in example (e) the rows are rotated while in example
(f) the sowing is crossed: in these anomalous use cases the algorithm
always estimates a deviation of the pattern, since it is related to the
maximum correlation value, but calculates a low confidence index,
suggesting that these measurements should be rejected. A low confi-
dence index in these cases indicates that the tractor is moving in a
direction unsuitable for effective cultivation, potentially compromising
the accuracy of soil tilling: the controller of the weeding element’s
movement must therefore take into account both measures of the
algorithm.

Under particular conditions such as crossing rows or anomalous
shadowing patterns, the confidence index exhibits a clear reduction.
Such behavior can be usefully integrated in field operations, producing
a feedback for the farmer, whose attention might be recalled in the case
of field conditions characterized by a loss of orientation of crop rows.

The compromise to be found is to identify the shortest execution
time while maintaining resolution in the measurement. Having a high
frame rate allows higher tractor speeds as it guarantees capturing
images without blur and minimizing the space on the ground between
successive measurements, thus providing better and continuous data to
the position controller.
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Table 9
Comparison of the average execution time and FLOP per frame of the algorithms at different resolutions of the input image.
Algorithm Variant 240 × 320 pixel 480 × 640 pixel 600 × 800 pixel

Time FLOP Time FLOP Time FLOP

Hists With Dist. 9.25 ms 802 k 17.7 ms 2.83 M 21.6 ms 4.30 M
Hists No Dist. 9.51 ms 1.34 M 17.7 ms 4.98 M 21.6 ms 7.66 M

Hist With Dist. 1.66 ms 772 k 5.71 ms 3.08 M 8.45 ms 4.80 M
Hist No Dist. 1.76 ms 1.31 M 5.82 ms 5.23 M 8.56 ms 8.16 M

Pattern All Lines 26.4 ms 19.1 M 152 ms 76.5 M 197 ms 120 M
Pattern 20 Lines 2.80 ms 289 k 5.31 ms 1.16 M 6.45 ms 1.81 M
Pattern 10 Lines 1.62 ms 112 k 3.02 ms 449 k 3.78 ms 702 k
Fig. 31. Pattern matching algorithm applied to real images: matching rows and
confidence index.

3.6. Next developments

The proposed results refer to a dataset of static images, on which
indices have been evaluated statistically. The position control system
will be an electromechanical real-time system operating on the video
stream of a camera.
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There is an opportunity to also exploit inter-frame or time informa-
tion.

By averaging a certain number of frames, preferably after having
segmented them, it is possible to obtain a blurred image in which
the persistent structures are highlighted: in this way it is possible to
emphasize the crop rows to the detriment of the weeds, which typically
assume irregular positions. However, the time length of the average
poses two limits: it introduces a delay in the measurement and must be
less than the time of the fastest movement to be detected.

The deviation measurements and confidence index are processed at
regular time intervals, following the frame rate of the camera. It may
be necessary to filter these values in order to eliminate out-of-range
measurements, which can be achieved with a low-coefficient IIR filter.

The analysis of the benefits of these proposals is postponed to
a subsequent work in which the dynamic behavior of the proposed
algorithm is evaluated.

The presented study focused on the image measurement system.
An integral part of the scope is the electromechanical control system
that will be used, which introduces delays and vibrations related to the
mechanical characteristics of the drive.

Both to validate the overall system and to measure the improvement
achievable by varying the parameters of the algorithm or by exploring
the previous proposal, it is advisable to design an automatic system for
collecting field measurements.

A basic solution involves measuring the movement of the cultivator
frame to compare it with the measurements of the vision system, high-
lighting delays and errors in the control ring. This solution, however,
suffers from not having a common absolute reference; in fact two
relative measurements are compared, one referring to the theoretical
center row for the vision system, and one referring to the frame for the
cultivator, which is affected by the tractor-field position.

For a complete analysis it is advisable to find a system that measures
the position of the cultivator in relation to the plants, but with a
technology different from the vision system, for example using in-
strumentation based on ToF or Lidar sensors, choosing systems with
measurement error well below the image method under consideration.

4. Conclusion

The proposed work considers some vision algorithms for an optical
guide in crops rows, analyzing in terms of accuracy some of their
variants and simplifications.

A first common aspect regards the detection of plants in the image it
is highlighted, experimentally, the opportunity to threshold the image
in the Lab color space in order to identify a tint of interest: selectively
for the green-red color ratio, which identifies the cultivation to be
detected, and wider for the blue–yellow color ratio, which takes into
account the different color temperatures in the image.

With regard to the vision algorithms, it should be noted that the
proposal to correct the image prospectively and analyze a single ver-
tical histogram instead of multiple bands improves the measurement
resolution, especially when the seeding pattern becomes disturbed by
infestations or missing plants, together with a speed up of the code.
The results also show that working on an image affected by optical
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distortion introduces a smaller measurement error by analyzing a single
histogram with adjusted perspective since the distortions at the edges
are partly eliminated from the histogram, precisely by the perspective
correction, and partly mediated; conversely, analyzing the histograms
of several bands, the peripheral bands contribute with error to the final
displacement estimate. However, both algorithms show an increase in
the measurement uncertainty as weeds or missing plants grow, arriving
in the simulated cases at uncertainties over 40 mm, values that are too
relevant for the weeding application.

The proposed algorithm based on pattern matching, on the other
hand, is not affected by optical distortion measurements error, or
does not need its correction, since the pattern can be distorted in
an appropriate way. It shows greater accuracy than histogram-based
methods, with measurement precision in the order of 25–30 mm even
in the presence of many weeds or missing plants; also 𝑟2 index shows
greater measurement accuracy. On the tested processor system it is
slower than the histogram methods but it has been shown, even without
apply to dedicated hardware for calculating the correlation, that is
possible to reduce the computational load by analyzing only a few lines
of the image while maintaining an adequate measurement resolution,
in any case within 30 mm for simulated normal use cases.
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