
α-MON: Traffic Anonymizer for Passive Monitoring
Thomas Favale , Martino Trevisan , Idilio Drago , and Marco Mellia , Fellow, IEEE

Abstract—Packet measurements at scale are essential for
several applications, such as cyber-security, accounting and trou-
bleshooting. They, however, threaten users’ privacy by exposing
sensitive information. Anonymization has been the answer to
this challenge, i.e., replacing sensitive information with obfus-
cated copies. Anonymization of packet traces, however, comes
with some challenges and drawbacks. First, it reduces the value
of data. Second, it requires to consider diverse protocols because
information may leak from many non-encrypted fields. Third,
it must be performed at high speeds directly at the monitor,
to prevent private data from leaking, calling for real-time solu-
tions. We present α-MON, a flexible tool for privacy-preserving
packet monitoring. It replicates input packet streams to dif-
ferent consumers while anonymizing protocol fields according
to flexible policies that cover all protocol layers. Beside clas-
sic anonymization mechanisms such as IP address obfuscation,
α-MON supports z-anonymization, a novel solution to obfus-
cate rare values that can be uniquely traced back to limited
sets of users. Differently from classic anonymization approaches,
z-anonymity works on a streaming fashion, with zero delay,
operating at high-speed links on a packet-by-packet basis. We
quantify the impact of z-anonymity on traffic measurements, find-
ing that it introduces minimal error when it comes to finding
heavy-hitter services. We evaluate α-MON performance using
packet traces collected from an ISP network and show that it
achieves a sustainable rate of 40 Gbit/s on a Commercial Off-
the Shelf server. α-MON is available to the community as an
open-source project.

Index Terms—Anonymization, passive measurements, traffic
monitoring, privacy.

I. INTRODUCTION

PASSIVE measurements collected from networks are fun-
damental to the well-functioning of the Internet. They

are widely used to support applications such as cyber-security
and traffic management [1], [2]. Packets flowing on network
links are either saved as full-packet traces or processed on-the-
fly to generate traffic summaries. Network packets, however,
carry sensitive information about users. For example, HTTP,
TLS and DNS traffic exposes names of services contacted

Manuscript received October 30, 2020; revised February 3, 2021; accepted
February 4, 2021. Date of publication February 9, 2021; date of current version
June 10, 2021. The research leading to these results has been funded by the
Huawei R&D Center (France), the EU Project PIMCity (Grant N. 871370)
and the SmartData@PoliTO center for Big Data technologies. The associate
editor coordinating the review of this article and approving it for publication
was J. Zhang. (Corresponding author: Martino Trevisan.)

Thomas Favale, Martino Trevisan, and Marco Mellia are with
the Department of Electronics and Telecommunications Engineering,
Politecnico di Torino, 10129 Torino, Italy (e-mail: thomas.favale@polito.it;
martino.trevisan@polito.it; marco.mellia@polito.it).

Idilio Drago is with the Dipartimento di Informatica, University of Turin,
10124 Turin, Italy (e-mail: idilio.drago@unito.it).

Digital Object Identifier 10.1109/TNSM.2021.3057927

by users, which in turn can be used to build users’ pro-
files [3], [4]. Network measurements thus may expose privacy-
sensitive information and shall be performed with care to
avoid threatening users’ privacy [5]. New privacy regulations
(e.g., GDPR [6]) aim at protecting users’ privacy by imposing
strict rules when handling sensitive information. They provide
the interested parties rights and assign powers to the regula-
tors to enforce these rights. Network measurements must be
treated in the light of these regulations, and technology must
guarantee that sensitive information is not collected unless
needed.

The solution to these problems has been anonymiza-
tion – i.e., replacing sensitive values by obfuscated copies.
Anonymization is usually done in a per-field fashion, since
different network protocol fields represent different privacy
threats. Client IP addresses are identifiers, i.e., they allow
one to identify the users (devices) generating traffic imme-
diately. As such, they must always be obfuscated. The clas-
sic approach is CryptoPAN [7], a method that replaces IP
addresses with pseudo-encrypted copies while maintaining the
network prefixes. Other protocol fields, while not carrying
identifiers, still pose risks as they may help user reidentifica-
tion, thus acting as quasi-identifiers. Server IP addresses and
server names (e.g., in HTTP or TLS) can be quasi-identifiers.
They give hints about users’ interests and, in some cases,
allow user reidentification. Quasi-identifiers, therefore, shall
be obfuscated too.

Replacing all identifiers and quasi-identifiers in traffic
measurements with obfuscated copies reduces the value of
the traces substantially. Taking again server names as an
example, popular names (e.g., www.facebook.com or
www.google.com) bring little information to uncover any
specific user. Yet, associating traffic to particular servers is
instrumental, e.g., for network management, accounting and
dimensioning.

Anonymization techniques like k-anonymity [8] can han-
dle quasi-identifiers – i.e., obfuscating values that allow
user re-identification. However, these approaches work with
batches of data and are impractical with high-dimensional
datasets, like, e.g., the set of websites users access. In our
scenario, packets arrive at very high speeds and must be pro-
cessed and forwarded online with minimum delay. Storing
traces for posterior offline anonymization is not a viable
option.

Here we present α-MON, a flexible and modular tool to
anonymize network packets in a streaming fashion, with zero
delay. α-MON acts as an anonymization device. It receives
packets from the network, anonymizes them in real-time, and
immediately outputs packets to multiple consumers – e.g.,
security monitors or passive meters.

1

https://orcid.org/0000-0002-7140-5940
https://orcid.org/0000-0002-4258-4679
https://orcid.org/0000-0003-1932-1261
https://orcid.org/0000-0003-1859-6693

1234 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

α-MON follows a novel approach to anonymize packets on-
the-fly. To this end, we introduce z-anonymity, a mechanism
to hide infrequent field values (like unpopular server names)
from the traffic. When observing a value in a data stream,
z-anonymization removes it if less than z users share the value
in the past ΔT time interval. Performing z-anonymity online
requires ingenuity, and α-MON implements a scalable and
parallel solution for this. We show that z-anonymity introduces
minimal errors on volumetric traffic measurements, such as
the estimation of traffic share of popular Web services and
websites.

We evaluate α-MON performance on Common-Off-The-
Shelf (COTS) hardware with traces collected from operational
networks. We show that: (i) α-MON helps to protect sensitive
data via z-anonymity, preventing the disclosure of field val-
ues associated with fewer than z users; (ii) α-MON allows
most information that would be obfuscated by strict per-
field anonymization to be exported, thus generating richer
traces than alternatives; (iii) α-MON scales to tens of Gbit/s
with zero packet loss using few cores. In pessimistic sce-
narios, it easily achieves several Gbit/s too; (iv) α-MON
introduces minimal errors on common measurement scenar-
ios, e.g., allowing accurate accounting of the heavy-hitters’
traffic. Finally, α-MON is publicly available as an open-source
project.1

This article extends our previous work [9]2 on several direc-
tions. We implement additional functionalities to enable more
flexible anonymization and enhance the experimental evalua-
tion to study system parameters’ impact: we have extended
the implementation of z-anonymity to support generic proto-
col fields and many performance improvements, which will be
discussed later. Moreover, we include a thorough analysis of
the impact of z-anonymity on the typical traffic measurement
accuracy. The reader can find in [10] an in-depth comparison
between k-anonymity and z-anonymity. Using a probabilistic
framework, we show that a proper choice of the z-anonymity
parameters allows the data curator to obtain a k-anonymized
dataset with reasonable certainty.

This article is organized as follows. Section II defines
z-anonymity, while Section III describes α-MON architecture,
design and implementation. Section IV quantifies the impact
of z-anonymity on traffic measurements. Section V bench-
marks α-MON performance and shows how to tune system
parameters. Section VI discusses the z-anonymity and α-MON
approach and limitations. Section VII summarizes the related
work, and, finally, Section VIII concludes this article.

II. z-ANONYMITY

The drastic increase in the rate at which personal data
are collected has pushed researchers to propose techniques to
anonymize data. The goal of anonymization is to avoid dis-
closing personal information without compromising the utility

1https://smartdata.polito.it/alpha-mon-anonymized-passive-traffic-
monitoring/

2We decided to maintain the name α-MON since we consider α as a generic
way to address anonymization. In z-anonymity, we decide to switch to z since it
is only one of the possible anonymization technique implemented in α-MON,
and that name could have been misleading.

of datasets. The seminal work of Samarati and Sweeney pro-
poses the k-anonymity property [8], [11]. It aims at preventing
the reidentification of individuals or the extraction of sensitive
information about them by ensuring that at least k individuals
share the same properties in the dataset. k-anonymity has been
extended with the l-diversity [12] and t-closeness [13] ideas,
which we will discuss in Section VI.

k-anonymity however does not scale [14] and cannot be
implemented with minimal delay. With α-MON we want to
achieve some level of anonymity already during data col-
lection, by hiding the most sensitive information observed
in network measurements. This goal calls for highly scal-
able and zero-delay solutions. We lie in a scenario where
anonymization must be performed in real-time and must
scale up to multi-Gbit/s streams. Streaming approaches for
anonymity [15], [16] load the incoming records in a structure
and release anonymized data in batches, which is impracti-
cal with high-speed network traffic, given the large speeds
of the input streams. In sum, we cannot assume to have the
whole dataset, or a large subset of the data, at disposal for
anonymization.

A. z-Anonymity Definitions

Here, we propose a novel concept of anonymity. We call it
z-anonymity. It targets real-time, online processing, with mini-
mum latency. In the following, we provide a formal definition.
We assume that users are identified by an identifier. The most
common identifier in network traces are client IP addresses.3

Quasi-identifiers are attributes whose values must be con-
trolled, as they may help to re-identify users. In our case,
quasi-identifiers are fields present in protocol headers and pay-
load that may be associated with a small group of users.
Examples include specific server IP addresses and server
names present in payloads (e.g., in DNS) and user-agent
strings (e.g., in HTTP requests). For instance, an attacker could
leverage a user’s interest in a particular website to re-identify
her and, in turn, all her traffic. z-anonymity aims at obfus-
cating rare values of quasi-identifiers in real-time, preventing
these privacy attacks. We introduce the definition of z-private
quasi-identifier.

Definition 1: A z-private quasi-identifier is a value observed
at time t that is associated with less than z users in the past
ΔT time interval.

If the anonymized dataset hides z-private quasi-identifiers,
it achieves z-anonymity.

Definition 2: A stream of packets is z-anonymized if all
z-private quasi-identifiers are obfuscated, given z and ΔT.

In other words, if a quasi-identifier has been observed by at
most z-1 users in ΔT, we obfuscate it. By adjusting parameters
z and ΔT, it is possible to regulate the trade-off between data
utility and privacy. Indeed, a large z results in the majority of
values to be anonymized, while a small z allows rare values
to be exposed. ΔT regulates the memory of the system.

We exemplify the idea of z-anonymity in Figure 1. Here
the quasi-identifiers are the Fully Qualified Domain Names
(FQDNs) found in packet payloads, which refer to websites

3z-anonymity can handle any protocol field as an identifier.

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on September 01,2022 at 11:33:23 UTC from IEEE Xplore. Restrictions apply.

2

FAVALE et al.: α-MON: TRAFFIC ANONYMIZER FOR PASSIVE MONITORING 1235

Fig. 1. z-anonymity concept. Three users access the FQDN private.com
over time. When less than z = 3 unique users’ are seen in the past ΔT,
requests must be anonymized.

Fig. 2. Deployment scenario: α-MON anonymizes the traffic coming from
a span port or an optical splitter and forwards it to different legacy monitors.

and Web services. Suppose different users access the FQDN
private.com. Let z = 3. The first four accesses shall be
obfuscated as only two users accessed it up to then. When we
observe User3’s request, we have 3 users that have accessed
private.com in the past ΔT. Thus, we allow User3’s
request to pass without anonymization. Notice that exposing
private.com does not uncover User3, as attackers cannot
know who the other two users are. After some time, User2
accesses the domain again. The previous entry for User1 is
no longer in the current ΔT window, and private.com is
anonymized again.

Clearly, in the above example, popular websites and services
would be accessed by several users, and their names would
not be anonymized. Rare FQDNs that could bring spe-
cific information about users would likely be anonymized.
In Section IV, we provide a thorough analysis of how
z-anonymity impacts the accuracy of traffic measurements.

III. α-MON DESIGN

We now describe α-MON, covering requirements, design
choices, and implementation, with a special focus on the data
structures used to achieve z-anonymity at high-speeds.

A. Deployment Scenario and Requirements

Figure 2 shows the deployment scenario. α-MON oper-
ates as a classic network monitor, receiving packets from one

or multiple network cards, either using span ports or opti-
cal splitters. To allow legacy applications to coexist, α-MON
is deployed in front of them and forward anonymized pack-
ets to multiple consumers. Compatible with best-practices for
privacy, α-MON performs different anonymization according
to the consumer, thus passing on the minimal information
required by each legacy application. For example, a security
monitor may need traffic with little modification, while a pas-
sive meter used for traffic accounting can operate with less
information.

α-MON must be flexible and support a rich set of function-
alities. It shall satisfy the following requirements:

1) It must achieve z-anonymity to hide private quasi-
identifiers with customizable z and ΔT;

2) It must support a flexible set of anonymization policies,
covering all protocol layers;

3) It must be scalable and deployable in high-speed links,
handling multiple tens of Gbit/s with no packet loss;

4) It must support multiple legacy applications with differ-
ent anonymization requirements.

B. Packet Ingestion and Forwarding Design

α-MON runs on a COTS server and receives packets from
several network interfaces. For efficiency, we implement it
in C language. For packet capture, we rely on the Data
Plane Development Kit (DPDK) [17], a set of libraries and
drivers for fast packet processing. α-MON follows a multi-
threaded design and can take advantage of all cores available
in a server. We use the architecture proposed in our previous
work [18], in which the incoming packets are load-balanced
to different threads – one per CPU core – using the Receive
Side Scaling (RSS) feature of modern network cards. Each
network interface implements load-balancing algorithms so
that incoming packets are spread to multiple queues based on
hash functions. This mechanism allows fast and scalable load
balancing in hardware and avoids wasting CPU resources.

Some of the α-MON anonymization capabilities require
stateful per-flow processing and mandate data structures to
keep track of TCP and UDP flow status.4 To avoid expensive
synchronizations, network interfaces load-balance packets in a
consistent per-flow fashion. In other words, packets belonging
to the same flow are always processed by the same thread. We
reach this goal by instrumenting the network interface with a
specific RSS hash seed [19].

Each thread receives a fraction of the overall traffic.
According to custom-defined configurations, packets are repli-
cated, their payloads anonymized, and, finally, forwarded to
output interface(s) connected to the legacy monitors. To avoid
concurrent access to network interfaces, α-MON sets up a
transmitting queue dedicated to each thread on each network
interface, again using the DPDK functionalities. Traditional
techniques for increasing system robustness to failures can be
applied to α-MON. For example, it can be run in multiple
machines for increasing reliability, as soon as traffic is steered
accordingly (i.e., consistently sending packets of a flow to
the same α-MON instance). In case of very critical setups, it

4We define a flow by the usual 5-tuple.

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on September 01,2022 at 11:33:23 UTC from IEEE Xplore. Restrictions apply.

3

1236 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

would be possible to replicate two identical α-MON deploy-
ments by using multiple span ports or optical splitters.

C. Anonymization Modules

We design α-MON to be modular and flexible. As such,
the anonymization functions build a processing pipeline. This
approach eases the configuration of anonymization policies
and allows new modules to be integrated into the system with
little effort. α-MON supports multiple configurations, which
differ, e.g., for encryption keys and anonymization pipeline.
α-MON takes care of making copies of packets and performs
the desired steps on each pipeline before forwarding pack-
ets to a consumer. This design allows deployments in which
different consumers require different anonymization policies,
e.g., security monitors receive original packets, while passive
monitors receive fully-anonymized packets.

Currently, α-MON implements the following modules to
search and anonymize identifiers and quasi-identifiers con-
tained in the traffic.

Layers 5-7: The key novelty of α-MON resides in the
mechanisms for handling quasi-identifiers in application-layer
protocols. α-MON implements a classification engine based
on Deep Packet Inspection to identify popular protocols. In
its current implementation, α-MON supports quasi-identifiers
contained in TLS, DNS, and HTTP protocols. In particu-
lar, α-MON can apply z-anonymity on the found FQDNs,
which are deleted from packets in case they are not z-private.
α-MON can also apply z-anonymity on second-level domains
– i.e., the FQDNs truncated after the top-level domain.5 In
this modality, α-MON releases the FQDN if not z-private. In
case it is z-private, it checks if the second-level domain is
not, and, in case, α-MON truncates the FQDN to the second-
level domain. Similarly, any field of protocol headers could be
subjected to z-anonymity, with customized z and ΔT parame-
ters. Alternatively, the fields can be obfuscated by default (i.e.,
treated as an identifier).

Layer 4: α-MON keeps a table to track TCP and UDP flows,
allowing per-flow anonymization policies. Tracking flows is
fundamental for consistent layer 5-7 anonymization. α-MON
currently does not modify L4-headers, but one could easily
implement a mechanism for obfuscating potentially sensitive
L4 information (e.g., rarely used TCP options).

Layer 3: α-MON considers client IP addresses as identifiers
and anonymize them using the CryptoPAN algorithm [7], [20].
CryptoPAN encryption keys can be static or randomly rotated
at fixed time intervals. α-MON allows the administrator to
restrict the addresses that undergo anonymization to specific
subnets, e.g., targeting only IP addresses of clients in the
administered network. It supports IPv4 and IPv6. IP addresses
that are not identifiers (e.g., server IP addresses) can be treated
as quasi-identifiers and undergo z-anonymity.

Layer 2: α-MON supports the removal of MAC addresses.
Alternatively, as routers generally modify MAC addresses
once they forward the packets, α-MON can store a times-
tamp in place of the MAC headers. This mechanism allows

5For example private.example.com becomes example.com.

Fig. 3. Data structure used to handle quasi-identifiers.

consumers to get timestamps of the moment packets entered
α-MON, thus increasing the precision.

Finally, α-MON implements a default policy to completely
drop the payload of specific/unknown protocols at any layer
– e.g., forwarding only anonymized L3 or L4 headers to
consumers while removing L5-7 payloads.

D. z-Anonymity Implementation and Data Structures

We now describe the data structures used to implement traf-
fic anonymization at tens of Gbit/s. To reach high speeds, it
is necessary to carefully design suitable data structures that
avoid expensive global synchronizations. We focus on the most
challenging data structures.

α-MON includes a dedicated module for z-anonymity.
When processing a packet from a user identified by ID and
containing the quasi-identifier QuasiID, α-MON must decide
whether to keep QuasiID or hide it. The decision is based on
the counter Cnt(QuasiID) of users sharing the QuasiID in the
time window ΔT.

To keep track of these counters, we rely on the specif-
ically designed data structure depicted by Figure 3. As
z-anonymity must globally count the number of users shar-
ing each QuasiID, the data structure must be shared between
all threads. Therefore, α-MON needs to handle concurrent
accesses, which is a potentially expensive operation. Its core
is composed of a shared hash table Hash(QuasiID), in which
each bucket is protected by a Mutex lock to handle con-
current accesses. A list handles hash collisions, organized
as a Least Recently Used (LRU) structure for efficiency –
QuasiID-LRU in the figure. Each entry in the LRU contains
the information related to a quasi-identifier value (QuasiID).
Beside metadata, it contains a second LRU, the ID-LRU list,
that stores the ordered set of users sharing the QuasiID, along
with the timestamp of respective last occurrence. This ID-
LRU is instrumental for purging those IDs whose occurrences
happened more than ΔT time ago.

The metadata for QuasiID contains pointers to both head
and tail of the ID-LRU (illustrated by orange arrows), the old-
est timestamp at which QuasiID has been observed and the
counter of unique IDs currently active. A second inner hash
table guarantees O(1) access to ID-LRU elements (illustrated
by blue arrows) using the ID as key in Hash(ID).

When a α-MON thread has to decide whether to anonymize
or not the quasi-identifier value QuasiID, it first accesses the

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on September 01,2022 at 11:33:23 UTC from IEEE Xplore. Restrictions apply.

4

FAVALE et al.: α-MON: TRAFFIC ANONYMIZER FOR PASSIVE MONITORING 1237

Fig. 4. Fraction of traffic obfuscated by z-anonymity with different values of z and ΔT. z-anonymized field: FQDN.

hash table Hash(Quasi-ID). If QuasiID is empty, the cor-
responding entry is created; otherwise, α-MON looks for
QuasiID through the collision list. Once found (or newly cre-
ated), α-MON updates the QuasiID-LRU of the collision list,
moving the current item to the top. Next, it updates the cor-
responding metadata for the QuasiID. Specifically, α-MON
checks if the user ID is already listed among those that share
QuasiID in the past ΔT window. If such ID is present, its
timestamp is updated to the current time. If not, the new ID is
added to the ID-LRU, and the counter Cnt(QuasiID) of users
sharing QuasiID is increased. α-MON also goes through the
ID–LRU and deletes IDs older than ΔT. The Cnt(QuasiID) is
decreased consequently.

At last, α-MON decides whether to anonymize QuasiID
based on the counter of the number of active users. If it is
smaller than z, α-MON replaces the quasi-identifier value with
random bytes.

Note that we need to purge from the data structure those
entries older than ΔT. When accessing a Hash(QuasiID)
bucket, α-MON expurges the expired entries in the QuasiID-
LRU with a controllable probability P. This scheme limits
extensive cleaning operations at each access. When cleaning
QuasiID-LRU, α-MON controls the ID–LRU for IDs older
than ΔT. Again, the Cnt(QuasiID) is decreased consequently.
If the counter indicates that the current QuasiID is no longer
in use, α-MON deletes it altogether.

Note that α-MON can perform most operations in O(1) for
each packet, thanks to the two hash tables used to access quasi-
identifier values and per-identifier counters. This design allows
high processing speeds as we will show in Section V-B.

E. Auxiliary Data Structures

α-MON implements an efficient structure to support per-
flow management. This structure is instrumental for applying
consistent anonymization decisions based on flow state – e.g.,
removing the payload of specific protocols (e.g., HTTP) or
parsing application layer protocols whose fields are split across
multiple packets. The data structure for active flows follows
the same ideas used by the authors of [21]. It builds on a
hash-based data structure that provides O(1) accesses to the
per-flow metadata.

Given the current packet, the dedicated module performs
a search in the flow table to verify the action performed

previously: if the first packet of the flow has been subject to
anonymization, the current one follows the same procedure. In
the case of a new stream, α-MON creates the appropriate flow
entry and checks how to anonymize the packet. The module
includes a lazy garbage collection system for expired flows,
similar to the one used in the z-anonymity module.

Finally, α-MON implements caching to speed up the
anonymization of IDs, e.g., maintaining a per-thread cache
of the anonymized IP addresses computed by CryptoPAN. In
Section V, we show that this design allows α-MON to scale
to several Gbit/s of traffic.

IV. THE IMPACT OF Z-ANONYMITY ON TRAFFIC

MEASUREMENTS

We now quantify to what extent the traffic anonymized
with the z-anonymity is useful to provide accurate network
measurements. We aim to understand how common traffic
analyses are affected when run behind an α-MON deploy-
ment. To this end, we perform a case study in which users
(identified by client IP addresses) contact several hosts char-
acterized by FQDNs (and second-level domains), which are
considered quasi-identifiers.

We use a traffic trace collected on an operational network
including more than 8 000 users who generate several mil-
lions of packets per second of traffic. The trace is three-days
long, during which the users contacted 135 k (45 k) FQDNs
(second-level domains). The FQDNs are present in TLS,
DNS, and HTTP headers. We apply z-anonymity directly on
FQDNs or on the corresponding second-level domains. Client
IP addresses are used as identifiers. For these analyses, we
implement an offline version of z-anonymity to process the
traces, obtain statistics and show how these statistics vary with
different parameters.

A. Anonymized Volumes

We first analyze the fraction of traffic that z-anonymity
would obfuscate when considering different values for z and
ΔT. We show results in Figure 4 for the case of z-anonymity
on FQDNs and in Figure 5 for second-level domains. First,
consider the fraction of FQDNs that z-anonymity would obfus-
cate in Figure 4(a). We notice that z = 2 already causes ≈
75% of the FQDNs to be obfuscated. When z = 10, the frac-
tion increases to 90%. ΔT has a small overall impact. Similar

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on September 01,2022 at 11:33:23 UTC from IEEE Xplore. Restrictions apply.

5

1238 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

Fig. 5. Fraction of traffic obfuscated by z-anonymity with different values of z and ΔT. z-anonymized field: Second-level domain.

considerations hold for the case of second-level domains
[Figure 5(a)]. Here, on the one hand, the coarser data granu-
larity makes it more likely for a domain to pass z-anonymity.
However, we find a smaller number of quasi-identifiers (45 k
instead of 135 k), which balances the picture, allowing a
similar share of domains to pass z-anonymity.

Different is the picture if we consider the number of flows
[Figure 4(b)] and the byte-wise volume [Figure 4(c)] carried
by flows for which the FQDN gets obfuscated. With z = 2,
z-anonymity obfuscates the FQDN in only 10% of the flows,
which account for ≈ 25% of the traffic volume. Most of the
obfuscated FQDNs are used by CDNs and include digits or
random strings in the sub-domains. Taking instead the second-
level domains as quasi-identifiers reduces the percentage of
obfuscated bytes to negligible numbers for z = 2. This is
caused by the nature of Internet traffic, where the majority
of flows are directed towards a limited set of services [22].

The impact of a large ΔT is more pronounced for high
values of z, allowing a larger number of flows to avoid obfus-
cation. For example, if we set z = 100, a Δ T = 30min results
in 60% of obfuscated flows; this fraction decreases to 52 (46)%
if we set ΔT = 1h (2h). If we consider second-level domains
(Figure 5(b) and Figure 5(c)), we observe a similar picture.
Considering the byte-wise volume, notice how the fraction
of obfuscated traffic decreases, mainly due to the aggregation
of CDN nodes and randomly generated domains to a single
quasi-identifier.

In a nutshell, popular domains that carry little sensitive
information are responsible for the majority of traffic. Letting
their names in clear poses little threats for privacy, while still
being very important for increasing visibility of network mon-
itors. z-anonymity obfuscates the vast majority of FQDNs or
second-level names that carry little traffic while allowing the
popular names to be monitored.

B. Impact of z-Anonymity on Traffic Accounting

As a use case on accounting, we study how z-anonymity
changes the traffic volume measured for the most popular
services on the network. We assume that services can be iden-
tified by their second-level domains. In Figure 6(a) we show
the number of flows for the top-15 services as measured on the
original trace and after z-anonymity with different values of z.
In this experiment, ΔT is fixed to 1 hour, and z-anonymity is
applied to the FQDN.

Fig. 6. Per-service volume measured from an z-anonymized trace.

It is no surprise that the most popular service is google.com,
followed by common services/platforms such as Facebook and
Apple. The red bar represents the values measured on the orig-
inal trace that we use as a baseline. If the traffic undergoes
z-anonymity, the measured volume slightly decreases, but in
almost all cases, the drop is limited to 10–15% even with high
values of z (yellow and cyan bar). In other words, z-anonymity
would introduce a small measurement error in terms of traf-
fic volume for these services, e.g., because less z users have
requested their FQDNs in some ΔT (1 hour).

For a few cases, the difference is more pronounced;
see, for example, apple-dns.com. In these cases, a single
service/second-level domain holds a very large number of
FQDNs, making them more likely to be anonymized. Indeed,
in the case of apple-dns.com, we observe 1 044 sub-domains,

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on September 01,2022 at 11:33:23 UTC from IEEE Xplore. Restrictions apply.

6

FAVALE et al.: α-MON: TRAFFIC ANONYMIZER FOR PASSIVE MONITORING 1239

Fig. 7. Per-service flows measured on the original and on a (z = 10)-
anonymized trace.

most of them differing uniquely for a two-digit code. Not
shown in the figure, we observe a similar phenomenon for the
CloudFront CDN, for which we observe 3 115 sub-domains,
each referring to a hosted website. In these cases, the mea-
surement error introduced by z-anonymized increases. We
can solve the issue running z-anonymity on the second-level
domains directly – i.e., configuring α-MON to release the
second-level domain if it passes the z-anonymity checks. With
this setup the measured volume is practically equal to the orig-
inal traces, as we show in Figure 6(b). Here, the users’ privacy
is still preserved, as α-MON hides the sub-domains, releasing
only the z-private second-level domains. Yet, the value of the
anonymized traces is increased substantially.

We complete the above analysis with Figure 7, in which
we broaden the bounds of pictures presented before. In the
figure, we show with the red solid line the traffic volume
(in terms of flows) for all services in the trace exceeding a
minimum threshold of 1 000 flows (more than 1 000 names).
They are sorted by popularity. The blue dashed line represents
the volume as measured after z-anonymity with z = 10 and
Δ T = 1h. We are interested in the deviation between the
two lines, representing the measurement error. Considering z-
anonymity on FQDNs (Figure 7), the error is minimal for the
top-ranked domains, as already shown by the blue bars in
Figure 6(a). The deviation is still limited for the services with
sizeable traffic, never exceeding an order of magnitude for
those with at least (around) 10 k flows – top-200 names, left
part of the figure. Clearly, the less frequent services are, the

Fig. 8. Domains known by z-anonymity with different ΔT, in relation with
the memory needed by α-MON.

higher the chances α-MON anonymizes their FQDNs, thus
increasing the measurement error. If we apply z-anonymity
on second-level domains directly, Figure 6(b) shows that
we obtain more reliable measurements also for less popular
services. Also in this case, the error becomes high for infre-
quent services or those accessed by a very small number of
users (see right side of the figure).

In summary, volumetric statistics are still reliable when
targeting heavy-hitter services. For less frequent services,
α-MON introduces a larger measurement error, as enforcing
z-anonymity may lead to most occurrences of the associated
FQDNs (or second-level names) to be obfuscated. By tuning
z and ΔT, one can regulate the trade-off between privacy and
data utility.

C. Load on α-MON Data Structures

An important question for practically implementing
z-anonymity is the number quasi-identifiers that z-anonymity
has to track over time. This is fundamental to quantify its
memory footprint and correctly size α-MON internal hash
tables (see Section III-D) as well as the ΔT parameter. For
each quasi-identifier, indeed, we need to track the set of users
associated in the last ΔT window.

Taking again FQDNs as an example, we consider the size
of the set that z-anonymity must track – i.e., those FQDNs
observed in the last ΔT interval. Figure 8 depicts results over
time for our trace, considering three possible values for ΔT.
After a short warm-up phase (not visible at this scale), the
curves follow the daily trend of network usage. We observe
a peak during evenings, when ≈ 150 000 unique FQDNs are
seen in a two-hour interval – solid red line, see leftmost y-axis.
No more than 100 000 (60 000) FQDNs appear with a ΔT of 1
hour (30 minutes). During the night, when traffic reduces, the
number of active FQDNs is more than halved. We observe
a sudden peak on the evening of the third day (a Friday)
with almost 200 000 unique domains accessed in two hours.
The rightmost y-axis of Figure 8 reports the memory footprint
of the QuasiID metadata, considering their actual size in our
implementation. The memory usage is always below 17 GB
for this setup.

Recall that the experiments refer to a traffic trace from
a population of 8 000 users. However, given the nature of
Internet traffic, where most flows are directed to few services,
the set of domain names scales sub-linearly with the number

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on September 01,2022 at 11:33:23 UTC from IEEE Xplore. Restrictions apply.

7

1240 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

TABLE I
PACKET TRACES

of users. For example, during the peak hour, 1 000 (or 3 000)
randomly selected users already contact 35 000 (or 60 000)
FQDNs, while all 8 000 users contact 150 000 domains.

V. PERFORMANCE EVALUATION

We now evaluate the performance of α-MON in process-
ing high speed traffic. We aim at evaluating how α-MON
performance scales with the number of cores and the impact
of different conditions, workloads and system parameters. We
follow the standard benchmarking procedures defined in [23]
for throughput tests.

A. Testbed and Dataset

We instrument a testbed composed of a Traffic Generator
(TG) and a Device Under Test (DUT). TG and DUT are each
equipped with two quad-port Intel X710 10 Gbit/s network
cards. TG replays traffic traces stored in pcap format, sending
packets to DUT over a first set of 10 Gbit/s links. The DUT
runs α-MON to anonymize network traffic that is sent back
to the TG over a second set of 10 Gbit/s links.

DUT is a high-end server equipped with 4 Intel Xeon Gold
6140M processors and 512 GB of memory. The total number
of physical cores is 72. We disabled hyperthreading to isolate
α-MON performance when varying the number of cores.

The TG is a medium-sized server with no particular require-
ment except for a large amount of memory. Indeed, it is not
trivial to read and send stored traffic traces at tens of Gbit/s
with commercial solid-state drives whose read speed is in the
order of 4-5 Gbit/s. As such, we equipped the TG with 1 TB
of RAM so that it can fit large traces in memory. We use
DPDK-Replay to replay the traces on the selected network
interfaces at the desired rate.6 DPDK-Replay can loop over
traces in memory, eventually replacing IP addresses on each
pass, so to allow arbitrary benchmark duration.

We perform experiments using real traffic traces collected
from an operational network (see Table I). Packets are captured
by instrumenting a Point-of-Presence of a European Internet
Service Provider (ISP) that aggregates the traffic of about 8 000
households. We capture raw packets using a passive probe
equipped with several high-end SSD disks.

For the first benchmarks, we use a 1-hour long trace cap-
tured at peak time. We obtain a 575 GB of packets that we call
ISP-FULL. It contains 3.1 M TCP and 7.7 M UDP flows, with
an average packet size of 716 B, for more than 800 M packets.
This trace represents the typical workload that α-MON would
face in an ISP network.

6https://github.com/marty90/DPDK-Replay

Fig. 9. Performance with four input and four output interfaces using the
ISP-FULL trace.

We process this trace to keep only up to TCP/UDP headers,
removing payloads. This step results in a second packet trace
– called ISP-HDR– in which packets are truncated to 54 B
on average. We use this trace to benchmark the per-packet
capture, processing and transmission speed of α-MON in a
pessimist scenario composed of lots of small packets.

At last, we collect DNS traffic from the same network for
one day. We use this trace to benchmark the z-anonymity mod-
ule since each packet likely contains a QuasiID, e.g., a FQDN.
This trace is 7.23 GB large, with more than 1 M packets. We
call it DNS trace.

For each experiment, we seek the throughput [23], i.e., the
fastest rate at which the count of frames transmitted by the
DUT is equal to the number of frames sent by the TG. We pro-
gressively increase the TG sending rate using a binary search
process. As we increase speeds, benchmarks require the TG to
perform multiple passes on the original traces. All experiments
are performed with z = 10 and ΔT = 60 s. Each benchmark
lasts 3 minutes. We set the hash table Hash(QuasiID) size to
100 000 entries to maintain collision lists reasonably short (see
Figure 8).

B. Horizontal Scalability

We first focus on α-MON horizontal scalability to under-
stand how its throughput increases with the number of cores.
Recall that each core manages an α-MON thread via DPDK.
TG sends traffic to DUT using four 10 Gbit/s links. The DUT
must anonymize packets before forwarding them on four out-
put links. For each input interface, we configure one output
feed on a dedicated output interface, thus, avoiding duplicat-
ing packets. Thanks to RSS load balancing, each of the N
cores processes an average 1/N of the traffic from each input
interface – 4/N in total, given we use 4 input interfaces. This
load-balancing scheme makes the throughput to depend only
on the aggregate incoming rate, regardless of the rates of sin-
gle input interfaces. We employ the ISP-FULL trace for this
experiment.

We report results in Figure 9, which shows the throughput
versus numbers of cores. When α-MON runs on a single core,
it handles around 10 Gbit/s. In our experiments, the through-
put is equivalent if packets come from a single input link at
line rate or spread on the four interfaces. With two cores,
α-MON sustains 18 Gbit/s, and the performance scales lin-
early with additional cores, reaching 38 Gbit/s on four cores.
With just five cores α-MON fully sustains 40 Gbit/s – i.e., all

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on September 01,2022 at 11:33:23 UTC from IEEE Xplore. Restrictions apply.

8

FAVALE et al.: α-MON: TRAFFIC ANONYMIZER FOR PASSIVE MONITORING 1241

Fig. 10. Performance with different traces and consumer numbers.

input interfaces at line rate. Unfortunately, our testbed does
not allow higher rates due to the limited number of network
interfaces, but we expect the performance to further increase
before hitting the PCI bus bandwidth limit [24].

In summary, α-MON sustains ≈ 10 Gbit/s per-core on a
realistic traffic trace. Its performance scales to up 40 Gbit/s
when using just five CPU cores, reaching line rate on all four
input links.

C. Benchmark With Other Workloads

We evaluate α-MON performance under different work-
loads. We vary both the input traffic mixture and the number
of consumers. In these experiments, the TG sends packets to
the DUT using a single 10 Gbit/s link. We configure α-MON
with one, two, or four output feeds, each of them anonymized
using all available modules, but with different encryption keys.
As such, α-MON not only has to make packet copies, but also
performs all anonymization steps multiple times.

Recall that different traffic classes trigger different α-MON
modules, resulting in performance variations. While the ISP-
FULL trace is a typical workload that α-MON could face at an
edge network, DNS represents an extreme scenario in which
every packet triggers the z-anonymity module for FQDN. ISP-
HDR is a second extreme scenario since all packets are small.
It should not be observed in practice except for anomalous sit-
uations, e.g., during cyber attacks. ISP-HDR stresses α-MON
packet replication capability toward multiple consumers as
well as L2-L4 anonymization modules.

We show results in Figure 10. We report throughput for
different traffic traces in separate figures, where lines indicate
the number of output feeds. X -axes show the number of cores.

Figure 10(a) depicts the performance with the ISP-FULL
trace. As already shown previously, a single core sus-
tains 10 Gbit/s with a single consumer (solid red line). The
performance is reduced when α-MON has to feed multiple
consumers. For a single CPU core (leftmost points), the
throughput is reduced to 4 Gbit/s with two consumers (dashed
blue line) and 2.4 Gbit/s with four consumers (dashed green
line). The extra load imposed by the need for duplicating
packets causes this degradation: DPDK allows zero-copy pro-
cessing only when single output is required. Here, α-MON
needs 3 cores to feed 2 consumers with 10 Gbit/s each, and
6 cores to feed 4 consumers. Note also how the throughput
scales linearly with the number of cores in all cases. Here,
contention on the Hash(QuasiID) has little impact.

Next, we use the ISP-HDR trace to stress α-MON packet
copying, processing and forwarding. Whereas the TG sends
out 1.7 million packets per second (Mpps) when replaying the
ISP-FULL trace at 10 Gbit/s, ISP-HDR results in 23 Mpps.
α-MON throughput naturally decreases. A single core han-
dles no more than 2 Gbit/s in this scenario (Figure 10(b) - red
curve). However, thanks to the scalable architecture based on
RSS, α-MON throughput increases linearly with the number of
cores – and 5 cores handle 10 Gbit/s when outputting traffic to
a single consumer (red line). Similar to the previous scenario,
the throughput is reduced when having multiple consumers
(blue and green lines). A single core can sustain 1 (0.7) Gbit/s
of the ISP-HDR trace with 2 (4) consumers. Yet, through-
put continues to grow linearly with the number of cores. As
such, a proper resource provisioning would allow α-MON to
perform its tasks without loss also in these scenarios.

Next, we consider the DNS trace to stress the z-anonymity
module. In Figure 10(c) we see that throughput further
decreases. Remind that packets undergoing z-anonymity gen-
erate updates on various data structures to track the set of
users associated with each quasi-identifier. Moreover, parsing
the payload to recover quasi-identifiers is time consuming too
(e.g., to extract FQDNs in DNS payloads). Figure 10(c) shows
that a single core sustains 0.6 Gbit/s with one output feed.
Again, the throughput increases almost linearly with the num-
ber of cores, and eight cores can handle 3 Gbit/s of DNS traffic.
Here too, α-MON incurs a penalty for the packet copying in
case of multiple consumers. The slightly sublinear scalability
is due to the Mutex on the Hash(QuasiID) which slows down
processing when a large number of cores are used.

In summary, α-MON can process 10 Gbit/s of typical ISP
traffic with one core. Additional output feeds bring extra costs
due to packet copying. A handful of cores allows achieving
line rate in different scenarios. Worst-case scenarios, such as
pure DNS traffic and millions of packets without payload,
require a proper dimensioning of the system. α-MON scales
linearly with the number of cores in all scenarios.

D. α-MON Sub-Module Performance

We next show the impact on performance of α-MON com-
ponents, by dissecting their execution time under different
workloads. To this end, we instrument each α-MON sub-
module with counters that use the CPU Time Stamp Counter
to measure the elapsed time with a negligible performance

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on September 01,2022 at 11:33:23 UTC from IEEE Xplore. Restrictions apply.

9

1242 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

Fig. 11. Percentage of time spent on the most impacting modules.

Fig. 12. Performance when applying z-anonymity on IP addresses and
FQDNs (ISP-FULL trace).

penalty.7 We then make experiments with the ISP-FULL and
DNS traces, configuring α-MON with a single output feed, a
single core, and replaying traffic at the sustainable rate – i.e.,
10 Gbit/s for ISP-FULL and 0.6 Gbit/s for DNS.

Figure 11 shows the percentage of time spent on the main
α-MON modules. We first notice how the nature of the traces
determines different execution patterns. With ISP-FULL (blue
bars), removing the payload from packets of insecure proto-
cols (e.g., HTTP) absorbs most of the time due to a large
number of memory write operations. Differently, with DNS
(red bars), the z-anonymity module is invoked at each packet
and accounts for 28% of the total execution time (it is less
than 1% for ISP-FULL). The packet capture (with DPDK)
and general management routines in both cases have a signifi-
cant impact, larger for DNS due to the smaller size of packets
(see Table I) and, thus, higher packet rate. Finally, note how IP
address anonymization with CryptoPAN and protocol header
parsing always have a marginal impact.

E. z-Anonymity on Other Protocol Fields

We now evaluate α-MON performance when applying
z-anonymity on a wider range of protocol fields. Indeed, as
described in Section III, the z-anonymity module is flexible
and can operate on different protocol fields, from FQDNs
contained in DNS, TLS and HTTP, to the IP addresses of
the contacted servers. In this experiment, differently from
the previous cases, we make use of this feature and con-
figure α-MON to apply z-anonymity on both FQDNs and
IP addresses.8 This imposes a high load on data structures.

7The CPU Time Stamp Counter is a CPU register, thus, very fast to read.
8α-MON applies z-anonymity on server IP addresses only, obfuscating

internal client addresses with CryptoPAN.

Indeed, the z-anonymity hash table is loaded with additional
QuasiIDs and the flow hash table needs to be used to make
consistent decisions on a per-flow basis.

α-MON performance slightly decreases, as we show in
Figure 12, in which we report the sustainable rate with differ-
ent numbers of output feeds. α-MON achieves line rate with
2, 4 and 9 cores with 1, 2 and 4 output feeds, respectively.
When z-anonymity runs on FQDNs only [see Figure 10(a)],
only 1, 3 and 6 are needed. In short, adding an additional
field to z-anonymity decreases performance. As IP addresses
are present in every single packet, decisions must be taken
much more often than for FQDNs only. z-anonymity on IP
address entails a ≈ 30% performance drop due to the higher
number of operations.

F. Tuning of the z-Anonymity Data Structure

Here we study the impact of the data structure size for the
z-anonymity module. Indeed, our implementation builds on the
(large) hash table Hash(QuasiID) used to accommodate the
quasi-identifiers, and, for each quasi-identifier, the ordered list
of associated users in the last ΔT. Collisions on the hash table
are handled with lists, whose length should be kept as short
as possible to avoid performance impairments. This section
evaluates the impact of the hash table size on the list length
and the time z-anonymity spends iterating on them. To this end,
we run multiple experiments using the DNS trace and varying
the hash table size. During the experiments, we record, for
each access to the z-anonymity data structure, the length of the
collision list (if any) and the position at which α-MON found
the matching quasi-identifier. The latter metric is particularly
important given that α-MON handles collision lists in an LRU.
As such, it is likely to find popular quasi-identifiers on the top
of the list, avoiding exhaustive scans.

Figure 13(a) reports the distribution of the collision list
length with different hash table sizes, from 10 k to 1 M ele-
ments. Clearly, a hash size much smaller than the number of
quasi-identifiers leads to long collision lists. When the size
is 10 k (red solid line), lists are 25-element long in median,
but can reach up to 40 elements. Large hash sizes reduce the
length of collision lists, and we notice that quasi-identifiers are
uniformly distributed among all hash buckets (not shown in
the figure). However, collisions happen by chance, and, even
with a 10 M elements (yellow dashed line), we sporadically
find a handful of collisions.

Fortunately, α-MON does not need to fully scan collision
lists, as a searched quasi-identifier is usually much before the
tail of the list. Only for still unknown items (a mismatch), the
list must be scanned exhaustively to ensure the quasi-identifier
is not already present. In Figure 13(b), we report the distribu-
tion of the position in the list of the matching element for each
access to the data structure. Comparing it with Figure 13(a),
we notice how in most cases α-MON does not scan the lists
entirely. Even with a small 10 k hash size (red solid line), on
80% of cases the matching item is found on the first or second
position, and in less than 5% the search goes further than the
20th position. With large sizes, the probability of evaluating
more than 10 list elements becomes negligible.

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on September 01,2022 at 11:33:23 UTC from IEEE Xplore. Restrictions apply.

10

FAVALE et al.: α-MON: TRAFFIC ANONYMIZER FOR PASSIVE MONITORING 1243

Fig. 13. Analysis of the behaviour of Hash(QuasiID) collision list. Lines represent different hash table sizes.

In summary, the hash table must be sized to the deployment
scenario to prevent collision lists from growing excessively. If
properly done, Hash(QuasiID) allows O(1) access, with rea-
sonably short collision lists, thanks also to the LRU policy
which saves exhaustive scans.

VI. DISCUSSION ON THE z-ANONYMITY APPROACH

z-anonymity represents a new proposal for anonymiz-
ing sensitive information in network traffic. It shares with
k-anonymity, l-diversity and t-closeness the idea that quasi-
identifiers must be somehow controlled to prevent users’
re-identification. No scheme can provide a guarantee of
anonymity, and all schemes trade privacy with utility [25].
Indeed, publishing any data results in a potential privacy loss
for individuals, and any anonymization technique makes data
imprecise causing losses in potential utility. At last, efficient
algorithms that provide anonymized data with such proper-
ties [14] are not well-fit for real-time and online usage as
they make decisions based on the global distribution of quasi-
identifiers. Like traditional approaches, z-anonymity provides
a trade-off and not full privacy guarantees. It however allows
tuning the desired trade-off between privacy and data utility.

With z-anonymity, we propose a novel anonymization prop-
erty that can be achieved in real-time and in an online fashion.
As such, it is well-suited for network traffic anonymization.
k-anonymity and similar approaches work on tabular data
where the entire database (or a batch of data) are readily
available. We instead want to anonymize a continuous stream
of data and output the results in real-time. Notice that this
differs from k-anonymity over data streams [26] – i.e., a
system capable of applying k-anonymity on a stream database,
where windows of data are considered. Other proposals [15],
[16] work similarly, buffering data and releasing anonymized
batches. Such approaches do not apply to our context since
we cannot buffer lots of data while performing high-speed
measurements in the network. Thus, we need to decide on
a per-datum basis. Every decision has to be made in an
atomic fashion, and the processed datum must be immediately
available for later processing.

z-anonymity does not require to buffer data and scales very
efficiently. As such, it is suitable for real-time deployments.
To achieve that, z-anonymity is applied to each quasi-identifier
in isolation as a performance trade-off. If the combination of

TABLE II
COMPARISON OF α-MON AND ALTERNATIVES

multiple quasi-identifiers could lead to user re-identification,
α-MON must be explicitly set to apply z-anonymity to the field
combination. In fact, α-MON does not automatically search
for such field combinations to increase performance.

Finally, in z-anonymity, the first z–1 user appearing in a ΔT
would have their quasi-identifier values removed, while the z-
th user would be the first one to have it visible. Nevertheless,
she belongs to a set of at least z users, whose z–1 are
unknown. In this sense, z-anonymity reduces the visibility of
quasi-identifiers in the output stream.

VII. RELATED WORK

Passive network monitoring threats users’ privacy [30].
Because of that, we witness significant efforts to prevent
information leakage from the network, and these efforts have
been mostly centered around the deployment of encryp-
tion [31], [32]. For example, all newest Web protocols by
the time of writing (e.g., QUIC and HTTP/2) are built to
run seamlessly over TLS. These initiatives reduce the amount
of information exposed during the monitoring [33]. However,
users’ privacy can still be exposed in certain fields of Internet
protocols. Server IP addresses and FQDNs are two promi-
nent examples, which may leak the sites visited by users. As
such, those must be considered quasi-identifiers. Recent initia-
tives aim at encrypting plain-text FQDNs seen in traffic, e.g.,
encrypting DNS [34] and Server Name Indications (SNIs) in
TLS [35]. However, not all users will adopt these technologies
soon. In any case, those who monitor the network for legiti-
mate reasons must also protect the users’ privacy, as mandated
by regulations [6].

Several works propose techniques to anonymize traffic by
obfuscating fields of protocol headers. The goal is to allow

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on September 01,2022 at 11:33:23 UTC from IEEE Xplore. Restrictions apply.

11

1244 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

accurate network monitoring without threatening users’ pri-
vacy. We can roughly group these techniques into (i) address
anonymization and (ii) payload anonymization.

Address anonymization: The simplest approach to achieve
anonymization of IP addresses is the truncation of addresses.
Everything, but the first n bits of the addresses (typically 8,
16 or 24), are set to zero. Truncation only partly mitigates
the problem, as it is still possible to determine the subnet
or the organization the truncated addresses belong to. More
sophisticated techniques propose a prefix-preserving pseudo-
anonymization, in which addresses are completely shuffled,
but preserving the structure of subnets [36], [37], [38].
Crypto-PAN is perhaps the most popular prefix-preserving
algorithms for IP addresses anonymization [7], [20]. The map-
pings between the original and anonymized addresses are
determined by a passphrase and a symmetric block cipher.
Here we rely on Crypto-PAN for IP address anonymization.
Finally, in 2020 Kim and Gupta propose ONTAS [27], a flex-
ible traffic anonymizer implemented directly in PISA-based
programmable switches, which achieves high speed while
anonymizing IP and MAC addresses.

Payload anonymization: Payload anonymization is more
complex, as personal information may leak from different and
complex protocols. Anonymization tools like TCPdPriv [28]
and TCPurify [29] truncate TCP and UDP payloads, to
remove all information contained in application layer proto-
cols. This simple “reveal nothing” policy may lead to poor
measurements. Other works propose sophisticated frameworks
to handle specific application-level protocols. The authors
of [39] remove sensitive information without affecting the pay-
load. Packets are reconstructed into data stream flows, and
application-level parsers modify the data streams as specified
by a policy written in a high-level language. They pro-
vide limited anonymization primitives (constant substitution,
sequential numbering, hashing, prefix-preserving, and adding
random noise), forcing the user to write her own functions.
The authors of [40] propose a programmable anonymization
tool based on BPF filters, allowing the user to choose differ-
ent actions according to the received protocol (IP, TCP, UDP,
ICMP, HTTP or FTP).

Differently from these approaches, we explicitly target
an operational deployment, in which anonymization must
be achieved in real-time at tens of Gbit/s. Inspired by
k-anonymity, we design a modular and flexible architecture
to support z-anonymity. We focus on scalability and employ
state-of-the-art packet capture techniques to make the system
deployable on high-speed networks. Table II compares the fea-
tures of α-MON against the three closest previous proposals
described above, namely ONTAS [27], textttTCPdPriv [28]
and TCPurify [29], highlighting the novel capabilities of
α-MON.

VIII. CONCLUSION

In this article, we presented α-MON, a flexible and modu-
lar tool to anonymize network traffic according to a rich set
of policies. We designed α-MON to be flexible and provide
anonymized traffic to multiple legacy monitors with different

traffic visibility requirements, from security monitors to simple
passive meters. A key innovation in α-MON is the implemen-
tation of z-anonymity, a stream-based traffic anonymization
technique that obfuscates protocol fields that can be uniquely
traced back to a small sets of users. α-MON can search for
them, for example, in the FQDNs present in DNS, TLS and
HTTP traffic.

We designed a scalable architecture and efficient data struc-
tures to implement z-anonymity at line-rate speed on multiple
10 Gbit/s links. α-MON reaches high throughput in typical
scenarios with few CPU cores. Even in worst-case scenar-
ios α-MON scales linearly with the number of cores, thanks
to its design based on DPDK. We quantified the impact of
z-anonymity on common traffic measurements, showing that
it introduces negligible measurement errors. For example, if
applied before accounting traffic of websites, only for very
infrequent sites the measured values would substantially differ
from correct values due to the anonymization.

α-MON is available to the community as open-source soft-
ware. As privacy and privacy-preserving analytics are gaining
momentum, we believe α-MON can help researchers, network
administrators and practitioners maintain visibility on network
traffic while preserving users’ privacy at the same time. Future
work includes the development of mechanisms to find iden-
tifiers and quasi-identifiers in network traffic automatically
as well as the analysis of the impact of z-anonymity on the
operations of different classes of legacy monitors.

ACKNOWLEDGMENT

The authors would like to thank the Polito’s IT staff for the
feedback and support.

REFERENCES

[1] A. D’Alconzo, I. Drago, A. Morichetta, M. Mellia, and P. Casas, “A
survey on big data for network traffic monitoring and analysis,” IEEE
Trans. Netw. Service Manag., vol. 16, no. 3, pp. 800–813, Sep. 2019.

[2] D. Apiletti et al., “SeLINA: A self-learning insightful network ana-
lyzer,” IEEE Trans. Netw. Service Manag., vol. 13, no. 3, pp. 696–710,
Sep. 2016.

[3] L. Vassio, D. Giordano, M. Trevisan, M. Mellia, and A. P. C. da Silva,
“Users’ fingerprinting techniques from TCP traffic,” in Proc. ACM
SIGCOMM Workshop Big Data Anal. Mach. Learn. Data Commun.
Netw., 2017, pp. 49–54.

[4] G. Alotibi, N. Clarke, F. Li, and S. Furnell, “User profiling from
network traffic via novel application-level interactions,” in Proc. Int.
Conf. Internet Technol. Secured Trans. (ICITST), 2016, pp. 279–285.

[5] A. S. Khatouni, M. Trevisan, L. Regano, and A. Viticchié, “Privacy
issues of ISPs in the modern Web,” in Proc. 8th IEEE Annu. Inf. Technol.
Electron. Mobile Commun. Conf. (IEMCON), 2017, pp. 588–594.

[6] Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the Protection of Natural Persons With
Regard to the Processing of Personal Data and on the Free Movement of
Such Data, and Repealing Directive 95/46/ec (General Data Protection
Regulation), Eur. Commission, Brussels, Belgium, Apr. 2016.

[7] J. Xu, J. Fan, M. H. Ammar, and S. B. Moon, “Prefix-preserving
IP address anonymization: Measurement-based security evaluation and
a new cryptography-based scheme,” in Proc. IEEE Int. Conf. Netw.
Protocols (ICNP), 2002, p. 280.

[8] P. Samarati and L. Sweeney, “Protecting privacy when disclosing
information: k-anonymity and its enforcement through generalization
and suppression,” Comput. Sci. Lab., SRI Int., Menlo Park, CA, USA,
Rep. SRI-CSL-98-04, 1998.

[9] T. Favale, M. Trevisan, I. Drago, and M. Mellia, “α-MON: Anonymized
passive traffic monitoring,” in Proc. 32th Int. Teletraffic Congr., 2020.

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on September 01,2022 at 11:33:23 UTC from IEEE Xplore. Restrictions apply.

12

FAVALE et al.: α-MON: TRAFFIC ANONYMIZER FOR PASSIVE MONITORING 1245

[10] N. Jha, T. Favale, L. Vassio, M. Trevisan, and M. Mellia, “Z-anonymity:
Zero-delay anonymization for data streams,” in Proc. IEEE Int. Conf.
Big Data, 2020.

[11] L. Sweeney, “K-anonymity: A model for protecting privacy,” Int. J.
Uncertainty Fuzziness Knowl. Based Syst., vol. 10, no. 5, pp. 557–570,
2002.

[12] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam,
“L-diversity: Privacy beyond k-anonymity,” ACM Trans. Knowl. Disc.
Data, vol. 1, no. 1, p. 3, 2007.

[13] N. Li, T. Li, and S. Venkatasubramanian, “T-Closeness: Privacy beyond
k-anonymity and l-diversity,” in Proc. IEEE 23rd Int. Conf. Data Eng.,
2007, pp. 106–115.

[14] A. Meyerson and R. Williams, “On the complexity of optimal
k-anonymity,” in Proc. 23rd ACM SIGMOD-SIGACT-SIGART Symp.
Principles Database Syst., 2004, pp. 223–228.

[15] J. Li, B. C. Ooi, and W. Wang, “Anonymizing streaming data for
privacy protection,” in Proc. IEEE 24th Int. Conf. Data Eng., 2008,
pp. 1367–1369.

[16] J. Cao, B. Carminati, E. Ferrari, and K.-L. Tan, “CASTLE: Continuously
anonymizing data streams,” IEEE Trans. Dependable Secure Comput.,
vol. 8, no. 3, pp. 337–352, May/Jun. 2011.

[17] Intel. Data Plane Development Kit. Accessed: Feb. 15, 2020. [Online].
Available: https://www.dpdk.org/

[18] M. Trevisan, A. Finamore, M. Mellia, M. Munafo, and D. Rossi, “Traffic
analysis with off-the-shelf hardware: Challenges and lessons learned,”
IEEE Commun. Mag., vol. 55, no. 3, pp. 163–169, Mar. 2017.

[19] S. Woo and K. Park, Scalable TCP session monitoring with symmet-
ric receive-side scaling. Accessed: Dec. 13, 2016. [Online]. Available:
http://an.kaist.ac.kr/ shinae/paper/2012-srss.pdf

[20] J. Xu, J. Fan, M. H. Ammar, and S. B. Moon, “On the design and
performance of prefix-preserving IP traffic trace anonymization,” in
Proc. ACM SIGCOMM Internet Meas. Workshop, 2001, pp. 263–266.

[21] A. Finamore, M. Mellia, M. Meo, M. M. Munafo, P. Di Torinoand, and
D. Rossi, “Experiences of Internet traffic monitoring with Tstat,” IEEE
Netw., vol. 25, no. 3, pp. 8–14, May/Jun. 2011.

[22] M. Trevisan, D. Giordano, I. Drago, M. M. Munafò, and M. Mellia,
“Five years at the edge: Watching Internet from the ISP network,”
IEEE/ACM Trans. Netw., vol. 28, no. 2, pp. 561–574, Apr. 2020.

[23] “Benchmarking methodology for network interconnect devices,” Internet
Eng. Task Force, Fremont, CA, USA, RFC 2544, Mar. 1999.

[24] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-Buedo,
and A. W. Moore, “Understanding PCIE performance for end host
networking,” in Proc. Conf. ACM Special Interest Group Data Commun.,
2018, pp. 327–341.

[25] T. Li and N. Li, “On the tradeoff between privacy and utility in data
publishing,” in Proc. 15th ACM SIGKDD Int. Conf. Knowl. Disc. Data
Min., 2009, pp. 517–526.

[26] J. Zhang, J. Yang, J. Zhang, and Y. Yuan, “Kids: K-anonymization data
stream base on sliding window,” in Proc. IEEE Int. Conf. Future Comput.
Commun., 2010, pp. 311–316.

[27] H. Kim and A. Gupta, “ONTAS: Flexible and scalable online network
traffic anonymization system,” in Proc. Workshop Netw. Meets AI ML,
2019, pp. 15–21.

[28] G. Minshall. Tcpdpriv. Accessed: Feb. 15, 2020. [Online]. Available:
http://fly.isti.cnr.it/software/tcpdpriv/

[29] E. Blanton. (2008). Tcpurify. Accessed: Feb. 15,
2020. [Online]. Available: https://isc.sans.edu/forums/diary
/Truncating+Payloads+and+Anonymizing+PCAP+files/23990/

[30] S. Farrell and H. Tschofenig, “Pervasive monitoring is an attack,”
Internet Eng. Task Force, Fremont, CA, USA, RFC 7258, May 2014.

[31] D. Naylor et al., “The cost of the ‘s’ in HTTPS,” in Proc. 10th ACM
Int. Conf. Emerg. Netw. Exp. Technol., 2014, pp. 133–140.

[32] C.-l. Chan, R. Fontugne, K. Cho, and S. Goto, “Monitoring TLS
adoption using backbone and edge traffic,” in Proc. IEEE INFOCOM
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), 2018,
pp. 208–213.

[33] P. Velan, M. Čermák, P. Čeleda, and M. Drašar, “A survey of methods
for encrypted traffic classification and analysis,” Int. J. Netw. Manag.,
vol. 25, no. 5, pp. 355–374, 2015.

[34] P. Hoffman and P. McManus, “DNS queries over HTTPS (DoH),”
Internet Eng. Task Force, Fremont, CA, USA, RFC 8484, 2018.

[35] E. Rescorla, K. Oku, N. Sullivan, and C. A. Wood, “Encrypted server
name indication for TLS 1.3,” Internet Eng. Task Force, Fremont, CA,
USA, Internet-Draft draft-ietf-tls-esni-04, 2019.

[36] R. Pang and V. Paxson, “A high-level programming environment
for packet trace anonymization and transformation,” in Proc. ACM
SIGCOMM, 2003, pp. 339–351.

[37] M. Peuhkuri, “A method to compress and anonymize packet traces,”
in Proc. ACM SIGCOMM Internet Meas. Workshop (IMW), 2001,
pp. 257–261.

[38] M. Allman, E. Blanton, and W. M. Eddy, “A scalable system for shar-
ing Internet measurements,” in Proc. Passive Active Meas. (PAM, 2007,
pp. 1–15.

[39] R. Pang and V. Paxson, “A high-level programming environment
for packet trace anonymization and transformation,” in Proc. ACM
SIGCOMM Conf., 2003, pp. 339–351.

[40] D. Koukis, S. Antonatos, D. Antoniades, E. P. Markatos, and
P. Trimintzios, “A generic anonymization framework for network traf-
fic,” in Proc. IEEE Int. Conf. Commun., vol. 5, 2006, pp. 2302–2309.

Thomas Favale was born on April 1, 1994. He
received the master’s degree in computer engineer-
ing, specializing in the network branch from the
Politecnico di Torino in 2019, where he is currently
pursuing the Ph.D. degree, under the supervision of
Prof. M. Mellia, joining the Interdepartmental Centre
for Smart Data. His research interests focus on traffic
anonymization.

Martino Trevisan received the Ph.D. degree from
the Politecnico di Torino, Italy, in 2019, where he is
currently an Assistant Professor (RTD-A) with the
Department of Electronics and Telecommunications.
He has been collaborating in both Industry and
European projects and spent six months with
Telecom ParisTech, France, working on high-speed
traffic monitoring during the M.Sc. He visited twice
Cisco Labs, San Jose, in summer 2016 and 2017,
as well as AT&T Labs during fall 2018. He was
a Visiting Professor with the Federal University of

Minas Gerais, Brazil, in 2019.

Idilio Drago received the Ph.D. degree in com-
puter science from the University of Twente, The
Netherlands, and the master’s degree from the
Federal University of Espirito Santo, Brazil. He is
an Assistant Professor (RTD-b) with the Computer
Science Department, University of Turin (UNITO),
Italy. He was a Visiting Professor with the Federal
University of Minas Gerais, Brazil, in 2019. His
research interests include cybersecurity, Internet
measurements, artificial intelligence, machine learn-
ing, and big data analytics. He particularly interested

on how AI and data science approaches can help to extract knowledge from
network monitoring traffic and help to automate network security. He was
awarded an Applied Networking Research Prize in 2013 by the IETF/IRTF
for my work on cloud storage.

Marco Mellia (Fellow, IEEE) is a Full
Professor with the Department of Electronics
and Telecommunications, Politecnico di Torino,
Italy. His research interests are in the in the area of
traffic monitoring and analysis, cyber monitoring,
and big data analytics. He has coauthored over
250 papers published in international journals and
presented in leading international conferences.
He won the IRTF ANR Prize at IETF-88, and
the Best Paper Award at IEEE P2P’12, ACM
CoNEXT’13, and IEEE ICDCS’15. He is part of

the Editorial Board of ACM/IEEE TRANSACTIONS ON NETWORKING,
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, and
ACM Computer Communication Review.

Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on September 01,2022 at 11:33:23 UTC from IEEE Xplore. Restrictions apply.

13

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

