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Abstract
An elastic-degenerate (ED) string is a sequence of n finite sets of strings of total
length N , introduced to represent a set of related DNA sequences, also known as a
pangenome. The ED string matching (EDSM) problem consists in reporting all occur-
rences of a pattern of lengthm in an ED text. The EDSMproblem has recently received
some attention by the combinatorial pattern matching community, culminating in an
Õ(nmω−1)+O(N )-time algorithm [Bernardini et al., SIAM J. Comput. 2022], where
ω denotes the matrix multiplication exponent and the Õ(·) notation suppresses poly-
log factors. In the k-EDSM problem, the approximate version of EDSM, we are asked
to report all pattern occurrences with at most k errors. k-EDSM can be solved in
O(k2mG + kN ) time, under edit distance, or O(kmG + kN ) time, under Hamming
distance, where G denotes the total number of strings in the ED text [Bernardini
et al., Theor. Comput. Sci. 2020]. Unfortunately, G is only bounded by N , and so
even for k = 1, the existing algorithms run in Ω(mN ) time in the worst case. In
this paper we make progress in this direction. We show that 1-EDSM can be solved
in O((nm2 + N ) logm) or O(nm3 + N ) time under edit distance. For the decision
version of the problem, we present a faster O(nm2√logm + N log logm)-time algo-
rithm. We also show that 1-EDSM can be solved in O(nm2 + N logm) time under
Hamming distance. Our algorithms for edit distance rely on non-trivial reductions
from 1-EDSM to special instances of classic computational geometry problems (2d
rectangle stabbing or 2d range emptiness), which we show how to solve efficiently. In
order to obtain an even faster algorithm for Hamming distance, we rely on employing
and adapting the k-errata trees for indexing with errors [Cole et al., STOC 2004]. This
is an extended version of a paper presented at LATIN 2022.

Keywords String algorithms · Approximate string matching · Edit distance ·
Hamming distance · Elastic-degenerate strings

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-024-10194-8&domain=pdf


Theory of Computing Systems (2024) 68:1442–1467 1443

1 Introduction

String matching (or pattern matching) is a fundamental task in computer science,
for which several linear-time algorithms are known [22]. It consists in finding all
occurrences of a short string, known as the pattern, in a longer string, known as
the text. Many representations have been introduced over the years to account for
unknown or uncertain letters in the pattern or in the text, a phenomenon that often
occurs in real data. In the context of computational biology, for example, the IUPAC
notation [33] is used to represent locations of a DNA sequence for which several
alternative nucleotides are possible. Such a notation can encode the consensus of a
population of DNA sequences [2, 3, 28, 47] in a gapless multiple sequence alignment
(MSA).

Iliopoulos et al. generalized these representations in [32] to also encode insertions
and deletions (gaps) occurring inMSAs by introducing the notion of elastic-degenerate
strings. An elastic-degenerate (ED) string T̃ over an alphabetΣ is a sequence of finite
subsets of Σ∗ (which includes the empty string ε), called segments. The total number
of segments is the length of the ED string, denoted by n = |T̃ |; and the total number
of letters (including symbol ε) in all segments is the size of the ED string, denoted by
N = ‖T̃ ‖. Inspect Fig. 1 for an example.

A natural problem is to find all occurrences of a standard (non-degenerate) pattern P
in an ED text T̃ , called the ED stringmatching (EDSM) problem in the literature. After
the simple polynomial-time algorithm proposed by Iliopoulos et al. [32], a series of
results have been published for EDSM. The results for EDSM summarized in Table 1
have a linear dependency on the size N of the ED text, a highly desirable property.
(A different line of research exists, which waives the linear-dependency restriction,
and employs bit-vector techniques to speed up the computation specifically for short
patterns [19, 31, 41].) In Table 1, m is the length of the pattern, n is the length of the
ED text, N is its size, and ω is the matrix multiplication exponent. These algorithms
are also on-line: the ED text is read segment-by-segment and occurrences are reported
as soon as the last segment they overlap is processed. Grossi et al. [31] presented
an O(nm2 + N )-time algorithm for EDSM. This was later improved by Aoyama
et al. [7], who employed fast Fourier transform to improve the time complexity of
EDSM to O(nm1.5√logm + N ). Bernardini et al. [10] then presented a lower bound
conditioned on Boolean Matrix Multiplication suggesting that it is unlikely to solve
EDSM by a combinatorial algorithm in O(nm1.5−ε + N ) time, for any ε > 0. This
was an indication that fast matrix multiplication may improve the time complexity of

Fig. 1 An MSA of three sequences and its (non-unique) representation T̃ as an ED string of length n = 7
and size N = 20. The only two exact occurrences of P = TTA in T̃ end at positions 6 (black underline)
and 7 (blue overline); a 1-mismatch occurrence of P in T̃ ends at position 2 (green underline); and a 1-error
occurrence of P in T̃ ends at position 3 (red overline). Note that other 1-error and 1-mismatch occurrences
of P in T̃ exist (e.g., ending at positions 1 and 5)
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Table 1 The upper-bound landscape of the EDSM problem

EDSM Features Running time

Grossi et al. [31] Combinatorial O(nm2 + N )

Aoyama et al. [7] Fast Fourier transform O(nm1.5√logm + N )

Bernardini et al. [10] Fast matrix multiplication O(nm1.381 + N )

Bernardini et al. [11] Fast matrix multiplication Õ(nmω−1) + O(N )

The term “combinatorial” is arguably not well-defined; lower bounds conditioned on Boolean Matrix
Multiplication often indicate that other techniques, including fast matrix multiplication, may be employed
to obtain improved bounds for a specific problem. This is the case for EDSM

EDSM. Indeed, Bernardini et al. [10] presented an O(nm1.381 + N )-time algorithm,
which they subsequently improved to an Õ(nmω−1)+O(N )-time algorithm [11], both
using fast matrix multiplication, thus breaking through the conditional lower bound
for EDSM.
Our Results and Techniques: In string matching, a single extra or missing letter in the
pattern or in a potential occurrence results inmissing (many or all) occurrences. Hence,
many works are focused on approximate string matching for standard strings [6, 16,
21, 29, 34, 35]. For approximate k-EDSM, Bernardini et al. [12] presented an on-line
O(k2mG + kN )-time algorithm under edit distance and an on-line O(kmG + kN )-
time algorithm under Hamming distance, where k is the maximum allowed number of
errors (edits) or mismatches, respectively, and G is the total number of strings in all
segments. Unfortunately, G is only bounded by N , and so even for k = 1, the existing
algorithms run in Ω(mN ) time in the worst case.

Let us remark that the special case of k = 1 is not interesting for approximate string
matching on standard strings: the existing algorithms have a polynomial dependency
on k and a linear dependency on the length n of the text, and thus for k = 1 we trivially
obtain O(n)-time algorithms under edit or Hamming distance. However, this is not
the case for other string problems, such as text indexing with errors, where the first
step was to design a data structure for 1 error [4]. The next step, extending it to k
errors, required the development of new highly non-trivial techniques and incurred
some exponential factor with respect to k [20]. Interestingly, k-EDSM seems to be the
same case, which highlights the main theoretical motivation of this paper. In Table 2,
we summarize the state of the art for approximate EDSM and our new results for
k = 1. Note that the reporting algorithms underlying our results are also on-line.

Indeed, to arrive at our main results, we design a rich non-trivial combination of
algorithmic techniques. Our algorithms for edit distance rely on non-trivial reductions
from 1-EDSM to special instances of classic computational geometry problems (2d
rectangle stabbing or 2d range emptiness), which we show how to solve efficiently.
In order to obtain an even faster algorithm for Hamming distance, we also rely on
employing and adapting the k-errata trees of Cole et al. for text indexing with k
errors [20].
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Table 2 The state of the art results for approximate EDSM and our new results for k = 1

Approximate EDSM Features Running time

Bernardini et al. [12] k errors O(k2mG + kN )

This work 1 error O(nm3 + N )

This work 1 error O((nm2 + N ) logm)

This work 1 error (decision) O(nm2√logm + N log logm)

Bernardini et al. [12] k mismatches O(kmG + kN )

This work 1 mismatch O(nm3 + N )

This work 1 mismatch O(nm2 + N logm)

Note that n ≤ G ≤ N . All algorithms underlying these results are combinatorial and all the reporting
algorithms are on-line

The combinatorial algorithms we develop here for approximate EDSM are good in
the following sense. First, the running times of our algorithms do not depend on G, a
highly desirable property. Specifically, all of our results replacem ·G by an n ·poly(m)

factor. Second, our Õ(nm2 + N )-time algorithms are at most one logm factor slower
than O(nm2 + N ), the best-known bound obtained by a combinatorial algorithm
(not employing fast Fourier transforms) for exact EDSM [31]. Notably, for Hamming
distance, we show anO(nm2 +N logm)-time algorithm. Last, ourO(nm3 +N )-time
algorithms have a linear dependency on N , another highly desirable property (at the
expense of an extra m-factor).

Other Related Work: The main motivation to consider ED strings is that they can be
used to represent a pangenome: a collection of closely-related genomic sequences that
are meant to be analyzed together [47]. Several other pangenome representations have
been proposed in the literature, mostly graph-based ones; see [13] for a comprehensive
overview by Carletti et al. Compared to these graph-based representations, ED strings
have at least two main advantages in the context of string matching, as they support:
(i) simple on-line string matching; and (ii) (deterministic) subquadratic in m string
matching [7, 10, 11].

Similar in spirit to ED strings, and to the restricted notion of generalized degenerate
strings, in which strings of different lengths cannot be in the same segment [2, 3], is the
representation of pangenomes via founder graphs. The idea behind founder graphs
is that a multiple alignment of few founder sequences can be used to approximate
the input MSA, with the feature that each row of the MSA is a recombination of
the founders. Unlike ED strings, that are believed not to be efficiently indexable [30]
(and indeed their value is to enable fast on-line string matching algorithms), some
subclasses of founder graphs are, and a recent line of research is devoted to constructing
and indexing such structures [24, 36]. Like founder graphs, ED strings support the
recombination of different rows of the MSA between consecutive columns.

By definition, ED strings and founder graphs are acyclic: they can be represented
by a special type of directed acyclic graph (DAG). ED strings and founder graphs are
indeed desirable for designing efficient algorithms because string matching (exact or
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approximate) on (more) general graphs than DAGs [1, 5, 37, 39, 40, 42] seems to hit
the wall of quadratic conditional lower bounds [23] or even of NP-hardness [5].

Paper Organization: In Section 2, we provide the necessary definitions and notation,
we describe the basic layout of the developed algorithms, and we formally state our
main results. InSection3,wepresent our solutions under edit distance; and inSection4,
we present our improvement for the special case of Hamming distance. In Section 5,
we conclude this work with some basic open questions for future work.

This is an extended version of a paper presented at LATIN 2022 [9]. Compared
to [9], the improved result for Hamming distance (Section 4) is completely new.

2 Preliminaries

We start with some basic definitions and notation following [22]. Let X =
X [1] . . . X [n] be a string of length |X | = n over an ordered alphabet Σ whose
elements are called letters. The empty string is the string of length 0; we denote it
by ε. For any two positions i and j ≥ i of X , X [i . . j] is the fragment of X start-
ing at position i and ending at position j . The fragment X [i . . j] is an occurrence
of the underlying substring P = X [i] . . . X [ j]; we say that P occurs at position i
in X . A prefix of X is a fragment of the form X [1 . . j] and a suffix of X is a frag-
ment of the form X [i . . n]. By XY or X · Y we denote the concatenation of two
strings X and Y , i.e., XY = X [1] . . . X [|X |]Y [1] . . . Y [|Y |]. Given a string X we
write X R = X [|X |] . . . X [1] for the reverse of X . Given two strings X and Y we
write LCP(X ,Y ) for the length of their longest common prefix, namely for the integer
max({i, X [1 . . i] = Y [1 . . i]}), or 0 if X [1] �= Y [1].

An elastic-degenerate string (ED string) T̃ = T̃ [1] . . . T̃ [n] over an alphabetΣ is a
sequence of n = |T̃ | finite sets, called segments, such that for every position i of T̃ we
have that T̃ [i] ⊂ Σ∗. By N = ||T̃ || we denote the total length of all strings in all seg-
ments of T̃ , which we call the size of T̃ ; more formally, N = ∑n

i=1
∑|T̃ [i]|

j=1 |T̃ [i][ j]|,
where by T̃ [i][ j] we denote the j th string of T̃ [i]. (As an exception, we also add 1 to
account for empty strings: if T̃ [i][ j] = ε, then we have that |T̃ [i][ j]| = 1.) Given two
sets of strings S1 and S2, their concatenation is S1 ·S2 = {XY | X ∈ S1,Y ∈ S2}. For an
ED string T̃ = T̃ [1] . . . T̃ [n], we define the language of T̃ asL (T̃ ) = T̃ [1]·. . .· T̃ [n].
Given a set S of strings we write SR for the set {X R | X ∈ S}. For an ED string
T̃ = T̃ [1] . . . T̃ [n] we write T̃ R for the ED string T̃ [n]R . . . T̃ [1]R .

Given a string P and an ED string T̃ , we say that P matches the fragment
T̃ [ j . . j ′] = T̃ [ j] . . . T̃ [ j ′] of T̃ , or that an occurrence of P starts at position j and
ends at position j ′ in T̃ if there exist two strings U , V , each of them possibly empty,
such that P = Pj · . . . · Pj ′ , where Pi ∈ T̃ [i], for every j < i < j ′, U · Pj ∈ T̃ [ j],
and Pj ′ · V ∈ T̃ [ j ′] (or U · Pj · V ∈ T̃ [ j] when j = j ′). Strings U , V and Pi , for
every j ≤ i ≤ j ′, specify an alignment of P with T̃ [ j . . j ′]. For each occurrence of
P in T̃ , the alignment is, in general, not unique. In Fig. 1, P = TTAmatches T̃ [5 . . 6]
with two alignments: both have U = ε, P5 = TT, P6 = A, and V is either C or CAC.
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We want to accept matches with edit distance at most 1 according to the following
standard definition:

Definition 2.1 Given two strings P and Q over an alphabet Σ , we define the edit
distance dE (P, Q) between P and Q as the length � of a shortest sequence of string
operations π1, . . . , π� such that Q = (Π�

i=1πi )(P), where each πi (for 1 ≤ i ≤ �) is
one of the following type:

• Replacement: There is j ∈ [1, |P|] and σ �= P[ j] ∈ Σ s.t. πi (P)[ j] = σ and
πi (P)[ j ′] = P[ j ′] for j ′ �= j .

• Deletion: One has |πi (P)| = |P| − 1 and there is j ∈ [1, |P|] s.t. πi (P)[ j ′] =
P[ j ′] for 1 ≤ j ′ ≤ j − 1 and πi (P)[ j ′] = P[ j ′ + 1] for j ≤ j ′ ≤ |P| − 1.

• Insertion:One has |πi (P)| = |P|+1 and there is j ∈ [1, |P|+1] s.t. πi (P)[ j ′] =
P[ j ′] for 1 ≤ j ′ ≤ j − 1 and πi (P)[ j ′] = P[ j ′ − 1] for j + 1 ≤ j ′ ≤ |P| + 1.

Lemma 2.2 [22] The function dE is a distance on Σ∗.

The following lemma follows immediately from Definition 2.1.

Lemma 2.3 If P, Q are two strings with dE (P, Q) = 1, then P = π(Q) where π is
a replacement, a deletion or an insertion.

We define the main problem considered in this paper as follows:

1-Error EDSM
Input: A string P of length m and an ED string T̃ of length n and size N .
Output: All positions j ′ in T̃ such that there is at least one string P ′ with an
occurrence ending at position j ′ in T̃ , and with dE (P, P ′) ≤ 1 (reporting version);
or YES if and only if there is at least one string P ′ with an occurrence in T̃ , and
with dE (P, P ′) ≤ 1 (decision version).

Let P ′ be a string starting at position j and ending at position j ′ in T̃ with
dE (P, P ′) = 1.We call this an occurrence of P with 1 error (or a 1-error occurrence);
or equivalently, we say that P matches T̃ [ j . . j ′] with 1 error. LetU P ′

j , . . . , P
′
j ′V be

an alignment of P ′ with T̃ [ j . . j ′] and i ∈ [ j, j ′] be an integer such that the single
replacement, insertion, or deletion required to obtain P from P ′ = P ′

j · . . . · P ′
j ′ occurs

on P ′
i . We then say that the alignment (and the occurrence) has the 1 error in T̃ [i].

(It should be clear that for one alignment we may have multiple different i .) We show
the following theorem.

Theorem 2.4 Given a pattern P of length m and an ED text T̃ of length n and size N,
the reporting version of 1- Error EDSM can be solved on-line in O(nm2 logm +
N logm) or O(nm3 + N ) time. The decision version of 1- Error EDSM can be
solved off-line in O(nm2√logm + N log logm) time.

Hamming distance, denoted by dH , is a special case of edit distance in which only
replacement operations are allowed (it is therefore defined for two strings of equal
length). We define the following problem:
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1-Mismatch EDSM
Input: A string P of length m and an ED string T̃ of length n and size N .
Output: All positions j ′ in T̃ such that there is at least one string P ′ with an
occurrence ending at position j ′ in T̃ , and with dH (P, P ′) ≤ 1.

An occurrence of a string P ′ as in the problem definition is called an occurrence
of P with 1 mismatch. We call mismatch the single position in the support of the
replacement π such that π(P) = P ′. We show the following theorem.

Theorem 2.5 Given a pattern P of length m and an ED text T̃ of length n and size N,
1- Mismatch EDSM can be solved on-line in O(nm2 + N logm) or O(nm3 + N )

time.

Definition 2.6 For a string P = P[1 . .m], an ED string T̃ = T̃ [1] . . . T̃ [n], a position
1 ≤ i ≤ n, and a distance on Σ∗, we define three sets:

– APi ⊆ [1,m], such that j ∈ APi if and only if P[1 . . j] is an active prefix of P
in T̃ ending in the segment T̃ [i], that is, a prefix of P which is also a suffix of a
string in L (T̃ [1] . . . T̃ [i]).

– ASi ⊆ [1,m], such that j ∈ ASi if and only if P[ j . .m] is an active suffix of P
in T̃ starting in the segment T̃ [i], that is, a suffix of P which is also a prefix of a
string in L (T̃ [i] . . . T̃ [n]).

– 1-APi ⊆ [1,m], such that j ∈ 1-APi if and only if P[1 . . j] is an active prefix
with 1 error of P in T̃ ending in the segment T̃ [i], that is, a prefix of P which is
also at distance at most 1 from a suffix of a string inL (T̃ [1] . . . T̃ [i]).

For convenience we also define AP0 = ASn+1 = 1-AP0 = ∅.

The following lemma shows that the computation of active suffixes can be easily
reduced to computing the active prefixes for the reversed strings.

Lemma 2.7 Given a pattern P = P[1 . .m] and an ED text T̃ = T̃ [1 . . n], a suffix
P[ j . .m] of P is an active suffix in T̃ starting in the segment T̃ [i] if and only if the
prefix PR[1 . .m − j + 1] = (P[ j . .m])R of PR is an active prefix in T̃ R, ending in
the segment T̃ R[n − i + 1] = (T̃ [i])R.

Proof If P[ j . .m] is a prefix of S ∈ L (T̃ [i . . n]), then PR[1 . .m − j + 1] is a
suffix of SR ∈ L (T̃ [1 . . n]R). From the definition of T̃ R we have T̃ [i . . n]R =
( ˜T [n])R . . . ( ˜T [i])R = T̃ R[1 . . n − i + 1], hence SR ∈ L (T̃ R[1 . . n − i + 1]).

This proves the forward direction of the lemma; the converse follows from sym-
metry. 
�

The efficient computation of active prefixes was shown in [31], and constitutes the
main part of the combinatorial algorithm for exact EDSM. Similarly, computing the
sets 1-AP plays the key role in the reporting version of our algorithm for 1- Error
EDSM (see Fig. 2). Finding active prefixes (and, by Lemma 2.7, suffixes) reduces to
the following problem, formalized in [10].
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Fig. 2 The layout of the algorithms for computing APi , 1-APi , and reporting occurrences. The green areas
correspond to the (partial) matches in T̃ [i], and the symbol ∗ indicates the position of an error. The vertical
bold lines indicate the beginning/the end of an occurrence or a 1-error occurrence. The cases without a label
allow only exact matches and were already solved by Grossi et al. in [31]

Active Prefixes Extension (APE)
Input: A string P of length m, a bit vector U of size m, and a set S of strings of
total length N .
Output: A bit vector V of size m with V [ j] = 1 if and only if there exists S ∈ S
and i ∈ [1,m], such that P[1 . . i] · S = P[1 . . j] and U [i] = 1.

Lemma 2.8 [31] The APE problem for a string P of length m and a set S of strings
of total length N can be solved in O(m2 + N ) time.

Given an algorithm for the APE problem working in f (m) + N time, we can find
all active prefixes for a pattern P of length m in an ED text T̃ = T̃ [1] . . . T̃ [n] of size
N in O(n f (m) + N ) total time:

Corollary 2.9 [31] For a pattern P of length m and an ED text T̃ = T̃ [1] . . . T̃ [n] of
total size N, computing the sets APi for all i ∈ [1, n] takes O(nm2 + N ) time.

As depicted in Fig. 2, the computation of active prefixes with 1 error (1-APi ) and
the reporting of occurrences with 1 error reduce to a problem where the error can
only occur in a single, fixed T̃ [i]. In particular, this problem decomposes into 4 cases,
which we formalize in the following proposition.
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Proposition 2.10 Let T̃ = T̃ [1] . . . T̃ [n] be an ED text and P be a pattern that has an
occurrence with 1 error (resp. 1 mismatch) in T̃ . For each alignment corresponding
to such occurrence, at least one of the following is true:

Easy Case: P matches T̃ [i] with 1 error (resp. 1 mismatch) for some 1 ≤ i ≤ n.
Anchor Case: P matches T̃ [ j . . j ′] with 1 error (resp. 1 mismatch) in T̃ [i] for
some 1 ≤ j < i < j ′ ≤ n. T̃ [i] is called the anchor of the alignment.
Prefix Case: P matches T̃ [ j . . i] with 1 error (resp. 1 mismatch) in T̃ [i] for some
1 ≤ j < i ≤ n, implying an active prefix of P which is a suffix of a string in
L (T̃ [ j . . i − 1]).
Suffix Case: P matches T̃ [i . . j ′] with 1 error (resp. 1 mismatch) in T̃ [i] for some
1 ≤ i < j ′ ≤ n, implying an active suffix of P which is a prefix of a string in
L (T̃ [i + 1 . . j ′]).

Proof Suppose P has a 1-error (resp. 1mismatch) occurrencematching T̃ [ j . . j ′]with
1 ≤ j ≤ j ′ ≤ n. If j = j ′ we are in the Easy Case. Otherwise, each alignment has
an error in some T̃ [i] for j ≤ i ≤ j ′. If j < i < j ′, we are in the Anchor Case; if
j < i = j ′, we are in the Prefix Case; and if j = i < j ′, we are in the Suffix Case. 
�

3 1-Error EDSM

In this section, we present algorithms for finding all 1-error occurrences of P given
by each type of possible alignment described by Proposition 2.10 (inspect Fig. 3). The
Prefix and Suffix cases are analogous by Lemma 2.7; the only difference is in that,
while the Suffix Case computes new 1-AP , the Prefix Case is used to actually report
occurrences. They are jointly considered in Section 3.3.

We follow two different procedures for the decision and reporting versions. For
the decision version, we precompute sets APi and ASi , for all i ∈ [1, n], using
Corollary 2.9, and we simultaneously compute possible exact occurrences of P . Then
we compute 1-error occurrences of P by grouping the alignments depending on the
segment i in which the error occurs, and using APi and ASi . For the reporting version,
we consider one segment T̃ [i] at a time (on-line) and extend partial exact or 1-error
occurrences of P to compute sets APi and 1-APi using just sets APi−1 and 1-APi−1
computed at the previous step. We design different procedures for the 4 cases of
Proposition 2.10. We can sort all letters of P , assign them rank values from [1,m],
and construct a perfect hash table over these letters supporting O(1)-time look-up
queries in O(m logm) time [43]. Any letter of T̃ not occurring in P can be replaced
by the same special letter inO(1) time. In the rest we thus assume that the input strings
are over [1,m + 1].

Two problems from computational geometry have a key role in our solutions.
We assume the word RAM model with coordinates on the integer grid [1, n]d =
{1, 2, . . . , n}d for d = 2. In the 2d rectangle emptiness problem, we are given a set
P of n points to be preprocessed, so that when one gives an axis-aligned rectangle
as a query, we report YES if and only if the rectangle contains a point from P . In
the “dual” 2d rectangle stabbing problem, we are given a set R of n axis-aligned
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rectangles to be preprocessed, so that when one gives a point as a query, we report
YES if and only if there exists a rectangle fromR containing the point.

Lemma 3.1 [14, 27] AfterO(n
√
log n)-time preprocessing, we can answer 2d rectan-

gle emptiness queries in O(log log n) time.

Lemma 3.2 [18, 44] AfterO(n log n)-time preprocessing, we can answer 2d rectangle
stabbing queries in O(log n) time.

In Section 3.4, we note that the 2d rectangle stabbing instances arising from 1-
Error EDSM have a special structure. We show how to solve them efficiently thus
shaving logarithmic factors from the time complexity.

3.1 Easy Case

The Easy Case can be reduced to approximate string matching with at most 1 error
(1-SM):

1-SM
Input: A string P of length m and a string T of length n.
Output: All positions j in T such that there is at least one string P ′ ending at
position j in T with dE (P, P ′) ≤ 1.

We have the following well-known results.

Lemma 3.3 [21, 35]Given a pattern P of length m, a text T of length n, and an integer
k > 0, all positions j in T such that the edit distance of T [i . . j] and P, for some

position i ≤ j on T , is at most k, can be found in O(kn) time or in O( nk
4

m + n) time.1

In particular, 1-SM can be solved in O(n) time.

We find occurrences of P with at most 1 error that are in the Easy Case for segment
T̃ [i] in the following way: we apply Lemma 3.3 for k = 1 and every string of T̃ [i]
whose length is at leastm−1 (any shorter string is clearly not relevant for this case) as
text. If, for any of those strings, we find an occurrence of P , we report an occurrence
at position i (inspect Fig. 3a). The time for processing a segment T̃ [i] isO(Ni ), where
Ni is the total length of all the strings in T̃ [i].

3.2 Anchor Case

Let T̃ be an ED text and P be a pattern with a 1-error occurrence and an alignment in
the Anchor Case with anchor T̃ [i]. Further let L = P[1 . . �]S′ and Q = S′′P[q . .m]
be a prefix and a suffix of P , respectively, for some � ∈ APi−1, q ∈ ASi+1, where
S′, S′′ are a prefix and a suffix of some S ∈ T̃ [i], respectively (strings S′, S′′ can be
empty). By Lemma 2.3, a pair L, Q gives a 1-error occurrence of P if one of the
following holds:

1 Charalampopoulos et al. have announced an improvement on the exponent of k from 4 to 3.5; specifically

they presented an O(
nk3.5

√
logm log k
m + n)-time algorithm [17].
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Fig. 3 Possible alignments of 1-error occurrences of P in T̃ . Each occurrence starts at segment T̃ [ j], ends
at T̃ [ j ′], and the error occurs at T̃ [i]

1 mismatch: |L| + |Q| + 1 = m and |S′| + |S′′| + 1 = |S| (inspect Fig. 3b).
1 deletion in P: |L| + |Q| = m − 1 and |S′| + |S′′| = |S|.
1 insertion in P: |L| + |Q| = m and |S′| + |S′′| + 1 = |S|.
We show how to find such pairs with the use of a geometric approach. For conve-

nience, we only present the Hamming distance (1 mismatch) case. The other cases are
handled similarly.

Let λ ∈ APi−1 be the length of an active prefix, and let ρ be the length of an active
suffix, that is, m − ρ + 1 ∈ ASi+1. Note that APi−1 and ASi+1 can be precomputed,
for all i , inO(nm2 + N ) total time by means of Corollary 2.9. (In particular, ASi+1 is
required only for the decision version; for the reporting version, we explain later on
how to avoid the precomputation of ASi+1 to obtain an on-line algorithm.) We will
exhaustively consider all pairs (λ, ρ) such that λ + ρ < m. Clearly, there are O(m2)

such pairs.
Consider the length μ = m − (λ + ρ) > 0 of the substring of P still to be matched

for some prefix and suffix of P of lengths (λ, ρ), respectively. We group together all
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pairs (λ, ρ) such that m − (λ+ρ) = μ by sorting them inO(m2) time. We construct,
for each such group μ, the compacted trie Tμ of the fragments P[λ + 1 . .m − ρ],
for all (λ, ρ) such that m − (λ + ρ) = μ, and analogously the compacted trie T R

μ of
all fragments PR[ρ + 1 . .m − λ]. For each group μ, this takes O(m) time [38]. We
enhance all nodes with a perfect hash table in O(m) total time to access edges by the
first letter of their label in O(1) time [26].

We also group all strings in segment T̃ [i] of length less thanm by their lengthμ. The
group for lengthμ is denoted byGμ. This takesO(Ni ) time. Clearly, the strings inGμ

are the only candidates to extend pairs (λ, ρ) such thatm− (λ+ρ) = μ. Note that the
mismatch can be at any position of any string of Gμ: its position determines a prefix
S′ of length h and a suffix S′′ of length k of the same string S, with h+k = μ−1, that
must match a prefix and a suffix of P[λ + 1 . .m − ρ], respectively. We will consider
all such pairs of positions (h, k) whose sum is μ − 1 (intuitively, the minus one is for
the mismatch). This guarantees that L = P[1 . . λ]S′ and Q = S′′P[m − ρ + 1 . .m]
are such that |L| + |Q| + 1 = m. The pairs are (0, μ − 1), (1, μ − 2), . . . , (μ − 1, 0).
This guarantees that L and Q are one position apart (|S′| + |S′′| + 1 = |S|).

The number of these pairs is O(μ) = O(m). Consider one such pair (h, k) and a
string S ∈ Gμ. We treat every such string S separately. We spell S[1 . . h] in Tμ. If
the whole S[1 . . h] is successfully spelled ending at a node u, this implies that all the
fragments of P corresponding to nodes descending from u share S[1 . . h] as a prefix.
We also spell SR[1 . . k] in T R

μ . If the whole of SR[1 . . k] is successfully spelled ending
at a node v, then all the fragments of P corresponding to nodes descending from v share
(SR[1 . . k])R as a suffix. Nodes u and v identify an interval of leaves in Tμ and T R

μ ,
respectively. We need to check if these intervals both contain a leaf corresponding to
the same fragment of P . If they do, thenwe obtain an occurrence of P with 1mismatch
(see Fig. 4). We now have two different ways to proceed, depending on whether we
need to solve the off-line decision version or the on-line reporting version.

Decision Version: Let us recall that Tμ, T R
μ by construction are ordered based on

lexicographic ranks. For every pair (Tμ, T R
μ ), we construct a data structure for 2d

rectangle emptiness queries on the grid [1, �]2, where � is the number of leaves of
Tμ (and of T R

μ ), for the set of points (x, y) such that x is the lexicographic rank of
the leaf of Tμ representing P[λ + 1 . .m − ρ] and y is the rank of the leaf of T R

μ

representing PR[ρ + 1 . .m − λ] for the same pair (λ, ρ). This denotes that the two
leaves correspond to the same fragment of P . For every (Tμ, T R

μ ), this preprocessing
takes O(m

√
logm) time by Lemma 3.1, since � is O(μ) = O(m). For all μ groups

(they are at most m), the whole preprocessing thus takes O(m2√logm) time.
We then ask 2d range emptiness queries that take O(log logm) time each by

Lemma 3.1. Note that all rectangles for S can be collected in O(|S|) = O(μ) time by
spelling S through Tμ and SR through T R

μ , one letter at a time. Thus the total time for
processing all Gμ groups of segment i is O(m2√logm + Ni log logm). If any of the
queried ranges turns out to be non-empty, then P ′ such that dH (P, P ′) ≤ 1 appears in
L (T̃ ) with anchor in T̃ [i]; we do not have sufficient information to output its ending
position however.
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Fig. 4 An example of points and rectangles (solid shapes) for the decision version of the Anchor Case with
1 mismatch. Here P = bbaaaabababb, APi−1 = {1, 2, 4, 7, 8, 9}, ASi+1 = {5, 6, 9, 11, 12}, μ = 3, and
T̃ [i] = {aaa, bba}. T3 and T R

3 are built for 4 strings: P[2 . . 4] = baa, P[3 . . 5] = aaa, P[8 . . 10] = aba,
P[9 . . 11] = bab; the 5 rectangles correspond to pairs (ε, aa), (a, a), (aa, ε), (ε, ab), (b, a), namely, the
pairs of prefixes and reversed suffixes of aaa and bba (rectangle (bb, ε) does not exist as T3 contains no
node bb)

Reporting Version: For this version, we do the dual. We construct a data structure for
2d rectangle stabbing queries on the grid [1, �]2 for the set of rectangles collected for
all strings S ∈ Gμ. By Lemma 3.2, for all μ groups, the whole preprocessing thus
takes O(Ni log Ni ) time.

For every (Tμ, T R
μ ), we then ask the following queries: (x, y) is queried if and only

if x is the rank of a leaf representing P[λ + 1 . .m − ρ] and y is the rank of a leaf
representing PR[ρ + 1 . .m − λ]. For every (Tμ, T R

μ ), this takes O(m log Ni ) time by
Lemma 3.2 and by the fact that for each group Gμ there are O(m) pairs (λ, ρ) such
that m − (λ + ρ) = μ. For all groups Gμ (they are at most m), all the queries thus
take O(m2 log Ni ) time. Thus the total time for processing all Gμ groups of segment
i is O((m2 + Ni ) log Ni ).

We are not done yet. By performing the above algorithm for active prefixes and
active suffixes, we find out which pairs can be completed to a full occurrence of P with
at most 1 error. This information is not sufficient to compute where such an occurrence
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ends (and storing additional information together with the active suffixes may prove
costly). To overcome this, we use some ideas from the decision algorithm, appro-
priately modified to preserve the on-line nature of the reporting algorithm. Instead
of iterating ρ over the lengths of precomputed active suffixes, we iterate it over all
possible lengths in [0,m] (including 0 because we may want to include m in 1-APi ).
A suffix of P of length ρ completes a partial occurrence computed up to segment i
exactly when m − ρ ∈ 1-APi (a pair x ∈ 1-APi , x + 1 ∈ ASi+1 corresponds to an
occurrence). We thus use the reporting algorithm to compute the part of 1-APi com-
ing from the extension of APi−1 (see Fig. 2), and defer the reporting to the no-error
version of the Prefix Case for the right j ′; which was solved by Grossi et al. [31] in
linear time.

3.3 Prefix Case

Let T̃ be an ED text and P be a pattern with a 1-error occurrence and an alignment
in the Prefix Case with active prefix ending at T̃ [i − 1]. Let L = P[1 . . �]S′, with
� ∈ APi−1, be a prefix of P that is extended in T̃ [i] by S′; and Q be a suffix of P
occurring in some string of T̃ [i] (strings S′, Q can be empty). By Lemma 2.3, we have
3 possibilities for any alignment of a 1-error occurrence of P in the Prefix Case:

1 mismatch: |L| + |Q| + 1 = m, S′ is a prefix of the same string in which Q
occurs, and they are one position apart (inspect Fig. 3c).
1 deletion in P: |L| + |Q| = m − 1, S′ is a prefix of the same string in which Q
occurs, and they are consecutive.
1 insertion in P: |L| + |Q| = m, S′ is a prefix of the same string in which Q
occurs, and they are one position apart.

For convenience, we only present the method for Hamming distance (1 mismatch).
The other possibilities are handled similarly.

The techniques are similar to those for the Anchor Case (Section 3.2).We group the
prefixes of all strings in T̃ [i] according to their length μ ∈ [1,m). The total number
of these prefixes isO(Ni ). The group for length μ is denoted by Gμ. We construct the
compacted trie TGμ of the strings in Gμ, and the compacted trie T R

Gμ
of the reversed

strings in Gμ. This can be done inO(Ni ) total time for all compacted tries. To achieve
this, we employ the following lemma by Charalampopoulos et al. [15]. (Recall that
we have already sorted all letters of P . In what follows, we assume that Ni ≥ m; if
this is not the case, we can sort all letters of T̃ [i] in O(m + Ni ) time.)

Lemma 3.4 [15] Let X be a string of length n over an integer alphabet of size nO(1).
Let I be a collection of intervals [i, j] ⊆ [1, n]. We can lexicographically sort the
substrings X [i . . j] of X, for all intervals [i, j] ∈ I , in O(n + |I |) time.

We concatenate all the strings of T̃ [i] to obtain a single string X of length Ni , to
which we apply, for each μ, Lemma 3.4, with a set I consisting of the intervals over
X corresponding to the strings in Gμ. By sorting, in this way, all strings in Gμ (for all
μ), and by constructing [25] and preprocessing [8] the generalized suffix tree of the
strings in T̃ [i] in O(Ni ) time to support answering lowest common ancestor (LCA)
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queries in O(1) time, we can construct all TGμ in O(Ni ) total time. We handle T R
Gμ

,
for allμ, analogously. Similar to the Anchor Case we enhance all nodes with a perfect
hash table within the same complexities [26].

In contrast to the Anchor Case, we now only consider the set APi−1: namely, we
do not consider ASi+1. Let λ ∈ APi−1 be the length of an active prefix. We treat every
such element separately, and they areO(m) in total. Let μ = m −λ > 0 and consider
the group Gμ whose strings are all of length μ. The mismatch being at position h + 1
in one such string S determines a prefix S′ of S of length h that must extend the active
prefix of P of length λ, and a fragment Q of S of length k = μ−h−1 that must match
a suffix of P . We will consider all such pairs (h, k) whose sum is μ − 1. The pairs are
again (0, μ − 1), (1, μ − 2), . . . , (μ − 1, 0), and there are clearly O(μ) = O(m) of
them.

Consider (h, k) as one such pair. We spell P[λ + 1 . . λ + h] in TGμ . If the whole
P[λ + 1 . . λ + h] is spelled successfully, this implies an interval of leaves of TGμ

corresponding to strings from T̃ [i] that share P[λ + 1 . . λ + h] as a prefix. We spell
PR[1 . . k] in T R

Gμ
. If the whole PR[1 . . k] is spelled successfully, this implies an inter-

val of leaves of T R
Gμ

corresponding to strings from T̃ [i] that have the same fragment

(PR[1 . . k])R . These two intervals form a rectangle in the grid implied by the leaves
of TGμ and T R

Gμ
. We need to check if these intervals both contain a leaf corresponding

to the same prefix of length μ of a string in T̃ [i]. If they do, then we have obtained an
occurrence with 1 mismatch in T̃ [i].

To do this we construct, for every (TGμ, T R
Gμ

), a 2d range data structure for the
set of points (x, y) such that x is the rank of a leaf of TGμ , y is the rank of a leaf of

T R
Gμ

, and the two leaves correspond to the same prefix of length μ of a string in T̃ [i].
For every (TGμ, T R

Gμ
), this takes O(|Gμ|√log |Gμ|) time by Lemma 3.1. For all Gμ

groups, the whole preprocessing takes O(Ni
√
log Ni ) time.

We then ask 2d range emptiness queries each taking O(log log |Gμ|) time by
Lemma 3.1. Note that all rectangles for λ can be collected in O(m) time by spelling
P[λ + 1 . . λ + μ − 1] through TGμ and PR[1 . . μ − 1] through T R

Gμ
, one letter at a

time. This gives a total of O(m2 log log Ni + Ni
√
log Ni ) time for processing all Gμ

groups of T̃ [i], because ∑
μ |Gμ| ≤ Ni .

To solve the Suffix Case (compute active prefixes with 1 error starting in T̃ [i])
we employ the mirror version of the algorithm, but iterating λ over the whole [0,m]
instead of ASi+1 (like in the reporting version of the Anchor Case).

3.4 Shaving Logs using Special Cases of Geometric Problems

3.4.1 Anchor Case: Simple 2d Rectangle Stabbing

Lemma 3.5 We can solve the Anchor Case (i.e., extend APi−1 into 1-APi ) inO(m3 +
Ni ) time.
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Proof By Lemma 3.2, 2d rectangle stabbing queries can be answered inO(log n) time
using O(n log n) space after O(n log n)-time preprocessing.

Notice that in the case of the 2d rectangle stabbing used in Section 3.2 the rectangles
and points are all in a predefined [1,m]×[1,m] grid. In such a case we can also use an
easy folklore data structure of size O(m2), which after an O(m2 + |rectangles|)-time
preprocessing answers such queries in O(1) time.

Namely, the data structure consists of a [1,m + 1]2 grid Γ (a 2d-array of integers)
in which for every rectangle [u, v]× [w, x] we add 1 to Γ [u][w] and Γ [v + 1][x + 1]
and −1 to Γ [u][x + 1] and Γ [v + 1][w]. Then we modify Γ to contain the 2d prefix
sums of its original values (we first compute prefix sums of each row, and then prefix
sums of each column of the result). After these modifications, Γ [x][y] stores the
number of rectangles containing point (x, y), and hence after O(m2 + |rectangles|)-
time preprocessing we can answer 2d rectangle stabbing queries in O(1) time.

In our case we have a total of O(m) such grid structures, each of O(m2) size, and
ask O(m2) queries, and hence obtain an O(m3 + Ni )-time and O(m2)-space solution
for computing 1-APi from APi−1. 
�

3.4.2 Prefix Case: a Special Case of 2d Rectangle Stabbing

Inspect the example of Fig. 4 for the Anchor Case. Note that the groups of rectangles
for each string have the special property of being composed of nested intervals: for
each dimension, the interval corresponding to a given node is included in the one
corresponding to any of its ancestors. Thus for the Prefix Case, where we only spell
fragments of the same string P in both compacted tries, we consider the following
special case of off-line 2d rectangle stabbing.

Lemma 3.6 Let p1, . . . , ph and q1, . . . , qh be two permutations of [1, h]. We denote
by Π the set of h points (p1, q1), (p2, q2), . . . , (ph, qh) on [1, h]2.

Further let R be a collection of r axis-aligned rectangles

([u1, v1], [w1, x1]), . . . , ([ur , vr ], [wr , xr ]),

such that [ur , vr ] ⊆ [ur−1, vr−1] ⊆ · · · ⊆ [u1, v1] and [w1, x1] ⊆ [w2, x2] ⊆ · · · ⊆
[wr , xr ]. Then we can find out, for every point from Π , if it stabs any rectangle from
R in O(h + r) total time.

Proof Let H be a bit vector consisting of h bits, initially all set to zero. We process
one rectangle at a time. We start with ([u1, v1], [w1, x1]). We set H [p] = 1 if and
only if (p, q) ∈ Π for p ∈ [u1, v1] and any q. We collect all p such that (p, q) ∈ Π

and q ∈ [w1, x1], and then search for these p in H : if for any p, H [p] = 1, then the
answer is positive for p. Otherwise, we remove from H every p such that p ∈ [u1, v1]
and p /∈ [u2, v2] by setting H [p] = 0. We proceed by collecting all p such that
(p, q) ∈ Π , q ∈ [w2, x2] and q /∈ [w1, x1], and then search for them in H : if for any
p, H [p] = 1, then the answer is positive for p. We repeat this until H is empty or
until there are no other rectangles to process.

The whole procedure takes O(h + r) time, because we set at most h bits on in H ,
we set at most h bits back off in H , we search for at most h points in H , and then we
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process r rectangles. Note that we can efficiently scan (p1, q1), (p2, q2), . . . , (ph, qh)
to update and query the bit vector H , because we can maintain set Π sorted in two
copies: one by the first dimension and another one by the second dimension. 
�
Lemma 3.7 We can solve the Prefix (resp. Suffix) Case, that is, report 1-error occur-
rences ending in T̃ [i] (resp. compute active prefixes with 1 error starting in T̃ [i]) in
O(m2 + Ni ) time.

Proof We employ Lemma 3.6 to get rid of the 2d range data structure. The key is that
for every length-μ suffix P[λ+1 . .m] of the pattern we can afford to payO(μ+|Gμ|)
time plus the time to construct TGμ and T R

Gμ
for set Gμ. Because the grid is [1, |Gμ|]2,

we exploit the fact that the intervals found by spelling P[λ + 1 . . λ + μ − 1] through
TGμ and PR[1 . . μ−1] through T R

Gμ
, one letter at a time, are subset of each other, and

querying μ such rectangles is done in O(μ + |Gμ|) time by employing Lemma 3.6.
Sinceweprocess atmostm distinct length-μ suffixes of P , the total time isO(m2+Ni ),
because

∑
μ |Gμ| ≤ Ni . 
�

3.5 Wrapping-up

To obtain Theorem 2.4 for the decision version of the problem we first compute APi
and ASi , for all i ∈ [1, n], inO(nm2+N ) total time (Corollary 2.9).We then compute
all the occurrences in the Easy Cases using O(N ) time in total (Section 3.1); and we
finally compute all the occurrences in the Prefix and Suffix Cases in

∑
i O(m2+Ni ) =

O(nm2 + N ) total time (Lemma 3.7).
Now, to solve the decision version of the problem, we solve the Anchor Cases with

the use of the precomputed APi−1 and ASi+1 for each i ∈ [2, n−1] inO(m2√logm+
Ni log logm) time (Section 3.2), which givesO(nm2√logm+N log logm) total time
for the whole algorithm.

For the reporting version we proceed differently to obtain an on-line algorithm;
note that this is possible because we can proceed without ASi (see Fig. 2). We thus
consider one segment T̃ [i] at the time, for each i ∈ [1, n], and do the following. We
compute 1-APi , as the union of three sets obtained from:

– The Suffix Case for T̃ [i], computed in O(m2 + Ni ) time (Lemma 3.7).
– Standard APE with 1-APi−1 as the input bit vector, computed inO(m2+Ni ) time
(Lemma 2.8).

– Anchor Case computed from APi−1 in O((m2 + Ni ) log Ni ) (Section 3.2) or
O(m3 + Ni ) time (Lemma 3.5).

If Ni ≥ m3, the algorithmof Lemma3.5works in the optimalO(m3+Ni ) = O(Ni )

time, hence we can assume that the O((m2 + Ni ) log Ni )-time algorithm is only used
when Ni ≤ m3, and thus it runs in O((m2 + Ni ) logm) time. Therefore over all i
the computations require O((nm2 + N ) logm) or O(nm3 + N ) total time. For every
segment i we can also check whether an active prefix from 1-APi−1 or from APi−1
can be completed to a full match in T̃ [i] using the algorithms of Grossi et al. from [31]
and Prefix Case, respectively, in O(m2 + Ni ) extra time.

By summing up all these we obtain Theorem 2.4.
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4 1-Mismatch EDSM

In this section, we give an alternative to the construction presented in Section 3.2, in
the case of 1- Mismatch EDSM. We do so by finding matches in a tree containing
both suffixes of P and elements from the segment T̃ [i], as well as modified versions
of those strings. The number of additional strings is bounded by using the heavy-light
decomposition of Sleator and Tarjan [45]. The construction is directly inspired by the
one presented by Thankachan et al. in [46], which is itself inspired by the k-errata
tree construction introduced by Cole et al. in [20] for indexing with errors. We give an
algorithm to find all occurrences of P in T̃ with 1 mismatch by computing sets 1-APi
under Hamming distance, which, combined with the previously developed techniques,
results in solving the 1- Mismatch EDSM problem in O(nm2 + N logm) time.

Let us start with the following basic definition.

Definition 4.1 [45] Let T be a rooted tree. The heavy path of T is the path that
starts at the root and at each node descends to the child (called heavy node) with the
largest number of leaf nodes in its subtree (ties are broken arbitrarily). The heavy-light
decomposition of T is defined recursively as a union of the heavy path of T and the
heavy path decompositions of the off-path subtrees of the heavy path. The nodes that
are not heavy nodes are called light nodes (the root of T is always a light node). An
edge on a heavy path is called heavy; and the other edges are called light.

A crucial well-known property following from Definition 4.1 is that any root-to-
leaf path crosses O(log |T |) heavy paths. Each light edge on a path from the root
decreases the size of the descending subtree by at least half. Thus the number of light
edges on a path from any node to the root is O(log |T |).

We use the above properties to efficiently construct a tree T1(P, T̃ [i]) (for a given
ED text T̃ [1 . . n] of size N , a pattern P[1 . .m] and an index 1 ≤ i ≤ n with ||T [i]|| =
Ni ) in the following three steps (inspect also Fig. 5):

Step 1 We construct the compacted trie containing the strings in T̃ [i] and suffixes
P[ j + 1 . .m] of P for each j ∈ APi−1. We call this set of suffixes of P
acti−1(P).We also add labels (ι(X), #) to each node in the tree corresponding
to a string X in acti−1(P) ∪ T̃ [i], where ι(X) is a pointer to X and # is a
special label. This takes O(m + Ni ) time and space [25] (we add the suffixes
of P inO(m) total time by constructing the suffix tree of P and truncating the
superfluous suffixes). We call T0(P, T̃ [i]) the tree we obtain from this step.
In the next steps, T0(P, T̃ [i]) will be extended with new nodes and labels to
obtain T1(P, T̃ [i]).

Step 2 We compute a heavy-light decomposition [45] of T0(P, T̃ [i]), which takes
time linear in its size, namely O(m + Ni ).

Step 3 For each light node u ofT0(P, T̃ [i]) let u′ be the leaf on the heavy path starting
at u. Leaf u′ corresponds to a string X , and for each labeled descendant v of
u outside of the heavy path u . . . u′, if Y is the string corresponding to v, we
compute p = 1 + LCP(X ,Y ) (in O(1) time after linear-time preprocessing
of the tree for LCA queries [8]) and add to T1(P, T̃ [i]) the string obtained
from Y by replacing Y [p] with X [p], with a label (ι(Y ), p) (a given node can
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store multiple labels). Intuitively, p is the position of a mismatch between (a
prefix of) X and (a prefix of) Y . Since the tree T0(P, T̃ [i]) has O(m + Ni )

nodes and each of them has O(log(m + Ni )) light node ancestors, there are
no more thanO((m + Ni ) log(m + Ni )) additional nodes and labels. Also the
construction of new nodes can be done each time in O(1) time, because we
in fact just copy a subtree of a light node and merge it with the subtree of its
heavy sibling.

We have thus arrived at the following lemma.

Lemma 4.2 The construction of T1(P, T̃ [i]) takes O((m + Ni ) log(m + Ni )) time
and space.

We now prove that the tree T1(P, T̃ [i]) satisfies the following property.

Lemma 4.3 Let X ∈ acti−1(P). A string Y ∈ T̃ [i] is at Hamming distance at most
1 from a prefix of X having length |Y | if and only if T1(P, T̃ [i]) contains two nodes
u, v respectively labeled by (ι(X), p) and (ι(Y ), p′), for some p, p′ ∈ N ∪ {#}, such
that u is a descendant of v, and one of the following is satisfied:

– p = p′ ∈ N

– p = # or p′ = #.

Proof For the forward implication, if Y is a prefix of X then the claim is trivial since
T0(P, T̃ [i]) contains nodes with labels (ι(X), #) and (ι(Y ), #), and thus the first
node is a descendant of the second one. Now, we assume that Y has one mismatch
with X ′ = X [1 . . |Y |] at a position p. Let u, v be nodes in T0(P, T̃ [i]) respectively
corresponding to X and Y , and let w be their lowest common light ancestor. Let Z
be the string corresponding to the leaf on the heavy path starting at w. Since X and
Y have a mismatch at position p, at least one of them has a mismatch with Z at
position p and there are no mismatches to the left of p. Indeed, suppose towards a
contradiction that there exists some p′ < p such that Z [p′] �= X [p′](= Y [p′]): then
the node corresponding to X [1 . . p′](= Y [1 . . p′]) would not be on the heavy path
corresponding to Z , but would be a common ancestor of u and v, and thus w would
not be the lowest common light ancestor of u and v, a contradiction.

Assume first that X [p] �= Z [p]. Then, there is a node with a label (ι(X), p) in the
tree, which is a descendant of either v, having label (ι(Y ), #) (if Y [p] = Z [p]), or a
node having label (ι(Y ), p) (if Y [p] �= Z [p]), because we assumed that X and Y do
not have any other mismatch. Finally, if X [p] = Z [p], then Y [p] �= Z [p] and the
node with label (ι(Y ), p) is an ancestor of u, having label (ι(X), #).

To prove the reverse implication, let us assume that the consequences are satisfied.
Let u be the node whose label contains (ι(X), p) and v the node whose label contains
(ι(Y ), p′).We first assume p = p′ ∈ N. Note that, by the construction ofT1(P, T̃ [i]),
the node u (resp. v) corresponds to a string obtained by one letter modification on X
(resp. on Y ) at the same position p. We denote the resulting string X̂ (resp Ŷ ). Since v

is an ancestor of u in T1(P, T̃ [i]), Ŷ is a prefix of X̂ . But this exactly means that Y is
at Hamming distance 1 to the length-|Y | prefix of X (or Hamming distance 0 if both
replacements replaced the same letter). If the second condition is satisfied, namely if

123



Theory of Computing Systems (2024) 68:1442–1467 1461

Fig. 5 T0(P, T̃ [i]) (top) and T1(P, T̃ [i]) (bottom) for the example from Fig. 4 (P = bbaaaabababb,
APi−1 = {1, 2, 4, 7, 8, 9}, T̃ [i] = {aaa, bba}) with labels (p j = ι(P[ j . .m]), t j = ι(T̃ [i][ j])) and heavy
paths
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p = # or p′ = #, then it means that one replacement in Y gives Ŷ which is a prefix
of X , or that Y is a prefix of X̂ , which is one replacement away from X , therefore we
have the claimed result. 
�

We next formalize (Algorithm 1) how to find nodes satisfying one of the conditions
from Lemma 4.3 and deduce the approximate active prefixes corresponding to the
Anchor Case for segment T̃ [i]. Let v1 OR v2 denote a bitwise OR of two vectors, and
v1 ⊕ x denote vector v1 shifted by x positions to the right (the first x positions are set
to 0).

Algorithm 1 Search(T )
1: Global variables: the set acti−1(P), a segment T̃ [i], and bit vectors V#, V1, . . ., Vm , VANY , Vres all

of size |P| + 1, and initially set to all 0’s
2: Input: T - a subtree of T1(P, T̃ [i]) with root r
3: Output: represented by global bit vector Vres
4: for each label (ι(X), p) with X ∈ T̃ [i] on r do
5: set Vp[|X |] and VANY [|X |] to 1
6: for each label (ι(X), p) with X ∈ acti−1(P) on r do
7: if p = # then
8: update Vres to Vres OR (VANY ⊕ (m − |X |)).
9: else update Vres to Vres OR ((Vp OR V#) ⊕ (m − |X |))
10: for each T ′ a subtree of T rooted at a child of r do
11: run Search(T ′)
12: for each label (ι(X), p) with X ∈ T̃ [i] on r do
13: set Vp[|X |] and VANY [|X |] to 0

Proposition 4.4 Algorithm 1 with inputT1(P, T̃ [i]) returns Vres such that Vres[p] =
1 if and only if p is an element of 1-APi corresponding to the Anchor Case for segment
T̃ [i]. Algorithm 1 runs in O((m + Ni ) log(m + Ni ) + m2) time.

Proof We first need the following remark: if P[1 . . k] extends into P[1 . . k′] in T̃ [i],
that means that some Y ∈ T̃ [i] is at Hamming distance 1 from the prefix P[k+1 . . k′]
of P[k + 1 . . |P|]. Therefore, we are looking for the pairs described in Lemma 4.3.
We show that Vres[k′] = 1 after the end of the procedure if and only if there is a
pair of nodes u, v in T1(P, T̃ [i]) satisfying the conditions of Lemma 4.3 for X =
P[k + 1 . . |P|], Y ∈ T̃ [i], and |Y | = k′ − k.

Let us assume the existence of such a pair (u, v). Since the tree is traversed in a
DFS, the node v (with a label (ι(Y ), p′), p′ ∈ N∪ {#}) is traversed before u, which is
its descendant; and at this moment, Vp′ [|Y |] is set to 1, as well as VANY [|Y |]. Since u
is a descendant of v, the vectors are not modified at position |Y | until u is visited: that
would mean that v has a strict descendant representing a string of the same length as
the string represented by v. When the label (ι(X), p) for X ∈ acti−1(P) is visited on
u, we set the position (m − |X |)+ |Y | = k′ of Vres to 1 if Vp[|Y |] = 1 or V#[|Y |] = 1
(which happens if p = p′ ∈ N∪ {#} or if p′ = #) and when p = # if VANY [|Y |] = 1.

Vice versa, if after the processing one has Vres[k′] = 1, this means that at some
point in theDFS a node u having a label (ι(X), p)with X ∈ acti−1(P) and p ∈ N∪{#}
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was visited, and that at this point, for k = m − |X |, one had VANY [k′ − k] = 1 or
Vp′ [k′ − k] = 1 for (p, p′) satisfying the conditions from Lemma 4.3. This one had
to be set previously in the DFS at a node v having label (ι(Y ), p′) for Y ∈ T̃ [i] with
|Y | = k′−k. Finally, only an ancestor of u can be chosen as such v, because otherwise,
from the DFS traversal order, the corresponding component of the vectors would have
been set to 0. Now, the pair of nodes (u, v) satisfy the conditions of Lemma 4.3, and
from our observations that means that there is an active prefix with 1 error of P having
length k, extending up to T̃ [i].

The running time follows from the fact that the algorithm visits only O((m +
Ni ) log(m + Ni )) labels by Lemma 4.2, and from the fact that the tree is traversed in
a DFS. The analysis of each label consists in reading it and doing a constant number
of bit modifications in the stored vectors, and, forO(m log(m + Ni )) of them (the one
corresponding to a suffix of P), doing an OR operation which takesO( m

log(N+m)
) time

in the word RAM model. This gives us the required running time. 
�
Corollary 4.5 1- Mismatch EDSM can be solved in O(nm2 + N logm) time.

Proof We proceed in the same way as in the reporting version of Section 3.5; the only
difference is that, when Ni ≤ m3, to extend APi−1 into 1-APi , instead of using the
O((m2 + Ni ) logm)-time algorithm, we use the one from Proposition 4.4. Due to
this change, the algorithm runs in the desired time. Indeed, notice that when Ni ≤
m3, O((Ni + m) log(m + Ni ) + m2) = O(Ni logm + m2), and when Ni ≥ m3,
O(m3 + Ni ) = O(Ni ). The total time is thus O(nm2 + N logm). 
�

5 Open Questions

While our techniques (Sections 3 and 4) seem to generalize relatively easily to k errors,
they would incur some exponential factor with respect to k.

We leave the following basic questions open:

1. Can we design a combinatorial O(nm2 + N )-time algorithm for 1-EDSM under
edit or Hamming distance?

2. Can our techniques be efficiently generalized for k > 1 errors or mismatches?
3. Can our Hamming distance improvement for 1 mismatch (Section 4) be extended

to edit distance for 1 error?
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