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ABSTRACT. In this paper we study a toy model of the Peskin prob-
lem that captures the motion of the full Peskin problem in the normal
direction and discards the tangential elastic stretching contributions.
This model takes the form of a fully nonlinear scalar contour equa-
tion. The Peskin problem is a fluid-structure interaction problem that
describes the motion of an elastic rod immersed in an incompressible
Stokes fluid. We prove global in time existence of the solution for
initial data in the critical Lipschitz space. By using a new decompo-
sition together with cancellation properties, pointwise methods allow
us to obtain the desired estimates in the Lipschitz class. Moreover, we
perform energy estimates in order to obtain that the solution lies in
the space L2([0, T1; H*?) to satisfy the contour equation pointwise.
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1. INTRODUCTION

The two-dimensional Peskin problem [26,27] is a fluid-solid interaction problem
that describes the flow of a viscous incompressible fluid in a region containing
immersed boundaries. These immersed boundaries move with the fluid and exert
forces on the fluid itself. An example of such a boundary is the flexible leaflet of
a human heart valve. The immersed boundary method was initially formulated
by Peskin to study flow patterns around heart valves [26]. This method was later
developed to solve other fluid-structure interaction problems appearing in many
different applications in physics, biology, and medical sciences [27]. The distin-
guishing feature of this method was that the entire simulation was carried out on
a Cartesian grid, and a novel procedure was formulated for imposing the effect of
the immersed boundary on the flow.

More concretely, we consider the scenario where there is an elastic rod im-
mersed in Stokes flow. Consequently, the filament, described by the simple, closed
curve

T(t) = {X(s,t) = (Xi(s,1),Xa(5,1)), s € S},

drives the fluid and generates the flow, while the flow pushes the rod and changes
its shape. This curve separates the plane into two different regions: the outer
region QO (t) and the inner region Q* (t).
Mathematically, when the tension is T () and the elastic force density takes
the form
0s X )

105X

F(X) = 3 (T<|asX|>

the Peskin problem reads (see [28] for more details)

(1.1a) - Au* = -Vp* in Q*(t),
(1.1b) V-ut=0 in Q*(t),
(1.1¢) [u] =0 onT(t),
(1.1d) [(Vu+ vul —pld)n] = f;(f()| on T (t),
(1.1e) X =u onT(t),

where n denotes the outward pointing unit normal to the free boundary I'(t), and
where [U] =U* - U".

In the particular case where each infinitesimal segment of the rod behaves like
a Hookean spring with elasticity coefficient equal to 1, we have that T(x) = «
and (1.1) provides

(1.2a) - Au* = -Vp* in Q* (1),
(1.2b) V-ut=0 in Q* (1),
(1.2¢) [u] =0 onT(t),
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(1.2d) [(Vu+Vu' —pld)n] = x| " [(t),
(1.2¢) X =u onT(t).

There is a large literature in the numerical analysis and applied mathematics
communities for this problem (see, e.g., the recent paper by Tong [31]). However,
the works developing the theory for the PDEs (1.2) are still scarce. On the one
hand, Lin & Tong [20] proved a local existence result for arbitrary H>/? initial
data. Furthermore, they also proved the global existence and exponential decay
towards equilibrium for H/? initial data near certain particular configurations.
Similar results for the case of bending and stretching energy, and as a consequence
a more complex elastic force, were obtained by Li [19] (this should be compared
with the standard Peskin problem where only stretching energy is considered).

Mori, Rodenberg, and Spirn proved in [24] a local well-posedness result for
(1.2) for initial data of arbitrary size in the /ittle Holder space 'Y, y > 0. In
addition, these authors also proved that the solution becomes C" for arbitrary n
in arbitrarily short amount of time, and that the above unique local solutions are
global and decay exponentially toward a uniformly distributed circle of positive
radius when the initial data is small in the h!"Y topology.

The authors of [24] proved the above results taking advantage of the contour
dynamics formulation of the problem (1.2). Indeed, if we drop the t from the
notation the system (1.2) can be equivalently written as the following nonlinear
and nonlocal system of 2 equations for X [20, 24]:

(1.3) X (s) = p.v. Ll G(X(s) - X(0))d2X(o)do.

Here, the kernel G is the so-called Stokeslet

1 zZ®z
G(z)=:Z;;<—Jog|z|I+- )

[z|?

Very recently, Garcia-Juarez, Mori, and Strain [16] proved a global well-posedness
result for the Peskin problem when two fluids with different viscosities are consid-
ered. Their result applies for medium-size initial interfaces in critical spaces akin
to the Wiener algebra, and shows instant analytic smoothing.

As noted before [20, 24], the Peskin problem has certain similarities with the
Muskat problem (see [1,2,4-6, 10, 13-15,18,22,23,25,29] and the references
therein)

ut = —Vp* —p*(0,1) inQ=(t),

V-ut=0 in Q= (1),
[p] =0 onT(t),
ox=u-n onI'(t).



First of all, both free boundary problems can be written as contour equations akin
to (1.3). Indeed, the Muskat problem when the fluids are separated by the graph
of a function x (s, t) € R, can be written as

Orx(s) = p.v. Ll K(x(s) —x(0))(x'(s) —x'(0))do,

where the kernel K is a nonlinear version of the Hilbert transform [10]. Also,
both systems have a natural energy balance; in the case of the Muskat problem,
the energy law reads

T
LTI (D) o + 2 | 10O sy dt = =TT ol s

while for the Peskin problem, the energy balance is

T
R 2 N2
X" (D)[72(s1) + 2Jo IVu )|z ge) dt = [[Xo] L2 s1)-

In both cases the energy balance is too weak, by itself, to provide us with global
existence of weak solutions. Some other similarities appear at the linear level, but
before stating that we need to introduce some notation. Let us recall the definition
of the periodic Hilbert transform

Hf(s) = %p.v. ng cot(/2) f(s — &) dex.

Then, we define the Lambda operator Af = H 05 f. With this notation observe
that the linearized Peskin problem (around the unitary circle) is [20, Lemma 6.2]

1 10 -H
(1.4) oY =-ZAY+ (g_[ 0 )y,
while the linear Muskat problem equals

(15) at_')/ = @Aj}.

Then, we notice that, despite its numerous similarities, the Peskin problem and
the Muskat problem are rather different; this difference is already clear at the linear
level. The first stark difference can be immediately deduced comparing (1.4) with
(1.5); while (1.5) has a diffusive operator that behaves well for Wk>, k € N
functions, the linearized Peskin problem (1.4) is necessarily more challenging in
the same functional setting becasue of the unboundedness of the Hilbert transform
H in L* and the coupling of both unknowns in the system. This problem is also
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present in the toy model that we study in the present manuscript; notice that, if we
denote with J the symplectic matrix, the term —JH Y appearing on the righthand
side of (1.4) codifies an inertial displacement.

Furthermore, if we decouple the linear Peskin problem we find additional
differences. Indeed, if we take a time derivative, we find that

21 _ 1 1 2 1 11 <_l 2,1 1)
Y = —ZAQY = ZH QY = — gAY - 2 H (— AV + 23 Y!).
Taking a space derivative of the equation for Y! we obtain that
0rosY! + Iro Yyl = —1Ay2
tUs 4 s 4 .
Substituting the latter expression we conclude that
oFY! = Iao Yyl - Lo <a sy + Iro Y+ lg{yl)
t 4 t 4 t Us 4 S 4 .

Using the properties of the Hilbert transform for zero-mean functions we find the
linear Klein-Gordon-like equation

1 1 1
oY + SAoY = 1_6852y+ 1Y

for each component. This equation is very different from the parabolic equation
for the Muskat problem.

On the other hand, in the Peskin problem it is not possible to reparameterize
the contour equation at convenience to obtain the same nonlinear solution. While
the reparameterization freedom in free boundary problems for incompressible flu-
ids have been extensively used as a help to deal with the nonlinear structure of
nonlocal equations, the Peskin problem is sensible to reparameterizations in the
sense that concentration of particles in the rod affects the elastic dynamics. Thus,
different reparameterizations give rise to different dynamics and can converge to
different steady state as time goes to infinity [16, 20, 24]. Nevertheless, the right-
hand side of the nonlocal system (1.3) is invariant with respect to translations, so
that the appropriate time-dependent translation M (t) allows us to control some
linear contributions which arise in the dynamics of the linearized version of (1.3).

Additionally, the Peskin problem lacks a divergence-form structure. This is
another rather big difference compared to the Muskat problem, and makes passing
to the limit in the weak formulation a rather delicate issue. To overcome this
challenge we will use energy estimates in H'. This energy estimate will give the
parabolic effect which will need to be passed to the limit in the weak formulation.

To better understand the mathematical subtleties and challenges of the Pe-
skin problem, in this work we consider a scalar model of the Peskin problem (see
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equation (2.4) below). This toy model, which we denote from now on with the
name of N-Peskin problem, takes the form of a fully nonlinear contour equation;
it shares most of the difficulties mentioned above but discards the contributions of
the motion because of tangential elastic stretching of the rod. The study of scalar
toy models in fluid dynamics is a classical research area that goes back to the work
of Constantin-Lax-Majda [7].

The plan of the paper is as follows. In Section 2 we present our main result and
the methodology. Furthermore, we also introduce there the N-Peskin problem.
In Section 3, we state several pointwise bounds for singular integral operators.
In Section 4 we prove the a priori estimates showing the decay in the Lipschitz
norm. Later, in Section 5 we prove the 4 priori estimates in Sobolev spaces. These
estimates are lower order but allow us to use the parabolic gain of regularity. In
Section 6 we prove the estimates for the time derivative of the solution. These
estimates are required to ensure the compactness required to pass to the limit in
the weak formulation. Finally, in Section 7 we prove the main result of this paper.

1.1. Notation. We denote with C' any positive constant whose value is in-
dependent of the physical parameters of the problem; the explicit value of C' may
vary from line to line. We write A S Bif A<CBand A ~Bif A<Band B < A.

We denote by P € C* ([0, 1); R;) any universal function such that 2(0) > 0
and such that for any y € [0, %] there exists a N for which the bound P(y) <
C(1 + »)N holds true. The explicit value of P may vary from line to line.

The one dimensional torus (i.e., the interval [—17, 7T] endowed with periodic
boundary conditions) is denoted by S!. Given any f € C!(S') we denote with
f' the covariant derivative of f onto S! endowed with the Euclidean metric, and
f® denotes the operator -’ iterated k times. We define Af = H f’ and recall that

such an operator can be expressed as the Fourier multiplier X} (n) = |n| f (n).
We can thus define the Sobolev spaces of fractional order (here, S denotes the
periodic Schwartz class and Sy the periodic Schwartz class with zero average) as

HS(SY) ={f eS| (1+ANfel?,
HY(SY) = {f € S{ | ASf € L?},

for any s € R. Forany (p,k) € [1, o] x N we make the denotation of

wkp(shy = {f e S| f,f® e LP(SH)},
WkP(sh) = {f € S5 | f& e LP(SH}.

We use the notation

LP =[P (SY), Hf=H(SY), wkpr=wkrsh),
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for functional spaces defined on the one-dimensional torus. Additionally, we use
the simplified notation

s
JOdS=p.V.J -ds=p.v.J e ds,
S! -

to indicate Cauchy principal value integrals on the one-dimensional torus.

2. MAIN RESULT AND METHODOLOGY
2.1. Derivation of the N-Peskin problem. As we have seen before, the
Peskin problem can be written as the following contour equations:
(30X (s,t) = JG(X(S, t) - X(o, )X (o, 1) do,
G(z) = G1(2) + G2(2),

(P) 1 _ 1
Gi1(2) = 4Trloglzll,
1l zez 1 Z% 2123
sz(z) T 4T |z2 T 4m|z)? <2122 z5 )

In this section we present the model of the Peskin problem that we consider in
this work.

To simplify the notation we write y = y(s) = (coss,sins) and Y(s,t) =
(1 + h(s,t))y(s). Then, let us suppose that

(2.1) X(s,t) =M(t) + Y(s,0),

where we define the point M (t) as the solution of the following ODE in terms of
h(s,t):

2.2) %M(t) = %%Jh(S,t)(cos(S),sin(S))dS.

Roughly speaking, we use this M (t) to control the inertial effects of the system.
Mathematically, this unknown is required in order to absorb a low-order nonlocal
linear contribution akin to the first Fourier mode.

With the ansatz (2.1) the evolution equation (P) becomes

0;Y(s,t) + %M(t) = JG(Y(S, H-Y(o,t)Y " (o,t)do.
We can further compute

y(5) duh(s) + <M (1) = jG((l Ry () - (1+ k(o) y()
X [y(o)(hW' (o) —1=h(0)) +2y (o)h' (0)]do.



We write

1) = [ G+ R6NY(6) = 1+ h(@)y()

X [y(o)(hW' (o) —1-h(0)) +2y' (o)h' (0)]do
B(s) = | Ga((1+ RNy () - (+ (o) (@)

X [y(o)(hW' (o) —1-h(0)) +2y'(o)h' (0)]do

so that
(2.3) y(5) 3h(s) = [1(s) + Ix(s) — %Mm.

The system composed of the equations (2.2) and (2.3) describes the full Peskin
problem (see (P)), with the assumption that the elastic rod is a graph on the unitary
circle.

Taking the scalar product of (2.3) with y(s), we derive the scalar evolution
equation

(2.4) Oth(s,t) = y(s) - Li(s,t) + y(s) - Ir(s,t) — y(s) - —M(t)

We propose equation (2.4) as a scalar model of the full Peskin problem. However,
as the tangential velocity is neglected in our approach, we name this equation the
N-Peskin problem.

Let us simplify (2.4). Using classical trigonometric identities, the first term
can be explicitly written as

y(s) - T (s) = J—%log(l(l FR())Y(s) = (1 +h(@)y)])
[cos(S —o)(h' (o) -1-h(0)) +2sin(s —o)h'(0)]do

J < log (11 + h(s)y(s) = (1+ h(o)y (o)) 23
X [cos(S—U)(1+h(U))] o

Let us now simplify the expression of the second kernel G,. We have that

y($) - G2((1 + h(s)y(s) — (1 +h(o))y(o)) - y(o)

— %Yi(.?)((l +h(s)yi(s) = (1 + h()yi(0))

o (0Fh()y;(s) = (1 +h(0))y;(0))y(0)
| (1+h(s)y(s) = (1+h(a)y(o)|?
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= i[1 +h(s)—(1+h(o))cos(s —0)]
417

« [(1+h(s))cos(s —0) — (1 +h(0))]
(I1+h(s)2+(1+h(0))2=2(1+h(s)(1+h(g))cos(s—0)’

and
y($) - Ga((1 + h(s)y(s) — (1 +h(o)y(o)) -y (0)

_ %yi(s)((l +h()yi(s) = (1 +h(a)yi(o))
((1+Rh(s)y;(s) = (1 + 1(0))yj(0)) Y} (o)
[(1+h(s)y(s) = (1+h(o)y(o) |2

1 [1+h(s) = +h(0))cos(s —0)](1 + h(s))sin(s — 0)
4T (1 +h(s)2+ (1 +h(0))2=2(1+h(s)(1+h(g))cos(s — )’

After the change of variables 0 = s — &, we find that

y(s) - Ir(s)

1 [1+h(s)—(1+h(s—0a))cosx][(1+h(s))cosx—(1+h(s—x))]

T 4m 1T+h(s))2+(1+h(s—a))2-2(1+h(s))(1+ h(s - &)) cosx
X' (s—o)—1-h(s - x)dx

1
+ E(l + h(s))

XJ [1+h(s)—(1+h(s—oa))cosa]sinx
(IT+h(s)2+(1+h(s—x)2=2(1+h(s))(1+h(s—x))cosx
x h' (s — &) d«.

Collecting the previous expressions and changing variables, we conclude the
following scalar equation for h:

2.5) mmw+mw-%M

= —8% {log((l +h(s)2+(1+h(s—a)?>=2(1+h(s))(1+h(s - «))cos x)

x 0%[ cos (1 + h(s — (x))]}d(x

. LJ [1+h(s)—(1+h(s—o))cosx] [(1+h(s))cosx—(1+h(s—x))]
41T (1+h(s))2+ (1 +h(s—a)2—-2(1+h(s))(1+h(s—x))cosx
X (h'(s-—x)—1-h(s - x)dx

1
+ E(l + h(s))

XJ’ [1+h(s)—(1+h(s—))cos]sin
1+h(s)2+Q+h(s—x))2=2(1+h(s))(1+h(s—&))cosx
x h' (s — &) dex.

Then, we define the following notion of weak solution.
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Definition 2.1. We say that h € L'(S! x [0,T)) is a weak solution of the
N-Peskin problem (2.5) if the following identities hold true:

- JQ?(S,O)ho(S)ds
’ 1
- Jo J(at"?“’”h“’t) + 7A@ (s, DA, 1) —N(h(s,t))q?(s,t)> dsdt,

forall € CZ(S! x [0,T)), where N is the nonlinearity

N(h(s,t)) — %Ah(s, t) +y(s) - <%% jh(s, t)(cos(s),sin(s)) ds)
= r.h.s. of (2.9).

2.2, The linear h-M formulation of the Peskin problem. In order to better
understand the role of M(t) and the reason behind its definition through the
aforementioned ODE, we are going to compute the linearized Peskin problem in
the h — M formulation. The linear Peskin problem for arbitrary curves can be
expressed as (1.4). In the radial configuration we have that

VYi(s,t) =7r(s,t)coss + My (t), VYo(s,t) =7r(s,t)sins + M,(t),

where ¥ (s,t) = 1 + h(s,t). Thus, multiplying (1.4) by y, we obtain that

d
Orr(s,t) + EM(U - y(s)

= —%[COS(S)A(T(S,t)COS(S)) + sin(S)A(7r (s, t)sin(s))]

+ %[— cos($)H (r(s,t)sin(s)) + sin(s)H (v (s, t) cos(s))]
=11+ L.

Dropping the t from the notation, we compute that

_ % cos(S)A(¥ cos) (s)

= L cos(s) JCOt(O(/Z)(T(S — ) cos(s — )" dex,
81

= L cos(s) Jcot((x/Z) 0x (Y (s — ) cos(s — x) —r(s)coss)de,
8t

_ 1 e 1 _ -
= g 8 (S)J2sin2((x/2) (r(s — ) cosox — 7 (s)) de,

1 . 1 )
+ Frye sin(s) cos(s) J mr(s — o) sin(x) de,
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and

- % sin($)A (7 sin) (s)

L sin(s) jcot(a/Z)(T(S - o) sin(s — &) dg,
81

= 1 sin(s) Jcot(cx/2) Ox(r (s — o) sin(s — &) — r(s)sins) de,
81

=L g2 ! _ -
= gy Sin (s)j2 S (o/2) (r(s — o) cosx —r(s)) de,

(s — ) sin(x) dx.

— L sin(s) cos(s) J

81 2(o</2)

As a consequence, we obtain

11 1

Li=-—" | ————
YT 42w ) 2sin(x)2)

r(s—ax)cosx —7r(s))dux.

In a similar fashion, we compute

11 5
L, = 39 cos”(x/2)r (s — ) dex.

Summing up these two expressions and substituting ¥ = 1 + h, we conclude that

d . 11 his)—h(s — x)
(2.6) oth(s) + dtM(t) y(s) = 421 2sin*(o¢/2)

+ ——Jh(s — o) cos X dx.

We see now that in the h-M formulation the Peskin problem is parabolic at the
linear level with a nonlocal zeroth-order forcing term. Moreover, we can compute

%M(t) y(s) = jh((x t)(cos(a),sin(xx)) - (cos(s),sin(s)) da

= Z% Jh(a, t) cos(s — o) dex.

As a consequence, we also realize that the ODE for M (t) is designed to absorb
some of the linear contributions.

2.3. Main result. It is known [24, Section 5] that the set of stationary so-
lutions of (P) comprises uniformly parametrized circles. As a consequence, the
equilibrium configurations are determined by the center and radius of the sta-
tionary, uniformly parametrized, circle. Without loss of generality, we assume in
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what follows that the radius of the equilibrium circle equals one (different values
can be handled similarly). The purpose of this paper is to establish the global
existence and decay to equilibrium for (2.5) in the case of Lipschitz initial data
Xo(s) € WH=(S!) sufficiently close to an equilibrium configuration.

In particular, the following theorem is the main result of the present manu-
script.

Theorem 2.2. Let ho(s) € WE™(S') be the initial data for (2.5). There exists
a universal constant 0 < ¢y < 1 such that if hg satisfies |ho w1~ (s1)y < Co, then there
exists a global-in-time weak solution of (2.5) in the sense of Definition 2.1 which
belongs to the energy space
h e L*([0,T); Wh>(S1))
NC(0,T); H'(SY)) nL2([0,T); H*(S")), VT € (0, ).

Furthermore, for any 0 < 1 < t < T we have that
|h(t) lwresty < [holwie(sy  and |0 () |=s1) < [hglresne™®,
for a small enough 6(ho) > 0.
We comment that (P) is invariant with respect to the transformation

Xa(s,t) = %X(AS,At), A e N\ {0}.

Thus, L® (0, T; Wh*(S!)) is critical with respect to the previous scaling.

2.4. Methodology. Let us explain the main ideas behind Theorem 2.2 using
a simpler equation. We consider the following equation:

orf + f/Af+Af =0.

Using pointwise methods as in [9, 11], we can obtain the bounds

Ll <0
for initial data such that
|folwie < 1.

Then, we conclude the @ priori estimates in the Lipschitz class. For equations
in divergence form, such estimates would lead to the global existence of weak
solution via a vanishing viscosity-type argument [8, 17]. However, for equations
in non-divergence form, it is not obvious how to translate the previous bound
into the global existence of weak solutions. When comparing the Peskin and the
Muskat problem we see that this is an additional challenge that is inherent to the
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Peskin problem. To overcome this difficulty, we perform an additional H! energy
estimate. A careful study of the nonlinearity will give us the appropriate bounds.
Indeed, we have that

~[rrpagas =2 j(f’)zAf' ds

ls — o2

L (0) — F(5))
2ﬂ(f( P o s

| 2

(f'(s)— f'(0))
4 J((f (50 = (1o =L o as
L[, CfU(s) = Fa))?
-7 [ s pen =T do as
|f |L°° |f |H1/2

Thus, both estimates combined lead to a bound in f € L2([0, T]; H3/?). With
this parabolic effect we have the strong convergence of f’, A f, and this allows us
to pass to the limit in the weak formulation.
Then, the proof of Theorem 2.2 of this work can be summarized as follows:
(1) Using pointwise methods we conclude that, for initial data close enough
to the equilibrium, the solution decays in the Lipschitz norm. The pur-
pose of Proposition 4.1 is to prove the previous claim. The decay in W1
is a crucial point in the argument as it will allow us to obtain the parabolic
gain of regularity. Furthermore, the exponential decay of this norm en-
sures that the point M (t) remains uniformly in a ball for every 0 < t < co.
(2) The decay in the Lipschitz norm is then used to find a global estimate in

L2([0, T]; H3'?).

(3) We invoke the parabolic gain of regularity obtained before to conclude
the strong convergence of the derivative.

3. POINTWISE ESTIMATES FOR THE A OPERATOR

In this section we collect some pointwise estimates for the fractional Laplacian
that will be used in the sequel and that may be of independent interest. We start
with a lemma that compares the Lambda and the Hilbert transform.

Lemma 3.1. Let f be a smooth function and define s, s € SY, such that
f'(3) = max f'(s), S (s) = min f'(s).
seSs! seS!
Then,
Af'(5) = Af(5) =0, Af'(s) = Af(s) <0.

13



Proof. We know that

I (f')—-f'(s-0)
2sin?(x/2)

Af(s) = e Jcot(cx/2)(f’(s) - f'(s — ),

/\f()—

’

so that
1 + sin(x)

ASf'(s) = Af(s) = 252 (0/2)

(f () = f'(s =),
and the claim follows since the integration kernel is non-negative and

@) -fE-x0)20, f(s)-f(s—a) =<0

O

Furthermore, we observe that for zero-mean functions we have the following

Poincaré-type pointwise inequalities (see [3] e.g.):

3.1) F($) < CAf(5), —f(s) < -CAf(s).

We will apply the relations in (3.1) to h'; in fact, it is a straightforward computa-
tion to show that, by the incompressibility of the flow, h has zero average if and

only if h = 0. Hence, the relations in (3.1) cannor be applied to h.

Much as in the proof of Lemma 3.1, we can prove the following result.

Lemma 3.2. Let f be a smooth function and define 3, s € S', such that
S1(3) = max f'(s), f'(s) = minf'(s).
sest sest

Letb = b() = 0 for every & € S, and let us define the operators

LB
Apf(s) = 2nJ2 e ()~ f s~ o) dey
1 b(O()

Hpf(s) = ————(f'(s) = f' (s — ).

tan(x/2)
Then, we have Apf(5) — Hpf(5) = 0 and Apf(s) — Hpf(s) <O0.

Finally, let us provide an alternative expression for Af’ when f is C*(S!).
This expression will be very useful when performing the pointwise estimates. We

know that

oy - L (fS)=fls—a
AS(s) = 21T 2sin’(x/2)
Jaa[f (s)ax = (f(s) - f(S—tx))]
2sin® (ax/2)

14



Integrating by parts and exploiting the regularity f € C*(S!), we obtain that

by L) o= (f(s) = f(s—00)
Af'(s) = = J s (x/2) cos(x/2) dex.

(3.2)

4. A Priori ESTIMATES IN W

Let us introduce some notation that will simplify the exposition. For a smooth
function h and any n € N let us denote the applications t — s* and t — s"t such
that

R (57, £) = max{h™ (s, )} = max{9§'h} (s, 1),

R (sf',t) = min{h™ (s,t)} = min{o{'h} (s, t).

Let us define the auxiliary functions

r(s) =1+ h(s),
4.1) 0(s,s —x)=h(s)—h(s — x),
nis,s — o, &) = h(s) —h(s — ) cos «.

Thus, we have that

l+hs—ax)=7r—-0, h'(s—&)=—-0xh(s — x) = 0x0.

Finally, we denote

w2 0=0(s{,s0 — ), A=n(sds)— ), 7=7(s),
. 0=00s,s) -0, n=n(st,s{—x), r=r(sp).

In the present section we prove that the unitary circumference y is globally
stable under small W1* perturbations which are graphs on the unitary circle. The
detailed statement is formulated in the following proposition.

Proposition 4.1. Let T* € (0,00] and h = h(s,t) be a C([0,T*]1;C?) so-
lution of (2.5) such that hli—o = ho. Then, there exists a co > 0 such that if
lholwie < co the following inequality holds:

[h(t)lwie < |holwe VO<t<T™.

Furthermore, there isa 6 > 0 such that |h' (t)|1~ < |hg|~e 0t
The proof of this proposition is based on pointwise methods as in [11,12]. In
particular, we will obtain the inequality

% [h(t)|wi> <0 almost everywhere in t,
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for small enough initial data. Integrating in time will lead to the maximum prin-
ciple for this norm. Once the maximum principle is obtained, we can even obtain
the exponential decay of the norm.

4.1. Estimates in L. We consider now (2.5). With the notation intro-
duced in (4.1) combined with the elementary identity 1 — cosx = 2sin?(/2),
we can deduce that

dch(s) + y(s) - %M — J1(5) + Ja(s) + J5(s),
where

(4.3a) Ji = _SLTF Jlog(4T(T —0)sin’(x/2) + 02) %[ (r — 0) cos ] d,
~ 1 [2rsin*(«/2) + 0 cos ] [27 sin*(«/2) — 0]

(4.3b)  J2= 411 J 47 (r — 0) sin*(x/2) + 62

X (040 + (r — 0)) de,

v [27sin®(«/2) + 0 cos «] sin(e)
S 2 4r(r — 0)sin®(x/2) + 62

(4.30)  J3

0x0da.

Bound of J1 Let us decompose
Ji=Jiy+Jii+tJi2+J15

where

Jiy = SL Jlog(4?’(?’ — 0)sin®(x/2) + 02) cos x de,
™

1 47 940 sin*(x/2)
_ L dxn da,
Ju= g 4r(r — 0)sin(/2) + 02 0T
1 2r (v — 0) sin(x)
__ L dxn da,
1.2 871 J 4 (r — 0) sin®(ox/2) + 02 alp X
1 200,06
Jis = X danda.

81 ) 4r(r — 0)sin®(x/2) + 02

We analyze now the term J;,,. We use the Taylor expansion of the logarithm
to find that

_ - 2 2y _ _Q 972>
log(dr(r = O)sin”ley/2) + 07) = log (1 v drsin()2)
+ log(41f2 sin®(x/2))

< log(4?f2 sin®(o¢/2)) — g +P(|h |iw)

16



As a consequence of the previous estimate, we find for J 1‘3’(5? ) the bound

(4.4) Jl,y(g) <-— Jlog(4r sin(&/2)) cos x dx
- ZEjQCOSO(dO(+T(|h|w1,w)|h|wl,w|h,|Lw,

so that in (4.4) we isolate static, linear-end nonlinear contributions to the evolu-
tion of |h|r~.

Since the term Ji ; (SéJ ) is not a singular integral it can be bounded straight-
forwardly, and we conclude that

(4.5) J1,1(s?) < P(hlyre) |l [0 (.

We start studying the term J; . We comment that

11 02
S 2) danda,
Ji2== g5 < 4r(r—9)sin2((x/2)+92)C°t(“/ ) Oty dex

= Ji21+ 1211
The smallness of h and the positivity of 0 allow us to deduce that

0 0

s0) = — - dan d
Nan(st) = g | 427 = 0 sin(ay2) + 02 an(a/2) 214
hlwreP(h|yre Ji
< |hlw1=P(|h|wi=) Tl (x/2) [0
Thus, considering that
n=0+2h(s - x)sin*(x/2),
we obtain
o 11 0 ___J _
4.6)  Jialse) < -5 T (a/2) do — 75— h(s? — ) da
hlwreP (|l Jid
+ [lwreP(|Rly1=) Tl (x/2) IO
We rearrange the term J;,3 (E) as follows:
. 2
Jis = 11 0 4sin“(ot/2) 040 dun da.

421 ) 2sin?(x/2) 47 (r — 0) sin(x/2) + 02

17



The last term J; 3 (E) can easily be controlled as follows:

(4.7) 13D < Tl P (1Rl >fm

We combine the estimates (4.4), (4.5), (4.6), and (4.7) and obtain the bound

11 0

O O N §73 Errerpr kil

- ——J(st o) dox — ——j@cos(xd(x

hlwresP (|l ji
+ |hlwr=P(lhlwi) 2n((x/2)o‘
+ P(lhlwr) Ry R =
+ ——jlog(41’ sin?(&/2)) cos x dex.

Bound of ]J,. We study now the term J,. To do this, we decompose it as
J2 = Joy + J21 + J2,2, where

1 ([ [27sin®(/2) + 0 cos ] [27 sin*(x/2) — O]

For = 4r(r — 0)sin®(/2) + 02 rae
[ [2r sin(/2) + 0 cos ] [27 sin” (t/2) = 0]
M7 n 4r(r — 0) sin*(/2) + 62 !
1 [27 sin®(2¢/2) + 0 cos a] [27 sin’ (x/2) — 9])
Jaz2 = ja“ ( 47 (r — 0) sin®(t/2) + 02 Ou6 dex.

We start analyzing the term J,,,. We write

. 472 sin’ («/2)
2741t ) 4r(r - 0) sin(«)2) + 02

B . 9 B 02 cos(x) }
><|:(1’ 0)sin“(x/2) 741’sin2(0(/2) de,

412sin*(x/2)
4r2sin*(/2) — 4rOsin’(/2) + 02

[
1 ¥ 4r2sin?(x/2)

o, o,
Y 4r2sin®(ot/2) Y 4r2sin*(x/2)

(9_972)”
\r 4r2sin®(x/2))
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where the convergence of the series is ensured by the smallness of h in W,
Then, noticing that

(1+§)(r—9):”2;92,

we deduce that
r 1

(4.9) Joy(s9) = 39 sin’ (o¢/2) dex + P(|hlyi=) Rl |0 |

Next, we study the term J;,;. Using similar computations as the ones per-
formed for the term J3,y, we can reformulate it as

1 4r%sin’(x/2)
410 ) 4 (r — 0) sin®(x/2) + 02
3
x [(1 - Q) 0sin?(o/2) — M} do

r 472 sin”(x/2)

J21 =

From the previous expression we can deduce the estimate
@100 aGh < - [ Bsind(@/2) doc+ PRy il [,

At last we study the term J5,. We decompose it as

J22 = Jop1 + J2ou + J22,10,

where
. J —47r 340sin*(«/2) + 21 (r — 0) sin(ex) + 20 340
27 S (47 (r — 0) sin®(x/2) + 02)2
X (27 sin®(&/2) + 0 cos @) (27 sin®(x/2) — 0) 940 d«,
1 [ (rsin(x) + 040 cos & — Osin &) (27 sin*(/2) — 0)
- 940 dex,
Joan ==z 4r(r — 0)sin2(ct/2) + 02 o x
1 [ rsin®(/2) + 0 cos ) (¥ sin(x) — dx0)
- 0,0 dex.
Jr2m = =70 Gr(r — 0)sin2(t/2) + 02 afd

Let us consider at first Jz,z,I(E)- Recalling

[27 sin®(x/2) + 0 cos ] [27 sin® (x/2) — O]
41 (r — 0) sin*(/2) + 02

B 412 sin% (o /2) 0\ ., 62 cos(x)
T 4r(r — 0)sin®(x/2) + 02 (1 - r) SN e/2) = i @) |
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using similar computations as before, we can compute

(2¥ sin®(x/2) + 0 cos &) (2¥ sin*(¢/2) — 0)
(4r (r — 0)sin®(x/2) + 02)2

o0 ¢
N [1 " gl <§ N ﬁjm/z» ] [(1 - g) N 4722;1?45((2/)2)]
1

X

02

4v(r — 0) + 7sin2((x/2)

Then, using the positivity of 0, we have that

— 11 (- 0
0 - 1,00 1,00 —_—
Jao1(8)) < e JQcoscxdcx+ [ wieP(|h]w, )J2sin2((x/2) dx
+ T(|I’l|wl,m)|l’l|wl,m |I’l,|Loo.

Very similar bounds hold for J2 21 (Q) and Jz,z,m(g): namely,

Jzzn(St)_24 Jecos(xd(x+|h|W1wT(|h|w1 )[
T+ Pl Rl 17 ]2,

———d«
2 sin (0(/2)

JzzIH(St)_24 jecos(xd(x+|h|W1wT(|h|w1 )j
T+ P(hlye) Rl 1R ]

2si 2(o</2) dox

Thus, we obtain

(4 11) J22(S ) < ——JQCOSO(dO(-i- |I’l|Wlm?(|I’l|Wl )Jm X
+ P(lhlwr=) h|wre R |,

We combine the estimates (4.9), (4.10), and (4.11), and deduce that
(4.12) J2(s?) < g% Jsinz((x/2) de
- L Jésinz((x/2) do + —2— JQcos(xd(x

+ [|h|wr=P(lh Ji
[nlw1=P(Ih|w1) Yot (/2) Io
+ P(lhlwre) [Rlwi= [R .
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Bound of J5. We decompose J3 as J3 = J3,1 + J32, with

r 27 sin? (¢/2) sin ()
_ 040 dex,
T30 = o 4r(r — 0)sin’(a/2) + 02 24X
o = r 0 cos(x) sin( ) 940 dex.

210 ) 4 (r — 0)sin®(/2) + 02

Using a Taylor expansion we know that

J31(St =9 J[ 2

from which we easily deduce the bound

(0 02 )f]sin(a)aae o

\r 4r2sin’(a/2) 2 ’

=, _ 11 " Y A
J3.1(s9) < Jecos(o()do(+|h|w P(lhfw, )stn((x/2) &

The term J3, can be handled similarly and, in fact,

J32(5t) < |hlwr=P (Rl )jm *

Collecting the previous estimates we deduce the desired bound for J3:
(413) _]3(?) < —=— j 9COS(O() dox + |h|W1°°?(|h|W1°°) j m do

The equation for the evolution of |h|;~. We sum the inequalities (4.8),
(4.12), and (4.13), and obtain the bound

J1(5?)+Jz(st)+Js(S )
< - jlog(Zf sin(e/2)) cos(e) dex + 4L jsinz((x/2) do
1 1
— o1 |hlpe ] [ —2
1= e PRl [ s ey
- ——j@(l + cos(o)) dex — ——Jh(st - x)dax
+ P([hlyr=) Rl [R .

Using pointwise methods as in [11, 12], we have that

%max{h(s H} = ath@) amost everywhere.
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Recalling equation (2.5), we obtain that

d
EiréaX{h(S £} + y(S ) -

< jlog(Zf sin(/2)) cos(x) dex + 4L jsinz((x/2) dox
1 1
— ——[1— |hly~ )] | ————
01— e PRl [ 5 i
———j@(l-f—cos((X))d(X———Jh(St ) dx
+ P(lhlwie) [Rlwrs [R [

Since

dyy_11 _ |
y(s)-dtM—42nJh(s o) cos(x)dex, Vs eSS

. o

ﬁ Jlog(Zf sin(0/2)) cos () dex + L Jsinz((x/2) dot = h(jf)
11 (5. 11 _ h(s?)

_42Trj9d jh(gf T4

- ——JQCOS(O() da = ——Jh(st — &) cos() dex,

we obrtain that the evolution equation for maxsesi {h(s,t)} can be estimated as
-«
2sin“ (o /2)

d 11
st )_———[1—|h|W1,m:P<|h|W1,m>]j

42
+ P(lhlwrie) [Rlwres R [
We can perform the same computations for the quantity
—min{h(s,t)} = —h(s),
ses! -
and obtain the bound
d 1
~L minth(s, 0} < ~ £ 511~ [y (Rl [
+ P(lhlwre) [Rlwre [R' L.

————d«x
2sin ((x/2)

As a consequence, using that the A operator has a sign together with the definition
of the L® norm, we have that

d ,
(4.14) q¢ M = PUhlwre) [hlwre [R L.
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4.2. Estimates in W*. We have to find the evolution equation for h'. To
do this, we differentiate now Ji, integrate by parts in «, and use

05lcos (1 + h(s — x))] = —0x[sin (1 + (s — )] — dxlcos(x)h' (s — )]

to obtain

(415) Ji(5) = 35
J{ (1+h(s)h'(s)+ (1 +h(s—-x))h'(s - x)
(1+h(s)?2+(1+h(s—x))?=2(1+h(s))(1+ h(s - «)) cos(x)
M)A +h(s—x)+(1+h(s)h'(s — &) cosx
- 1+h(s)2+ (1 +h(s—x))2=2(1+h(s))(1+ h(s—&))cos(x)

X Oxlsin(ex)(1 + h(s — (x))]}d(x

_ lLJ’{ —(1+h(s)h'(s) + h' (s)(1 + h(s — &) cos x)
221 1+h(s)2+ (1 +h(s—x))2=2(1+h(s))(1+ h(s—&))cos(x)
(I1+h(s)(1+h(s - x)sinx
- 1+h(s)2+ (1 +h(s—x))2=2(1+h(s))(1+ h(s—&))cos(x)

X Oxlcosaxh’ (s — (x)]} de.

Using the trigonometric identity 1 — cos(x) = sin(x/2), taking a derivative of
the term J», and using

Os(hM"(s—a) =1 -h(s—x) = —0x(h' (s —x) =1 —-h(s — ),

we find that
J5(s)

J{ [W(s)—h'(s—&)cosax] [(1 +h(s))cosax— (1 +h(s—x))]
T 4t (1+h(s)2+ (1 +h(s—x)2—-2(1+h(s))(1+h(s—x))cos(x)
[1+h(s)—(1+h(s—a))cosx][h' (s)cosax —h' (s — )] }
(1+h(s)2+ (1 +h(s—x)2-2(1+h(s))(1+h(s—x))cos(x)
x(h'(s-—a)—1-h(s - x)dx
1 {[1+h(s)—(1+h(s—o<))coso<][(l+h(s))cosa—(1+h(s—a))]
21 ((1+h(s))2+(1+h(5—(x))2—2(1+h(5))(1+h(5—o())cos(o())2

X [(1 YR () + (1 +h(s— o) (s — &)

— (1 +h)R (s =) + (1 +h(s— x)h'(s)) cos (x]}

X (W' (s—o)—1-h(s - x)dx
1 [1+h(s)—(1+h(s—a))cosx][(1 +h(s))cosax— (1 +h(s—x))]
T 41 (1+h(s)2+(1+h(s—00))2=2(1+h(s)(1+h(s—x))cos(x)
X 0" (s =) =1 -h(s - x))dax.
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We can now integrate by parts in « and obtain that
(4.16)  J3(s)

J{[h’(s) + (1+h(s—a)sin(e)][(1 +h(s))cosx— (1 +h(s —x))]
(I+h(s))?2+(1+h(s—a)2-2(1+h(s))(1+h(s— o)) cos(x)
1+h(s)—(14+h(s—o))cosx][h'(s)coscx— (1 + h(s))sin(x)]
(I+h(s)?2+(1+h(s—x)2-2(1+h(s))(1+h(s— o)) cos(x)

_ 1
T 4T
[

x(h"(s—(x)—l—h(s—a))}d(x
_Lj{[l+h($)—(1+h(s—0())coso<][(l+h(s))coso<—(l+h(s—0())]
2 ) L1+ h(s)2+ (1 + h(s — 00)2 = 2(1 + h(s))(1 + h(s — &) cos(e))?
X [(1 F RO (s) — (1 — h(s — @) (5) cos &

+(1+h(s)(+h(s— a))sin(a)]

X(h'(s—ax)—1-h(s- (x))} do.
A similar procedure can be used in order to compute J3. By doing this we obtain
(4.17)  J5i(s)
1 hW(s)[1+h(s)—(1+h(s—a))cosax]sinx+ (1 + h(s))h'(s)sinx
T om (I1+hs))?2+(0+h(s—0))2-2(1+h(s))(1+h(s—x))cos(x)
x h'(s — &) dex
L L[+ h(s)?cos(e) = (1+ h(5)) (1 + h(s = o)) (cos” & = sin” &)
2 ) (1+h(s)2+ (1 +h(s—a)2-2(1+h(s))(1+ h(s - &)) cos(x)
x h'(s — &) dex
_L (I+hs)[1+h(s)—(1+h(s—x))cos ] sin x
2 ) (1 +h(s)?2+ (1 +h(s —x)2=2(1 +h(s))(1 + h(s - o<))cos(o())2
X (2(1+h(s)h' (s) +2(1 + h(s — x))((1 + h(s))sin(ex) — h'(s) cos(x)))
x h'(s — &) dex.

We combine equations (4.15), (4.16), and (4.17) with (2.5) in order to obtain the evolution
equation for h':

7
QN () + Y () M = 3 g(5),
j=1
where
11 rr' +(r-0)(r-0) -’ (r-0)+rr —-0)")cosx
(4.182) =20 4r(r — 0) sin®(x/2) + 02
X Oxlsin(ax)(r — 0)]d«,
B _lL -1 ' +7r'(r —0)cosx —r (¥ — 0)sinx
(4.18b) J2= 221 47 (¥ — 0)sin*(/2) + 02
X Oxlcos (v — 0)']1d«,

_ 1 [+ (r—0)sin(x)] [ cosx — (v — O)]
(4.18¢) 5= 4 H 47 (r — 0) sin®*(/2) + 02
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[¥ — (¥ — 0) cosx] [ cosx — Tsin((x)]}
47 (r — 0) sin®(x/2) + 62
x[(r-0)" - (r-0)]dq,

and
__L [¥ —(¥r —0)cosx] [rcoscx — (v — 0)]
(4.192) J=on { (4r (r — 0) sin®(x/2) + 02)2
X[rr'—(r—-0)r cosx+r(r —0) sin((x)]}
[((r-0)" - (r-0)]de,
B [¥ — (¥ — 0) cosx]sin X + 7' sin & v
(4.190) 5= 21 j 4r (r — 0) sin*(x/2) + 02 (r=0)de,
_ r2cos(x) —r (¥ — 0) cos(2x) v
(4.199) Jo = 27T 4¥ (¥ — 0) sin*(t/2) + 62 (r = 0)da,
(4.19d) Jo= 1 r[r — (r — 0) cos &] sin &

21 ) (4r(r - 0) sin’(/2) + 62)2
X (2rr’' +2(r — 0)(rsin(x) — 7' cos())) (¥ — 0)" de.

We comment that in (4.18) and (4.19) the second-order terms are (¥ —0)"" and 04 (¥ — 0)’.
Using

r-0)"=h"(s—a) =-04h" (s —x) = -0x(r—0),
we will be able to integrate by parts. After this, only first derivatives of h appear in the

evolution equation for h’. This will allow us to close the pointwise estimates in W1,
Besides the notation introduced in (4.2), we denote

0 =07(c)=0(s},s —0), W=n(x)=n'(s},s] —e,), ¥ =7"(s]),
=0(x)=0'(s,5t —0), N =n(0)=n'(s/,s/ —x,00), 1T =7(s)).
Bound of J1. Let us comment at first that
2(rr" + ( 0)(r — 0)")sin®(xt/2) .
(4200 T = 22n 41’(1’—9)sm (aj2) + gz Oalsin(@(r=0)]d
00’ cos x .
- EE Tr(r — 0)sint(a)2) ¢ g2 oelsin(@) (r = 0)]da

=T1+ T2

The term 7;,1 is not singular and, using that
Jh'(s) cos(x) dex = 0,
we obtain

Jua(si) < ——TJG'COS(a) doc+ P(|hlyres) Rl R
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Using the Taylor expansion, we can write

1 J’ 0 412 sin?(x/2)

21 ) 4r2sin®(a/2) 4r (r — 0) + 02/ (sin”(x/2))
X 0" cos(x) Ox[sin(x) (¥ — 0)]d«x

Ji2=—

S Ly (& )]
To2722m ) 2sin®(«/2) o\T 4r2sin* (x/2)

X 0" cos(x) Ox[sin(x) (¥ — 0)]d«.

Hence, evaluating this identity in s}, we find the estimate
g t

0

s < [l P (Rl e Jid .
J12(s¢) < |hlwre P(lhlpi0) Tt (x/2) x
Collecting both expressions, we conclude that
gy L1 J—,
(4.21) Ji(sf) < o 0’ cos(x) dx
0

hlwieP(|hlyie) | - ——-d
+ [hlyr=P(hly1e) Zsint(a/2) O

+ P(lhly1=) Rl [R L.

Bound of J2. Let us integrate 7, by parts in the variable o; we obtain
11 7' 040 cos(x) — (¥ — 0)r’ sin(x)
4.22 =—-— { =
(4.22) =39 4v (¥ — 0) sin’*(x/2) + 02
¥ 0x0sinx — ¥ (¥ — 0) cos(x) } ' dec

47 (r — 0) sin*(x/2) + 62

N 11 (=" +7(r—0)cosx — ¥ (¥ — 0)sinx
221 (47 (r — 0) sin®(ot/2) + 02)2
X (—4¥ 040 sin*(x/2) + 2¥ (¥ — 0) sin(x) + 20 0,0)’ dx
=To1 + J22.

We now evaluate 7,1 at s} and isolate its linear part while bounding from above the
nonlinear part to find that
11 cosxX —

7

S [ =X g
227 ) Gsini(aj2) 1 ¢
0
+ [P (|h|y1e J’id
[y (1hly1) 25in2(0(/2) [54
+ P(lhlwre) [Rlyre R |,
The same can be done for 75, and this gives

11 cos2(x/2) o dot
221 ) 2sin2(ay2) "

(4.23) T2 (E) <

(4.24) Toa(s)) <

0
+ [hlyreP (] J‘id
[A (1hly1) 25in2(0(/2) [0
+ P([hlyr=) Ry [R |1,
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so that (4.23) and (4.24) together with

cos(x) —cos?(x/2) = —l

lead to

]2(52) < -

T g,
4211 ) 2sin®(x/2)

0/
———d«x
2sin® (ax/2)

+ P(lhlwre) | Rl [ .

+ [hlwreP(|hly1)

We now use the following identity which holds for any s € S!:

J Jh () —h'(s — &) cos(x) de
2 sin® (0(/2) ZSm 0(/2)
Jh(s) do<+jh(s—o&)do<
2sm (0(/2)
———d«
2sin’ (0(/2)
As a consequence,
Oy 11 o
(4.25) BGD <5501 |h|wl,m?<|h|wl,w>]j2sin2(a/2) dot

P(lhlwre) |l [R ]

Bound 0f J3. The terms 75 and 74 are more challenging to bound. Let us write
J5=T31+ T3,

where

9y, = J{ ' +(r—0)sin(x)] [ cosx — (¥ — 0)]
ST 4 4¥ (¥ — 0) sin®(t/2) + 62
[¥ — (¥ — 0) cosax] [r' cos x — 7 sin(x) ] I
4r(r — 0) sin’(x/2) + 62 }(7_9) dox
Jsy = _ 1 {[r’ +(r—0)sin(x)] [ cosx — (v — 0)]
2T 4 4¥ (r — 0) sin®(x/2) + 02
[¥ — (¥ = 0) cosax] [r' cosx — ¥ sin(x) ]
- 4 (r — 0) sin*(x/2) + 62 }(T_g)d“’

and integrate by parts 73,1 in «. This gives
1 =T311+ J51.11
where, using the identity (¥ — 0)” = —04(¥ — 0)" = 040’, we obtain that
1 [v' + (r — 0)sin(c)] [0 — 27 sin*(x/2)] ] ,,
——— 0" da,
Tond = =g J “{ 4r (¥ — 0) sin®(x/2) + 02 } &

_ _L [2¥ sin(x/2) + 0 cos(ox)] [¥' cos @ — ¥ sin( )] ,
Foit = = Ja“{ 4r(r - 0)sin(&/2) + 6 }9 de
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As before, we use a Taylor expansion for the term 73,11 and we obtain that

(4.26) J51 I(St) < J 0’ cos(x) dox

+ [hlwreP(|hly1eo )Jm (64

+ P(Ihlyr=) Rl [R L.
We can now start studying the term 75 1,11. We expand the derivative and obtain that

T = _J —47 340sin® (&/2) + 2r (r = 0) sin(«x) + 260 3«0
ST g (4r (r — 0) sin’(at/2) + 62)
X [21”sin2(0(/2) + 0 cos(x)] [ cosx — 7 sin(x)]0’ dx

J{[Tsm(a + 050 cos(x) — Osin(x)] [ cosx — 7 sin(x) ]
4 4v (¥ — 0) sin*(ot/2) + 62

[2¥ sin?(x/2) + O cos(x)] [—7' sin & — ¥ cos(x)]) -,
" 4r(r — 0)sin’(a/2) + 02 }9 det.

Computations similar to the ones performed for the terms 7, and 7, allow us to deduce
the estimate

— 11 —
(4.27) Tsam(s)) < i J 0" cos(x) dex

9/
———d«x
2sin’ (ax/2)

+ P(|hlyre) Rl [ .

We combine now the estimates (4.26) and (4.27) and obtain that

+ [nlwreP(|hly1)

(4.28) f]3,1(St) < -— J 0’ cos(x) dx

+ |h|W1wT(|h|W1w)jm «

+ P([hlyre) Ry [R |1
We can now focus on the term J3,. Let us use the identity
[+ (r—=0)sin(x)][rcosx — (r —0)] +[r — (¥ —0) cosx] [r' cos x — ¥ sin(x)]
= [ (1 + cos> ®)0] — [ (47 (¥ — 0) sin®(&x/2) + 0%) sin(x)] — [4r 7 sin*(x/2)]
in order to reformulate 75, as
J32 = 321+ J3211 + T30110
where

J’ (r = 0)(1 + cos? x) 0
47T 21’(7’— 0) + 62/(2sin*(x/2)) 2sin? (0(/2)

Jz211 = y I(T — 0)sin(o) di,

J521 =

LI 2sin%(/2)
411 ) 2r (v — 0) + 02/(2sin*(x/2))

J3,101 = rr'(r — 0)da.

28



We can further compute

(r —0)(1 + cos? x) 0
Js21 = 4n j 2r(r —0) + 02/(2sin*(x/2)) 2sin’(x/2) det,
J r'(r —0)(1 + cos? x) h(s)ox—0
T4 ) 2r(r — 0) + 02/ (2sin(«/2)) 2sin(x/2)
1 r’(r—@)(1+cos2(x) h (s)x
41 ) 2r(r — 0) + 02/ (2sin®(x/2)) 2sin®(/2)
=L, +L,.

We use now the identity
1 = 2sin®(«/4) + cos(x/2)
in order to deduce that
1 r'(r—0)(1+cos’x)  sin’(at/4)
41t ) 2r (v — 0) + 02/ (2sin*(x/2)) sin®(x/2)
1 v (r —0)(1 + cos? x) .

4 j (2r(r ~0) + 02/ (2sin’ (/2)) Sm(“m>
h(s)x— 06
2sin’(x/2)

=1Ly + L.

L, = (W' (s)x — 0) dx

cos(x/2) dox

The term L, is not a singular integral, so we can easily obtain the bound

Lii(s)) < P(hlyre) Rlyie R .

Since i) 0
s —
m COS(O(/Z) ’S:¥ = 0,
we deduce the bound
(4.29) Ly (5] < Rl PRy >fh(5f’7“/2) cos(@/2) dax

+ P(Ihlwr=) | Rl [R L.

We use now a Taylor expansion together with the symmetry of the integrand in order to
write L, as

11 d 02 ¢
EZZ_ZFEJ[ g(r 41’25in2(0(/2)) ]
h(s)x
2sin®(x/2)
_ 11 (0 6 N
=4 7 ”Hgl(r 4rzsin2(o</z)) ](HCOS X (a2 O
11 S (0___ 0
Y4 j[lJrZ‘l(r 41’25in2(0(/2)>]
#da
2sin“(xx/2)

X (1 + cos®> )¥' (r — 0)

X (1 + cos® &)
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_lrenr(re (e et N PO S
T T4am r ”Zv(r 4r2sin2(a/2)>](l+“’s X a2 ©

=1
i 12 (8 ) |
Y4 1+Z‘1(T 41’25in2(0(/2)>
I,
2sin“(x/2)

X (1 + cos® &)

We find that

11 @) s (0_ 0t A
42w r2 HHZ(r 4rzsin2(o</2)> ](HCOS X i (o/2) &

f=1
< P(lhlyr=) | hlyre R |1.

Similarly, we can expand and obtain that

. 7 o 0 -k «
0 0* 0 -
> (3 ) 22 () (wmrm)

=1 £=1k=0

Using this identity, we have that

EL(T')Z ® fa 4 5 &
T 42 1 J[g‘ (1’ 4¥2sin? ((X/2)> ](1+COS a)Zsinz(a/Z) dex

(04

11 () _ 0? ¢ .
="4am v ”g( 4rzsin2(o</2)> ](“COS N sin (/2

+ P(lhlwre) [Rlyre R |,
Furthermore, we compute

el

had 02 ¢
g (_ 41’2$in2(0(/2)> ]
2, X
a)Zsinz(o(/2) (1 = cos(ex/2)) dx

h(sha—-0
LRSI
2sin” (x/2)
+ P(lhlwre) | Rl [ .

+ (1 + cos

< |hlyreP (1 Rly1e) os(/2) dx
As a consequence, we find that

h g
(4.30) LG < |h|W1mT(|h|W1m)jL"‘/z)

+ P(Ihlwr=) | hlwie [R L.

cos(x/2) dx

The inequalities (4.29) and (4.30) allow us to deduce the estimate

(4.31) j%ZI(St) = |h|W1°°,P(|h|Wm)J’hLO(/2)9

+ P(Ihlwr=) |Rlwie [R L.

cos(x/2) dx
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The term 75,11 provides a linear contribution, which is
(4.32) jgzIIZ—LJ’QSiHO(dO(ZLJ’Q’COS(O()dO(
- 4 4

Let us now study the term 73 111. We use the identity

2sin?(o/2) .
2r(r — 0) + 02/(2sin*(x/2))
which leads to the bound

I 1 4 I 4
(4.33) J3211(s)) = Zh (s$) + P(|hlyre) Rl |R 1.
We combine (4.31), (4.32), and (4.33) in order to obtain a bound on 73, which is

W (s})
4

r(r—0) = r'sin (/) + P(|1 [}2),

(4.34) f]3,2(§) < + —— J 0’ cos(x) dex

h(shoa—-0
53,09 ©
2sin” (x/2)
+ P(lhlyre) Rl [ .
The estimates (4.28) and (4.34) close, finally the estimate of 75, which is
W (s)
4

+ [hlwi=P(|hlyie) os(¢/2) dx

(4.35) T5(sh) <

+ —JQ' cos(ox) dox

0/
———d«x
2sin® (ax/2)

0
N |]’l|wlw7’(|]’l|wlw)JZSt37(a/2)

+ P(lhlwre) |Rlwre [R |1

+ [P (A1)
cos(x/2)dx

Bound 0fj4. As was done for 73, we decompose Js = Js,1 + Js2 where

_ LJ’a {[T—(T—Q)cos(x] [Ycosax — (¥ — 0)]
* (4r (r — 0) sin®(«/2) + 02)2

X[rr'—(r—-0)r cosx+r{r—0) sin((x)]}e' de,

Ty = LJ{[T—(T—Q)COS(X] [¥cosax — (r — 0)]
W27 o (47 (¥ — 0) sin®(x/2) + 02)2

X[rr'—(r-0)r cosx+r{r —0) sin((x)]}(r - 0)dax.

We also expand 74,1, thus obtaining
Jan = Jaa 1+ Jap 1 + Jaan + Jan1v,
where
Jo= L J —2(—4r 040sin*(x/2) + 27 (r — 0) sin() + 20 90)
M o (47 (r — 0) sin*(/2) + 02)°
X[r¥—@r—-0)cosx][rcoscx— (v —0)]

X[rr' —(r—-0)r cosx+rr - 0)sin(x)]0’ dg,
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q :7J 0x0cosx + (v — 0)sin(x)] [rcosx — (¥ — 0)]
ST o (47 (r — 0) sin*(«/2) + 62)°
X[rr' —(r—0)r" cosx +r(r — 0) sin(x)]0" de,

g _ J —(r —0)cosax] [—7sin(x) + 040]
SUT o (4r(r — 0) sin’(2/2) + 07)°
X[rr—(r —0)r cosax + v (¥ — 0)sin(x)]0" d,

q _ J —(r—0)cosx][rcosx — (r — 0)]
VT om (47 (r — 0) sin*(x/2) + 62)°
X [((¥r —0)r" —7r 050)sin(x) + (0507’ + 7 (r — 0)) cos(x)]0" dex.

Let us start analyzing the term 74,1 1; we reformulate it as

J’ sin®(/2)
p (4r (r — 0) sin®*(x/2) + 92)
—2(—4¥ 840sin>(x/2) + 27 (¥ — 0) sin(x) + 20 340)

Jap1 =

sin(x/2)
[T— (r — Q)COS(X] [Tcos(x— (r — 9)]
sin(ox/2) sin(x/2)
« [TV’—(r—Q)T’Fos(x+r(r—9)sin((x)] . 29’ de.
sin(o¢/2) sin“(o¢/2)
We use the following identities:
sin®(x/2) 1

P(Ih' =),

(47 (r — 0) sin®(a/2) + 02)°  (21)8 "
—2(=47 340sin’(at/2) + 2r (r — 0) sin(&x) +20040)
sin(x/2) =

= —8r2cos(/2) + P(|h|1~),

¥ — (r —0)cosx

 sin(e/2)

rcosx — (v — 0)

 sin(e/2)

Y — (¥ —0)r' cosx + v (r — 0)sin(x)
sin(ox/2)

=2rsin(x/2) + P(|h'|1»),
= =2¥sin(a/2) + P(|h'|1»),

=2r?cos(x/2) + P(|h|1=),

so we have proved that

— _lLJ'*r J’L
Japalse) = 550 | /(L4 cos(@)) dact [y P (IRl | 52z oo o

In a similar fashion, we can deduce that

- __lLJﬁ 1 ] L
Jaan(st) = g5 | 071+ cos(e)) dact [y P hlwie) | 5oy s da,
— ’LJ 1 . L
Jaau(sy) = 42 0"(1 + cos(e)) dat+ [Rlyrs P(|hlw1) 2sin®(/2) ’
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0

- 11 (—
Jav(sy) = _ZEJQ, cos(&x) dex + [l P(|Rljy1) mda.

As a consequence, we have that

0

_ 11 (—
Tar(sh) < _ZEJQI cos(o) dex + ||y P (1R i) mdo‘-

We now use the identity

[¥ - (r—0)cosax] [Fecosx — (¥ — 0)] = —4r (¥ — 0)sin*(a/2) + O(|W|1~)

in order to obtain the required bound for 74 :

— WishH 11 (o ,
34,2(5%) < - 4t — ZEJ’Q, COS(O() do + T(|h|W1,w)|h|W1,m |h |L°°-
Collecting both estimates, we conclude that
— WeshH 11 (4
1 A Sl T 7
(4.36) Ja(sp) < 4 2 9t JQ cos() dex
0
hlyreP(|h|yie Jid
+ [hly1e P([h|y1e) Tont(x)2) x
+ P(lhlyre) Rl R |,
Bound of Js. Let us rewrite Js as
1 (n+7)r'sinx ,
= — - 0) du«,
Js 2nj4r(r— 0) sin>(x/2) + gz "~ 0) d
1 nr'sin & ,
= — -0)'d
2Trj4r(1f— 0) st (o/2) + 02" 9
1 rv'sin &
= - 0) dg,
" om J r(r = 0)sint(o/2) + 02~ 9 de

=J51 + Js,2.
Thus, we compute
J51(s{) < P(Ihlyre) [hlyrs [

We study now the term Js . We decompose it as

1 ¥ (r')?sin dot — LJ Y7’ sin X 0’ de
21 ) 4v (v — ) sin®(x/2) + 62 21 ) 4v (v — ) sin®(x/2) + 62
= Jsp1+ J511-

Js.2

We start studying the term 755 11, and we rewrite it as

’

L rr
21 ) 2r(r = 0) + 02/ (2sin*(x/2))

Using Lemma 3.2, we conclude that

Tspm = cot(x/2)0" de.

_ 0
D < [hlyieP (R ye J’id .
Jsam(sy) < [hlyreP(hlyi) 2sin(ot/2) *
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We can now consider the term 75, 1. To estimate this term we proceed in a way similar to

what we did for L,, and find that

W(sHo—0 .

2sin’ (t/2)
9/

——— d«&

2sin® (ax/2)

+ P(lhlyr=) Rl [R L.

(4.37) J5(s8) < [lyreP([Rlyie) os(x/2) da

+ [nlwreP(|Rly1)

Bound of Js. Let us rewrite Jg as

.2 _ c 2
. = % J’ 7 cos X(27 sin“ (x/2) + O cos(x)) + v (v — O) sin a(r_ 0) da,

47 (¥ — 0) sin*(t/2) + 02

and let us notice that

go= 5 [[1+ S+ 2013

cos(x) N 0 cos® «
2 47 sin® (/2

Hence, computations similar to the ones performed for the term Js lead us to the estimate

(4.38) %&Dsi—(

AP oy
) + (1 - T)cos (0(/2)] (r —0) de.

cos(x)

+ COSZ(O(/2)> r" - 0")dx

! 0
+mmmﬂmmmﬂzﬁﬂ%3

+ |hlyr=P(lh ji
IRl P ([hly1) Tinl(ar2) 0
+ P(Ihlwre) |lwie | |-

cos(x/2) dx

Bound of ;. Let us rewrite J; as

_ Jr(erm (ex/2) + 6 cos &) sin X
=" (4r(r — 0) sin®(a/2) + 02)?
X 2rr' +2(r — 0)(rsin(x) — v’ cos(x))) (r — 0) de.
We observe that
2vr' + 2(r — 0) (v sin(x) — v’ cos(xx))
2r sin(x/2)

472 sin2(o/2) 2

47 (r — 0) sin*(x/2) + 62

=2rcos(x/2) + P(|h'|p=),

=1+?+7P(|h’|im),

¥ sin(x) _ cot(ax/2)
(2rsin(x/2))2 ~  4r
2% sin(x/2) + 0 cos(x) e 0 cos(x)
2rsin(x/2) = sin(@/2) + e (w2

These in turn allow us to deduce that

(4.39) T (s)) < —% f(? —0) cos?(00/2) dox + P(|Rlyre) [l [0 |1
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We now sum (4.38) and (4.39) and obtain the estimate
(4.40)  Js(s]) + Jo(s))

11 (= W(shHo— 6
< —E%JQ'COS(O()dO(+ [Py P(1h]yre) mcos(a/Z)dO(
+ |h|w1wT(|h|w1w)J72 2(x)2) doc+ P(Jhlyre) Ry [

The equation for the evolution of |h'|~. We combine the estimates (4.21),
(4.25), (4.35), (4.306), (4.37), and (4.40), and use

h(s]) = msax{h'(S, )}
to obtain the estimate

< maxth’ (5,0} + ' GD - M (D)

dt
< —li[l - Ihlwn,mP(Ihlwn,m)]p.v.J —d«
421 2sin”(/2)
/ T
—ffJ’9(1+cos(0())dO(+ (Zt)
W (shHo—0(s), sl -
+ |h|W1,oo:p(|]’l|W1,w)p.V.J t Zsina(a;Z)t COS(D(/Z) dx
+ P(lhlwrie) |hlyre [R L.
We comment that
L1 (g D
) JQ do + 4 =0,

: d L N P |
y(s)-EM(t)—42nJh(s ) cos(x)dx, VseS!,

which we use combined with (3.2) to derive that
d 11 0
Emsax{h (S t)} < _ZZ_[ — |]’l|W1,oo’P(|]’l|W1,oo)] J mda
+ P(lhlwre) [Rlyre R .

We want to estimate
|h'|p~ = max { mSax{h'(S, - mSin{h'(S, 0}
Let us first assume that
msax{h'(s,t)} =|h'|L».
In this case, using Lemma 3.1 we find that

d . ., 11

(4.41) SRl < =25 [1 = Rl P (hlyns)] fz e
P(|hlyrs)|h mjid-

+ P(|hlpre) [y, 2sin?(x/2) x
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We combine the estimates (4.14) and the previous inequality to obtain that
d 11 0
—|hlyre < =2 ——[1 = hlyr=P(hly1)] | =5 —=<d
ar M = =g (L= IRl PRI ] | 500 ) 4
— Y _a
2sin“(o¢/2)
Similar computations allow us to control the positive quantity

—min{h'(s,0)} = ~R'(s})

+ P(Ihlyre) Rl

as
d . ., 11, -0
— o min{h' (5,0} = — 25 (1= [hlyieP(hlyie)] sintan)

+ P(lhlwi) | hlyre |R | .
Assume now that
—mSin{h’(S,t)} = |h'|p>.
Then, following the same argument as before, we conclude
d 11 0’
R o < ———— 1 _ ™ ™ -
ar Mwe = =g 1= Rl P(hlye)] J 2sin®(/2)
T
2sin“(o¢/2)
which in turn implies there exists a positive constant 0 < ¢y < 1 such thatif |holy1e < co,
then foreach t > 0

da

+ P(Ihlyre) Rl

|h(t)|wl,oo =< |h0|W1,oo.

We prove now the exponential rate of decay in time of |h'(t)|y~. From (4.41) we
deduce, using the Poincaré-type inequality (3.1), that there exists a 6 > 0 such that

|W' (t) |1~ < [hglp=e 0"

This concludes the proof of Proposition 4.1. O

5. A Priori ESTIMATES IN H!
The purpose of this section is to obtain the parabolic gain of regularity
L*(0,T; H*'?)

for the solution. Although these estimates are lower order compared to the pointwise esti-
mates, this regularity is necessary so we can pass to the limit in the weak formulation of the

N-Peskin problem.

Proposition 5.1. Let T* € (0,00] and h = h(s,t) be a C([0,T*1; C?) solution of
(2.5) such that W)~y = hy. Assume that

|h0|W1,oo < Cy

with ¢y the constant in Proposition 4.1. Then, for all T < T*, there exists a C(T) € (0, o)
depending on T only such thar

h e L2([0, T]; HY2(SY)),
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and the following bound holds true:
Il L2 o, r1.m372(s1)) < C(T).

Proof. All along the proof we denote with 0 < v < 1 a positive constant whose explicit
value may vary from line to line.
Let us recall that the evolution equation for h’ can be written as

4 ’ d
oh +y - M= zjj,

where the explicit formulations of the terms J;, j = 1, ...,7,aregiven in (4.18) and (4.19).
Using computations similar to the ones performed in (4.21), (4.25), (4.35), (4.36), (4.37),
and (4.40), which isolate the linear (in h) contribution of every J;, we reformulate the
evolution equation for h’ as

oth' + Law - (Jz + lAh’) + (jl e J 0’ cos(x) da)
42m

4 4
+ (j3 - # - LJQ'COS(D()dO()
(74 h (S) %ZLJB' cos((X)do()

w5+ (Jc 9+ 35 [0 cos(@ ),
so that defining

11 ,
=7 +ZEJ9 cos xde,

1 ’
=7+ ZA]’l ,
=75— K s) ;S) L J 0’ cos(x) dex,
I =Js+ hf) JG' cos() d,
= .751
I6=TJs+TJ7 + *fJQ'Cos o) de,
the evolution equation for h’ becomes
1 6
(5.1) Oh’ + ZAR = 3 1.
Jj=1

The advantage in the formulation (5.1) is that the terms 7; on the righthand side are all
nonlinear in h. Furthermore, we observe there are three families of contributions. When
testing with k" and integrating, the terms 7; can be written in one of the following three
ways:

j.’N(h,h')h'h'dS, j.’N(h,h’)Ahh'dS and j.’N(h,h’)Ah'h'ds,

where N denotes a nonlinear term.
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Once we are equipped with the estimates in W, this part is rather straightforward,
and as such we only sketch the proof. We start with the term 7;; we define

7, = J?z(s)h’(s)ds
Thus, using the splitting defined in (4.22) for the term 7J,, we find that
72—{72 d5—721+722+723,

where 7, 3 contains the lower-order terms because of the cancellation of the linear part of
the equation.

Using the Taylor expansion together with Hélder and Poincaré inequalities, we find
that

o2 ! ____H —7"0x0 cos(x) — (¥ — )7 sin(x) + ¥ 0x0 sin
. 2,1 = 221T 41’25in2(o(/2)
4r2sin(x/2) ,
4r (r — 0) sin®(«/2) + 02 "h'(s) decds
<_77‘U —7" 0x0 cos(x) — (¥ — 0)7r"sin(cx) + ¥ 0w 0 sin
= 221 47’25in2(o(/2)
0 02 o
[1 i Z (; - m> ]9 h'(s)docds

{=1
+ P(hlyre) Ml [R ]2

Let us define

4 ao( ( Q) L,
W= 227T 4[[41’251n 2(x/2) 1+1’ 0'h'(s)dads,

11 rr’ cot 0(/2
Wi = 2 21'r H 0'h'(s)dxds,

Wi = -5 -— H M 0'h’(s)dads.

72
With the above decomposmon we ﬁnd that

H 7" 050 cos(x) — (¥ — 0)7" sin(x) + ¥ 040 sin &
412 sin?(x/2)

221T

e 0 02 '
1 U Y ) o' (s)dads — Wi — Wir — Winp = J,
X[ +€§(r 4rzsin2(a/2)>] (s) decds = Wi = Wit = Win =J

where J is a operator with a regularizing kernel satisfying
J = P(hlyie) il [R ]

Then, it suffices to control the singular part of the integral 172,1 composed by the simplified
terms Wj, j = 1,11, 1IL.

We prove now the estimates for the terms Wi and Wipp. We perform the computations
for the term Wy, the other ones being identical. We use the boundedness of |h|y1.~ to
argue that

Wit = —CH rr COt("‘/Z) W (s — 00k’ (s) decds
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= err’h’(s)Ah(s) ds < P(|hlyi=) | hlyre,

Wit < P(1hlyie) Rl H | cot(ex/2)] 0’| deeds.

Thus, we use the embedding L?(S?) — L!(S?) and the fact that
| cot(ex/2) > < (sin(ee/2)) 2
and we deduce the control
Wi < P(|hlwie) |l |AY2R |2,

We conclude that

Wi + Wi < v|AV2h| . + M

2

| h | Wl

We study now the term Wy, which is the more singular of the three. Let us reformulate it as
Wi = W1 + Wi,

where

r acx ’
Wi 2 27T JJ 4r2sin(x/2) O’ (s) dexds,

B 70040 ,
Wi = 2 3 H e (a)2) 0'h (s)dads.

The term W71 can be controlled using computations close to the ones performed to control
the terms Wir and Wipp; we obtain

Wi < vIAYh|3 + M

12EE

The term Wiy is indeed the more singular one. Substituting the explicit values of the
functions ¥ = 1 + h(s) and 0 = h(s) — h(s — &) and changing variables, we obtain that
(W' (5))*h' (s — )

W= 22rr H 21+ h(s)2sint(ayz) L)~ (s o)) dads

- (h'(s))*h' (o) o
= 22n H 401 +h(S))251n (s—0)/2) (h'(s) —h'(0))do ds

11 h(0))?R (s) o
= 22n H 401 +h(0’))2sm (s — o)y ) ~hlo))dods.
Then, we find that

W ___H W (s)h'(0)0' [ hW(s)  h(o)
U022 )] 2sin2(s—0)/2) LU+ h(s)? ~ (1 +h(o))?

= C|h|%“°"(ﬂ (251n((s - 0')/2))2dS d‘T)m

([ o)

] dods

’ h
< PRl o A [ A2 ()

< P(|hlyre) [l |AYV2R |5+ P(IRlye) | R .
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By using the smallness of i in W1, the rest of terms can be handled similarly, and we

find that P(h
T, <v[A20 |7, + Phlw1~) ‘l/Wl'm)

7, = J?l (s)h' (s)ds

and decompose 7; as in (4.20) to find that
_ 00’ cos(x) [ 0 0? g]
hi= 27’2 2m JJ 2sin%(/2) * gl (7’ 47’25in2(0(/2)) 0o
% [sin() (r — )11’ (s) dexds + P(|hlyie) Wl | R ] 2.

To deduce the above estimate, we used the fact that the integral defining the term 7y is

|-
We define

not singular. The term 7, is now in a form which resembles the one deduced for the term
75,1 in equation (5.2). Very similar computations allow us to produce the bound

P(lhlwi~)
v

i]SV|A1/2h,|iz+ |h|§vloo

We decompose 75 following our splitting of 75 (see Section 4.2), and find that
Iy = Jﬂg(s)h’(s)ds,
=Ty + 50+ 55,
=L+ Lan+ Lo+ Lon+ Lom + B,

where, as before, 753 contains lower-order terms because of the cancellation of the linear
part of the equation. The terms 75 j, j = L, 11, can be estimated by using computations

similar to the ones performed in order to control 72_1, and we find

P(hlwi~)
v

73,15V|A1/2h|22+ |h|€v1v°°-

We now estimate the term 75 5 1, the other terms being easier. We find that
_ 1 v (r — 0)(1 + cos? &) 0

7 = —— jj h'(s)daxds.

3207 50 ) 2rr = 0) 7 02 2sin(0/2) 2sint(ay2) b ) A

We study now the more singular contribution of 75, 1, that is, the integral

1 v’ 0 , _ 1 Ah(s)h'(s)
4 H ¥ 2eni(ayz) ) deds = —om j T+hs) O
P(lhlwi=)
v

SV|A1/2h|i2+ |h|§v1,oo.

The rest of the terms can be handled in a similar way, and we conclude that

P(lhlw1~)
v

j3SV|A1/2h|i2+ |h|§v1,oo.

The term 74 resembles the term 73, and as a consequence it can be handled by using the
same ideas. Then, we obtain that

_ P(|h|y1,e
Is < v|AV2h| ], + %

1S
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The term 7s is similar to 73 51, and we find that

P(lhlw1~)
v

55SV|A1/2h|iz+ |h|€vloo

The term 74 can be estimated using the previous Taylor expansion together with the same
ideas used to bound 7;. Then, choosing v small enough and using the maximum principle
for |n|y1.~, we conclude

d ’ 1 ’
ik |2, + 4IAh |7, < P(lhlyis) | 1|3 < C.

Invoking now Gronwall’s inequality, we find that

T
L |h(t) |35 dt < CT. O

6. ESTIMATES FOR 0:h

The result we prove in the present section is the following one.

Proposition 6.1. Let T* € (0,00] and h = h(s,t) be a C([0,T*1;C?) solution of
(2.5) such that hli—o = ho. Assume |holyre < Co, with Co the constant in Proposition 4. 1.
Then, for all T < T*, there existsa C(T) € (0, ) depending on T only such that

orh € L*([0, T H'(SY),
and the following bound holds true:
oehlir2(o,rsm-1(s1y) = C(T).

Proof: Thanks to the regularity results proved in the previous sections, it suffices to
prove a suitable bound for the nonlinear terms in the evolution equation for h. The bounds
of Proposition 6.1 are necessary in the application of an Aubin-Lions compactness theorem
(cf. [30]), and are somewhat standard; for this reason we will sketch the computations only
for the more singular terms and leave the rest of the computations for the interested reader.

The term J; is the more singular term in (4.3a), (4.3b), (4.3¢) because of the presence
of the term 02 0. By using the notation of Section 4.1, the term

[ Ja [27 sin’ (x/2) + 6 cos(0)] [27 sin® (t/2) — 0]
227 T g P ) O 4r(r — 0)sin®(/2) + 6

is the more singular of the subterms making J,. The term J,, can be decomposed as in the
previous section:

) 040 d«,

Jop = J2o 1+ 2201 + J2 0100

Let us denote by J»57, j = LILII the more singular contributions of the terms J;, j,
J = L IL 111, whose explicit expressions are

— 1 2r?sin(a) + 20046 ,
Joal == 4P | Ty in(ag2ys O OO
—_ 1 0(940)*

P2l = 2P | G in(ay2))? O

0(040)?

- 1
Daqn = opv. j (@rsin(a/2))2 1%

M



Note that the terms J5; — J22,7> j = L, 1I can be written as an integral operator whose
integration kernel is homogeneous of order zero. In particular, the following bound holds
true forany t € [0,T] and s € S':

1J2,2,7 (8, 8) = J20,j (5, )] < PIR () [1).

As a consequence, they are more regular contributions, and therefore we can consider any
¢ € L2([0,T];HY), T € (0, T*) with unitary norm, and deduce the estimate

T
LJUmﬂ&U—EZUJD¢&UdHUSTWMwmﬂMWM

Let ¢ be as above. We will indeed bound the remaining more singular terms by duality.
Let us first focus on the term J; 5 11. We compute

J ( M d(x)Cb(S) ds

(2r sin(x/2))?

_(fhG)—h(s=0) ., 5  $s)

_j itz ST ey XS

_ _([hE@)-hz=B) /2 Pz-B)

- J 4sin*(B/2) (h(z)) (1+h(z-B))? dBdz,
where in the last identity we used the change of variables s — « = z, = —. We hence
symmetrized the term J 11 as

0(30)?
J( (2rsin(o</2))2 d“)‘i’(s)ds
h(s) —h(s — )
2 4sin®(o/2)
e 2 PG Pl - )
X [(h (s — ™)) A+ his))? (h'(s)) A+ hi - 0())2] dads,
J’J’ h(s) h(o)
~2 4sin’((s — 0)/2)
’ d)(S) _ 7 2 d)(o—)
X [(h (0))? A1 his)? (h'(s)) T+ hio))e h(o))z] dods.
We compute
, » Pl o ¢(o)
(h'(0)) EVIGIE (h'(s)) T+ hio))?
—_(n 2 P(s) _ $(0)
= (o) ((1+h(s))2 (1+h(0))2>
(o) , , Yy
1 +h(0))2(h (o) +h'(s))(h'(s) —h'(0)),
so that
0(0+0)?
J(J (27 sin(/2))? d“)‘i’(s)ds
h(o) , ) ¢s) o)
2H4mus-anmm”m)(u+mwﬂ T nioys) 08
h(o—) ¢(O_) ’ ’ ’ 1/
H4sm (s = 09/2) 1+ h(oye W (@) + R RLs) — k(o)) dods
=M1 +M2
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We start analyzing M,. A Hélder inequality provides the bound

e R (] (it =y r) 295)

(H(2sm( S—ho'()o/—;)> do d5>1/2,

|¢|L |h |L |A1/2]’l|L2 |A1/2]’l,|L2,
1—I|hlp=

< P(Ihlw1=) [l AR | 2.

We control now the term M; as

s A )

([ (Pt ) o)

12 ¢
A ((1 + h)2> 12
< P(lhlwre) | Plm.
The bounds provided for M; and M, allow us to argue that

-C

= C|n |} |AV2R] 2

T
L Joon(s, ) (s, t)dsdt < Pl o, rwe)) 120, 77,01
X (IAY2R' 2 0,11,02) + VT).
Similar bounds hold true for J;, 1. Hence, we have proved that

72020731y < CTP U Rl Lo o, 73m10)) (1 + IAY2R (11210,71,22)) -

Following the same ideas, we can obtain appropriate bounds for the terms J; and J5. These
estimates combined with the result of Proposition 5.1 allow us to conclude the proof of
Proposition 6.1. O

7. PROOF OF THEOREM 2.2

In the present section we prove the main result of the manuscript via an approximation and
compactness argument. Let us consider the regularized problem

{ams + Ahe — €hl = N (he),

1
(7.1) he|, g = 0 * ho,

where for € > 0, s € S!, the function n¢ is the periodic heat kernel at time &, the nonlin-
earity N is defined as

1
—he * cos,

N (he) = Jihe) + Ja(he) + J3(he) + Ahe — 7

and the terms Jx = Jx(h), k = 1,2, 3 are defined in (2.5).

Using Picard’s theorem together with the standard mollifier approach and energy es-
timates (see [21]) we can prove that, with € > 0 fixed, there exist a Ty € (0, ] and a
maximal solution h, of (7.1) which belongs to the space

he € C'([0, Te); HY).
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At this point these approximate solutions may be defined only locally in time. Further-
more, using that our approximation scheme is merely a vanishing viscosity approach, this
solution satisfies the same « priori bounds in L* (0, T; W) and L%(0, T; H3/?) stated in
Propositions 4.1, 5.1, and 6.1. Furthermore, we can prove the following L? estimate for
(7.1). We have indeed that, for t € [0, T¢],

14d ,
537 e () 12, + |[AY2he(t) |5 + €| (D) |1

C !
<IN ()l el < | N (he (D) 120+ §(|h5(t) 12+ [RL)]5).

As a consequence, an integration-in-time gives that

t
[Re(®) 32+ | (Ao [+ €| o)1) d

CeCt/s
< o7t + — | N (o) | 220,001 -

The computations that were performed in the proof of Proposition 6.1 assure us that
N(he) € L2([0,Te1; H™1), so that

t
[he®)] 2+ [ (IA"he() 12 + €| o) 1) dr

C(Tg, €) N
< |hol32 + %(1 + [ he oo, rgwr))s N> 1.

We recall now the result of Proposition 4.1, which ensures that

e ll Lo (o, 1wy < Co-

This allows us to bound the righthand side of the above inequality with a quantity which is
independent of h¢. A continuation argument for ODEs allows us to bootstrap the result,
thus proving the following bound:

t
|he(t) |72 + JO (|AY2he(T) |12 + €] hL(T) |12) AT

N C(T,¢)
£

<c (1+¢)).

Similarly, using standard energy estimates together with the ideas in the previous sections
and Propositions 4.1, 5.1 and 6.1 it is possible to prove that if

t
RO D@ s [ (1A D@ s SR @ 1) ar
< Cn—l (f, T,CO),

then
t
0
< Cn(&, T,co),

B 15+ || (AR @ S R 01 ) ar

for any n = 2, where the constants Cj (&, T), j = 2, are not uniformly bounded in €.
We can thus find that

t
(7.2) |he(t) |7 + L (|A1/2h5('r) |7 + % |h.(T) |i,3) dt < C(g, T, o).
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In particular, we find that the approximate solutions are smooth and global in time.

The global bounds of (7.2) allow us to apply the regularity results stated in Proposi-
tions 4.1, 5.1 and 6.1. Using a standard Aubin-Lions compactness theorem (cf. [30, Corol-
lary 4]), we find that
he —h  inL2(0,T;H3?7%), 9 >0,
he —h  inL*(0,T; H3?),
he— h inL®(0,T;L%),
h—= h' inL>(0,T;L%).

(7.3)

We now take ¢ € C2 ([0, T) X S') and consider the weak formulation of the approx-
imate problems

- J(JD(S,O)nE * ho(s)ds

T
[ [ (2@ .0nes, 0+ Ap(s O hels, )
0

— £@" (5, Dhe(s, 1) = N (he(s,0))@ (s, 1)) ds dt = 0.

The previous regularity and convergence results are enough in order to pass to the
limit in the nonlinear terms. Let us sketch why it is so. Let us use the notation 6, =
he(s) —he(s — o) and e = 1 + he(s). We use an argument similar to the one stated in
Section 6 to argue that the term

0c (0a0:)*

2 = | G sin(ay 2))2 4%
is the more singular contribution of the many composing N (h¢(s)), hence, defining
[ 0(040)
260 = | Grsin(a2))z

we aim to prove that

Ze = J J Ze(s,t) — Z(s,t))@(s, t)dsdt— 0,

for each @ € CZ([0,T) x S'). This will establish the weak convergence for the more
singular nonlinear term in N'. We write Z; = Z¢; + Z¢, where

,[ J(J ((9281’55111(0?729)6)) do‘)‘P(S,t)det,

e 00 )

Let us symmetrize the term Zg ;. This gives that

J H (0 —O)h' ((T)(P(S) ds do dt
4(1 + he(s))2sin ((5—(7)/2)

(B — M (s)p (o)
J H4 1+hf(a) V2o ((s —0)2) 4o dh

W()ps) — h(s)@o)
4[ J]4mn ((S—O')/Z) {2(1 +he(s)? 21 +h5(0))2} dsdo dt,
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-, s :
“Jo ) 2sin((s — 0)/2) 2sin((s — 0)/2))

, P(s) P (o)
X*“Uﬂzu+h4wﬂ_20+h40”4

B @ (o)
2(1 + he(0))?

From the above integral equality, using Hélder’s inequality, we obtain that

[W(o)-h (s)]} dsdo dt.

T
1Zea] < cf IAV2(h, - h>|Lz{|A”2h’|Lz A
. )

i)
|n () |
Hence, standard computations show that the convergence proved in (7.3) is sufficient to

establish that

P
(1+he)? L

-0

Zei— 0.
We compute
Zep = Zepl + Zepl,

where

Zuar = [) [ ([ 0Bl 00

~ 0(0u0: + 040) (050 — 0a0)
2rsin(0/2))2 d(x)(p(s,t)dsdt,
_ T 0((040¢)% — (0460)?)
Zepll = JO I ( 2rsn(x/2))? dtx)cp(s,t)dsdt.

The term Z,, can be handled as Z¢ ;. For the term Z 11 we have to use a weak-strong
convergence-type argument. We decompose it as

ZE,Z,H = le\s,l + J,Z\s,Zs

with
0(0u6 — 30) dn
J J( (27 sin(«/2))? d"‘)‘p“’”det
_ 0 90(3x0: — 340)
Aep = L I ( 21 sin(a)2))? da)cp(s,t)dsdt.

Let us focus first on the second term. Using
040 = —0uh(s —x) =h'(s — x),
we find that
—0x0=-h(s—x)+h(s)—h'(s) =0 —h'(s).
Using this, we can equivalently write
_ JTI( 00,0 (0x0: — 0,0)
- (27 sin(x/2))2

J J’(J’ 0 —h' (S));i'sm(h;;sz))z— 0 +h(s))

dtx)(p(s,t)dsdt

da)cp(s, t) dsdt.
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We can decompose this as

J H (27’sm(o(/2))2 da@(s,t)dsdt

B 00’ (h'(s) — hy(s))
Bea _J J ZVsm 0(/2))2

do@(s,t)dsdt

- -09)
Bes = - j H (21’sm(0(/2))2 dagls, ) dsdt

B Oh' (s)(h'(s) —hi(s))
Bea =~ JJ (27 sin(«/2))>

dae(s,t)dsdt.

The term Bg 4 can be handled easily. We observe that it can be rewritten as

T 14
Bey = CJ IM(W(S) —h (s))@(s,t)dsdt
0 v

-0

<Cllh - hE”L%,H}( Hh”LzH}( Hh”Loo 10— 0.
For the term B ;, we proceed as follows:

J J’ 00’ (h'(s) — hy(s))
(2r sin(x/2))?

1/2 &—0
< Ol gz 1A g 0 = Rl =% 0.

do@(s,t)dsdt

Taking 0 < 6 < 1, we also compute

10 —
Bes < C||0 mef H (e 2) Il mﬂm dacdsdt

. 1/2
<Clh HL?L&"(JW(M)

J (H |51|:(,o(/20)||22 5d0‘d5>1/2dt

~0
< OVTI|W ||L;°L;° Ihe =’ ”LZTH,(}*‘”/ZE_’ 0.

Finally, the last term Bg,; can be handled as Bg 3. As a consequence, h is a weak solution of
(2.5).

In addition, the maximum principle
() Iy < lholwre VO<t<T
and the exponential decay
[ (t)|p» < |hpli~e™® VO<t<T

follow from the application of Proposition 4.1 to the regularized problem and the weak-
lower semicontinuity of the norm. We argue as in [8, Lemma 4.3] in order to state that,
since M is a uniform limit of continuous functions, we obtain as well that

h e C([0,T] xSh).
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