
Parallel matrix-free polynomial preconditioners with application to flow

simulations in discrete fracture networks

L. Bergamaschi a,∗, M. Ferronato a, G. Isotton b, C. Janna a, A. Martínez c

a Department of Civil Environmental and Architectural Engineering (ICEA), University of Padua, Italy
b M3E - Mathematical Methods and Models for Engineering, University of Padua, Italy
c Department of Mathematics and Geosciences, University of Trieste, Italy

A R T I C L E I N F O A B S T R A C T

Keywords:

Polynomial preconditioner

Conjugate gradient method

Discrete fracture network

Parallel computing

Scalability

We develop a robust matrix-free, communication avoiding parallel, high-degree polynomial preconditioner for

the Conjugate Gradient method for large and sparse symmetric positive definite linear systems. We discuss the

selection of a scaling parameter aimed at avoiding unwanted clustering of eigenvalues of the preconditioned

matrices at the extrema of the spectrum. We use this preconditioned framework to solve a 3 × 3 block system
arising in the simulation of fluid flow in large-size discrete fractured networks. We apply our polynomial

preconditioner to a suitable Schur complement related with this system, which can not be explicitly computed

because of its size and density. Numerical results confirm the excellent properties of the proposed preconditioner

up to very high polynomial degrees. The parallel implementation achieves satisfactory scalability by taking

advantage from the reduced number of scalar products and hence of global communications.
1. Introduction

Discretized PDEs and constrained as well as unconstrained optimiza-

tion problems often require the repeated solution of large and sparse

linear systems 𝐴𝒙 = 𝒃, in which 𝐴 is symmetric positive definite (SPD).
For practical scientific and engineering applications, the use of paral-

lel computers is mandatory, due to the large size and resolution of the

considered models. The size of these systems can be of order 106 ÷ 109
and this calls for the use of iterative methods, equipped with ad-hoc

preconditioners as accelerators.

When the problem size grows up to several millions of unknowns, it
is not possible to store the system matrix nor the preconditioner on a
single machine. Furthermore, it is necessary to take advantage of sev-

eral distributed resources to reduce simulation time and, ultimately,

the time to market. Also, in many cases the huge size of the matrices

can prevent their complete storage. In these instances only the appli-

cation of the matrix to a vector is available as a routine (matrix-free

regime). Differently from direct factorization methods, iterative methods

do not need the explicit knowledge of the coefficient matrix, however

they need to be suitably preconditioned to produce convergence in a
reasonable CPU time. The issue is the construction of a preconditioner

* Corresponding author.

E-mail addresses: luca.bergamaschi@unipd.it (L. Bergamaschi), massimiliano.ferronato@unipd.it (M. Ferronato), g.isotton@m3eweb.it (G. Isotton),

carlo.janna@unipd.it (C. Janna), amartinez@units.it (A. Martínez).

URL: https://www.m3eweb.it/ (G. Isotton).

𝑃 ≈ 𝐴−1 which also works in a matrix-free regime. The most common
(general-purpose) preconditioners, such as the incomplete Cholesky fac-

torization or most of approximate inverse preconditioners, rely on the

knowledge of the coefficients of the matrix. An exception is represented

by the AINV preconditioner ([2]), whose construction is however in-

herently sequential. In all cases, factorization-based methods are not

easily parallelizable, the bottleneck being the solution of triangular sys-

tems needed when these preconditioners are applied to a vector inside

a Krylov subspace-based solver.

In this paper we are concerned with the effective development of

polynomial preconditioners, i.e. preconditioners that can be expressed

as 𝑃 ≡ 𝑝𝑘(𝐴). Polynomial preconditioners are almost ideal candidates
to be used as matrix-free parallel preconditioners, since, both in set-up

and application, they rely solely on operations, such as the sparse matrix

by vector product (SpMV), that are generally provided by highly effi-

cient parallel linear algebra libraries such as PETSc [1], Hypre [17], etc.

For instance, the application of 𝑝𝑘(𝐴) requires 𝑘 matrix-vector products,
without needing the explicit knowledge of the coefficients of matrix 𝐴.

Moreover, their virtual construction requires only the computation of

the coefficients of the polynomials, with negligible computational cost,

and the eigenvectors of the preconditioned matrix are the same as those
1

https://doi.org/10.1016/j.camwa.2023.06.032
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2023.06.032&domain=pdf
mailto:luca.bergamaschi@unipd.it
mailto:massimiliano.ferronato@unipd.it
mailto:g.isotton@m3eweb.it
mailto:carlo.janna@unipd.it
mailto:amartinez@units.it
https://www.m3eweb.it/
https://doi.org/10.1016/j.camwa.2023.06.032

of 𝐴. This feature can help accelerating the effect of the polynomial

preconditioners by low-rank updates, which take advantage from the

(approximate) knowledge of the eigenvectors of 𝑃𝐴.

The use of polynomial preconditioners for accelerating Krylov sub-

space methods is not new. We quote for instance the initial works

in [25,31] and [34,27] where polynomial preconditioners are used to
accelerate the Conjugate Gradient and the GMRES [33] methods, re-

spectively. However, these ideas have been recently resumed, mainly in
the context of nonsymmetric linear systems, e.g. in [28,29] or in the ac-

celeration of the Arnoldi method for eigenproblems [15]. An interesting

contribution to this subject is [26] where Chebyshev-based polynomial

preconditioners are applied in conjunction with sparse approximate in-

verses.

In this paper, starting from the work in [6], we develop a mod-

ified Newton-Chebyshev polynomial preconditioner for SPD systems,

based on the choice of a parameter aimed at avoiding clustering of

eigenvalues around the extrema of the spectrum. A theoretical analy-

sis drives the choice of this parameter. This matrix-free preconditioner

is employed in the solution of the discrete problem arising from flow

simulations in discrete fracture network (DFN) models. DFN models rep-

resent only the fractures as intersecting planar polygons, neglecting the

surrounding underground rock formation. The explicit representation

of the fractures and their properties in a fully 3D structure requires the

prescription of continuity constraints for the fluid flow along the linear

intersections. The number of the fractures and their different size, that

can change of orders of magnitude, entail a complex and multi-scale ge-

ometry, which is not trivial to address. The problem has been effectively

reformulated as a PDE-constrained optimization problem in [8,10]. The

formulation relies on the use of non-conforming discretizations of the

single fractures and on the minimization of a functional to couple in-

tersecting planes, with no match between the meshes of the fractures

and the traces. The problem, often characterized by a huge size, can

be algebraically reduced to the solution of a sequence of SPD systems,

whose matrix, however, cannot be computed and stored explicitly. Nev-

ertheless, the granular nature of the problem, which can be inherently

subdivided in several local problems on the fractures with a moderate

exchange of data, is particularly suitable for a massive parallel imple-

mentation.

In this work we will consider the Preconditioned Conjugate Gra-

dient (PCG) method as iterative solver, accelerated by the modified

Newton-Chebyshev polynomial preconditioner. For the parallel imple-

mentation, we rely on the Chronos library [20,24], a linear algebra

package specifically designed for high performance computing. Chronos

takes advantage of fine-grained parallelism through the use of openMP

directives allowing for the use of multiple threads on the same MPI

rank. Thanks also to the reduction of global communication required

by the repeated scalar products in PCG, the parallel implementation of

polynomial preconditioning turns out to be highly efficient, as it will be

shown in the numerical experiments.

The rest of the paper is organized as follows. In Section 2 we briefly

review the Newton-Chebyshev polynomial preconditioner and develop

a strategy to avoid unpleasant clustering of eigenvalues around the end-

points of the spectrum. In Section 3 we show how to use our polynomial

preconditioner in combination with other accelerators. In Section 4 we

describe the test case arising from the DFN application, as well as its
algebraic formulation after finite element discretization and reduction

to an SPD linear system. In Section 5 we describe our parallel imple-

mentation, while Section 6 collects the numerical results of the testing.

Section 7 provides some concluding remarks.

2. Polynomial preconditioners

Two alternative formulations of the optimal polynomial precondi-

tioners for the Conjugate Gradient method for SPD linear systems are

presented in [6], following the work in [30] which established a con-

nection between an accelerated Newton method for the matrix equation
2

𝑋−1 =𝐴 and the Chebyshev polynomials in the framework of matrix in-

version formula. For the sake of completeness, here we shortly derive

these two formulations.

2.1. Newton-based preconditioners

The Newton preconditioner can be obtained as a trivial application

of the Newton-Raphson method to the scalar equation

𝑥−1 − 𝑎 = 0, 𝑎 ≠ 0,

which reads

𝑥𝑗+1 = 2𝑥𝑗 − 𝑎𝑥2𝑗 , 𝑗 = 0,… , 𝑥0 fixed.

The matrix counterpart of this method applied to 𝑃−1 − 𝐴 = 0 can be
cast as

𝑃𝑗+1 = 2𝑃𝑗 − 𝑃𝑗𝐴𝑃𝑗 , 𝑗 = 0,… , 𝑃0 fixed, (1)

which is a well-known iterative method for matrix inversion (also

known as Hotelling’s method [23]).

The efficiency of such a Newton method can however be increased

due to the following result, whose elementary proof is in [6]:

Theorem 1. Let 𝛼𝑗 , 𝛽𝑗 be the smallest and the largest eigenvalues of 𝑃𝑗𝐴.

If 0 < 𝛼𝑗 < 1 < 𝛽𝑗 ≤ 2 − 𝛼𝑗 then [𝛼𝑗+1, 𝛽𝑗+1] ⊂ [2𝛼𝑗 − 𝛼2𝑗 , 1].

If 𝛽𝑗 = 2 − 𝛼𝑗 then the reduction in the condition number from 𝑃𝑗𝐴 to
𝑃𝑗+1𝐴 is near 4 provided that 𝛼𝑗 is small:

𝜅(𝑃𝑗𝐴)
𝜅(𝑃𝑗+1𝐴)

=
2 − 𝛼𝑗
𝛼𝑗

(2𝛼𝑗 − 𝛼2𝑗) = (2 − 𝛼𝑗)2 ≈ 4.

Under these hypotheses each Newton step provides an average halving

of the CG iterations (and hence of the number of scalar products) as

opposed to twice the application of both the coefficient matrix and the

initial preconditioner. This idea can be efficiently employed setting e.g.

𝑃0 = 𝐼 to cheaply obtain a polynomial preconditioner. Other choices of
𝑃0 will be shortly discussed in Section 3.

Exploiting the findings of Theorem 1, in [6] a sequence of scalars

{𝜁𝑗} is defined, which modify the recurrence (1) as

𝑃𝑗+1 = 𝜁𝑗+1
(
2𝑃𝑗 − 𝑃𝑗𝐴𝑃𝑗

)
, 𝑃0 = 𝜁0𝐼

Application of the polynomial preconditioner to a vector 𝒓 is described

in step 4. of Algorithm 1.

Algorithm 1 Newton-based polynomial preconditioner of degree

2nlev−1.
1: Approximate the extremal eigenvalues of 𝐴: 𝛼, 𝛽.

2: Set the number of Newton steps: nlev

3: Set 𝜁0 = 2
𝛼 + 𝛽

, 𝜁1 =
2

1 + 2𝛼𝜁0 − (𝛼𝜁0)2
, 𝜁𝑖 =

2
1 + 2𝜁𝑖−1 − 𝜁2𝑖−1

, 𝑖 = 2, nlev.

4: At each CG iteration apply 𝑃nlev to the residual vector 𝒓 through the following recur-

sive procedure:

𝑃0𝒓 = 𝜁0𝒓

𝑃𝑗+1𝒓 = 𝜁𝑗+1
(
2𝑃𝑗𝒓− 𝑃𝑗𝐴𝑃𝑗𝒓

)
, 𝑗 = nlev− 1,… ,0

2.2. Chebyshev preconditioners

A similar recurrence can be obtained by means of the shifted and

scaled Chebyshev polynomial preconditioners. More details can be

found in [32,12,6]. We denote, as before, with 𝛼 and 𝛽 the smallest

and the largest eigenvalue of 𝐴, respectively and set

𝜃 = 𝛽 + 𝛼
, 𝛿 = 𝛽 − 𝛼

, and 𝜎 = 𝜃
.

2 2 𝛿

The optimal polynomial preconditioner satisfies the following recur-

sion:

𝑝−1(𝑥) = 0

𝑝0(𝑥) =
1
𝜃

𝑝𝑘(𝑥) = 𝜌𝑘
(
2𝜎

(
1 − 𝑥

𝜃

)
𝑝𝑘−1(𝑥) − 𝜌𝑘−1𝑝𝑘−2(𝑥) +

2
𝛿

)
, 𝑘 ≥ 1, (2)

with

𝜌𝑘 =
1

2𝜎 − 𝜌𝑘−1
, 𝑘 ≥ 1 and 𝜌0 =

1
𝜎
. (3)

The application of the Chebyshev preconditioner of degree 𝑚, 𝑃𝑚 =
𝑝𝑚(𝐴), to a vector 𝒓, satisfies a three term recurrence. In fact, defin-

ing 𝒔𝑘 = 𝑃𝑘𝒓, 𝑘 ≥ 0, using (2) and exploiting the definitions of 𝛿, 𝜎 and
𝜃, we have

𝒔0 =
1
𝜃
𝒓.

𝒔1 = 𝜌1
(
2𝜎

(
1 − 𝐴

𝜃

)
𝑝0(𝐴) +

2
𝛿

)
𝒓 =

2𝜌1
𝛿

(
2𝒓− 𝐴𝒓

𝜃

)
𝒔𝑘 = 𝜌𝑘

(
2𝜎

(
1 − 𝐴

𝜃

)
𝑝𝑘−1(𝐴)𝒓− 𝜌𝑘−1𝑝𝑘−2(𝐴)𝒓+

2
𝛿
𝒓
)

= 𝜌𝑘
(
2𝜎

(
1 − 𝐴

𝜃

)
𝒔𝑘−1 − 𝜌𝑘−1𝒔𝑘−2 +

2
𝛿
𝒓
)

= 𝜌𝑘
(
2𝜎𝒔𝑘−1 − 𝜌𝑘−1𝒔𝑘−2 +

2
𝛿

(
𝒓−𝐴𝒔𝑘−1

))
, 𝑘 > 1.

The practical implementation of 𝑃𝑚𝒓 is described in Algorithm 2.

Algorithm 2 Computation of the preconditioned residual 𝒓̂ = 𝑃𝑚𝒓 with
Chebyshev preconditioner.

1: Compute 𝜌𝑘, 𝑘 = 1, … , 𝑚max using (3)

2: 𝒙𝑜𝑙𝑑 = 𝒓∕𝜃 (if m = 0 exit with 𝒓̂= 𝒙𝑜𝑙𝑑)

3: 𝒙 =
2𝜌1
𝛿

(
2𝒓− 𝐴𝒓

𝜃

)
(if m = 1 exit with 𝒓̂= 𝒙)

4: for 𝑘 = 2 ∶𝑚 do

5: 𝒛 = 2
𝛿
(𝒓−𝐴𝒙)

6: 𝒓̂ = 𝜌𝑘
(
2𝜎𝒙− 𝜌𝑘−1𝒙𝑜𝑙𝑑 + 𝒛

)
7: 𝒙𝑜𝑙𝑑 = 𝒙; 𝒙 = 𝒓̂

8: end for

2.3. Relation between Newton and Chebyshev polynomials

In [30,6] a relation is established between the two algorithms basi-

cally by writing a different recursion involving Chebyshev polynomials

taken from the relation

𝑇2𝑘(𝑥) = 2𝑇 2
𝑘
(𝑥) − 1. (4)

The Newton-based polynomial preconditioner is then proved equal to
the Chebyshev polynomial preconditioner based on the recursion (4).

Only, in the Newton case, polynomials in the sequence have degrees

𝑘 = 2𝑗 − 1, 𝑗 = 0, …, while with the original Chebyshev algorithm every
nonnegative integer can be used as the degree of the polynomial.

2.4. Avoiding eigenvalue clustering

A drawback of the polynomial preconditioners is that clustering

may arise in the extremal parts of the eigenspectrum of the precondi-

tioned matrix, thus limiting the acceleration of the Conjugate Gradient

method. In [6] a modification of the basic algorithms is proposed in or-

der to mitigate such an undesired occurrence. In this Section we analyze

more deeply the effect of this modification.

Let us first consider the first step of the original Newton approach.

The spectral interval [𝛼, 𝛽] of 𝐴 is first scaled by 2
𝛼 + 𝛽

= 1
𝜃

obtaining

[𝛼̂, 𝛽] =
[

2𝛼
,

2𝛽
]
. Following the results of Theorem 1 with 𝑓 (𝑡) =
𝛼 + 𝛽 𝛼 + 𝛽

3

2𝑡 − 𝑡2, the spectral interval of 𝑃1𝐴 is [𝑓 (𝛼̂), 1], with a reduction of the
condition number of about 4, as explained in Section 2.1. However,

the extrema of the scaled spectral interval are both mapped onto the left
endpoint 𝑓 (𝛼̂) = 𝑓 (𝛽) = 4𝛼𝛽

(𝛼 + 𝛽)2
of 𝑃1𝐴 thus originating a cluster around

the smallest eigenvalue, which is in principle detrimental for the CG

convergence.

To avoid this, in [6] a scaling parameter 𝜉 is introduced in order to
modify the definition of parameter 𝜃 in the Chebyshev/Newton algo-

rithms as

𝜃̄ = 𝛽 + 𝛼
2

(1 + 𝜉) . (5)

The parameter 𝜉 should be small enough to apply just a slight mod-

ification of the native Chebyshev/Newton algorithm. Multiplying the

original spectral interval [𝛼, 𝛽] by 𝜃̄−1 = 𝜂𝜃−1 with 𝜂 = 1
1 + 𝜉

, we obtain

[𝛼̂𝜂 , 𝛽𝜂] ≡
[
2𝜂𝛼
𝛼 + 𝛽

,
2𝜂𝛽
𝛼 + 𝛽

]
which will be now mapped by the function 𝑓 (𝑡) onto [𝛼(1)𝜂 , 𝛽

(1)
𝜂] ∶=

[𝑓 (𝛼̂𝜂), 1].
Let us denote by 𝜅 = 1

𝑓 (𝛼̂)
and 𝜅𝜂 =

1
𝑓 (𝛼̂𝜂)

the condition numbers

of the preconditioned matrix before and after the modification, respec-

tively. We first prove that modification (5) provides a modest increment

of the condition number of the preconditioned matrix at step 1, assum-

ing 𝜉 sufficiently small.

Theorem 2. Let 𝜉 =𝑂(𝜅−1), then

𝜅𝜂

𝜅
= 1 + 𝜉 +𝑂(𝜉2).

Proof. First we have that

1 − 𝜂 = 𝜉

1 + 𝜉
= 𝜉 +𝑂(𝜉2), and

𝛼̂𝜂 − 𝛼̂ = (𝜂 − 1) 2𝛼
𝛼 + 𝛽

= (𝜂 − 1)𝑂(𝜅−1) =𝑂(𝜉2)

then

𝜅𝜂

𝜅
=
𝑓 (𝛼̂𝜂)
𝑓 (𝛼̂)

=
𝑓 (𝛼̂) + (𝛼̂𝜂 − 𝛼̂)𝑓 ′(𝛼̂) − 2(𝛼̂𝜂 − 𝛼̂)2

𝑓 (𝛼̂)

= 1 +

2𝛼
𝛼 + 𝛽

(𝜂 − 1)
(
2 − 2 2𝛼

𝛼 + 𝛽

)
+𝑂(𝜉4)

4𝛼𝛽
(𝛼 + 𝛽)2

=

= 1 + (𝛼 + 𝛽)2

4𝛼𝛽
2𝛼
𝛼 + 𝛽

(𝜂 − 1) 2(𝛽 − 𝛼)
𝛼 + 𝛽

+𝑂(𝜉3) =

= 1 + (𝜂 − 1) 𝛽 − 𝛼
𝛽

+𝑂(𝜉3)

= 𝜂 + 1
𝜅
(1 − 𝜂) +𝑂(𝜉3) = 𝜂 +𝑂(𝜉2) = 1 + 𝜉 +𝑂(𝜉2).

Though the condition number 𝜅𝜂 slightly increases with respect to 𝜅,
the favorable outcome is that now 𝑓 (𝛼̂𝜂) ≠ 𝑓 (𝛽𝜂) with a consequent sep-

aration of the smallest eigenvalues. Moreover, a number 𝑘 ≥ 1 of the
smallest eigenvalues are mapped onto as many of the smallest eigen-

values of the preconditioned matrix. The next theorem states that the

𝑘 (with 𝑘 ≥ 1) smallest eigenvalues of the preconditioned matrix are
the map (through the function 𝑓) of exactly the 𝑘 smallest eigenvalues

of 𝐴. This also means that the largest eigenvalues of 𝐴 are no longer

mapped onto the same smallest eigenvalues of 𝑃1𝐴, as it holds without
modification.

Fig. 1. Eigenvalues of 𝐴, green squares on the 𝑥-axis, and of 𝑃1𝐴, blue stars on the 𝑦-axis. Original algorithm (left), modified algorithm with 𝜉 = 0.05 (right).

Table 1

PCG iterations to solve the diagonal problem and a few of the smallest eigenvalue

of the preconditioned matrices with a polynomial preconditioner of degree 𝑘 = 63,
for different values of the scaling factor 𝜉. The condition numbers and the partial

condition numbers are also provided.

𝜉 PCG iters 𝜆1 𝜆2 𝜆5 𝜆10 𝜅 ≡
𝜆max

𝜆1

𝜆max

𝜆10
0 58 0.03987 0.03987 0.03987 0.03987 25.08 25.83

10−6 57 0.03984 0.04181 0.04181 0.04180 25.10 23.92

10−5 50 0.03961 0.05901 0.05901 0.05901 25.25 16.95

10−4 34 0.03742 0.07388 0.17768 0.21046 26.72 4.75

10−3 39 0.02511 0.04976 0.12096 0.23084 39.82 4.33

10−2 62 0.00898 0.01789 0.04419 0.08664 111.31 11.54
Theorem 3. Let 𝜂 be such that 𝛼̂𝜂 + 2(1 − 𝜂) < 1. Denoting by

𝛼̂𝜂 = 𝜆
(0)
1 ≤ 𝜆

(0)
2 ≤… ≤ 𝜆(0)𝑛 = 𝛽𝜂, and

𝛼̂(1)𝜂 = 𝜆
(1)
1 ≤ 𝜆

(1)
2 ≤… ≤ 𝜆(1)𝑛 = 𝛽(1)𝜂

the eigenvalues of 𝐴 and 𝑃1𝐴, respectively, and 𝑘 the integer satisfying 𝜆(0)
𝑘

≤

𝛼̂𝜂 + 2(1 − 𝜂) ≤ 𝜆(0)
𝑘+1 then

𝜆
(1)
𝑗

= 𝑓 (𝜆(0)
𝑗
), 𝑗 = 1,… , 𝑘.

Proof. Since 𝑓 (𝑡) = 𝑓 (2 − 𝑡), ∀𝑡 ∈ℝ we have

𝑓 (𝛽𝜂) = 𝑓 (2 − 𝛽𝜂) = 𝑓
(
2𝛼 + (1 − 𝜂)𝛽

𝛼 + 𝛽

)
= 𝑓 (𝛼̂𝜂 + 2(1 − 𝜂)).

Taking into account that the function 𝑓 is increasing in [𝛼̂𝜂 , 1] and de-

creasing in [1, 𝛽𝜂] we have

𝑓 (𝜆(0)1) ≤… ≤ 𝑓 (𝜆(0)
𝑘
) ≤ 𝑓 (𝛼̂𝜂 + 2(1 − 𝜂)) ≤ max

𝑗≥𝑘+1
𝑓 (𝜆(0)

𝑗
),

and the thesis follows.

The situation is depicted in Fig. 1 where the clustering (unclustering)

of the extremal eigenvalues is shown for 𝜉 = 0 (𝜉 = 0.05). In this example
we have 𝜆(0)1 = 0.1, 𝜆(0)2 = 0.14, 𝜆(0)2 = 0.18. All these three eigenvalues are

less than 𝛼̂𝜂 + 2(1 − 𝜂) ≈ 0.195 and therefore they are mapped onto the
leftmost part of the spectrum (blue asterisks, left panel). With 𝜉 = 0 the
eigenvalues 𝜆(0)

𝑛−2 = 1.82, 𝜆(0)
𝑛−1 = 1.86, 𝜆(0)𝑛 = 1.9 are mapped onto the same

eigenvalues 𝜆(1)1 , 𝜆(1)2 , 𝜆(0)3 , thus creating a cluster on the leftmost part of
the spectrum. By distinction, with 𝜉 = 0.05 this is no longer true (blue
asterisk, right panel).

Subsequent application of the Newton preconditioner will enhance

this behavior, leading to a slight increase of the condition number (com-

pared to the optimal one) at each Newton application, together with a
progressive unclustering of the smallest eigenvalues. To experimentally

show this behavior we consider the solution of the following linear sys-

tem 𝐴𝒙 = 𝒃 with a random right hand side and a diagonal matrix 𝐴 of
size 𝑛 = 105 such that

𝐴𝑖𝑖 = 𝑖, 𝑖 = 1,… ,105,
4

nlev = 6 (polynomial degree = 63), tol = 10−10.

We obtained the results summarized in Table 1 where we report the

extremal eigenvalues of the preconditioned matrices for different values

of 𝜉. In addition to the condition number of 𝑃63𝐴 we computed a partial
condition number, related to the 10th smallest eigenvalue, 𝜅10 =

𝜆max
𝜆10

.

Obviously the smallest condition number is provided by the non

modified algorithm (𝜉 = 0). If 𝜉 is too small, then no significant effect is
observed (second row in the Table). If 𝜉 is too large, the unclustering of

the eigenvalues does not pay for the large increasing of the condition

number (𝜉 = 10−2 in the Table). The optimal scaling is aimed at separat-

ing the smallest eigenvalues and at the same time reducing the partial

condition number 𝜅10 (see last column in Table 1) which is more infor-

mative about PCG convergence, when a few outliers (roughly 10 in this

test case) are present [22].

The choice of the parameter 𝜉 is problem dependent. It is related

to the degree of the polynomial, to the condition number of the orig-

inal problem and to the separation of the smallest eigenvalues (to say

nothing of the right-hand-side of the system).

However, the findings in Theorem 3 and the experimental results

suggest to select 𝜉 = 𝑂(𝜅−1), but significantly larger than this value
to enhance separation of extremal eigenvalues. A choice, e.g., of 𝜉 ∈
[10, 102]𝜅−1 will always provide a value close to the optimal one, as
confirmed by the numerical experiments.

3. Polynomial acceleration of a given preconditioner

Let us now assume that a (first level) preconditioner is available in
factored form as

𝑃seed =𝑊𝑊 𝑇 ,

where 𝑃seed can be the square root of the inverse diagonal of 𝐴, the
inverse of the Cholesky factor 𝑊 = 𝐿−1 or the triangular factor of an
approximate inverse preconditioner. In such a case the polynomial pre-

conditioner can be applied to the symmetric matrix

𝐴̂ =𝑊 𝑇𝐴𝑊 .

Table 2

Results for the matrix Cube_5317k. The polynomial preconditioner has been modified with

𝜉 = 5 × 10−4 .
𝑃seed = diagonal preconditioner 𝑃seed = IC preconditioner

Polynomial + spectral Polynomial Polynomial + spectral Polynomial

deg iter CPU iter CPU iter CPU iter CPU

0 8597 4481.26 9553 4083.40 1359 1270.75 1853 1476.07

1 4380 4038.17 4865 4066.76 712 1283.02 961 1499.21

3 2210 3829.54 2434 4008.73 370 1219.82 497 1599.90

7 1111 3726.72 1226 4006.06 187 1208.19 251 1594.50

15 563 3716.18 620 4042.62 97 1240.66 126 1645.59

31 292 3823.50 320 4166.52 51 1294.72 64 1605.11
If the first level preconditioner can be constructed and applied in a

matrix-free environment then the whole preconditioner can still be ap-

plied in a matrix-free environment.

3.1. Low-rank acceleration

The polynomial preconditioner needs the approximation of the two

extremal eigenvalues, which are usually computed together with the

corresponding eigenvectors. In general, the availability of a number of

the leftmost (approximate) eigenvectors can be exploited to further im-

prove the PCG convergence provided by the polynomial preconditioner.

Let us assume that 𝒗1, … 𝒗𝑝, 𝒗𝑝+1, … , 𝒗𝑛 are the eigenvectors of 𝐴 (or
𝐴̂), and 𝜆1 ≤ … ≤ 𝜆𝑝 ≤ 𝜆𝑝+1 ≤ … ≤ 𝜆𝑛 the corresponding eigenvalues.
Defining

𝑉 =
[
𝒗1 𝒗2 … 𝒗𝑝

]
, Λ = diag(𝜆1,… , 𝜆𝑝),

the polynomial preconditioner of degree 𝑚, 𝑃0 in this section, computed
for 𝐴 (𝐴̂) can be modified to obtain a spectral preconditioner as [11,4]

𝑃 = 𝑃0 + 𝑉 (𝑉 𝑇 𝐴𝑉)−1𝑉 𝑇 .

Since 𝒗𝑗 , 𝑗 = 1, … , 𝑝 are also eigenvectors of 𝑃0𝐴, the following proper-

ties are easily verified:

𝑃𝐴𝒗𝑗 = 𝑃0𝐴𝒗𝑗 + 𝒗𝑗 = (1 + 𝑝𝑚(𝜆𝑗))𝒗𝑗 , 𝑗 = 1,… , 𝑝 (6)

𝑃𝐴𝒗𝑗 = 𝑃0𝐴𝒗𝑗 + 𝑉 (𝑉 𝑇𝐴𝑉)−1
𝑝∑
𝑗=𝑘

𝒗̃𝑇
𝑘
𝒗𝑗 ≈ 𝑝𝑚(𝜆𝑗)𝒗𝑗 , 𝑗 = 𝑝+ 1,… (7)

Since Theorem 3 shows that, with the 𝜉-modification, the polynomial

preconditioner matches the smallest eigenvalue of 𝐴 on the smallest

eigenvalue of 𝑃0𝐴, the latter are incremented by one, due to (6), being
shifted in the interior of the spectrum with a consequent reduction of

the condition number.

3.2. Preliminary numerical results

In this section we present some results in a sequential environ-

ment showing the acceleration provided by the polynomial precon-

ditioner applied to a first level preconditioner and modified with

low-rank matrices. We consider the solution of a linear system with

matrix Cube_5317k (available at http://www .dmsa .unipd .it /~janna /
Matrices/) arising from the equilibrium of a concrete cube discretized

by a regular unstructured tetrahedral grid with size 𝑛 = 5 317 443 and
nonzeros nnz = 222 615 369.

As the first level preconditioner we considered both the diagonal

preconditioner and an incomplete Cholesky factorization with fill-in. In
both cases we computed the 10 leftmost eigenpairs to a low accuracy

(tol = 10−3 on the relative residual), by the Deflation-Accelerated Con-

jugate Gradient, DACG [5], which employs the same preconditioner.

We neglect this preprocessing time taking in mind the case in which

many linear systems have to be solved with the same coefficient ma-

trix (this is the case e.g. in linear transient problems). The sequential

results provided throughout the paper have been obtained with a Mat-

lab code running on an Intel Core(TM) i7-8550U CPU 1.80GHz. The
5

results reported in Table 2 reveal that the combination of polynomial

preconditioner and low-rank acceleration can be advantageous.

Considering for example the case with 𝑃seed = (diag(𝐴))−1, the cost
of the low-rank modification can be significant when the degree of the

polynomial preconditioner is low while the relative influence of this

task decreases when the degree grows, since in this case the predomi-

nant cost is that of the high number of matrix-vector products.

4. Example of application: discrete fracture network (DFN) flow

model

As a relevant example of application of the proposed approach, we

consider the DFN flow model developed in [8]. The flow simulation

in highly-fractured rock systems is computationally very demanding,

because of the complexity of the domain and the uncertainty charac-

terizing the geometrical configuration. In this context, DFN models are

usually preferred when the fracture network has a dominant impact on

the fluid flow dynamics. They explicitly represent the fractures as in-

tersecting planar polygons and neglect the surrounding rock formation,

prescribing continuity constraints for the fluid flow along the fracture

intersections, usually called traces. Here, we briefly recall the original

approach for DFN models introduced in [8] and focus on its discrete

algebraic formulation.

Let Ω be a connected three-dimensional fracture network consisting
of the union of 𝑛𝑓 intersecting planar polygons 𝜔𝑖, 𝑖 = 1, … , 𝑛𝑓 , where
𝜔𝑖 = 𝜔𝑖 ∪ 𝛾𝑖 is the closure of the open planar domain 𝜔𝑖 with its linear
boundary 𝛾𝑖. The fluid flow through 𝜔𝑖 is assumed to be laminar and
governed by the standard mass balance equation coupled with Darcy’s

law, with appropriate essential and natural boundary conditions on 𝛾𝑖
to guarantee the well-posedness of the formulation:

−∇ ⋅ (𝑲∇ℎ) = 𝑞, in 𝜔𝑖 ∈Ω, (8a)

ℎ|𝛾𝐷
𝑖
= ℎ𝐷𝑖 , on 𝛾𝐷𝑖 , (8b)

𝑲∇ℎ ⋅ 𝑛𝑖 = 𝑔𝑖, on 𝛾𝑁𝑖 , (8c)

where 𝛾𝐷
𝑖
∪ 𝛾𝑁

𝑖
= 𝛾𝑖, 𝛾𝐷𝑖 ∩ 𝛾𝑁

𝑖
= ∅, and 𝛾𝐷

𝑖
≠ ∅. In equations (8), the scalar

function ℎ is the hydraulic head, 𝑲 is the fracture transmissibility ten-

sor, which is assumed to be symmetric and uniformly positive definite,

𝑛𝑖 is the outward normal to 𝛾𝑁
𝑖

, 𝑞 is the known discharge within the
fracture, and ℎ𝐷

𝑖
and 𝑔𝑖 are the given hydraulic head and flux prescribed

along the fracture boundary, respectively. Since the fracture network is
connected, there is a flux exchange through the linear traces between

the intersecting polygons. Let 𝜎𝑖,𝑗
𝑘

denote the intersection between 𝜔𝑖
and 𝜔𝑗 , which we assume to be represented by a single close segment,
with Σ the union of the 𝑛𝑠 traces, Σ = ∪𝑛𝑠

𝑘=1𝜎
𝑖,𝑗

𝑘
. Indicating by ℎ𝑖 the

restriction of ℎ to 𝜔𝑖, the continuity of the hydraulic head and the con-

servation of fluxes across the traces requires that:

ℎ
𝑖|𝜎𝑖,𝑗
𝑘

− ℎ
𝑗|𝜎𝑖,𝑗

𝑘

= 0, ∀ 𝜎𝑖,𝑗
𝑘

∈ Σ, (9a)

[[𝑲∇ℎ𝑖 ⋅ 𝑛𝑖𝑘]]𝜎𝑖,𝑗
𝑘

+ [[𝑲∇ℎ𝑗 ⋅ 𝑛
𝑗

𝑘
]]
𝜎
𝑖,𝑗
𝑘

= 0, ∀ 𝜎𝑖,𝑗
𝑘

∈ Σ, (9b)

with 𝑛𝑖
𝑘

the outer normal to the trace 𝜎𝑖,𝑗
𝑘

lying on the fracture 𝜔𝑖 and
the symbol [[⋅]]

𝜎
𝑖,𝑗 denoting the jump of the quantity within brackets

𝑘

http://www.dmsa.unipd.it/~janna/Matrices/
http://www.dmsa.unipd.it/~janna/Matrices/

through 𝜎𝑖,𝑗
𝑘

. The DFN flow model consists of finding the hydraulic head

ℎ ∶ Ω →ℝ satisfying the governing PDEs (8) under the constraints (9).

The numerical solution to the strong form (8)-(9) is re-formulated

in [8] as a PDE-constrained optimization problem in weak form. Let us

introduce an appropriate measurable function space  for the represen-

tation of ℎ, such as, for instance:

 =
{
𝜂 ∈𝐻1(𝜔𝑖) ∶ 𝜂|𝛾𝐷

𝑖
= ℎ𝐷𝑖 ,∀𝑖 = 1,… , 𝑛𝑓

}
, (10)

with 0 the corresponding counterpart with homogeneous conditions
along 𝛾𝑖. We use a mixed formulation where the jump [[𝑲∇ℎ𝑖 ⋅ 𝑛𝑖𝑘]]𝜎𝑖,𝑗

𝑘

,

living along every trace 𝜎𝑖,𝑗
𝑘

for all 𝑖 and 𝑗, is described by the unknown

function 𝑢𝑖 ∶ 𝜎
𝑖,𝑗

𝑘
→ℝ belonging to the proper measurable function space

𝑖, which is defined according to the selection of . For example, for
the choice (10), 𝑖 can be selected as a subspace of 𝐿2(𝜎𝑖,𝑗

𝑘
), with the

global space  including all 𝑖. The set of constraints (9) can be pre-

scribed by minimizing the functional 𝜓(ℎ, 𝑢) ∶ × →ℝ:

𝜓(ℎ, 𝑢) =
∑
𝜎
𝑖,𝑗
𝑘
∈Σ

(‖‖‖ℎ𝑖 − ℎ𝑗‖‖‖2 + ‖‖‖𝑢𝑖 + 𝑢𝑗 + 𝛼 (ℎ𝑖 − ℎ𝑗)‖‖‖2
)
, (11)

where 𝛼 ∈ℝ is a regularization parameter. The minimization of 𝜓(ℎ, 𝑢)
under the conditions provided by equations (8) is enforced by using

Lagrange multipliers. The weak form of (8) reads:

(∇𝜂,𝑲∇ℎ)𝜔𝑖 − (𝜂, 𝑢)
𝜎
𝑖,𝑗
𝑘

= −(𝜂, 𝑞)𝜔𝑖 +
(
𝜂, 𝑔𝑖

)
𝛾𝑁
𝑖
, ∀ 𝜂 ∈0, 𝑖 = 1,… , 𝑛𝑓 ,

(12)

Denoting by 𝑝 ∈  the Lagrange multipliers living in the appropriate
space  , the DFN flow solution is obtained by finding (ℎ, 𝑢, 𝑝) ∈ × ×
 that minimizes:

Ψ(ℎ, 𝑢, 𝑝) = 𝜓(ℎ, 𝑢) + 𝑝
∑
𝑖

[
𝑎𝑖(𝜂,ℎ) − 𝑐𝑖(𝜂, 𝑢) − 𝑞𝑖(𝜂)

]
, ∀ 𝜂 ∈0, (13)

with 𝑎𝑖(𝜂, ℎ) = (∇𝜂, 𝑲∇ℎ)𝜔𝑖 , 𝑐𝑖 = (𝜂, 𝑢)
𝜎
𝑖,𝑗
𝑘

, and 𝑞𝑖 = −(𝜂, 𝑞)𝜔𝑖 + (𝜂, 𝑔𝑖)𝛾𝑁
𝑖

.

4.1. Discrete formulation

The minimization of Ψ(ℎ, 𝑢, 𝑝) in (13) is carried out approximately
by replacing the function spaces ,  and  with their discrete coun-

terparts ℎ,  ℎ and ℎ with finite size 𝑛ℎ, 𝑛𝑢, and 𝑛𝑝, respectively.

A relevant advantage of this formulation is that independent computa-

tional grids can be introduced for each fracture following the standard

finite element method, with no need of enforcing the mesh conformity

along the traces.

The discrete counterpart of (13), Ψ(ℎℎ, 𝑢ℎ, 𝑝ℎ), with (ℎℎ, 𝑢ℎ, 𝑝ℎ) ∈
ℎ ×  ℎ × ℎ, is obtained by writing the three variables as linear
combinations of the respective basis functions. Denoting with 𝒉 =[
ℎ1,… , ℎ𝑛ℎ

]𝑇
, 𝒖 =

[
𝑢1,… , 𝑢𝑛𝑢

]𝑇
and 𝒑 =

[
𝑝1,… , 𝑝𝑛𝑝

]𝑇
the vectors col-

lecting the components of these linear combinations we obtain the final

expression of the discrete function to be minimized:

Ψ(𝒉,𝒖,𝒑) =
[
𝒉 𝒖

]𝑇 [𝐺ℎ −𝛼𝐵
−𝛼𝐵𝑇 𝐺𝑢

][
𝒉

𝒖

]
+ 𝒑𝑇 (𝐴𝒉−𝐶𝒖− 𝒒) .

The first order optimality conditions yield the following algebraic prob-

lem:

𝐺ℎ𝒉− 𝛼𝐵𝒖+𝐴𝒑 = 𝟎, (14a)

−𝛼𝐵𝑇 𝒉+𝐺𝑢𝒖−𝐶𝑇 𝒑 = 𝟎, (14b)

𝐴𝒉−𝐶𝒖 = 𝒒, (14c)

where 𝛼 is usually on the order of 1, 𝐡 ∈ ℝ𝑛ℎ is the discrete hydraulic
head on fractures, 𝐮 ∈ ℝ𝑛𝑢 is the discrete flux on the traces, and 𝐩 ∈
ℝ𝑛𝑝 are the discrete Lagrange multipliers. The vector 𝐪 ∈ ℝ𝑛ℎ includes
the boundary conditions and the forcing terms. Usually, 𝑛𝑝 = 𝑛ℎ, while
6

according to the problem 𝑛𝑢 can be either larger or smaller than 𝑛ℎ. The

matrices in (14) are as follows:

• 𝐺ℎ ∈ ℝ𝑛ℎ×𝑛ℎ and 𝐺𝑢 ∈ ℝ𝑛𝑢×𝑛𝑢 are symmetric positive semi-definite

(SPSD), usually rank-deficient. The matrix 𝐺ℎ is fracture-local, in
the sense that it has a block-diagonal structure with the block

size depending on each fracture dimension, while 𝐺𝑢 has a global

nature and operates on degrees of freedom related to different frac-

tures;

• 𝐵, 𝐶 ∈ ℝ𝑛ℎ×𝑛𝑢 are rectangular coupling blocks, whose entries are

given by inner products between the basis functions of ℎ and

 ℎ. The matrix 𝐶 is fracture-local, with rectangular blocks whose

size depends on the dimension of each fracture and the related

traces, while 𝐵 = 𝐶 + 𝐸 has a global nature accounted for by the

contribution 𝐸 that has zero entries in the positions corresponding

to the rectangular blocks of 𝐶 ;

• 𝐴 ∈ℝ𝑛ℎ×𝑛ℎ is symmetric positive definite (SPD) and fracture-local,

i.e., with a block diagonal structure. Each diagonal block arises

from the discretization of the ∇ ⋅ (𝑲∇) operator over a fracture,
hence inherits the usual structure of a 2-D discrete Laplacian.

Equations (14) can be written in a compact form as:

⎡⎢⎢⎣
𝐺ℎ −𝛼𝐵 𝐴

−𝛼𝐵𝑇 𝐺𝑢 −𝐶𝑇
𝐴 −𝐶 0

⎤⎥⎥⎦
⎡⎢⎢⎣
𝐡
𝐮
𝐩

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝟎
𝟎
𝐪

⎤⎥⎥⎦ ⟹ 0𝐱 = 𝐟𝟎 (15)

where 0 is a symmetric saddle-point matrix with a rank-deficient lead-

ing block. Solution to such problems arises in several applications and

is the object of a significant number of works. For a review on methods

and ideas, see for instance [3]. With an SPD leading block, as it often

arises in Navier-Stokes equations, mixed finite element formulations of

flow in porous media, poroelasticity, etc., an optimal preconditioner ex-

ists based on the approximation of the matrix Schur complement [14].

However, if the leading block is singular the problem is generally more

difficult and the only available result is for the case of maximal rank

deficiency [16].

4.2. Algebraic solver

Here we develop a preconditioning framework exploiting the nice

properties of matrix 𝐴, that is SPD, block diagonal, and such that its
inverse can be applied exactly to a vector at a relatively low cost, and

the polynomial acceleration. First, an appropriate permutation of 0 is
used:

 =
⎡⎢⎢⎢⎣

𝐴 0
𝐺ℎ 𝐴

−𝐶
−𝛼𝐵

−𝛼𝐵𝑇 −𝐶𝑇 𝐺𝑢

⎤⎥⎥⎥⎦
, 𝐱 =

⎡⎢⎢⎣
𝐩
𝐡
𝐮

⎤⎥⎥⎦ , 𝐟 =
⎡⎢⎢⎣
𝐪
𝟎
𝟎

⎤⎥⎥⎦ , (16)

so as to avoid a singular leading block. Though the permuted matrix is
no longer symmetric, the 2 × 2 principal submatrix has a block diago-

nal structure, hence it is, in principle, practically invertible. In a more

compact form, the system 𝐱 = 𝐟 can be written as[
𝑀 −𝑋
−𝑌 𝑇 𝐺𝑢

][
𝐱1
𝐮

]
=
[
𝐟1
𝟎

]
(17)

with

𝑀 =
[
𝐴 0
𝐺ℎ 𝐴

]
, 𝑋 =

[
𝐶

𝛼𝐵

]
, 𝑌 =

[
𝛼𝐵

𝐶

]
, 𝐱1 =

[
𝐩
𝐡

]
, 𝐟1 =

[
𝐪
𝟎

]
.

Block Gaussian elimination reduces the system (17) to:[
𝑀 −𝑋
0 𝐺𝑢 − 𝑌 𝑇𝑀−1𝑋

][
𝐱1
𝐮

]
=
[

𝐟1
𝑌 𝑇𝑀−1𝐟1

]

with 𝑀−1 =
[

𝐴−1 0
−𝐴−1𝐺ℎ𝐴−1 𝐴−1

]

whose main computational burden is in the solution of

𝑆𝑢(𝛼)𝐮 = 𝐫, 𝑆𝑢(𝛼) =𝐺𝑢 − 𝑌 𝑇𝑀−1𝑋, 𝐫 = 𝑌 𝑇𝑀−1𝐟1. (18)

Direct computation easily shows that matrix 𝑆𝑢 is symmetric:

𝑆𝑢(𝛼) =𝐺𝑢 −𝑊 𝑇𝑀−1𝑍 =𝐺𝑢 − 𝛼𝐵𝑇𝐴−1𝐶 − 𝛼𝐶𝑇 𝐴−1𝐵 +𝐶𝑇𝐴−1𝐺ℎ𝐴−1𝐶.

(19)

It is also positive definite under realistic conditions. In fact, matrix 𝑆𝑢(𝛼)
can always be made SPD by wisely selecting 𝛼 > 0 since 𝑆𝑢(0) is SPD as
the sum of the SPSD matrix 𝐺𝑢 and the SPD matrix 𝐶𝑇𝐴−1𝐺ℎ𝐴−1𝐶 . We
assume that this assumption is verified and denote simply by 𝑆𝑢 the

Schur complement in (18). Therefore, the PCG solver can be employed.

Specific theoretical results on the choice of 𝛼 are not available. How-

ever, computational experience shows that an 𝛼 value on the order of 1
meets the regularizing requirements for the minimization of 𝜓(ℎ, 𝑢) in
(11) ensuring that 𝑆𝑢 is SPD [8,9].

Explicit computation of 𝑆𝑢 is not affordable for realistic problems,

while the matrix-free application of 𝑆𝑢 to a vector can be implemented

with no need of matrix-matrix multiplications. Before starting the PCG

iteration, the exact Cholesky factorization of 𝐴 is computed, i.e., the

lower triangular matrix 𝐿𝐴 such that 𝐴 =𝐿𝐴𝐿𝑇𝐴. Note that the Cholesky
factor 𝐿𝐴 preserves the block diagonal structure of 𝐴 and each diagonal
block arises from a 2-D discretization, hence this task is not overly ex-

pensive. Then, the application of 𝑆𝑢 to a vector 𝐫 can be implemented
as described in Algorithm 3, whose complexity is: 6 triangular solves

+ 7 matrix-vector products involving block matrices 𝐵, 𝐶, 𝐺ℎ and 𝐺𝑢.
Once system (18) is solved, the unknowns 𝐡 and 𝐩 in (16) can be read-

ily recovered by

𝐡 = (𝐿𝐴𝐿𝑇𝐴)
−1 (𝐪+𝐶𝐮) , 𝐩 = (𝐿𝐴𝐿𝑇𝐴)

−1 (𝛼𝐵𝐮−𝐺ℎ𝐡) .
Algorithm 3 Computation of 𝐲 = 𝑆𝑢𝐫.

1: 𝐯 = 𝐶𝐫;

2: 𝐳 = 𝛼𝐵𝐫;

3: Solve 𝐿𝐴𝐮 = 𝐯;

4: Solve 𝐿𝑇
𝐴
𝐭 = 𝐮;

5: Solve 𝐿𝐴𝐮 = 𝐳;
6: Solve 𝐿𝑇

𝐴
𝐰 = 𝐮;

7: 𝐳 =𝐺𝑢𝐫 − 𝛼𝐵𝑇 𝐭 −𝐶𝑇𝐰;

8: 𝐯 =𝐺ℎ𝐭;
9: Solve 𝐿𝐴𝐮 = 𝐯;

10: Solve 𝐿𝑇
𝐴
𝐰 = 𝐮;

11: 𝐲 = 𝐳 +𝐶𝑇𝐰.

A preconditioner for the global system (15) has been proposed in
[21] following the basic framework developed in [18] and [19]. The

idea is to exploit the fact that the matrix 𝑍 = 𝐴−1𝐶 = (𝐿𝐴𝐿𝑇𝐴)
−1𝐶 is

fracture-local and 𝐵 = 𝐶+𝐸, with 𝐸 having zero entries in the positions
of the non-zeros of 𝐶 and containing the off-block diagonal connections

among the fractures. The Schur complement 𝑆𝑢(𝛼) in equation (19) can
be re-written as:

𝑆𝑢(𝛼) =𝐺𝑢 +𝑍𝑇
(
𝐺ℎ𝑍 − 2𝛼𝐶

)
− 𝛼

(
𝐸𝑇𝑍 +𝑍𝑇𝐸

)
= 𝑆𝐷 −𝑆𝐸, (20)

where 𝑆𝐷 is block-diagonal and 𝑆𝐸 has null diagonal blocks. The pre-

conditioner for 𝑆𝑢 proposed in [21] is based on replacing 𝑍 in (20) with

a sparsified approximation 𝑍 obtained by enforcing an adaptive sparse
non-zero pattern at every column 𝒛𝑖. This solution can prove effective,
but not robust with respect to the set-up parameters used for sparsifying

𝑍. An example of the convergence rate obtained in small- to medium-

size problems, taken from [21] by varying the exit tolerance 𝜏 for the

adaptive sparsification strategy, is shown in Table 3. The smaller is 𝜏,
the denser is 𝑍. The iteration count turns out to be very sensitive to the
problem-dependent 𝜏 value. If 𝑍 is too sparse, the preconditioner for
𝑆𝑢 can turn to be indefinite, thus preventing from convergence. In con-

trast, by decreasing 𝜏 a very rapid fill-in of 𝑍 can be experienced. The
7

Table 3

Iteration count to convergence and percentage 𝜇 of non-

zeros retained in 𝑍 with respect to 𝑍 with the precondi-

tioner proposed in [21] for different values of the set-up

parameter 𝜏. The problems A, B and C have global size equal

to 32,549, 86,795 and 205,812, respectively. – means that

the solver does not converge because of the indefiniteness of

the approximate 𝑆𝑢 .
A B C

𝜏 iter 𝜇 iter 𝜇 iter 𝜇

0.100 136 12.3% – 11.5% – 14.3%

0.050 57 25.1% 1483 54.0% 445 32.0%

0.025 28 40.2% 8 99.5% 128 56.6%

0.001 17 60.8% 4 99.9% 41 81.0%

convergence rate can be very fast, but the fill-in of the resulting pre-

conditioner can be unacceptably large, especially in view of the aim at

solving larger problems.

The fact that the coefficient matrix 𝑆𝑢 is not explicitly available

makes it attractive the use of a matrix-free preconditioner. In this

work, we investigate the application and parallel implementation of the

Newton-Chebyshev polynomial preconditioner previously described.

4.3. Preconditioner implementation details

Following the discussion in Section 3, we used as the seed precon-

ditioner the diagonal of 𝑆𝑢. Note that 𝐷𝑆 = diag(𝑆𝑢) can be computed
without forming 𝑆𝑢 through the steps described in Algorithm 4, where

with 𝒛𝑖, 𝒕𝑖 we denote the 𝑖-th column of matrices 𝑍 and 𝑇 , respectively.

Algorithm 4 Computation of 𝐷𝑆 = diag(𝑆𝑢).
1: 𝑍 =

(
𝐿𝐴𝐿

𝑇
𝐴

)−1
𝐶

2: 𝑇 =𝐺ℎ𝑍 − 2𝛼𝐶
3: for 𝑖 = 1 ∶𝑚 do

4: (𝐷𝑆)𝑖 = (𝐺𝑢)𝑖𝑖 + 𝒛𝑇
𝑖
𝒕𝑖

5: end for

The most time-consuming task in Algorithm 4 is represented by the

computation of 𝑍 which requires sparse matrix inversions. However,

it must be observed that these operations involve block matrices and

hence do not produce a dramatic increase of the fill-in.

The polynomial preconditioner will be therefore applied to the sym-

metrically scaled system

𝑆̂𝑢𝒖̂ = 𝒓̂, with 𝑆̂𝑢 =
√
𝐷−1
𝑆
𝑆𝑢

√
𝐷−1
𝑆
, 𝒖̂ =

√
𝐷𝑆𝒖, 𝒓̂ =

√
𝐷−1
𝑆
𝒓

In the sequel, we will select 𝑆𝑢 = 𝑆𝑢(1), i.e. 𝛼 = 1.

5. Parallel implementation

An efficient parallel implementation of the application of the Schur

complement 𝑆𝑢 and the explicit computation of its diagonal 𝐷𝑆 is
fundamental for handling large-size problems arising from realistic in-

dustrial applications.

The proposed algorithm is implemented relying on the Chronos soft-

ware package, a collection of linear algebra algorithms designed for

high performance computers [20]. Chronos is entirely written in C++

using the potential of object-oriented programming (OOP) to easen its
use from other software. The Message Passing Interface (MPI) is used

for communications among processes while OpenMP directives enhance

the fine-grained parallelism through multithreaded execution. Chronos

is free for research purposes and its license can be requested at the li-
brary website [20].

The high level of abstraction introduced in Chronos by the OOP al-

lows for the use of the same distributed matrix object to store and use

all the sparse matrices composing the block system  in eq. (16). In

Fig. 2. Chronos DSMat storage schemes for 𝐴, 𝐶 and 𝐺ℎ (left) and 𝐵 and 𝐺𝑢 (center) matrices partitioned into 4 MPI ranks. On the right, a corresponding distributed

vector in Chronos. The portions of matrices and vector stored by MPI rank 1 are highlighted with different colors.

Table 4

Size and nonzeros of the relevant matrices for each test case.

Test case 𝑛𝑢 𝑛𝑝 ≡ 𝑛ℎ 𝑛𝑛𝑧() 𝑛𝑛𝑧(𝑍) 𝑛𝑛𝑧(𝑆𝑢) # fractures

#1 56375 886693 13 797084 301 879683 62 139981 395

#2 312518 221144 10 854803 59 966125 325 144680 1425

#3 (Frac16) 1 428334 502152 31 802122 – – 15102

#4 (Frac32) 2 777378 994907 44 646710 – – 29370
particular, Chronos adopts a Distributed Sparse Matrix (DSMat) stor-

age scheme, where the matrix is sliced into nprocs horizontal stripes

of consecutive rows, where nprocs is the number of MPI ranks in-

volved in the computation. Each stripe is in turn subdivided into blocks

stored in Compressed Sparse Row (CSR) format. This block-nested stor-

age scheme, along with nonblocking send/receive messages, enhances

the overlap between communications and computations hiding data-

transfer latency and reducing wall-time.

For the particular application of DFN, the stripes are chosen taking

into account the block-diagonal structure of the matrices 𝐴, 𝐶 , and 𝐺ℎ.
Each MPI rank stores a finite number of consecutive blocks and no block

is split between different ranks. This subdivision then guides the parti-

tioning of the other matrices 𝐵 and 𝐺𝑢. A sketch of the DSMat storage

scheme for the various blocks of the matrix  is shown in Fig. 2.

Both the multiplication by 𝑆𝑢 and the set-up of 𝐷𝑆 require the ap-

plication of 𝐴−1. To this aim, the exact Cholesky factor, 𝐿𝐴, of 𝐴 is
computed by factorizing in parallel all its diagonal blocks: since the

number of blocks is very high, within each MPI rank, several OpenMP

threads are used to factor a chunk of blocks. The sequential routine

𝑐ℎ𝑜𝑙𝑚𝑜𝑑_𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑧𝑒, provided by the SuiteSparse library [13], is used to
factorize the single CSR blocks.

The 𝑆𝑢 application shown in Algorithm 3 requires Sparse Matrix-by-

Vector product (SpMV) calls that are provided by Chronos. At its inner

level, SpMV is specifically designed according to the type of matrix. In
particular, 10 SpMV products are executed with block-diagonal matri-

ces, 6 of which through forward and backward substitutions performed

block-by-block using 𝑐ℎ𝑜𝑙𝑚𝑜𝑑_𝑠𝑜𝑙𝑣𝑒2 from SuiteSparse. These products
do not require any communication between the MPI ranks, and on each

rank the operations are executed by multiple OpenMP threads. The re-

maining three SpMV products, involving 𝐵 and 𝐺𝑢, require preliminary

MPI data transfer: each stripe must receive the components of the dis-

tributed vector 𝒓 that correspond to the column indices of the extra

diagonal CSR blocks. To hide the latency, these communications are

overlapped to the application of diagonal CSR block with the portion of

𝒓 owned by the rank, highlighted respectively in green and light blue in
Fig. 2.

The computation of 𝐷𝑆 is performed in matrix-free setting follow-

ing Algorithm 4. Once again, the diagonal block structure allows for a
highly parallel implementation that does not require communications

among MPI ranks. In particular, each group of consecutive entries of
8

𝐷𝑆 , corresponding to the rows of a 𝐶𝑇 block, can be computed in par-

allel using several OpenMP threads.

6. Numerical results on the DFN problem

The relevant sizes and nonzeros of the test matrices are reported in
Table 4.

We notice that in the first case 𝑛𝑢 ≪ 𝑛ℎ (large fractures with few

mutual intersections) implying that the intermediate matrix 𝑍 has more

nonzeros than the final Schur complement 𝑆𝑢, due to its large row size.

For this problem it is more convenient to form explicitly 𝑆𝑢 and work

with the full Schur complement matrix. In the other cases computing

the whole Schur complement is not worth due to its size and nonzero

number, so the computation of diag(𝑆𝑢) and the applications of 𝑆̂𝑢 to a
vector are implemented as described in Algorithms 3 and 4. The (very

high) nonzero number of 𝑆𝑢 for test case #2 is reported only to reiterate

that this matrix can not be formed explicitly.

6.1. Results on test case #1

The results provided for this example, have been obtained with a
Matlab code running on an Intel Core(TM) i7-8550U CPU 1.80GHz.

To roughly estimate the extremal eigenvalues we used the CG-based

method called Deflation-Accelerated Conjugate Gradient, DACG [5,7]

with low accuracy, namely using a tolerance on the relative residual

toleig = 10−3. The DACG method is aimed at computing the leftmost
eigenpairs of an SPD pencil (𝐴, 𝐵) but can be also employed to assess
the (reciprocal of the) largest eigenvalues of 𝐴 when the input matrices

are (𝐼, 𝐴). The DACG algorithm, implemented in a matrix-free regime
(no preconditioning) requiring the application of the coefficient matrix

as a function, took 39 iterations for the smallest and 45 iterations for

the largest eigenvalue and 6.5 seconds overall.

The results in terms of number of iterations and CPU time are pro-

vided in Table 5 for increasing polynomial degree 𝑚 = 2𝑗 −1, 𝑗 = 0, … , 6.
On the left we show the results of the polynomial preconditioner alone,

on the right with a rank-one acceleration, namely using only the left-

most eigenpair, already computed for the polynomial preconditioner

setting.

The optimal scaling factor is found to be 𝜉 = 10−3 which is in ac-

cordance with the theoretical findings as 𝜅(𝑆𝑢) ≈ 1.6 × 104 and with the

Table 5

Iterations and CPU time to solve 𝑆̂𝒖̂ = 𝒓̂ with the polynomial preconditioner for various degrees
and 𝜉 = 10−3 (left) and for different 𝜉-values with 𝑚 = 31 and rank-one update (right).

𝑚 iter MVP ddot CPU iter MVP ddot CPU

0 1322 1322 3966 105.59 1235 1235 4900 99.21

1 670 1340 2010 100.95 625 1250 2500 89.77

3 350 1400 1050 104.75 327 1308 1308 94.20

7 177 1416 531 105.66 166 1328 664 95.02

15 90 1440 270 108.09 85 1360 340 97.62

31 48 1536 144 114.61 45 1440 180 103.17

63 28 1792 84 133.49 27 1728 108 123.69

no update rank-one update

𝜉 iter

0 63

10−4 51

10−3 45

3 × 10−3 49

5 × 10−3 53

10−2 61
Fig. 3. PCG Convergence profiles for the DFN test case #1 and different values

of the polynomial degree. Polynomial preconditioner with rank-one accelera-

tion.

comment at the end of Section 2, in fact we have 𝜉 ≈ 16𝜅−1. The ef-

fect of the polynomial preconditioner is to drastically reduce the scalar

products, by slightly increasing the number of matrix-vector products.

The low-rank correction, even using one vector only, seems to be conve-

nient, since the additional scalar product per iteration is compensated

by a significant reduction of the matrix-vector products. The conver-

gence profile of the PCG solver with different polynomial precondi-

tioners is shown in Fig. 3, where the steepest profiles corresponding

to larger degrees can be appreciated.

6.2. Results on test case #2

We use this test case to assess the parallel efficiency of our im-

plementation of polynomial preconditioning. We run the tests on the

Marconi100 supercomputer which is installed at CINECA, the Italian

supercomputing center. Marconi100 consists of 980 computing nodes

each one equipped with 2 x 16 cores IBM Power9 AC922 processors at

2.6 GHz. For completeness, we add that each node can also take advan-

tage of 4 NVIDIA V100 GPU accelerators, but we do not use GPUs in this

work. The sparsity pattern of the whole 3 ×3 block matrix  is provided
in Fig. 4a. Comparing this sparsity pattern with the block structure of

 in equation (16) we can observe that the nonzeros of the coupling

matrices 𝐵 and 𝐺𝑢 are spread over the entire block while 𝐴, 𝐶 and 𝐺ℎ
display a block diagonal structure. This is better shown in Fig. 4b, 4c

where a zoom of matrix 𝐴 and its exact Cholesky factorization 𝐿𝐴 is
provided. This nonzero distribution is due to the huge number of con-

nections among the fractures and gives rise to a very dense 𝑆𝑢 matrix

(see Table 4, 2nd row).

Due to the large size of this problem, we solve it on 4 Marconi100

nodes involving all the available cores for a total of 128 cores. First,

we experimentally determine the optimal value of 𝜉 by varying it from

0.001 to 0.01 and keeping fixed the polynomial degree to 𝑚 = 127. Ta-

ble 6 provides the number of iterations to converge and solution time
9

Table 6

Number of iterations to converge

and solution times for PCG precondi-

tioned with a polynomial of degree

𝑚 = 127 and 128 Marconi100 cores
by varying 𝜉 from 0.001 to 0.01. The

minimum and maximum eigenvalues

of the diagonally scaled matrix are

1.56 × 10−5 and 2.06, respectively.

𝜉 PCG iters Solv. time [s]

0.001 113 60.393

0.002 107 56.562

0.003 94 50.182

0.004 83 44.074

0.005 108 57.266

0.006 97 51.527

0.007 76 40.509

0.008 78 41.758

0.009 80 42.779

0.010 83 43.959

Table 7

Number of iterations to converge

and solution time for PCG precon-

ditioned with polynomials of vary-

ing degrees and 128 Marconi100

cores for 𝜉 = 0.007.

𝑚 PCG iters Solv. time [s]

3 2940 48.633

7 1509 50.024

15 670 44.493

31 378 49.962

63 195 51.636

127 76 40.509

255 46 49.445

for PCG along with the minimum and maximum eigenvalues of the di-

agonally scaled matrix that are needed to set-up the polynomial.

The choice of the polynomial degree has been made similarly by

keeping 𝜉 = 0.007 and varying 𝑚, again on 128 cores of Marconi100.
Table 7, providing the number of iterations to converge and solution

time for PCG, shows that the number of iterations always decreases with

the degree of the polynomial, as expected, while the time to solution

initially decreases but reaches a minimum for 𝑚 = 127.

Finally, we provide a strong scalability test to demonstrate how

polynomial preconditioning is amenable to parallelization. Using the

optimal values of 𝜉 and 𝑚 found above, that is 0.007 and 127, respec-

tively, we solve the test case #2 by using 4 Marconi100 nodes and a
number of cores per node varying from 1 up to the maximum possible,

32.

In Table 8, and in the following ones, we also report the Set-up time

which accounts for the computation of the extremal eigenvalues and

the evaluation of the diagonal of the Schur complement matrix 𝑆𝑢, in
view of its scaling. We observe that this cost is always less than 5% of

the total CPU (Set-up + solution) time. From Table 8, it is possible to
note how the number of PCG iterations remains constant, as expected,

while the solution times decreases with the increase of the number of

Fig. 4. Sparsity patterns of the whole matrix and subblocks.
Table 8

Number of iterations to converge, Set-up and solution times, and

parallel efficiency for PCG preconditioned with a 127-degree poly-

nomial with a varying number of cores.

of cores PCG iters Set-up time [s] Solv. time [s] 𝜂 [%]

4 76 27.7 552.0 100.00

8 76 15.3 304.0 90.80

16 76 8.8 175.3 78.75

32 76 5.5 108.0 63.91

64 76 3.2 63.8 54.05

128 76 2.4 46.8 36.84

cores. To better understand how effective polynomial preconditioning

is in parallel, we also report the parallel efficiency which is defined as

the ratio between real and ideal speed-up:

𝜂(nprocs) = nprocs

4
𝑇nprocs

𝑇4
(21)

where nprocs denotes the number of cores used in the run and 𝑇nprocs
the corresponding execution time. Note that, although with 128 cores

the number of unknowns binded to each core is only 2,441, we still
have a reasonable efficiency which is very unlikely to reach with more

complex preconditioning as approximate inverses, ILU or AMG.

6.3. Results on the largest test cases

This section presents the numerical results on the two largest test

cases with a number of fractures of about 16,000 and 32,000, named

Frac16 and Frac32, respectively. As done for the other test cases, we

first determine the optimal value of 𝜉, on the basis of the condition

number of the (diagonally scaled) Schur complement 𝑆𝑢. As 𝜅−1(𝑆̂𝑢) =
7.6 × 10−6 we vary 𝜉 between 10−4 and 5 × 10−3 with a fixed polynomial
degree 𝑚 = 127. Table 9 provides the number of iterations for the

convergence of the PCG: the optimal value found is 10−4, which is once
again roughly one order of magnitude larger than 𝜅−1(𝑆̂𝑢). Moreover,
there are no significant differences in the range of 10−4 − 10−3 and the
trend appears to be similar as the number of fractures increases.

Regarding the parallel implementation, the two cases Frac16 and

Frac32 were solved with degree 𝑚 = 127 and 𝜉 = 0.001 by increasing

the number of cores up to 32. The results are provided in Table 10 and

show excellent strong scalability, with an efficiency of about 70% with

32 cores where the number of unknowns binded to each core is only

15,000 and 30,000 for Frac16 and Frac32, respectively.

7. Conclusions

A high-degree polynomial preconditioner has been developed with

the aim of reducing the number of scalar products in the Conjugate

Gradient iteration. We have shown that the suitable choice of a scaling
10
parameter can speed-up the PCG convergence by avoiding clustering

of eigenvalues around the endpoints of the spectral interval. We have

given theoretical criteria to select an appropriate value for this parame-

ter. The proposed preconditioning approach reveals particularly useful

when the coefficient matrix is not explicitly available, as in the case

of the Schur complement matrix obtained in the solution of a 3× 3
block linear system arising in fluid flow simulations on fractured net-

work models. This preconditioner is well suited to parallelization since

it reduces considerably the number of scalar product, thus minimizing

the collective global communications among processors. Results on the

Marconi100 supercomputer show satisfactory scalability results on real-

istic Discrete Fracture Networks test cases with thousands of fractures.

Data availability

Data will be made available on request.

Acknowledgements

We acknowledge the CINECA award under the ISCRA initiative, for

the availability of high performance computing resources and support.

LB and AM also acknowledge the support of the “INdAM – GNCS Pro-

ject”, CUP_E53C22001930001.

References

[1] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A.

Dener, V. Eijkhout, W.D. Gropp, D. Karpeyev, D. Kaushik, M.G. Knepley, D.A. May,

L.C. McInnes, R.T. Mills, T. Munson, K. Rupp, P. Sanan, B.F. Smith, S. Zampini, H.

Zhang, H. Zhang, PETSc web page, https://www .mcs .anl .gov /petsc, 2021.

[2] M. Benzi, J.K. Cullum, M. Tůma, Robust approximate inverse preconditioning for

the conjugate gradient method, SIAM J. Sci. Comput. 22 (2000) 1318–1332.

[3] M. Benzi, G.H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta

Numer. 14 (2005) 1–137.

[4] L. Bergamaschi, A survey of low-rank updates of preconditioners for sequences of

symmetric linear systems, Algorithms 34 (2) (2020).

[5] L. Bergamaschi, G. Gambolati, G. Pini, Asymptotic convergence of conjugate gradi-

ent methods for the partial symmetric eigenproblem, Numer. Linear Algebra Appl.

4 (1997) 69–84.

[6] L. Bergamaschi, A. Martinez, Parallel Newton–Chebyshev polynomial precondition-

ers for the conjugate gradient method, Comput. Math. Methods 3 (2021) e1153.

[7] L. Bergamaschi, M. Putti, Numerical comparison of iterative eigensolvers for

large sparse symmetric matrices, Comput. Methods Appl. Mech. Eng. 191 (2002)

5233–5247.

[8] S. Berrone, S. Pieraccini, S. Scialò, A PDE-constrained optimization formulation for

discrete fracture network flows, SIAM J. Sci. Comput. 35 (2013) B487–B510.

[9] S. Berrone, S. Pieraccini, S. Scialò, On simulations of discrete fracture network flows

with an optimization-based extended finite element method, SIAM J. Sci. Comput.

35 (2013) A908–A935.

[10] S. Berrone, S. Scialò, F. Vicini, Parallel meshing, discretization, and computation

of flow in massive discrete fracture networks, SIAM J. Sci. Comput. 41 (2019)

C317–C338.

https://www.mcs.anl.gov/petsc
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibE8C3210F28901766455CA4442029D0A0s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibE8C3210F28901766455CA4442029D0A0s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibEC6FDE2E83BA7723B1374F2B2E282C38s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibEC6FDE2E83BA7723B1374F2B2E282C38s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib17AC9D7FBE9B1689917DABC7A6FA90DBs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib17AC9D7FBE9B1689917DABC7A6FA90DBs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib39B662C36ED71631BAB701835E133A38s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib39B662C36ED71631BAB701835E133A38s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib39B662C36ED71631BAB701835E133A38s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibF5FB7FA51E2E9000AD790417ED3E9B23s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibF5FB7FA51E2E9000AD790417ED3E9B23s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibAB27F108F321ED5BE4C8CE4E0E7CABAEs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibAB27F108F321ED5BE4C8CE4E0E7CABAEs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibAB27F108F321ED5BE4C8CE4E0E7CABAEs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib95C91724B286E8622CE82FA4087FAE39s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib95C91724B286E8622CE82FA4087FAE39s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib90A2E3449B366921A37D420E6052548Es1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib90A2E3449B366921A37D420E6052548Es1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib90A2E3449B366921A37D420E6052548Es1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibD445448A8A85FDCFDCBB52158A40AF52s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibD445448A8A85FDCFDCBB52158A40AF52s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibD445448A8A85FDCFDCBB52158A40AF52s1

Table 9

Number of iterations for the convergence of the PCG preconditioned with a polynomial

of degree 𝑚 = 127 by varying 𝜉 from 10−4 to 5 × 10−3 .
Test case 𝑚 𝜉 PCG iters Test case 𝑚 𝜉 PCG iters

127 5 × 10−3 132 127 5 × 10−3 156

Frac16 127 1 × 10−3 104 Frac32 127 1 × 10−3 121

127 3 × 10−4 105 127 3 × 10−4 112

127 1 × 10−4 103 127 1 × 10−4 107
Table 10

Number of iterations for the convergence, Set-up and solution times, and par-

allel efficiency of the PCG preconditioned with polynomials of degree 𝑚 = 127

with a varying number of cores.

Test case # of cores PCG iters Set-up time [s] Solv. time [s] 𝜂[%]

2 105 83.9 1678.6 100.0

4 104 43.3 866.6 96.8

Frac16 8 104 23.0 459.6 91.3

16 103 12.5 249.7 84.0

32 103 7.9 157.5 66.7

4 107 87.5 1750.2 100.0

Frac32 8 107 46.3 924.4 94.7

16 106 25.1 501.6 87.2

32 108 15.0 300.5 72.8

[11] B. Carpentieri, I.S. Duff, L. Giraud, A class of spectral two-level preconditioners,

SIAM J. Sci. Comput. 25 (2003) 749–765 (electronic).

[12] K. Chen, Matrix Preconditioning Techniques and Applications, Cambridge Mono-

graphs on Applied and Computational Mathematics, vol. 19, Cambridge University

Press, Cambridge, 2005.

[13] Y. Chen, T.A. Davis, W.W. Hager, S. Rajamanickam, Algorithm 887: cholmod, su-

pernodal sparse Cholesky factorization and update/downdate, ACM Trans. Math.

Softw. 35 (2008).

[14] H.C. Elman, D.J. Silvester, A.J. Wathen, Finite elements and fast iterative solvers:

with applications in incompressible fluid dynamics, 2nd ed., in: Numerical Mathe-

matics and Scientific Computation, Oxford University Press, New York, 2014.

[15] M. Embree, J.A. Loe, R. Morgan, Polynomial preconditioned Arnoldi with stability

control, SIAM J. Sci. Comput. 43 (2021) A1–A25.

[16] R. Estrin, C. Greif, On nonsingular saddle-point systems with a maximally rank de-

ficient leading block, SIAM J. Matrix Anal. Appl. 36 (2015) 367–384.

[17] R.D. Falgout, U.M. Yang, Hypre: a library of high performance preconditioners, in:

Proceedings of the International Conference on Computational Science-Part III, ICCS

’02, Springer-Verlag, Berlin, Heidelberg, 2002, pp. 632–641.

[18] M. Ferronato, A. Franceschini, C. Janna, N. Castelletto, H. Tchelepi, A general pre-

conditioning framework for coupled multi-physics problems with application to

contact- and poro-mechanics, J. Comput. Phys. 398 (2019) 108887.

[19] A. Franceschini, N. Castelletto, M. Ferronato, Approximate inverse-based block pre-

conditioners in poroelasticity, Comput. Geosci. 25 (2021) 701–714.

[20] M. Frigo, G. Isotton, C. Janna, Chronos web page, https://www .m3eweb .it /chronos,

2021.

[21] L. Gazzola, M. Ferronato, S. Berrone, S. Pieraccini, S. Scialò, Numerical investifga-

tion on a block preconditioning strategy to improve the computational efficiency of

dfn models, in: Book of Extended Abstracts of the 6th ECCOMAS Young Investigator

Conference, Valencia, Spain, 2021, pp. 346–354.

[22] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia,

PA, 1997.

[23] H. Hotelling, Some new methods in matrix calculation, Ann. Math. Stat. 14 (1943)

1–34.

[24] G. Isotton, M. Frigo, N. Spiezia, C. Janna, Chronos: a general purpose classical AMG

solver for high performance computing, SIAM J. Sci. Comput. 43 (2021) C335–C357.

[25] O.G. Johnson, C.A. Micchelli, G. Paul, Polynomial preconditioners for conjugate

gradient calculations, SIAM J. Numer. Anal. 20 (1983) 362–376.

[26] I.E. Kaporin, Using Chebyshev polynomials and approximate inverse triangular fac-

torizations for preconditioning the conjugate gradient method, Comput. Math. Math.

Phys. 52 (2012) 169–193.

[27] Q. Liu, R.B. Morgan, W. Wilcox, Polynomial preconditioned gmres and gmres-dr,

SIAM J. Sci. Comput. 37 (2015) S407–S428.

[28] J.A. Loe, R.B. Morgan, New polynomial preconditioned GMRES, arXiv :1911 .07065,

2019.

[29] J.A. Loe, H.K. Thornquist, E.G. Boman, Polynomial preconditioned GMRES in trili-
nos: practical considerations for high-performance computing, in: Proceedings of the

2020 SIAM Conference on Parallel Processing for Scientific Computing (PP), 2020,

pp. 35–45.

[30] V. Pan, R. Schreiber, An improved Newton iteration for the generalized inverse of a
matrix, with applications, SIAM J. Sci. Stat. Comput. 12 (1991) 1109–1130.

[31] Y. Saad, Practical use of polynomial preconditionings for the conjugate gradient

method, SIAM J. Sci. Stat. Comput. 6 (1985) 865–881.

[32] Y. Saad, Iterative Methods for Sparse Linear Systems, second edition, SIAM,

Philadelphia, PA, 2003.

[33] Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986) 856–869.

[34] M.B. van Gijzen, A polynomial preconditioner for the GMRES algorithm, J. Comput.

Appl. Math. 59 (1995) 91–107.
11

http://refhub.elsevier.com/S0898-1221(23)00284-5/bibD64BB1AB8C4E0A5B69168E8B65946A48s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibD64BB1AB8C4E0A5B69168E8B65946A48s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib218FB63D111E5DEF5374EAAA0FBD5A9Fs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib218FB63D111E5DEF5374EAAA0FBD5A9Fs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib218FB63D111E5DEF5374EAAA0FBD5A9Fs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib2C4A821CF291A9D82E98A9721E74AA8Bs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib2C4A821CF291A9D82E98A9721E74AA8Bs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib2C4A821CF291A9D82E98A9721E74AA8Bs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib641ACD34CDA3E87170A32271FB101675s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib641ACD34CDA3E87170A32271FB101675s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib641ACD34CDA3E87170A32271FB101675s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib1356F580CFCCF5E37471E68D06D8A742s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib1356F580CFCCF5E37471E68D06D8A742s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib0C45A905947AEE463D767B0B8E9DAA2Cs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib0C45A905947AEE463D767B0B8E9DAA2Cs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibD636689D6A71403410DBA1333C98E75Es1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibD636689D6A71403410DBA1333C98E75Es1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibD636689D6A71403410DBA1333C98E75Es1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib162A36AF875DC2F7CCAA61225F36B616s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib162A36AF875DC2F7CCAA61225F36B616s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib162A36AF875DC2F7CCAA61225F36B616s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib758A4634927436BA15542E6887E07E2Es1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib758A4634927436BA15542E6887E07E2Es1
https://www.m3eweb.it/chronos
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib9E19921015BD4D6E76847B76D0F8E24Cs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib9E19921015BD4D6E76847B76D0F8E24Cs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib9E19921015BD4D6E76847B76D0F8E24Cs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib9E19921015BD4D6E76847B76D0F8E24Cs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibBBCF91D0ED91D5B7A501126322EAAC1Bs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibBBCF91D0ED91D5B7A501126322EAAC1Bs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib6C037E3121FB461DAF3134A29358DB88s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib6C037E3121FB461DAF3134A29358DB88s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib64500FC4F82D809BA3D912760F9CFF89s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib64500FC4F82D809BA3D912760F9CFF89s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib99F0710DB339BEBD218841EF4A5ADD1Cs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib99F0710DB339BEBD218841EF4A5ADD1Cs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib02B7C7448B1D2FFDC5937023D463F2BBs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib02B7C7448B1D2FFDC5937023D463F2BBs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib02B7C7448B1D2FFDC5937023D463F2BBs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibAC2FA9B79B608E3AC410A8676E959880s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibAC2FA9B79B608E3AC410A8676E959880s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib74EBA4F64BF6C8951628A78AA4A9C469s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib74EBA4F64BF6C8951628A78AA4A9C469s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibC40C5ABA9A94FA1F0CD5572FBEFAFFCBs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibC40C5ABA9A94FA1F0CD5572FBEFAFFCBs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibC40C5ABA9A94FA1F0CD5572FBEFAFFCBs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibC40C5ABA9A94FA1F0CD5572FBEFAFFCBs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib18E5C9DD3183CCF0B5A2BEDFFB65B364s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib18E5C9DD3183CCF0B5A2BEDFFB65B364s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib5B3AF5E3D7C1F4E627BA9CBE228CDDD9s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib5B3AF5E3D7C1F4E627BA9CBE228CDDD9s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibD14625354EEDC56C824F47F413C0D333s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bibD14625354EEDC56C824F47F413C0D333s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib4C96A7EAF7BA3FFAA527A9E21830455Bs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib4C96A7EAF7BA3FFAA527A9E21830455Bs1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib45A02747274C2226970358C1A5B3C5B0s1
http://refhub.elsevier.com/S0898-1221(23)00284-5/bib45A02747274C2226970358C1A5B3C5B0s1

	Parallel matrix-free polynomial preconditioners with application to flow simulations in discrete fracture networks
	1 Introduction
	2 Polynomial preconditioners
	2.1 Newton-based preconditioners
	2.2 Chebyshev preconditioners
	2.3 Relation between Newton and Chebyshev polynomials
	2.4 Avoiding eigenvalue clustering

	3 Polynomial acceleration of a given preconditioner
	3.1 Low-rank acceleration
	3.2 Preliminary numerical results

	4 Example of application: discrete fracture network (DFN) flow model
	4.1 Discrete formulation
	4.2 Algebraic solver
	4.3 Preconditioner implementation details

	5 Parallel implementation
	6 Numerical results on the DFN problem
	6.1 Results on test case #1
	6.2 Results on test case #2
	6.3 Results on the largest test cases

	7 Conclusions
	Data availability
	Acknowledgements
	References

