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ABSTRACT

Context. Our universe may feature large-scale inhomogeneities and anisotropies that cannot be explained by the standard model of
cosmology, that is, the homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker metric, on which the Λ cold dark matter
model is built, may not accurately describe observations. Currently, there is not a satisfactory understanding of the evolution of the
large-scale structure on an inhomogeneous background.
Aims. We have launched the cosmology beyond homogeneity and isotropy (BEHOMO) project to study the inhomogeneous
Λ Lemaître-Tolman-Bondi model with the methods of numerical cosmology. Understanding the evolution of the large-scale structure
is a necessary step in constraining inhomogeneous models with present and future observables and placing the standard model on
more solid ground.
Methods. We perform Newtonian N-body simulations, whose accuracy in describing the background evolution is checked against the
general relativistic solution. The large-scale structure of the corresponding Λ cold dark matter simulation is also validated.
Results. We obtain the first set of simulations of the Λ Lemaître-Tolman-Bondi model ever produced. The data products consist of
11 snapshots between redshift 0 and 3.7 for each of the 68 simulations that have been performed, together with halo catalogs and lens
planes relative to 21 snapshots, between redshift 0 and 4.2, for a total of approximately 180 TB of data.
Conclusions. We plan to study the growth of perturbations at the linear and nonlinear level, gravitational lensing, and cluster abun-
dances and proprieties.
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1. Introduction

Several anomalous signals in cosmological observables have
emerged since the establishment of the Λ cold dark matter
(CDM) model as the standard model of cosmology more than
two decades ago. Particularly relevant here are the Hubble cri-
sis, the cosmic-microwave-background (CMB) anomalies, and
the cosmic dipoles and bulk flows (see Perivolaropoulos & Skara
2022, and references therein). Such signals indicate anoma-
lies that challenge the ΛCDM model and its foundations.
One may then ask if the universe features large-scale inho-
mogeneities and anisotropies that cannot be explained by the
standard paradigm, or, equivalently, if the homogeneous and
isotropic Friedmann-Lemaître-Robertson-Walker (FLRW) met-
ric, on which the ΛCDM model is built, does not accurately
describe observations. This constitutes the motivation for study-
ing the universe without assuming homogeneity and isotropy,
trying instead to reconstruct the metric directly from observa-
tions (Stebbins 2012).

According to the standard reasoning, the validity of the
FLRW metric is a consequence of the observed isotropy of the

? Data can be obtained upon request. Further information is available
at https://valerio-marra.github.io/BEHOMO-project

universe and the Copernican principle, which states that humans
are not special observers. Here, however, we are not advocat-
ing that the universe is inhomogeneous and humans are spe-
cial, rather that the scale at which there is homogeneity and
isotropy could be larger than the commonly thought ≈100 Mpc
(Scrimgeour et al. 2012; Laurent et al. 2016; Ntelis et al. 2017),
that is, the cosmological principle may be valid at grander scales
(see Sect. 8 of Abdalla et al. 2022). We note that this scenario is
not necessarily at odds with the observed approximate isotropy
of the CMB (see the discussion of the Ehlers-Geren-Sachs theo-
rem in Rasanen 2009).

Inhomogeneous cosmology is undeniably a challenging sub-
ject as it would require a considerable theoretical and numeri-
cal effort to study its phenomenology. The absence of an FLRW
background makes it particularly difficult to study early universe
physics and predict, for instance, the CMB power spectrum.
Therefore, in order to present a viable program, here we consider
a subclass of inhomogeneous cosmologies. The basic require-
ment is that, at early times, one recovers a near-FLRW metric
such that the standard inflationary paradigm is maintained and
the physics that leads to the CMB remains basically unchanged.
In other words, we consider a standard cosmology endowed
with a nonstandard large-scale structure that is dominated by
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growing modes. This requirement effectively imposes restric-
tions on the free functions that characterize inhomogeneous
metrics, considerably simplifying both analysis and statistical
inference. We name these inhomogeneous models “early-FLRW
cosmologies”.

Clearly, early-FLRW cosmologies are constrained by CMB
observations. Indeed, as shown by Valkenburg (2012a), per-
turbations at the last scattering surface of present-day contrast
≈0.1 and size ≈1 Gpc would produce temperature fluctuations
of ∆T ≈ 50µK on a scale of ≈5◦. Similarly, too strong struc-
tures along the line of sight at z . 1 would be detected via
the integrated Sachs-Wolfe (ISW) effect : a present-day con-
trast ≈0.1 and size ≈300 Mpc would produce temperature fluc-
tuations of order ∆T ≈ 20−30 µK (see, for instance, Zibin
2021; Nadathur et al. 2014). To put this figure in perspective, the
famous cold spot of the CMB features ∆T ≈ 70µK across a 5◦
region (Vielva 2010). Therefore, early-FLRW cosmologies are,
at most, mildly nonlinear large-scale perturbations of the FLRW
metric.

The inhomogeneities of early-FLRW cosmologies may be
regarded as a particular type of primordial non-Gaussianity.
Their distinguishing features are nonstandard amplitudes and
phases. Indeed, they are characterized by bulk flows and coher-
ent perturbations in the energy content of the universe at arbi-
trarily large scales. In other words, large-scale homogeneity and
isotropy are violated by the phases of these extra modes, so
observations depend on the position of the observer and the
notion of an average FLRW observer ceases to be meaning-
ful (Kolb et al. 2010). Specifically, large-scale inhomogeneities
alter observations both because they affect photon geodesics and
because the observer’s local space-time is perturbed. Of course,
this is also true within the ΛCDM model, but there the size of
this effect is constrained by the standard perturbation spectrum.
For example, cosmic variance on local measurements of H0 is
expected to be at most 1% within ΛCDM (Camarena & Marra
2018).

The background evolution of early-FLRW cosmologies, that
is, the evolution neglecting standard primordial perturbations,
can be studied via exact solutions of general relativity. If con-
sidering more general scenarios, one can use linear-perturbation
theory or simulations via codes that use general relativistic (GR)
perturbation theory such as gevolution (Adamek et al. 2016)
and CONCEPT (Dakin et al. 2021). A general consequence of spa-
tial gradients is the occurrence of background shear, that is, the
fact that the universe expands in an anisotropic way.

The scenario becomes more involved once primordial
perturbations are added to the inhomogeneous background.
First, there is the issue of the backreaction of small-scale
perturbations on the average dynamics of the (possibly
inhomogeneous) universe. Here, we assume that backreac-
tion gives a negligible effect, as tested via GR simulations
(Giblin et al. 2016; Bentivegna & Bruni 2016; Adamek et al.
2019; Macpherson et al. 2019). An overview of the backreac-
tion proposal is given in Sect. 2.12. Second, because of spatial
gradients, the standard primordial perturbations are coupled at
first order so that standard perturbation theory does not hold in
an inhomogeneous background. Within the spherical Lemaître-
Tolman-Bondi (LTB) space-time, this issue has been tackled
by Zibin (2008), Clarkson et al. (2009), Dunsby et al. (2010),
February et al. (2014), and Meyer et al. (2015) via the numer-
ical integration of the system of coupled equations and by
Nishikawa et al. (2012) via second-order perturbation theory. It
was concluded that the effect of spatial gradients could have
an impact on the growth of perturbations. However, a full per-

turbation theory and modeling is missing, hampering compar-
ison with perturbation observables – the focus of current and
next-generation surveys such as the Dark Energy Survey (DES,
Abbott et al. 2022)1, the Dark Energy Spectroscopic Instru-
ment (DESI, Aghamousa et al. 2016)2, the Javalambre Physics
of the Accelerating universe Astrophysical Survey (J-PAS,
Bonoli et al. 2021)3, the Legacy Survey of Space and Time
(LSST, Abate et al. 2012)4, Euclid (Amendola et al. 2018)5, and
the Square Kilometre Array (SKA, Braun et al. 2015)6.

Here we introduce the cosmology beyond homogeneity and
isotropy (BEHOMO) project. We propose a program that aims
at addressing the modeling of linear and nonlinear perturba-
tions and understanding the rich phenomenology of early-FLRW
cosmologies. In order to do so, the basic idea is to apply the
methods of numerical cosmology, as pioneered by Alonso et al.
(2010, 2012). The ultimate goal is to confront arbitrarily early-
FLRW inhomogeneous models with data from next-generation
surveys. The idea is to adopt Newtonian N-body simulations,
whose accuracy in describing the background evolution shall be
checked with GR codes. The basic methodology is to feed state-
of-the-art N-body codes such as GADGET (Springel et al. 2021)
with special early-FLRW initial conditions so that early-FLRW
cosmologies can reach the same resolution of standard ΛCDM
simulations in approximately the same CPU time (except for the
most nonlinear cases). This program will bring the field of inho-
mogeneous cosmologies into the era of precision cosmology, on
par with the ΛCDM model.

In this paper we present the first suite of simulations for the
simplest possible early-FLRW cosmologies: spherically sym-
metric ΛLTB models. We use the LTB metric to model a spheri-
cal inhomogeneity on top of the standard ΛCDM model. Though
still a toy model, on a first approximation one can regard the
spatial gradients of the ΛLTB model as an archetype for more
realistic structures with background shear. We consider a set
of high-resolution simulations with varying inhomogeneity size
and depth, the two main physical parameters that describe such
a structure. This will allow us to understand and model the effect
of spatial gradients on the evolution of perturbations, which is
necessary to confront inhomogeneous cosmologies with pertur-
bation observables such as redshift-space distortions, weak lens-
ing, and cluster abundances. As said earlier, the grand goal is to
study and then constrain the phenomenology of these beyond-
ΛCDM inhomogeneities with observations (Valkenburg et al.
2014; Redlich et al. 2014; Camarena et al. 2021).

In this presentation paper we review the ΛLTB model in
Sect. 2, discuss the numerical details of the inhomogeneous N-
body simulations and their data products in Sect. 3, present the
results of the simulations in Sect. 4, and discuss the road map
of the BEHOMO project7 in Sect. 5. Regarding notation: we use
“LTB metric” as opposed to “FLRW metric” but “ΛLTB model”
as opposed to “ΛCDM model”; quantities without explicit radial
dependence are relative to the FLRW background if pertinent;
bold denotes vectors; and c = 1 is assumed unless stated
otherwise.

1 https://www.darkenergysurvey.org
2 https://www.desi.lbl.gov
3 http://www.j-pas.org
4 https://www.lsst.org
5 https://www.euclid-ec.org
6 https://www.skatelescope.org
7 valerio-marra.github.io/BEHOMO-project
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2. The ΛLTB model

We consider early-FLRW ΛLTB models, that is, the ΛCDM
model endowed with a spherical inhomogeneity, which is
described via the exact LTB solution of Einstein’s equations. As
we are considering early-FLRW cosmologies, this model is fully
specified by the radial profile function, whose basic parameters
are the effective radius and depth of the inhomogeneity.

In this section, after reviewing the formalism and dynamics
of the LTB metric, we connect with the more standard Newtoni-
anly perturbed FLRW metric and discuss the historical relevance
of LTB models, putting coherently together results from many
different papers.

2.1. Metric

In the comoving and synchronous gauge, the spherically sym-
metric LTB metric can be written as

ds2 = −dt2 +
a2
‖
(t, r)

1 − k(r)r2 dr2 + a2
⊥(t, r)r2 dΩ2 , (1)

where the longitudinal (a‖) and perpendicular (a⊥) scale factors
are related by a‖ = (a⊥r)′, and a prime denotes partial deriva-
tion with respect to the coordinate radius r. We also adopt the
alternative notation Y(t, r) ≡ a⊥r so that Y ′ ≡ a‖. In the limit
k → constant and a⊥ = a‖ = a, we recover the FLRW metric, but
here k(r) is a free function named the LTB curvature function.

The two scale factors define two different Hubble rates:

H⊥(t, r) ≡
ȧ⊥
a⊥

=
Ẏ
Y
, (2)

H‖(t, r) ≡
ȧ‖
a‖

=
Ẏ ′

Y ′
, (3)

where a dot denotes partial derivation with respect to the coor-
dinate time t. This has important implications when confronting
these models with observations. For example, cosmic chronome-
ters probe dz/dt and so H‖ (see Eq. (26)); radial baryon acoustic
oscillations (BAOs) also probe H‖, but angular BAOs and super-
novae probe the angular and luminosity distance, respectively,
and so a⊥ and H‖ (see Eqs. (26)–(29)). Combining these observ-
ables can then place interesting constraints on the background
shear (Garcia-Bellido & Haugboelle 2009):

Σ(t, r) =
2
3

[
H‖(t, r) − H⊥(t, r)

]
. (4)

As said earlier, the spatial gradient of the ΛLTB model is an
archetype for more realistic structures.

2.2. Dynamics

By solving Einstein’s equations for an irrotational dust source
in the presence of a cosmological constant Λ, one obtains the
equivalent of the Friedmann equation, which can be written as
(Enqvist 2008; Marra & Paakkonen 2012, Appendix B)

H2
⊥(t, r) =

8πG
3

ρe
m(t, r) +

8πG
3

ρΛ −
k(r)

a2
⊥(t, r)

, (5)

where ρΛ = Λ/8πG, and the last term is the Euclidean average
of the spatial Ricci scalar (the trace of the Ricci tensor of the

spatial metric on the hypersurface of constant t):

R

2
=

(k r2Y)′

Y2Y ′
=

k
a2
⊥

+ 2
k

a⊥a‖
+

k′r
a⊥a‖

, (6)

Re

6
=

1
6

∫ r
0 R dVe

Ve
=

k(r)
a2
⊥

FLRW
−−−−→

k = const
a2 , (7)

where the Euclidean volume element – obtained by setting k = 0
in Eq. (1) – is used:

Ve(t, r) =

∫ r

0
dVe = 4π

∫ r

0
Y2Y ′dr̂ =

4π
3

Y3 . (8)

The fact that a Euclidean rather than proper average is used leads
to backreaction, as discussed in Sect. 2.13. Similarly, Eq. (5) fea-
tures the Euclidean average of the local matter density, ρm:

ρm(t, r) =
F′(r)

4πY2(t, r)Y ′(t, r)
, (9)

F(r) =

∫ r

0
ρm(t, r) dVe , (10)

ρe
m(t, r) =

F(r)
Ve

FLRW
−−−−→ ρm(t) , (11)

where the LTB mass function F(r), a constant of integration, is
another free function that gives the total gravitating mass up to
the shell of coordinate radius r. The local density ρm satisfies the
continuity equation ρ̇m + θ ρm = 0, where θ = H‖ + 2H⊥ is the
expansion scalar. We note that, as the source is pressureless dust,
without pressure gradients, both F(r) and k(r) do not depend on
t. The case of the Lemaître metric with pressure is presented in
Yamamoto et al. (2016).

Similarly to FLRW, one can interpret the curvature function
as related to the total energy per unit of mass of the shell at coor-
dinate radius r:

E(r) ≡ −
k r2

2
=

1
2

Ẏ2(t, r) −
GF(r)
Y(t, r)

−
1
6

ΛY2(t, r) , (12)

where the first term of the energy function E is the kinetic energy
per unit of mass of the shell r, the second term is the potential
energy per unit of mass due to the total gravitating mass up to
the shell r, and the third term is the usual contribution from the
cosmological constant (as in the de Sitter-Schwarzschild met-
ric). We note that, thanks to spherical symmetry, one is able
to define a potential energy also in cases far away from nearly
Newtonian ones and that the potential energy is related to the
curvature (Bondi 1947).

Next, similarly to FLRW, one can rewrite Eq. (5) using the
equivalent of the density parameters in FLRW:

H2
⊥(t, r)

H2
⊥0

(r)
= Ωm0(r)

a3
⊥0

a3
⊥

+ ΩΛ0(r) + Ωk0(r)
a2
⊥0

a2
⊥

, (13)

where the subscript 0 denotes a quantity evaluated at the present
time, t0, and

Ωm0(r) =
2GF(r)

r3a3
⊥0

H2
⊥0

Ωm(t, r) = Ωm0(r)
H2
⊥0

H2
⊥

a3
⊥0

a3
⊥

, (14)

ΩΛ0(r) =
Λ

3H2
⊥0

ΩΛ(t, r) = ΩΛ0(r)
H2
⊥0

H2
⊥

, (15)

Ωk0(r) = −
k(r)

a2
⊥0

H2
⊥0

Ωk(t, r) = Ωk0(r)
H2
⊥0

H2
⊥

a2
⊥0

a2
⊥

, (16)

which satisfy Ωm(t, r) + ΩΛ(t, r) + Ωk(t, r) = 1.
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2.3. Free functions and gauge fixing

Equation (13) can be used to determine the age of the universe
at a radial coordinate r:

t − tbb(r) =
1

H⊥0 (r)

∫ a⊥ (t,r)
a⊥0 (r)

0

dx√
Ωm0(r)/x+ΩΛ0(r)x2+Ωk0(r)

, (17)

where the big bang function tbb(r) is another arbitrary function,
which sets the time since the big bang (a⊥ = 0). If it were
t′bb(r) , 0, the initial singularity would have happened at differ-
ent times for different shells so that large inhomogeneities would
develop in the past, as can be seen from Eq. (9) with Y → 0. This
clearly signals the presence of decaying modes, which would be
strongly in contradiction with the inflationary paradigm and are
excluded by the choice of a simultaneous big bang (Silk 1977;
Biswas et al. 2007; Zibin 2008).

Summarizing, we have seen that the LTB inhomogeneity
is specified by three arbitrary functions, F(r), k(r), and tbb(r),
which are related, together with a⊥0 , by Eq. (17) so that one is
not independent. Moreover, one can always make a redefinition
of the radial coordinate. Common gauge fixing are F(r) ∝ r3 or
a⊥0 = constant. It is then clear that one can choose tbb(r) and k(r)
as the free functions that specify the model.

Each gauge fixing has pros and cons. For example, F(r) ∝
r3 excludes the possibility that there is pure vacuum in
some radial interval, and the moment of shell crossing –
the time at which Y ′ = 0 so that grr = 0 – clearly
depends on the gauge adopted. The numerical codes that we
use, VoidDistances2020 (Valkenburg 2012b) and FalconIC
(Valkenburg & Hu 2015), adopt the choice F(r) = 4πM4

0r3/3,
where M0 is an arbitrary mass scale.

2.4. Compensated inhomogeneity profile

As discussed earlier, we consider early-FLRW cosmologies in
agreement with the standard scenario of inflation and, therefore,
we set

tbb(r) = 0 . (18)

We are then left with the curvature function. Here, we con-
sider the case of an LTB inhomogeneity that matches exactly
with the FLRW metric at the finite radius rb and not only asymp-
totically. This simplified approach is convenient for the purposes
of this work because it allows us to robustly simulate the LTB
inhomogeneity inside of a bigger FLRW box. The curvature
function is modeled according to the monotonic profile:

k(r) = kb + (kc − kb) W3(r/rb) , (19)

where rb is the coordinate radius of the spherical inhomogene-
ity, kb and kc are the curvature outside and at the center of the
inhomogeneity, respectively, and W3 is the function

Wn(x) =

{
e−xn/(1−x) for 0 ≤ x < 1
0 for x ≥ 1 . (20)

The function Wn(x) interpolates from 1 to 0 when x varies from 0
to 1 while remaining differentiable, which implies that that k(r)
is C∞ everywhere. It is dmWn/dxm|0 = 0 for 0 < m < n, so
that there is no cusp at the center. In the limit n → ∞, Wn(x)
approaches the top-hat function.

For r ≥ rb the curvature profile equals the curvature kb of the
background FLRW such that for r ≥ rb one exactly recovers the

background ΛCDM model: a⊥ = a‖ = a. We can then define the
local density contrast according to:

δ(t, r) =
ρm(t, r)
ρm(t)

− 1 , (21)

and the (integrated) mass density contrast according to

∆(t, r) =

∫ r
0 δ(t, r̄) dVe

Ve
=

Ωm(t, r) H2
⊥(t, r)

Ωm(t) H2(t)
− 1 , (22)

where we used the Euclidean average in agreement with Eq. (5).
We note that ∆(t, r = 0) = δ(t, r = 0). We denote with δ0 the
central contrast today, which is directly related to kc (see Eq. (35)
for the linear relation at early times).

We also note that, because of the matching, it is by construc-
tion ∆(t, r = rb) = δ(t, r = rb) = 0. This implies that the central
underdensity or overdensity at 0 ≤ r < rt, determined by the
curvature kc at the center, is automatically compensated by a sur-
rounding overdense or underdense shell at rt ≤ r < rb, where rt is
the transition radius at which δ = 0. A compensating overdense
or underdense region is an expected feature of the standard large-
scale structure: voids are surrounded by sheets and filaments, and
superclusters by voids. We note that it is rt = rt(t), as in Eq. (9)
the volume element at the denominator is time dependent.

2.5. Physical and light cone distances

The comoving radial coordinate, r, because of the freedom in
redefining it, does not possess physical meaning. On the other
hand, the proper distance between r1 and r2 (dt2 = dΩ2 = 0 in
Eq. (1)) is

dP =

∫ r2

r1

Y ′(t, r)√
1 − k(r)r2

dr ' Y(t, r2) − Y(t, r1) , (23)

where the approximation holds for

E ∼ k(r)r2 =
Y2

a2
⊥/k

=

( Y
curv. radius

)2

� 1 . (24)

Inside the inhomogeneity (r < rb) the curvature radius is
≈a⊥/

√
kc, while outside the LTB patch it is a/

√
kb. We consider

models with kb = 0 so that the corrections to Eq. (23) will be due
only to the inhomogeneity. We will see that these corrections are
also negligible for gigaparsec-scale inhomogeneities (E � 1;
see Fig. 1).

Using Eq. (23) we can then define the corresponding FLRW
comoving coordinate as

χ =
dP

a(t)
E�1
=

Y(t, r)
a(t)

, (25)

so that the FLRW and LTB physical distances coincide (note that
Y ′ , 0). Thanks to the adopted matching condition, it is χ = r
for r ≥ rb. The coordinate χ is the one used in the numerical
simulations.

Observationally, the time, t, and radius, r, as a function of the
redshift, z, are determined on the past light cone of the central
observer by the differential equations for radial null geodesics
(see, e.g., Chung & Romano 2006; Enqvist 2008):

dt
dz

= −
1

(1 + z)H‖
, (26)

dr
dz

=

√
1 − kr2

(1 + z)a‖H‖
, (27)
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Fig. 1. LTB quantities as a function of the FLRW comoving coordinate,
χ, at the present time, t0. The two dotted lines mark the positions of the
shells relative to rt and rb. See Sect. 2.7.

Table 1. Parameters specifying the ΛLTB model.

FLRW parameters Value

H0 68 km s−1Mpc−1

Ωm 0.3
Ωk 0
Perturbation parameters Value
Ωb 0.048
ln(1010As) 3.0
ns 0.97
τ 0.094
YP 0.25
Neff 3.046∑

mν 0
LTB parameters Value
δ0 [−0.6, 0.6]
rb [500, 4000] Mpc h−1

Notes. The non-LTB parameters define the fiducial BEHOMO cosmol-
ogy. The amplitude As of scalar perturbations and their spectral index ns
are relative to the pivot scale kp = 0.05/Mpc. This ΛCDM cosmology
gives σ8 = 0.79364 and t0 = 13.862 Gyr. Radiation has been neglected
as neither the simulation nor the GR calculations include radiation.

with the initial conditions t(0) = t0 and r(0) = 0. The area (dA)
and luminosity (dL) distances are given by

dA(z) = a⊥
(
t(z), r(z)

)
r(z) , (28)

dL(z) = (1 + z)2dA(z) . (29)

2.6. Model parameters

The ΛLTB model is specified by the usual background FLRW
parameters, that is, the Hubble constant H0, the total matter
density parameter Ωm, and the curvature parameter Ωk, by the
standard perturbation parameters, that is, the baryon density
parameter Ωb, the optical depth τ, the helium fraction YP, the
effective number of relativistic species Neff , the total neutrino
mass

∑
mν, and the amplitude of the primordial power spectrum

As and its tilt ns, and, finally, by the LTB parameters, that is,
the central curvature kc and the inhomogeneity radius rb. While
numerically the profile is specified via kc, we adopt, in its stead,
the derived parameter δ0, which is the contrast today at the center
of the inhomogeneity and is more intuitive to most cosmologists.
Table 1 summarizes all the parameters and their fiducial values.

2.7. Example of inhomogeneity

Figure 1 shows the relevant functions for the case of a central
underdensity of present-day contrast δ0 = −0.4 and comoving
radius rb = 2000 Mpc, and the fiducial BEHOMO cosmology of
Table 1. In particular, one can note that the interior of the inho-
mogeneity is an open FLRW universe (first panel from the top),
that there is a compensating overdensity that surrounds the inner
underdensity (second panel), and how the longitudinal Hubble
rate deviates from the perpendicular Hubble rate where there is
a spatial gradient (fourth panel). Also shown, for later use, are
the linear and nonlinear Newtonian potentials together with the
energy function (third panel), and the change in redshift induced
by the inhomogeneity, together with the peculiar velocity defined
in Eq. (38) (last panel). Figure 2 shows the relevant functions on
the light cone as compared to their ΛCDM equivalent.
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Fig. 2. LTB quantities as a function of redshift. See Sect. 2.7.

From Fig. 1 one can see that an inhomogeneity with a cen-
tral underdensity of contrast δ0 = −0.4 could solve the dis-
crepancy between local (Riess et al. 2021) and high-redshift
(Aghanim et al. 2020) determinations of the Hubble constant:
H0 goes from the background value of 68 km s−1Mpc−1 to the
local value of 73 km s−1Mpc−18 This is the so-called local void
scenario. However, this scenario is ruled out by other obser-
vations. Camarena et al. (2021, 2022) constrained the ΛLTB
model using the latest available data from the CMB, BAOs,
type Ia supernovae, the local H0, cosmic chronometers, Comp-
ton y-distortion, and the kinetic Sunyaev-Zeldovich (kSZ) effect
and showed that an underdensity around the observer as mod-
eled within the ΛLTB model cannot solve the H0 tension.
Appendix A reports the latest constraints by Camarena et al.
(2021) using the LTB parameters δ0 and rb that we adopt here.

2.8. Newtonianly perturbed FLRW metric

One can regard the LTB inhomogeneity as a perturbation on top
of the ΛCDM model. Here, we connect the formalism of the
previous sections with that of the Newtonianly perturbed FLRW
metric:

ds2 = −dt̃2(1 + 2Φ) + a2(t̃)(dr̃2 + r̃2dΩ2)(1 − 2Φ) , (30)

where, for simplicity, we assumed a flat background FLRW
metric. This will be particular relevant as N-body simulations
are in an FLRW background (see the discussion regarding the
N-body gauge in Fidler et al. 2017). This analysis will also be
useful to highlight observational effects specific to ΛLTB inho-
mogeneities. As we will see, in the case of sub-horizon inhomo-
geneities it is Φ � 1.

8 One can estimate the change in the expansion rate via linear pertur-
bation theory. An adiabatic perturbation in density causes δH0/H0 =
− 1

3 f (Ωm)δρ(t0)/ρ(t0), where f ' 0.5 is the present-day growth rate for
the concordance ΛCDM model.

By linearizing the LTB metric and considering a linear gauge
transformation, one finds that the Newtonian potential for r < rb
is (Biswas & Notari 2008; Van Acoleyen 2008)

Φlin(r) =
3
5

∫ rb

r

E(r̄)
r̄

dr̄ ∼ E , (31)

and Φlin = 0 for r ≥ rb, where the potential is written as a func-
tion of the LTB coordinate. Hereafter, the subscript “lin” refers
to the fact that a linear gauge transformation is used; the potential
is always linear, that is, a first-order perturbed quantity. We also
note that Φlin is constant in time, as should be for a linear mat-
ter perturbation in a matter-dominated universe. This description
should be accurate at z & 10. The corresponding linear density
contrast is

Φ′lin(r) = −
3
5

E(r)
r

, (32)

∇2Φlin(r) = Φ′′lin + 2
Φ′lin

r
= −

3
5

[
E′(r)

r
+

E(r)
r2

]
, (33)

δlin(t, r) =
∇2Φlin(r)

4πGρm(t)a(t)2 , (34)

where quantities without explicit radial dependence are relative
to the FLRW background. We took the derivative with respect to
r instead of the Newtonian gauge coordinate r̃, but the difference
is second order. Using Eq. (34) together with Eqs. (12) and (19),
one can find the initial evolution of the central density contrast
as a function of the central curvature, kc:

δlin(t, 0) =
9kc

40πGρm(t)a(t)2 . (35)

One could use second-order perturbation theory to improve
upon this linear description (Matarrese et al. 1998). However,
given that, in general, the LTB inhomogeneity may feature non-
linear contrasts9, we now consider the potential as obtained via a
nonlinear gauge transformation t̃ = t̃(t, r) and r̃ = r̃(t, r), which,
following Van Acoleyen (2008), is implicitly defined for r < rb
by

Y(r, t) = a(t̃)r̃
(
1 − Φ(t̃, r̃)

)
, (36)

t = t̃ + a(t̃)
∫ rb

r̃
v(t̃, r̄) dr̄ , (37)

and by r̃ = r and t̃ = t for r ≥ rb, where the peculiar velocity is

v(t̃, r̃) = Ẏ(t, r) − ȧ(t) r̃ = Ẏ(t, r) − H(t) Y(t, r)
= Y(t, r)

[
H⊥(t, r) − H(t)

]
. (38)

This gauge transformation will keep terms up to Φ, E ∼ v2 and is
valid for sub-horizon inhomogeneities. From Eq. (36) one sees

that r̃
Φ,E�1
−−−−−→ χ, that is, the coordinate χ defined in Eq. (25) is

indeed the one associated with the Newtonian gauge and, there-
fore, the one adopted by N-body simulations.

One can then use Eqs. (36)–(37) to change the LTB metric
of Eq. (1) into the Newtonian gauge of Eq. (30) so as to find
the potential Φ. Alternatively, one may proceed by inverting the
Poisson equation:

∇2Φ(r̃) =
1
r̃2

(
r̃2Φ′

)′
= 4πGa2

[
F′

4πY2Y ′
−

3
8πG

(
H2 −

Λ

3

)]
, (39)

9 See Rigopoulos & Valkenburg (2012) for an alternative approach
that uses a gradient series expansion.
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where the derivatives are with respect to the variable of the cor-
responding function. In particular, it is dr̃ = Y ′

a (1 + O(Φ))dr, so
that one can integrate on r̃ and obtain

Φ′ = a
GF
Y2 −

1
2

aY
(
H2 −

Λ

3

)
, (40)

where the constant of integration has been chosen in order to
have Φ′(rb) = 0 and the potential is expressed with respect to the
LTB coordinate. Integrating again on r̃, one finally has

Φ = −

∫ rb

r

Y ′GF
Y2 dr̄ +

(
H2 −

Λ

3

) Y2
b

4
−

Y2

4

 (41)

=

(
H2 −

Λ

3

) Y2
b

4
−

Y2

4

 +
GFb

Yb
−

GF
Y
−

∫ rb

r

GF′

Y
dr̄ ,

where Yb = arb. We note that Φ(rb) = 0 and that we expressed
the potential with respect to the LTB coordinate. It is interest-
ing to note ∇2Φ gives exactly the LTB contrast in LTB coordi-
nates while the gauge transformation is only valid up to O(Φ).
Figure 1 (third panel, green solid curve) shows how the potential
of Eq. (41) decays during the cosmological-constant dominated
phase as compared to the linear-gauge potential of Eq. (31) dur-
ing matter domination. Also shown (green dot-dashed line) is the
linear perturbation result Φ(t, r) = Φlin(r)D(t)/a(t), where D is
the ΛCDM growth function normalized at the matter-dominated
epoch. The agreement with Eq. (41) is perfect for linear LTB
perturbations but it overestimates the value of the potential in
the case of the nonlinear underdensity of Fig. 1.

It is easy to verify that Φ′ in Eq. (40) reduces to that of
Eq. (32) at early times:

r̃Φ′
(40)
= − E +

Y2

2

(
H2
⊥ − H2

)
' −E + Y2H2 δH

H
(42)

= − E + Y2H2 δE
5GF/Y

= −E
(
1 −

Y3H2

5GF

)
= −

3
5

E ,

where we used Eq. (12) in the first equality, Eq. (31.14, Kaiser
2014) in the third equality and F ' 4πY3ρm(t)/3 in the last equal-
ity. Moreover, using the result after the second equality, one has

v
(38)
= YδH

(42)
=

Φ′

ȧ
+

E
ȧr

(32)
= −

2
3

Φ′

ȧ
, (43)

in agreement with the expected matter-dominated result
(Coles & Lucchin 2002, Eq. (18.1.9)).

2.9. Observables in terms of the Newtonian potential

If one uses the metric functions of the LTB metric of Eq. (1) then
the effects of the inhomogeneities are exactly taken into account.
However, it is important to discuss and review how the Newto-
nian potential affects observables. Indeed, the total potential will
consist of the sum of the LTB potential and the potential relative
to the primordial Gaussian perturbations, and the LTB potential
may have observational effects in regimes in which the standard
Gaussian potential is inconsequential.

A well-known result is that the redshifts of photons are
affected by perturbations according to (see, for example,
Bonvin et al. 2006)

δz
1 + z

' (uO − uS ) · n + (ΦO − ΦS ) + 2a
∫ χS

χO

Φ̇ dχ , (44)

where the vector n gives the direction of the source S with veloc-
ity uS with respect to the observer O with velocity uO. In the fol-
lowing, we only consider the contribution from the LTB poten-
tial, but there are of course also contributions from standard-
model perturbations. The change in redshift can be interpreted
as the sum of three effects.

First, there is the differential Doppler shift due to the peculiar
motion of source and observer. This contribution is zero if the
observer and the source are placed outside the inhomogeneity or
(one of them) at its center. Otherwise, one expects a contribution
that is proportional to v ∼ Y∆H ∼ rb/rhor where rhor = H−1

is the Hubble radius. This contribution is large for gigaparsec-
scale inhomogeneities and can significantly alter the luminosity
distance–redshift relation; it was indeed used to fit supernova
data without dark energy in the void scenario (see Sect. 2.11
for a historical note). Figure 1 (bottom panel) shows this effect
for an underdensity of contrast δ0 = −0.4 and comoving radius
rb = 2000 Mpc. Also shown is the peculiar velocity as defined
in Eq. (38). One can see that most of the change in redshift can
indeed be attributed to a Doppler shift.

The second term gives the so-called Sachs-Wolfe effect,
that is, the differential gravitational redshift due to the grav-
itational potentials at the source’s and observer’s positions
(Sachs & Wolfe 1967). This contribution is zero if the observer
and the source are placed outside the inhomogeneity. Other-
wise, by comparing Eqs. (12) and (38) it is easy to see that
E ∼ Ẏ2/2 − Y2H2/2 ∼ −v2/2 so that the potential of Eq. (31)
is quadratic in the velocities, Φ ∝ v2. It then follows that
Φ ∝ (rb/rhor)2 and the Sachs-Wolfe effect is subdominant with
respect to the Doppler shift. Again from the analysis of Fig. 1
(bottom panel), one can see that δz/1 + z ' −4 × 10−5 at rb, sig-
nificantly smaller than the Doppler shift that occurs for source
inside the inhomogeneity.

Finally, the last term is the ISW effect, which is present
only if the (first-order) gravitational potential evolves with
time and is responsible for a nontrivial correlation between
CMB anisotropies and the large-scale structure. At high red-
shift, 10 . z . 100, the standard model is very close to the
flat matter-dominated Einstein-de Sitter model. It is then well-
known that the (linear) potential is time independent so that
the ISW contribution is zero. At later times, however, there
are two contributions. First, the universe enters the cosmologi-
cal constant-dominated phase: this is responsible for the (linear)
ISW effect. Second, structures may enter the nonlinear regime so
that the so-called Rees-Sciama (RS) effect cannot be neglected.
As discussed in Cai et al. (2010), the nonlinear RS correction
to the ISW effect acts differently for over and underdensities.
Biswas & Notari (2008) explicitly showed that these contribu-
tions are suppressed according to ∝(rb/rhor)3.

For the mildly nonlinear large structures here considered,
one expects that RS is subdominant with respect to ISW
(Sakai & Inoue 2008). In this case, the potential decays accord-
ing to the linear ISW modeling:

Φ̇ =
3
2

Ωm0H2
0G(z)P(r) , (45)

where the (nonlinear) potential is obtained via Eq. (41) and the
ISW growth factor, G, is

G(z) = (1 + z)H(z)[1 − f (z)]D(z) , (46)

where D is the linear growth function, f ≡ d ln D/d ln a ' Ω
γ
m(t)

with γ = 6/11 + 15/113(1 − Ωm(t)) is the linear growth rate
(Wang & Steinhardt 1998), and P(r) encodes the information on

A179, page 7 of 19



A&A 664, A179 (2022)

the inhomogeneity profile. A thorough discussion is available in
Nadathur et al. (2012) and Flender et al. (2013).

As thoroughly discussed in Hui & Greene (2006), a pertur-
bation in the redshift affects the luminosity distance. As we have
seen, the LTB metric features possibly large contributions from
peculiar velocities that are instead negligible in the standard
paradigm. This means that proper care has to be adopted when
analyzing these models on the light cone. The other important
effect to consider is lensing, which modifies the observed flux
of an object without changing its redshift. However, in this case,
the total effect will be directly computed by binning mass in a
suitable number of lens planes. Indeed, the total lensing effect is
the sum of the contribution of the LTB potential with the one of
the Gaussian perturbations’ potential, and these two components
make up the various lens planes.

2.10. Scale invariance

As the dynamical equation (Eq. (5)) does not present gradi-
ents, the dynamics of the LTB model is scale invariant. This
is due to spherical symmetry and the fact that the energy-
momentum tensor is dust. The former implies a vanishing mag-
netic Weyl tensor and consequently no gravitational waves; the
latter implies no pressure and so no sound waves. In other words,
no direct communication can exist between neighboring world-
lines and for this reason such space-times were dubbed “silent”
(Matarrese et al. 1993; Bruni et al. 1995). In particular, pressure
gradients would transfer energy between shells and make the
energy function E and mass function F time dependent (see
Marra & Paakkonen 2012).

Formally, starting from the solution of Eq. (5) for a given rb,
one can obtain a scaled inhomogeneity with coordinate r̂ = λr
and size r̂b = λrb. The Friedmann-like equation is then

˙̂a⊥(t, r̂)
â⊥(t, r̂)

=
8πG

3
M4

0

â3
⊥(t, r̂)

+
8πG

3
ρΛ −

k̂(r̂)
â2
⊥(t, r̂)

, (47)

where we adopted the gauge fixing F(r) = 4πM4
0r3/3 and

the functions relative to the scaled inhomogeneity are defined
according to

â⊥/‖(t, r̂) = a⊥/‖(t, r̂/λ) , (48)

Ĥ⊥/‖(t, r̂) = H⊥/‖(t, r̂/λ) , (49)

k̂(t, r̂) = k(t, r̂/λ) , (50)
ρ̂m(t, r̂) = ρm(t, r̂/λ) , (51)

Ŷ(t, r̂) = λY(t, r̂/λ) , (52)
v̂(t, r̂) = λ v(t, r̂/λ) , (53)

Ê(t, r̂) = λ2E(t, r̂/λ) , (54)

Φ̂(t, r̂) = λ2Φ(t, r̂/λ) , (55)

F̂(t, r̂) = λ3F(t, r̂/λ) . (56)

Starting from one numerical solution, one can then obtain a fam-
ily of solutions by varying λ.

We note that velocities, and thus Doppler effects, are pro-
portional to λ, explaining why one needs a large inhomogeneity
to sizably change the luminosity distance–redshift relation, as in
the void scenario discussed in Sect. 2.11. Also, the energy func-
tion and the potential scale quadratically with the size so that one
expects strong features in the power spectrum of large inhomo-
geneities.

2.11. A historical note on LTB void models

The LTB model has been studied extensively in the literature
as an alternative to dark energy. The relevant case was of an
observer sitting near the center of a gigaparsec-scale under-
density. It is easy to understand how such an observer would
see apparent acceleration: most of our cosmological observables
are confined to the light cone and, hence, temporal changes
can be associated with spatial changes along photon geodesics.
The LTB void model then replaces “faster expansion now than
before” with “faster expansion here than there”. Mathematically,
the directional derivative on the past light cone follows d/dt ≈
∂/∂t − ∂/∂r and the accelerating expansion can be explained
by H′(r) < 0 (Enqvist 2008). For 15 years the LTB model
was phenomenologically viable, although suffered the extreme
fine-tuning of the observer’s position (see Marra & Notari 2011;
Bolejko et al. 2011; Clarkson 2012 and references therein).
More importantly, it constituted perhaps the only example of a
paradigm that departed abruptly from ΛCDM. This allowed cos-
mologists to ask new questions and develop new methodologies.

However, in 2011, two papers ruled out the LTB model,
which already showed problems when confronted with more
and more data (Garcia-Bellido & Haugboelle 2008; Moss et al.
2011; Biswas et al. 2010). Zhang & Stebbins (2011) (see also
Zibin & Moss 2011; Bull et al. 2012) showed that void mod-
els without decaying modes produce an excessively large kSZ
signal, and Zibin (2011) showed that void models with sizable
decaying modes (which could possibly have a small kSZ signal)
are ruled out because of y-distortion.

Despite the strong evidence against void models as alter-
natives to dark energy, one has to point out that those stud-
ies considered a homogeneous radiation field. In other words,
inhomogeneities were present only in the matter component.
Clarkson & Regis (2011) and Lim et al. (2013) considered the
more consistent scenario of inhomogeneities also in the radia-
tion and showed that this could alter kSZ and y-distortion pre-
dictions.

2.12. The backreaction proposal

Because of the nonlinear nature of general relativity, the aver-
age of the solution of Einstein’s equations for an inhomogeneous
metric is not the solution of Einstein’s equations for the average
of the metric, that is, the operation of smoothing does not com-
mute with solving Einstein’s equations, 〈Gµν(gαβ)〉 , Gµν(〈gαβ〉).
Consequently, the Friedmann equation – valid for a homoge-
neous universe – features corrections in the form of extra sources
(see Ellis et al. 1984, which is considered the backreaction man-
ifesto).

In the early 2000s, right after the first analyses indicating the
acceleration of the universe’s expansion by Riess et al. (1998)
and Perlmutter et al. (1999), it was asked if dark energy could
actually be explained via the extra sources generated by the non-
linear smoothing, that is, via the backreaction of small-scale
inhomogeneities into the large-scale dynamics of the universe.
This scenario would elegantly explain the biggest problem of
dark energy, of why it appears at z ≈ 1. The answer would be
that structures go nonlinear at z ≈ 1, transforming a fine tun-
ing into a prediction. It is important to point out that, when the
backreaction scenario was proposed, the equation of state w of
dark energy was poorly constrained. This is particularly rele-
vant because the effective w that one would measure, if dark
energy were caused by backreaction, is not expected to be close
to −1, the value relative to the cosmological constant. In other
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words, while the present-day tight constraint w = −1.03 ± 0.03
(Abbott et al. 2022) is, within the backreaction proposal, a coin-
cidence, it is instead a necessary condition for the ΛCDM model.

This proposal started a heated debate on the magnitude
of the backreaction effect, which proved difficult to be esti-
mated via (semi) analytical techniques. More information on
this is available in Clarkson et al. (2011), Buchert et al. (2015),
Green & Wald (2014), and references therein.

In the past few years, the scientific consensus on the rel-
evance of backreaction in cosmology has been sought via
the methods of numerical relativity. It seems that backreac-
tion produces a negligible correction to the universe dynamics,
although the methodology that has been adopted has some lim-
itations. On one hand, fully GR codes are used, but the imple-
mentation of the fluid description of the matter sector raises
questions regarding the modeling of the nonlinear structure for-
mation, which is dominated by halo mergers and shell crossing
(Giblin et al. 2016; Bentivegna & Bruni 2016; Macpherson et al.
2019). On the other hand, particle-based modeling is adopted at
the price of using the weak-field expansion of Einstein’s equa-
tions (Adamek et al. 2019). However, codes that adopt a parti-
cle description alongside numerical relativity (East et al. 2018;
Giblin et al. 2019; Daverio et al. 2019), including the recent
code GRAMSES (Barrera-Hinojosa & Li 2020a,b), are set to pro-
vide important progress toward a definitive answer to the ques-
tions raised by the backreaction proposal (Adamek et al. 2020).

2.13. Backreaction in the ΛLTB model

With an LTB perturbation that is exactly matched to a back-
ground FLRW metric, one can study in an exact way backre-
action, that is, the effect of inhomogeneities on the background
dynamics. Indeed, in this very simplified case, the background
expansion is set by construction so that one has to simply look at
the mismatch between the background energy densities and the
averaged ones.

In order to maximize the effect, one could fill the entire uni-
verse with an infinite number of spherical patches of different
radii and profiles by the Apollonian sphere packing, the three-
dimensional extension of the Apollonian gasket (see Fig. 1 of
Marra et al. 2007). For this reason, here we are concerned with
the background dynamics at r = rb and not at larger radii.

The effect of backreaction can be read from Eq. (5), which
can be rewritten as (r = rb)

H2(t) =
8πG

3

(
〈ρm〉 + ρΛ

)
−

〈
R

6

〉
+ Pinh , (57)

Pinh =
8πG

3

(
ρm(t) − 〈ρm〉

)
−

k
a2 +

〈
R

6

〉
, (58)

where H(t) is the background expansion rate, fixed by con-
struction, and Pinh represents “the effects of small-scale inho-
mogeneities in the universe on the dynamic behavior at the
smoothed-out scale” (Ellis et al. 1984).

If there were no backreaction, Pinh = 0, the Friedmann
equation would be sourced by the averages of the energy and
curvature content of the inhomogeneity. These are obtained
by adopting the actual volume element with curvature, dV =

4πY2Y ′/
√

1 + 2E. However, Einstein’s equations are nonlinear
so that backreaction gives the correction Pinh. The correction
comes from the fact that, by solving Einstein’s equations for
the LTB metric, one finds that it is the Euclidean average of
the density and curvature that sources the Friedmann equation.

In the case of the density, for example, the correction is pro-
portional to the difference between the invariant mass and F –
also known as the Misner-Sharp mass (see Alfedeel & Hellaby
2010, for an extensive discussion). As the difference is propor-
tional to the energy function E ∼ Φ ∝ (rb/rhor)2, one concludes
that the backreaction of small-scale inhomogeneities into the
background expansion is negligible (see, however, Lavinto et al.
2013, for a model that does feature large backreaction). A com-
prehensive discussion of averaging and backreaction in LTB
metrics is presented in Sussman (2011).

3. N-body simulations of a perturbed ΛLTB model

We now discuss how we simulate the ΛLTB model. As said
in the Introduction, because of spatial gradients, standard pri-
mordial perturbations are coupled at first order so that one may
expect a different growth of perturbations even on scales at
which the evolution is still linear. Besides this, simulations are
necessary, just as in ΛCDM, in order to obtain the fully nonlinear
structure, which again may be affected by the spatial gradients of
an inhomogeneous background. As we are interested in under-
standing and modeling these effects, each ΛLTB simulation will
be coupled with the corresponding ΛCDM one, using the same
seed for the initial conditions. This will allow us to study the
differential change in quantities as compared to ΛCDM, and
reduce possible biases caused by the numerical implementation
we adopt.

3.1. Early-FLRW initial conditions

As shown by Alonso et al. (2010, 2012), one can simulate the
ΛLTB model by feeding standard Newtonian gravity-only N-
body codes with special early-FLRW initial conditions. We give
initial conditions at zini = 49 so that the LTB perturbation is
deep into the linear regime and the space-time can be accurately
described by a superposition of two kinds of perturbations:

δ(tini, x) = δLTB(tini, x) + δgau(tini, x) , (59)

where the first term comes from the spherical LTB perturbation
and the second one from the statistically isotropic set of primor-
dial Gaussian perturbations. As discussed in the Introduction,
the LTB initial conditions are non-Gaussian, with phase coupling
induced by the presence of the spherical inhomogeneity.

As we have seen, at early times, the potential ΦLTB induced
by the LTB metric is given by Eq. (31), together with Eqs. (12)
and (19). Owing to the Poisson equation in Newtonian gravity,
the gravitational potential obeys qualitatively exactly the same
differential equation as the displacement potential for the matter
field, such that initial positions for particles in a simulation can
be set by

x(tini) = q + ∇
(
ΦLTB + Φgau

)
. (60)

We generate these initial conditions using FalconIC (2017 ver-
sion, Valkenburg & Hu 2015), a code that extends Lagrangian
perturbation theory to nontrivial theories of gravity.

As the ΛLTB model does not include radiation, we neglect
radiation in the N-body simulation, as well as the effect of
neutrinos, including massive neutrinos. In other words, the ini-
tial transfer function Tk(zini) is obtained by rescaling the one
provided by the Boltzmann solver at z = 0 to the initial
redshift via the scale-independent radiation-less growth factor
D(z = 49) = 0.0256745, where D(z = 0) = 1. A thor-
ough discussion on initial conditions for simulations is available
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Table 2. BEHOMO suite of simulations.

δ0 rb (Gpc h−1) Lbox (Gpc h−1) Grav. soft. at z = 0 (kpc h−1) Npart Mpart (M� h−1) Mmin
halo (M� h−1) Mmax

halo (M� h−1) Nhalo CPUh increase (wrt
ΛCDM sim)

Box 1 – – 0.5 6.4 10243 9.7 × 109 4.8 × 1011 1.7 × 1015 3.0 × 106 –
0.10 0.2 ′′ ′′ ′′ ′′ ′′ 1.7 × 1015 3.0 × 106 1%
0.15 ′′ ′′ ′′ ′′ ′′ ′′ 1.6 × 1015 3.1 × 106 0%
0.20 ′′ ′′ ′′ ′′ ′′ ′′ 1.6 × 1015 3.0 × 106 0%
0.30 ′′ ′′ ′′ ′′ ′′ ′′ 1.5 × 1015 3.0 × 106 1%
0.45 ′′ ′′ ′′ ′′ ′′ ′′ 1.4 × 1015 3.0 × 106 1%
0.60 ′′ ′′ ′′ ′′ ′′ ′′ 1.6 × 1015 3.0 × 106 3%
−0.10 ′′ ′′ ′′ ′′ ′′ ′′ 1.8 × 1015 3.0 × 106 0%
−0.15 ′′ ′′ ′′ ′′ ′′ ′′ 2.0 × 1015 3.0 × 106 0%
−0.20 ′′ ′′ ′′ ′′ ′′ ′′ 2.2 × 1015 3.0 × 106 1%
−0.30 ′′ ′′ ′′ ′′ ′′ ′′ 2.9 × 1015 3.0 × 106 1%
−0.45 ′′ ′′ ′′ ′′ ′′ ′′ 3.4 × 1015 3.0 × 106 4%
−0.60 ′′ ′′ ′′ ′′ ′′ ′′ 4.1 × 1015 3.0 × 106 8%

Box 2 – – 1.0 12.8 10243 7.8 × 1010 3.9 × 1012 2.5 × 1015 3.7 × 106 –
0.10 0.4 ′′ ′′ ′′ ′′ ′′ 2.4 × 1015 3.7 × 106 0%
0.15 ′′ ′′ ′′ ′′ ′′ ′′ 2.5 × 1015 3.7 × 106 0%
0.20 ′′ ′′ ′′ ′′ ′′ ′′ 2.5 × 1015 3.7 × 106 0%
0.30 ′′ ′′ ′′ ′′ ′′ ′′ 2.5 × 1015 3.7 × 106 5%
0.45 ′′ ′′ ′′ ′′ ′′ ′′ 2.7 × 1015 3.7 × 106 21%
0.60 ′′ ′′ ′′ ′′ ′′ ′′ 3.2 × 1015 3.7 × 106 3%
−0.10 ′′ ′′ ′′ ′′ ′′ ′′ 2.4 × 1015 3.7 × 106 2%
−0.15 ′′ ′′ ′′ ′′ ′′ ′′ 2.4 × 1015 3.7 × 106 2%
−0.20 ′′ ′′ ′′ ′′ ′′ ′′ 2.5 × 1015 3.7 × 106 0%
−0.30 ′′ ′′ ′′ ′′ ′′ ′′ 2.5 × 1015 3.7 × 106 22%
−0.45 ′′ ′′ ′′ ′′ ′′ ′′ 4.0 × 1015 3.7 × 106 5%
−0.60 ′′ ′′ ′′ ′′ ′′ ′′ 5.6 × 1015 3.7 × 106 16%

Box 3 – – 1.5 9.6 20483 3.3 × 1010 1.6 × 1012 3.9 × 1015 2.8 × 107 –
0.10 0.6 ′′ ′′ ′′ ′′ ′′ 3.9 × 1015 2.8 × 107 1%
0.15 ′′ ′′ ′′ ′′ ′′ ′′ 3.9 × 1015 2.8 × 107 0%
0.20 ′′ ′′ ′′ ′′ ′′ ′′ 3.8 × 1015 2.8 × 107 0%
0.30 ′′ ′′ ′′ ′′ ′′ ′′ 3.8 × 1015 2.8 × 107 0%
0.45 ′′ ′′ ′′ ′′ ′′ ′′ 3.8 × 1015 2.8 × 107 5%
0.60 ′′ ′′ ′′ ′′ ′′ ′′ 5.9 × 1015 2.8 × 107 8%
−0.10 ′′ ′′ ′′ ′′ ′′ ′′ 3.9 × 1015 2.8 × 107 1%
−0.15 ′′ ′′ ′′ ′′ ′′ ′′ 4.0 × 1015 2.8 × 107 13%
−0.20 ′′ ′′ ′′ ′′ ′′ ′′ 4.0 × 1015 2.8 × 107 0%
−0.30 ′′ ′′ ′′ ′′ ′′ ′′ 4.0 × 1015 2.8 × 107 5%
−0.45 ′′ ′′ ′′ ′′ ′′ ′′ 4.0 × 1015 2.8 × 107 30%
−0.60 ′′ ′′ ′′ ′′ ′′ ′′ 8.2 × 1015 2.7 × 107 38%

Box 4 – – 2.0 12.8 20483 7.8 × 1010 3.9 × 1012 4.3 × 1015 3.0 × 107 –
0.10 0.8 ′′ ′′ ′′ ′′ ′′ 4.3 × 1015 3.0 × 107 0%
0.15 ′′ ′′ ′′ ′′ ′′ ′′ 4.2 × 1015 3.0 × 107 0%
0.20 ′′ ′′ ′′ ′′ ′′ ′′ 4.2 × 1015 3.0 × 107 0%
0.30 ′′ ′′ ′′ ′′ ′′ ′′ 4.3 × 1015 3.0 × 107 3%
0.45 ′′ ′′ ′′ ′′ ′′ ′′ 4.3 × 1015 3.0 × 107 3%
0.60 ′′ ′′ ′′ ′′ ′′ ′′ 4.5 × 1015 3.0 × 107 6%
−0.10 ′′ ′′ ′′ ′′ ′′ ′′ 4.3 × 1015 3.0 × 107 0%
−0.15 ′′ ′′ ′′ ′′ ′′ ′′ 4.2 × 1015 3.0 × 107 0%
−0.20 ′′ ′′ ′′ ′′ ′′ ′′ 4.3 × 1015 3.0 × 107 3%
−0.30 ′′ ′′ ′′ ′′ ′′ ′′ 4.3 × 1015 3.0 × 107 5%
−0.45 ′′ ′′ ′′ ′′ ′′ ′′ 4.7 × 1015 3.0 × 107 30%
−0.60 ′′ ′′ ′′ ′′ ′′ ′′ 6.9 × 1015 2.9 × 107 41%

Box 5 – – 3.0 19.2 20483 2.6 × 1011 1.3 × 1013 4.1 × 1015 3.2 × 107 –
0.10 1.2 ′′ ′′ ′′ ′′ ′′ 4.1 × 1015 3.2 × 107 1%
0.15 ′′ ′′ ′′ ′′ ′′ ′′ 4.1 × 1015 3.2 × 107 2%
0.20 ′′ ′′ ′′ ′′ ′′ ′′ 4.4 × 1015 3.2 × 107 6%
0.30 ′′ ′′ ′′ ′′ ′′ ′′ 4.9 × 1015 3.2 × 107 8%
0.45 ′′ ′′ ′′ ′′ ′′ ′′ 5.5 × 1015 3.2 × 107 10%
0.60 ′′ ′′ ′′ ′′ ′′ ′′ 5.9 × 1015 3.2 × 107 16%
−0.10 ′′ ′′ ′′ ′′ ′′ ′′ 4.7 × 1015 3.2 × 107 1%
−0.15 ′′ ′′ ′′ ′′ ′′ ′′ 5.1 × 1015 3.2 × 107 3%
−0.20 ′′ ′′ ′′ ′′ ′′ ′′ 5.4 × 1015 3.2 × 107 7%
−0.30 ′′ ′′ ′′ ′′ ′′ ′′ 6.0 × 1015 3.2 × 107 12%
−0.45 ′′ ′′ ′′ ′′ ′′ ′′ 7.4 × 1015 3.2 × 107 35%
−0.60 ′′ ′′ ′′ ′′ ′′ ′′ 1.0 × 1016 3.1 × 107 67%

Box 6 – – 4.0 22.7 23043 4.4 × 1011 2.2 × 1013 4.9 × 1015 4.5 × 107 –
0.20 1.6 ′′ ′′ ′′ ′′ ′′ 5.4 × 1015 4.5 × 107 1%
−0.20 ′′ ′′ ′′ ′′ ′′ ′′ 5.0 × 1015 4.5 × 107 1%

Notes. The first line of each box series describes the corresponding ΛCDM simulation. Masses are defined according to 200 m. The number of
grid elements of the particle mesh is twice the number of particles per dimension.
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Table 3. Snapshots that were saved during the runs for the generation
of the halo catalog and lens planes.

Snapshot a z Comov. dist. (Mpc h−1)

0 0.02 49 8360
1 0.191 4.225 5125
2 0.212 3.715 4875
3 0.234 3.275 4625
4 0.257 2.892 4375
5 0.281 2.557 4125
6 0.307 2.261 3875
7 0.333 1.999 3625
8 0.362 1.765 3375
9 0.391 1.555 3125
10 0.423 1.366 2875
11 0.456 1.194 2625
12 0.491 1.037 2375
13 0.528 0.893 2125
14 0.568 0.761 1875
15 0.611 0.638 1625
16 0.656 0.523 1375
17 0.706 0.416 1125
18 0.76 0.315 875
19 0.82 0.22 625
20 0.886 0.129 375
21 0.96 0.042 125
22 1 0 0

Notes. Only even-numbered snapshots are kept for long-term storage.

in Valkenburg & Villaescusa-Navarro (2017) and Michaux et al.
(2020). FalconIC adopts CLASS (Blas et al. 2011).

As we are adding the LTB perturbation to the standard ones,
we need to correctly normalize the sum. Moving to Fourier
space, it is

δk(tini) = Tk(tini)
δLTB

k (t0)
Tk(tini)

ρLTB
m (r = 0, tini)
ρLTB

m (r = 0, t0)
+ δ

gau
k (tini)

 , (61)

where δgau
k (tini) is the familiar nearly scale invariant density per-

turbation as imprinted by inflation, and the fraction of LTB den-
sities guarantees the right normalization of the spherical pertur-
bation.

Finally, as said earlier, each ΛLTB simulation will be cou-
pled with the corresponding ΛCDM one, using the same seed for
the initial conditions. As the LTB perturbation is added on top of
the primordial perturbations, this means that standard large-scale
structures are preserved and one can factor out cosmic variance
when studying the effect of spatial gradients. In particular, the
particles’ IDs are stable after the addition of the LTB perturba-
tion so that one can even study the effect of the inhomogeneous
background at the particle level.

Summarizing, the ΛLTB model is treated as a ΛCDM model
with an extra large-scale perturbation, that is, these are FLRW
simulations as far as the N-body code is concerned. Specifically,
a‖ = a⊥ = a and k(r) is constant. Nevertheless, as we will see
in Sect. 4.1, these simulations exactly show the inhomogeneous
background evolution of the ΛLTB model, on top of which stan-
dard perturbations evolve. This allows us to study the effect of
spatial gradients on the evolution of perturbations.

3.2. Numerical simulation

Table 2 shows the technical details of the simulations, while the
cosmology is specified by the parameters of Table 1. The ratio-
nale is to explore the parameter space of size and depth of the
inhomogeneity. In the table, the first line of each box section
refers to the ΛCDM simulation with which the ΛLTB simula-
tions are paired. For each simulation, 22 snapshots are saved,
but only 12 are kept after the generation of the halo catalogs and
lens planes (see Table 3 for details).

The simulations only include dark matter, besides the cos-
mological constant, and were performed using OpenGadget3, a
modified version of GADGET-2 (Springel 2005). The number of
grid elements of the particle mesh is always twice the number of
particles per dimension, and the comoving gravitational soften-
ing is chosen according to

λ =


( Mpart

109 M�/h

)1/3
3(1+z) kpc

h = (1+z)nλ dpart if z ≤ 2

( Mpart

109 M�/h

)1/3
9 kpc

h = 3 nλ dpart if z > 2

, (62)

where the comoving inter-particle distance, dpart, is given by

dpart =
Lbox

N1/3
part

, (63)

and the constant, nλ, by

nλ =

(
ρc0h−2 Ωm0

109M�/h

)1/3

3 kpc/h '
1

76.3
. (64)

The rms initial displacement, generated at z = 49, is given
by√〈(

x − xgrid

)2
〉

= ndisp dp , (65)

where x is the coordinate of the particle and xgrid is the coordi-
nate of the grid. As it is ndisp ∼ 0.2 � 1, initial conditions were
given early enough so that there is no risk of shell crossing10.

As shown by the last column of Table 2, even the most non-
linear ΛLTB simulation took just ≈50% more CPU hours as
compared to the corresponding ΛCDM simulation. The increase
in CPU time is due to the fact that the LTB inhomogeneity
distorts the large-scale structure, increasing the nonlinearity in
some regions, while decreasing it in others. The more nonlinear
regions require more integration steps, and therefore a longer
computational time. In Appendix B we show how the execution
of a simulation with OpenGadget3 is affected by the background
inhomogeneity, again highlighting a minor impact, except for
the most nonlinear cases. Concluding, one can achieve the same
resolution of standard ΛCDM simulations in approximately the
same CPU time.

3.3. Halo catalog

We obtained the halo catalogs and merger trees with Rockstar
(v0.99.9-RC3, Behroozi et al. 2013), for the 21 snapshots from
z = 0 to z = 4.2 that are described in Table 3. In order to
have a comprehensive characterization, for each halo, 40 physi-
cal properties are saved. In particular, the masses were computed
using strict spherical overdensity masses according to the defi-
nitions Mvir, M200m, M200c, M500c, and M2500c. Finally, although

10 Because of bulk motion, this is a conservative check.
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ΛCDM simulation: box center and orientation is randomized

ΛLTB simulation: box center not randomized but orientation is randomized

Example of a combination of ΛCDM and ΛLTB lens planes

lens plane

!=5º

250 Mpc/h

Fig. 3. Schematic illustration of the light cone construction, mixing ΛCDM and ΛLTB lens planes. The illustration shows the case of the smallest
box, Box 1; see Table 2. See Sect. 3.4 for more details.

we set the minimum halo size of 20 particles, we only consider
halos with 50 or more particles as suggested by the results of
Leroy et al. (2021).

3.4. Gravitational lensing

We obtained the lens planes and maps with SLICER11 Start-
ing from the observer, the lens planes are computed every
250 Mpc h−1. In order to minimize the extrapolation on the par-
ticle positions and to probe the interior part of the smaller Box
1 simulations, the snapshots are saved at the redshifts that cor-
respond to dC,i = (i × 250 − 125) Mpc h−1, as summarized in
Table 3.

We generated 21 lens planes of 20482 pixels with a 5◦ × 5◦
field of view up to z = 4.2, with a resolution of 8.8 arcsec. For
the ΛCDM simulations the orientations and the centers of the
boxes were randomized. A total of ten light cones were produced
in order to reduce sample variance. For the ΛLTB simulations,
the centers were not randomized in order to preserve the LTB
symmetry. The orientations were randomized in order to obtain,
also in this case, ten light cones. As the background evolution
is the same by construction, one can then place one or more
LTB inhomogeneities at various redshifts, padding the remain-
ing light cones with the lens planes from the ΛCDM simulation.
In other words, one may or may not have periodicity in the line-
of-sight distribution of inhomogeneities. Figure 3 illustrates the
light cone construction. For any such combination one can then
use SLICER to obtain convergence, shear and lensing potential
maps.
11 github.com/TiagoBsCastro/SLICER (2021 version).

4. Results

We now show the results of the simulations. Table 2 lists the LTB
parameters that we adopt, together with a few summary statistics
such as the total number of halos and the masses of the most
massive halos. The cosmology is specified in Table 1. We adopt
a grid in the LTB parameter space that covers inhomogeneities
with radius rb from 200 Mpc h−1 to 1.6 Gpc h−1 and contrasts δ0
from ±0.1 to ±0.6, for a total of 68 models. The rationale behind
this choice is to systematically explore the phenomenology of
ΛLTB models in order to accurately understand how the growth
of perturbations changes as a function of the LTB parameters.

It is worth mentioning that present-day observations rule out
part of the models of Table 2. As discussed in the introduction,
structures at the last scattering surface or along the line of sight
(see the light cone construction of Fig. 3) cannot have nonlin-
ear contrasts. Considering that we use the contrast at the center,
δ0, and that the average contrast, ∆(t0, rt), is lower than δ0 (see
Fig. 1, second panel from the top), the models with |δ0| > 0.3
are ruled out. On the other hand, if the observer is at the center,
the models with |δ0| ≥ 0.3 and rb ≥ 400 Mpc h−1 are excluded,
as discussed in Appendix A, where the latest constraints by
Camarena et al. (2021) are shown. Despite these observational
constraints, we nevertheless simulate the models with |δ0| ≥ 0.3
in order to test different approximation schemes for the growth of
perturbations and their limits, which is the subject of a forthcom-
ing work. In other words, we simulate a larger than observation-
ally allowed parameter space in order to obtain a better modeling
of linear and nonlinear structures. In particular, the main effects
caused by spatial gradients will be evident in the most nonlin-
ear models, allowing us to disentangle the signal from the noise
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Fig. 4. Density and velocity profiles at z = 0 for the smallest and largest boxes with the largest contrasts; see Table 2. In order to precisely
test the background dynamics, we simulate an inhomogeneous universe without the standard primordial Gaussian perturbations (As ≈ 0). The
inhomogeneous (Newtonian) N-body simulations perfectly follow the GR solution. Furthermore, thanks to the scale invariance, their rescaled
evolution is the same. See Sect. 4.1 for more details.

with just one N-body realization (one seed). In any case, we sam-
ple the observationally relevant parameter space with |δ0| ≤ 0.3
more finely.

Before presenting the evolution of the ΛLTB large-scale
structure we will discuss the validation of the ΛLTB background
evolution. The validation of the ΛCDM simulations is discussed
in Appendix C, where we show that this first set of BEHOMO
simulations have power spectrum and halo mass function accu-
rate at the 5% level. As said before, the ΛLTB and ΛCDM simu-
lations are paired so that numerical errors should approximately
factor out when considering suitable ratios of relevant quantities.

4.1. Validation of the ΛLTB background dynamics

We validate the large-scale dynamics produced by the inhomo-
geneous (Newtonian) N-body simulations via the exact ΛLTB
solution of general relativity described in Sect. 2. As we are
not interested in small-scale dynamics, here we adopt lower-

resolution simulations. Specifically, we consider the smallest
box, Box 1, with 2563 particles and the largest box, Box 6, with
10243 particles, both with the largest contrasts of δ0 = ±0.6.
Box 1 has a side of 500 Mpc h−1 and inhomogeneity radius of
rb = 200 Mpc h−1, while Box 6 has side of 4000 Mpc h−1 and
rb = 1600 Mpc h−1 (see Table 2). In order to precisely test the
background dynamics, we simulate an inhomogeneous universe
without the standard primordial Gaussian perturbations, that is,
we adopt a very small amplitude of the primordial power spec-
trum, As ≈ 0.

Figure 4 compares the density and velocity profiles at z = 0.
Using Eq. (38), we connect the longitudinal velocities, v‖, from
the simulation to the perpendicular Hubble rate, H⊥:

v‖(t, χ) = a(t) χ
[
H⊥(t, r) − H(t)

]
. (66)

One can see that the N-body simulation produces a background
evolution that perfectly follows the GR one, even for inho-
mogeneities whose size is comparable with the Hubble radius.
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Fig. 5. Evolution of the large scale structure in the ΛLTB mode. The first row shows the large-scale structure of Box 1 at z = 0 of the overdense
(middle panel) and underdense (right panel) ΛLTB models together with the corresponding ΛCDM model (left panel). The larger thin dashed
circle marks the boundary, rb, of the ΛLTB inhomogeneity and the smaller one the radius, rt, at which δ(t0, rt) = 0, which marks the transition
from the central underdensity or overdensity to the compensating overdense or underdense shell. The arrows show the velocity field. The density
and velocity fields are obtained from the projection of the slice through the center, whose thickness is a fifth of the box side. One can see how the
large-scale structure is identical outside the inhomogeneity, but it is distorted by the inhomogeneous bulk flow inside the LTB structure. The last
three rows show the evolution of the radial profile, from z = 3.7 to z = 0 (Poissonian errors are negligible). Also shown is the GR solution given
by the LTB solution of Sect. 2. The vertical lines mark rb and the smaller rt. While rb is fixed in comoving coordinates, rt moves because of the
peculiar velocity of the LTB structure.

This is ultimately due to the fact that the ΛLTB dynamics is
scale invariant thanks to the symmetries of the LTB metric (see
Sect. 2.10).

As the LTB inhomogeneity is comparable in size with the
box (rb = 0.4 L), one could wonder if such a large inhomo-
geneity would self-interact via the periodic boundary conditions.
The answer is no because the LTB metric is matched at a finite
radius rather than asymptotically (see Alonso et al. 2010, for
the latter case). Therefore, a particle outside the inhomogene-
ity, such as the LTB structure itself with respect to its mirror
LTB image, would locally experience the FLRW background
and, thanks to the shell theorem (valid because of spherical sym-
metry), the same gravitational force as if there were no mirror
images. Figure 4 confirms this.

The profile that we adopted is smooth at the center so that
no artifacts are introduced when using the particle mesh part of
OpenGadget3, as instead observed by Alonso et al. (2010) when
adopting a cuspy profile. Using particle mesh is especially con-
venient (computationally less expensive) at early times when the
tree algorithm struggles to deliver an accurate computation of
the gravitational force (Springel et al. 2021).

4.2. The large-scale structure in an inhomogeneous universe

In Figs. 5 and 6 we show, for Box 1 and Box 3, the large-scale
structure of the ΛLTB model as compared with the correspond-
ing one of the ΛCDM model. While the larger circle marks the
boundary rb of the ΛLTB inhomogeneity, the smaller one marks
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Fig. 6. As Fig. 5 but for Box 3. Because of the larger size, small-scale perturbations average out and the structure is more visible.

the transition from the central underdensity or overdensity to the
compensating surrounding overdense or underdense shell. Also
shown is the velocity field.

Near the center one can see how matter structures are ampli-
fied or reduced when a central overdensity or underdensity is
present, respectively. It is evident that the inhomogeneity causes
a deformation of the positions and velocities of the correspond-
ing particles in the ΛCDM simulation, and that such deformation
disappears outside the inhomogeneity. In other words, the effect
of the inhomogeneous background is to deform the large-scale
structure of the ΛCDM model. Indeed, as pointed out earlier, the
LTB perturbation is added on top of the primordial perturbations
so that the structure of the cosmic web is preserved. Statistically,
this will allow us to factor out cosmic variance when studying
the effect of spatial gradients on observables.

The bottom panels of Figs. 5 and 6 show the evolution of the
radial profiles at z = 0, 1.37 and 3.72 (from upper to lower pan-
els). Also shown with the blue curves is the GR solution given
by the LTB solution presented in Sect. 2. The vertical lines mark
the inhomogeneity radius rb and the smaller transition radius rt.

While rb is fixed in comoving coordinates, rt moves because of
the peculiar velocity of the LTB structure. The LTB evolution of
Box 1 and Box 3 is identical except for the scales involved, but
the inhomogeneity is more clearly seen in Box 3 because, thanks
to its larger size, small-scale perturbations average out.

5. Conclusions

In this paper we have presented the BEHOMO project and its
first suite of simulations. The goal is to study, via the methods
of numerical cosmology, the universe without assuming large-
scale homogeneity and isotropy. In order to present a viable pro-
gram, we considered early-FLRW cosmologies, which are mod-
els that, at early times, are near-FLRW such that the standard
inflationary paradigm is maintained and the physics that leads to
the CMB remains unchanged. As a first realization of these inho-
mogeneous cosmologies, we adopted the ΛLTB spherical model,
on which the simulations presented here are based.

After a comprehensive review of the ΛLTB model,
we described the numerical implementation of the ΛLTB
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simulations. The data products consist of 11 snapshots between
redshifts z = 0 and z = 3.7 for each of the 68 simulations that
have been performed, together with halo catalogs and lens planes
relative to 21 snapshots, between redshift 0 and 4.2, for a total
of approximately 180 TB of data. This is the first set of simula-
tions of the ΛLTB model ever produced. In particular, we chose
the inhomogeneity profile so that these simulations do not suf-
fer from any spurious artifacts. Indeed, these Newtonian N-body
simulations can perfectly reproduce the GR evolution even for
deep Hubble-sized inhomogeneities.

With these data products, we plan to study in forthcoming
papers the growth of perturbations at the linear and nonlinear
level, gravitational lensing, cluster abundances and proprieties,
and many other applications that we invite the scientific commu-
nity to propose. Data can be obtained upon request.

After the exploitation of this first suite of simulations, the
BEHOMO project will consider more realistic scenarios. One
may consider exact solutions such as the quasi-spherical Szek-
eres model (Szekeres 1975), which features a dipole inhomo-
geneity instead of a spherical one (Bolejko 2007), or a more gen-
eral inhomogeneous model to be solved via numerical GR codes.
The ultimate goal is to constrain inhomogeneous models with
present and future background and perturbation observables.
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Appendix A: Latest constraints on ΛLTB
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Fig. A.1. Marginalized constraints on the central contrast, δ0, and inho-
mogeneous size, rb, of the ΛLTB model at the 68% and 95% confi-
dence level. The empty contours show the constraints from the CMB,
BAOs, type Ia supernovae, the local H0, cosmic chronometers, Comp-
ton y-distortion, and the kSZ effect. The green area shows the region
of the parameter space that is allowed by the standard model, here rep-
resented via the Copernican prior convolved with the CMB likelihood.
See Camarena et al. (2021) for more details.

Here, we show the latest constraints on the ΛLTB model for the
case of the observer at the center of the spherical inhomogeneity,
as obtained in Camarena et al. (2021). In Fig. A.1 we report the
constraints using the same LTB parameters that are adopted here,
that is, the central contrast δ0 and inhomogeneous size rb. We

see that contrasts |δ0| & 0.2 are ruled out at scales rb & 300
Mpc/h. We note, however, that Camarena et al. (2021) adopted a
different curvature profile with respect to the one of Eq. (19).

Appendix B: OpenGadget3 performance

Figure B.1 illustrates how the execution of a simulation with
OpenGadget3 is affected by the background inhomogeneity. We
show the CPU times of the various internal algorithms, as a func-
tion of the scale factor, for the most nonlinear ΛLTB simulations
(δ0 = −0.6, bottom) and the corresponding ΛCDM ones (top).
One can see a very similar behavior, with a small increase in tree
imbalance for the ΛLTB simulation.

For all simulations, the parameters that control the structure
of the gravity solver are set to Asmth = 1.25 and Rcut = 4.5.
Asmth sets the scale in units of mesh-cells that defines the long-
range/short-range force-split in the TreePM algorithm. A larger
value of Asmth will make the transition region better resolved by
the mesh, yielding higher accuracy and less residual scatter in the
force matching region, but at the same time the region that needs
to be covered by the tree grows, which makes the computation
more expensive. Rcut sets the maximum radius out to which the
short-range tree-force is evaluated in case the TreePM algorithm
is used.

We also tested the performance of the GPU porting of
OpenGadget3 using OpenACC directives that was presented in
Ragagnin et al. (2020). We found that the GPU porting is ≈40%
faster when using 2563 particles and 2563 PM elements, but that
the performance is similar when using 2563 particles and 5123

PM elements and that it is ≈20% slower when using 5123 parti-
cles and 10243 PM elements. From the log files one can see that
the “pmgrav” module takes ≈30% resources up to z = 1.5 and
≈20% up to z = 0. Given these preliminary results, we used the
version of OpenGadget3 without GPUs.
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Fig. B.1. Logs of two ΛLTB simulations (bottom) and the corresponding ΛCDM ones (top) executed with OpenGadget3.
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Appendix C: Validation of the ΛCDM simulations

Here, we validate the ΛCDM simulations against the Bias And
Clustering Calculations Optimised (BACCO) emulator (v2.1.0,
Angulo et al. 2021) and the halo mass function of Castrone et al.
(in prep.). The emulator is expected to be accurate at the 2%
level, and the Castro22 mass function strives to obtain a better
than 1% calibration for next-generation surveys.
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Boost factor wrt the BACCO emulator

Fig. C.1. Boost factor P(k, z)/P(k, z = 49) as compared with the one
from the BACCO emulator (top for z = 0, bottom for z = 1).
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Fig. C.2. Initial measured power spectrum for Box 1 and Box 5. The
first few modes have less power with respect to the theoretical spectrum
(we adopted the same seed for all simulations).

First, we consider the power spectrum. Figure C.1 compares
the boost factor P(k, z)/P(k, z = 49) with the one from the
BACCO emulator (top for z = 0, bottom for z = 1). We estimate
the power spectrum with Pylians3 12 (Villaescusa-Navarro
2018) and consider wavenumbers till a tenth of the Nyquist
wavenumber so that aliasing errors are negligible. Error bars are
estimated via σP = (P(k, z)+1/nv)/

√
Nk where Nk is the number

12 github.com/franciscovillaescusa/Pylians3
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Comparison with Castro 2022

Fig. C.3. Halo mass function from the simulations against that of Cas-
trone et al. (in prep.), which adopts the virial spherical overdensity. See
Appendix C for more details.

of independent modes used to estimate P(k), and nv is the num-
ber density in the simulation box. We see that all boxes but the
smallest Box 1 have better than 5% accurate power spectrum.
We adopted the same seed for all the simulations, and the first
few modes happened to have less power with respect to the theo-
retical spectrum (see Fig. C.2). In the case of Box 1, the first few
modes are at a larger wavenumber so that the worse accuracy
that we see in this case could be due to mode coupling. Indeed,
having less power on large scales in the initial conditions also
implies that less power is transferred to smaller scales, due to
the coupling between different modes during the nonlinear evo-
lution. We note that the discrepancy is indeed less severe at z = 1
(Fig. C.1, bottom panel). We also performed a Box-2 simulation
(1 Gpc and Npart = 10243; see Table 2) with the cosmology of
Castrone et al. (in prep.) and compared it with a 1-Gpc simula-
tion with Npart = 40643 that was run according to the specifica-
tions of Castrone et al. (in prep.). We found an agreement better
than 5%.

Next, we consider halo abundances. Figure C.3 compares the
halo mass function against the one of Castrone et al. (in prep.),
which adopts the virial spherical overdensity. We adopt Gaussian
error bars from the corresponding Poisson distributions. The top
panel shows the fractional difference for Box 1 and increasing
mass resolution, that is, 2563, 5123, and 10243 particles. One
sees that with a particle mass of . 1011M�/h one reaches a 5%
accuracy. Then we show, in the bottom panel, the fractional dif-
ference for the other boxes, again reaching a 5% accuracy.

Concluding, the ΛCDM simulations of this first set of
BEHOMO simulations have power spectrum and halo mass
function accurate at the 5% level (except Box 1). We note that
the ΛLTB and ΛCDM simulations are paired so that numerical
errors should approximately factor out when considering suit-
able ratios of relevant quantities.
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