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Data-driven discovery of statistically relevant information in quantum simulators
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Quantum simulators offer powerful means to investigate strongly correlated quantum matter. However,
interpreting measurement outcomes in such systems poses significant challenges. Here, we present a theoretical
framework for information extraction in synthetic quantum matter, illustrated for the case of a quantum quench
in a spinor Bose-Einstein condensate experiment. Employing nonparametric unsupervised learning tools that
provide different measures of information content, we demonstrate a theory-agnostic approach to identify
dominant degrees of freedom. This enables us to rank operators according to their relevance, akin to effective
field theory. To characterize the corresponding effective description, we then explore the intrinsic dimension of
data sets as a measure of the complexity of the dynamics. This reveals a simplification of the data structure, which
correlates with the emergence of time-dependent universal behavior in the studied system. Our assumption-free
approach can be immediately applied in a variety of experimental platforms.
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I. INTRODUCTION

Recent remarkable advances in highly controlled synthetic
quantum devices have revolutionized the study of strongly
correlated systems [1–6]. A key element of many of such plat-
forms is their capacity to produce large data sets of many-body
snapshots, for example, via generalized projective measure-
ments of the entire wave function [7]. However, the analysis
of such outcome poses in general serious challenges, which
typically force us to rely on assumptions for certain quantities,
disregarding part of the information content of the generated
data—in data science language, a dimensional reduction with
an uncontrolled loss of information. A particularly impor-
tant problem is the identification of the most informative
observables to describe such quantum many-body systems—a
paramount task at the core of quantum field theory [8,9], that
is even more daunting for systems driven out of equilibrium.
To address this, one needs to develop methods to process
the maximum amount of information in quantum simulator
output, which are able to identify relevant features—and thus
degrees of freedom—emerging from the underlying physi-
cal system, without making any assumption nor uncontrolled
dimensional reduction.

In this work, we introduce a theoretical framework for
data-driven information discovery in quantum simulation,
which is schematically illustrated in Fig. 1. We start by
considering collections of independent quantum simulator
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snapshots, which resolve, for example, the dynamics of
a many-body system in space and time [Fig. 1(a)]. Such
data sets are characterized using nonparametric unsupervised
learning methods [Fig. 1(b)]. Finally, from this system-
agnostic and unsupervised description of the data, we infer
relevant information for the physical system under study
[Fig. 1(c)].

This framework is based on three techniques: (i) spec-
tral entropies calculated from a principal component analysis
(PCA) of the data, (ii) the information imbalance between a
subset and the full set of measured quantities, and (iii) the
intrinsic dimension of the concomitant data manifolds. These
tools which quantify—from different angles—the informa-
tion content and correlations in the data, have found several
successful applications in various fields, such as chemical
and biomolecular science [10–18], ecology [19], stock market
dynamics [20–25], and image analysis [26–29].

To demonstrate the capabilities of our approach we apply
it to experimental data of a spinor Bose-Einstein conden-
sate (BEC) [30]: We evaluate the full set of experimentally
measured densities without knowledge of the post-processing
steps which are necessary in order to infer the relevant spin
variables from them. Our main results are as follows. (i)
PCA spectral entropies and information imbalance allow for
a theory-agnostic determination of the most informative mea-
sured observables. The predictive power of these methods is
demonstrated by showing that they can also unveil combi-
nations of the measured densities, which are key to describe
the spin structure of the system [30–33]. (ii) The behavior of
the intrinsic dimension as a function of time, displays a rapid
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FIG. 1. Assumption-free unveiling of relevant information in quantum simulation. (a) We start from snapshots of a many-body system,
which are represented as 2D arrays at different times. At a fixed time, each row corresponds to a different realization, while each column is a
different data feature, e.g., the atomic density in a given magnetic substate at a given spatial location. (b) Using nonparametric unsupervised
learning tools, we perform an exploratory analysis to uncover interesting features of the data, without making any assumptions. (c) From this
description, we infer relevant properties of the physical system. (Top) By quantifying the information content and correlations in a data set, the
principal component analysis entropy provides a measure of relevance of observables, thence guiding the identification of the most informative
degrees of freedom. (Bottom) After a quick fall to relatively small values, the intrinsic dimension of data sets features a long, stable plateau as
a function of time (shaded region), providing a lower bound for the timescale after which the dynamics may become simpler and be captured
by universal scaling.

decay to significantly smaller values, after which it features
very long, stable plateaus. As argued below, this observation
is in strong agreement with the formation of spin structure and
the emergence of self-similar dynamics [30,31,34–36].

The remaining of this paper is structured as follows. In
Sec. II, we introduce the different data science methods used
in this work. We describe the spinor BEC experiment and the
structure of our data sets in Sec. III. In Sec. IV, we present
a theory-agnostic scheme to identify relevant fields, in a sys-
tematic and unbiased way, directly from (a limited number
of) experimental observations. In Sec. V, we complement
our data-driven analysis by characterizing the Kolmogorov
complexity of the studied quantum dynamics, and address its
capability of recognizing physical information. Conclusions
and possible extensions of our work are discussed in Sec. VI.

II. METHODS

Before diving into the central part of our paper, we present
an introduction to the data science tools that are employed
in this work. We focus on nonparametric methods that are
oriented towards extracting information from data, without
making (strong) assumptions on the functional form of the
probability distribution underlying the data. For the purpose
of this exposition, we consider here an abstract data set,
structured as a rectangular matrix X = { �X i}Nr

i=1, of dimension
Nr × p, where each p-dimensional row vector �X i represents
a single realization (observation) of a set of p features (input
variables) that are measured in all realizations. This type of
structure is ubiquitous to both stochastic Monte Carlo simu-
lations, as well as quantum experiments featuring projective
measurements of a large number of degrees of freedom. In the
next section, we shall define precisely the concrete data sets
that will be analysed with the techniques presented below.

A. Principal component analysis entropy

Principal component analysis is one of the most popular
nonparametric methods for unsupervised learning, and has
found a vast number of applications, including classical and
quantum many-body problems [37–44]. The central idea of
PCA is to use an orthogonal transformation to seek for direc-
tions along which the data exhibit most variation [45,46]. This
is motivated by empirical evidence showing that in many cases
such “high-variance” directions capture the relevant informa-
tion of the data. This problem reduces to diagonalizing the
sample covariance matrix � = X�T X�/(Nr − 1), where X� is
the column-centred data matrix in which the mean value of
each column is subtracted from the entries in the column. The
solution to the eigenvalue-eigenvector problem � �wk = λk �wk ,
yields λ1 � λ2 � · · · � λR � 0 (R � min{Nr, p} is the rank
of X�), and the normalized eigenvectors �wk . The eigenvalues
λk are the variances of the principal components (PCs), which
are determined by the eigenvectors as �pk = X� �wk . We note
that the procedure above is equivalent to performing a singular
value decomposition (SVD) on X�, and that the semi-definite
positiveness of � then follows from the fact that the λk are
proportional to the squared singular values of X� [45,46]. A
standard measure of importance of a given PC is given by the
corresponding normalized eigenvalue λ̃k := λk/

∑
l λl , that is,

the proportion of total variance that is accounted for by the
k-th PC.

The PCA algorithm described above forms the basis of a
dimensional reduction scheme, for situations in which the first
few PCs capture most of the variation present in all of the orig-
inal variables [45,46]. However, determining in a systematic
way how many PCs can be disregarded without significant
information loss is, in general, a difficult task. Instead of
dealing with this aspect of PCA, our goal here is to leverage
all the information contained in the PC decomposition. To this
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end, we introduce an information theoretic-inspired quantity
built from the full (normalized) PCA spectrum as follows.
Since λ̃k � 0 for all k, and by construction

∑R
k=1 λ̃k = 1, we

can regard the set of all normalized eigenvalues {λ̃k}, as a
probability distribution and define the PCA entropy in analogy
to Shannon’s entropy [47], namely,

SPCA({λ̃k}) := − 1

ln(R)

R∑
k=1

λ̃k ln(λ̃k ), (1)

where for convenience we have normalized this entropy by its
maximum possible value, ln(R).

The PCA entropy in Eq. (1), provides a tool to explore the
informational aspect of the PC decomposition. Indeed, SPCA

measures how spread is the information on the principal axes:
When no principal direction represents a preferential direc-
tion of information accumulation (i.e., λ̃k ≈ 1/R, for all k),
then SPCA ≈ 1, whereas, if information accumulates around
some of the principal directions, then SPCA < 1. In fact, in
the extreme case in which a single PC explains almost the
full variation of the data (i.e., λ̃1 ≈ 1), then SPCA ≈ 0. Impor-
tantly, SPCA < 1 implies the presence of correlations among
the original variables. We note, however, that the opposite
is in general not true. Consider, for example, a set of two-
dimensional data points randomly distributed around a circle:
None of the principal directions explains more variation of
the data than the other and therefore SPCA ≈ 1, in spite of the
input variables exhibiting a clear correlation between them.

As mentioned in the introduction, the concept of PCA
entropy (and the closely related ‘SVD entropy’) has found
several applications, ranging from unsupervised feature se-
lection methods in bioinformatics [11,12], to schemes to
characterize complexity in ecological networks [19] and fi-
nancial signals [20–25]. However, very little is known about
its predictive power in the context of the many-body problem.

B. Information imbalance

Another recently introduced method to quantify informa-
tion content goes under the name of information imbalance
[13]. More specifically, this method quantifies the relative
information retained when using two distance measures, built
with different subsets of data features. In a physical context,
this technique can therefore provide an ideal tool to system-
atically compare—in a fully data-driven manner—different
observables (subsets of features) and determine which of
those can describe better the full space of measured quantities.

The information imbalance method is briefly explained
in the following. (The reader is referred to Ref. [13] for
a more detailed explanation.) Given two distance measures
DA( �X i, �X j ) and DB( �X i, �X j ), defined on the same data space,
we can rank the neighbors of a point �X i, by sorting, from
smallest to largest, the pairwise distances between such a
point and the rest of points using the two distance measures.
These rankings are encoded in the so-called rank matrices
Ri j

A/B. Hence, Ri j
A = 1, means that �X j is the 1st nearest neigh-

bor of �X i in space A, and so on. Here, we restrict ourselves
to the case in which the two considered distance measures
refer to the Euclidean distance computed with two subsets
of features. For example, for data points in two dimensions

with components (xi, yi ), two possible choices of the dis-
tance measures are DA( �X i, �X j ) = |xi − x j | and DB( �X i, �X j ) =√

(xi − x j )2 + (yi − y j )2.
The key insight of the information imbalance method is the

fact that the full correlation structure between the two metrics
under study is essentially captured by the conditional rank dis-
tribution p(RB|RA = 1), that is, the probability distribution of
the ranks Ri j

B in space B restricted to pairs of points ( �X i, �X j ),
such that Ri j

A = 1 (i.e., nearest-neighbor points according to
A). Then, the closer this distribution is to a delta function
peaked at 1, the more information about space B is con-
tained in space A. The deviation of p(RB|RA = 1) from such
a delta function is quantified by the conditional expectation
〈RB|RA = 1〉 [13], which is used to define the information
imbalance from space A to space B, namely,

�(A → B) = 2

Nr
〈RB|RA = 1〉 ≈ 2

N2
r

∑
i, j:Ri j

A =1

Ri j
B . (2)

In the limit case in which nearest neighbors in A are exactly
the same as those in B, we have that

∑
j:Ri j

A =1 Ri j
B = 1 (for a

given i), and hence
∑

i, j:Ri j
A =1 Ri j

B = Nr . Therefore, the infor-
mation imbalance in Eq. (2), vanishes as 1/Nr . A vanishing
information imbalance thus indicates that A can fully predict
B, in the sense specified above. In the extremely opposite
case in which the distance ranks estimated with the two met-
rics are completely uncorrelated, we have that

∑
j:Ri j

A =1 Ri j
B =

1
Nr−1

1
2 Nr (Nr − 1) = Nr

2 and hence
∑

i, j:Ri j
A =1 Ri j

B = N2
r

2 . There-
fore, in this case �(A → B) = 1, and we say that “A is not
informative of B.”

A scheme for feature selection can then be carried out by
measuring the information imbalance from a space of a subset
of features to the space of all features. A similar approach
has been used, for instance, in Ref. [14] to compare the
information that is captured by different atomic descriptors
with respect to standard order parameters (and vice versa) in
molecular systems.

C. Intrinsic dimension

To complement our data analysis we consider a key con-
cept in the sub-field of manifold learning, namely, the intrinsic
dimension (Id ). The Id quantifies the least number of func-
tionally independent parameters needed to describe the data
[48–50]. This quantity has a deep connection with informa-
tion theory, for it serves as a proxy of the Kolmogorov or
algorithmic complexity1 [51–54]. Beyond this informational
aspect, the notion of intrinsic dimension plays an important
role in unsupervised machine learning, as exemplified in var-
ious applications ranging from biomolecular science [15–18],
to image analysis [26–29]. Only recently has this concept
been employed in physics, more specifically, in the study of
critical behavior—in and out of equilibrium—in classical and
quantum statistical mechanics systems [44,54–56].

1Intuitively, the Kolmogorov complexity measures the complexity
of a string as the length of the shortest computer program (in a
predefined programming language) that outputs the string.
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Estimating Id is, in general, a far-from-trivial task and,
in fact, an active field of research [49,50]. Here we use a
distance-based Id estimator that leverages information of only
local neighborhoods, namely, the TWO-NN algorithm [15],
which we briefly describe in the following. (The reader is
referred to Ref. [15] for a more in-depth discussion.) For each
point �X i in a generic data set, we compute the distance to its
first and second nearest neighbors, denoted by ri

1, ri
2. Next, we

define the ratio μi := ri
2/ri

1. For data that are locally uniformly
distributed on a Id -dimensional hypersphere, the probability
distribution function of μ is given by f (μ) = Idμ

−Id −1. The
cumulative distribution function F (μ), obtained upon integra-
tion, then satisfies

− ln[1 − F (μ)] = Id ln(μ), (3)

which is used to estimate Id through a linear fit of the points
{(ln(μ),− ln[1 − Femp(μ)])}, where Femp(μ) is the empiri-
cal cumulate. In practice, verifying a linear relation between
ln(μ) and − ln[1 − Femp(μ)]), serves also as a good consis-
tency check of the (mild) assumption of local uniformity of
the data set.

III. QUANTUM SIMULATION ON A SPINOR BEC
AND EXPERIMENTAL DATA SETS

We consider the dynamics realized by a BEC of 87Rb in
the F = 1 hyperfine spin ground state manifold confined in
a quasi-one-dimensional elongated harmonic dipole trap (the
data evaluated here are taken from Ref. [30]; see this publi-
cation for further details on the experiment). The system is
initialized with all atoms in the magnetic substate mF = 0. By
instantaneously changing a control parameter we tune spin-
changing collision processes into resonance. This procedure
implements a quench across a quantum phase transition which
brings the system far from equilibrium.

For different times t after the quench we simultaneously
infer the two orthogonal spin projections Fx and Fy from the
observed densities with spatial resolution along the longitudi-
nal trap direction [7] via

Fx = (n2,+2 − n2,−2)/(n2,+2 + n2,0 + n2,−2),

Fy = (n1,+1 − n1,−1)/(n1,+1 + n1,0 + n1,−1), (4)

where nF,mF is the density in the state with hyperfine mani-
fold F and magnetic sublevel mF . This is achieved by first
performing a π/2 spin rotation around the y axis to map the
Fx-projection to the z axis, which allows its detection via den-
sity differences. Then, by transferring half of the population of
each mF level from F = 1 to F = 2, the Fx projection is stored
in the populations of F = 2. Finally, another π/2 spin rotation
around the x axis, which exclusively addresses the F = 1
manifold, maps the Fy projection to a detectable population
difference in F = 1. All 6 density distributions are read out
with spatial resolution along the longitudinal trap direction via
Stern-Gerlach separation and absorption imaging.

At the final parameters of the quench, which places the
system into the regime of the easy-plane ferromagnetic phase
[32,33], these define the transverse spin field F⊥ = Fx + iFy

[57]. Here, the interplay between energy offsets and spin
interactions favor a finite transverse magnetization. During

the dynamics the transverse spin field approaches its ground
state distribution, which manifests itself in the formation of
a ring in the transverse spin histogram after approximately
1–3 s, as shown in Fig. 2(b). Nevertheless, in this regime,
the system is still highly excited and transverse spin phase
excitations evolve dynamically in a self-similar fashion [31].
Such relaxation dynamics is quite rich but complex, making
a controlled microscopic characterization extremely challeng-
ing. In fact, the interpretation above is motivated by heuristic
arguments. The key point we are interested in here is to obtain
such description based solely on experimental observations,
analyzed in a blind-folded manner. That is, we wish to ex-
tract essential descriptive elements (most important operators
and complexity of the dynamics) without relying on any
assumption.

We note that the structure of the experimental setup
described above is that of a continuous-variable quantum
simulator (see, for instance, Refs. [58–60]). In particular, the
present experiment can be regarded as an analog quantum
simulation of the out-of-equilibrium dynamics in a quantum
field theory associated to the underlying physical system.
Furthermore, since the spinor Bose gas under consideration
features universal dynamics, this specific setup can be used
to probe universal dynamics in a wide range of systems that
share the same universal features.

Let us now describe the structure of the collected experi-
mental data sets analysed in this work. At each evolution time,
each density is sampled linearly at p = 184 spatial locations
along the longitudinal trap direction. Such measurements are
repeated so as to gather Nr = 225 independent realizations.
We denote a single realization of a spatial density profile by
a p-dimensional vector �ni

α (t ), where the considered internal
state is succinctly labeled by α ≡ (F, mF ). Thus, for each
observable (density), and at each evolution time t , we obtain
a data set Mα (t ) = {�n1

α (t ), �n2
α (t ), . . . , �nNr

α (t )}, which can be
represented as a (Nr × p) rectangular data matrix. Using the
terminology of the previous section, the features of the exper-
imental data at hand are therefore the measured densities at
selected positions. Examples of single realizations at different
evolution times are shown in Appendix A. Further, we also
consider joint data sets formed by concatenating horizontally
data sets of the measured densities for different α at a given
time. More specifically, each row in a joint data matrix is
formed by appending, one after the other, single realizations
of the observables of choice. Thus, for example, a joint data
set of two observables will have twice as many features as the
data set of one individual observable, but the same number
of rows Nr . The particular order in which we concatenate the
combined observables is irrelevant for our methods. When
needed, we will simply specify joint data sets by using the
symbol of the corresponding observables joined by “‖.”

IV. IDENTIFICATION OF RELEVANT OBSERVABLES

We now perform a descriptive analysis of the data sets
above, with the goal of identifying relevant observables, that
is, those observables that capture dominant spatial correla-
tions across the evolution of the system. This is, in fact, a
crucial task in order to determine good degrees of freedom
emerging from the underlying physical system.
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FIG. 2. Assumption-free identification of relevant observables. (a) PCA entropy, SPCA, and information imbalance, �(A → B), as relevance
metrics of physical observables: Lower values of SPCA signal stronger correlations between the features of an observable, while lower values of
�(A → B) indicate that the features of a given observable (space A) are more informative of the full set of measured features (space B). Both
metrics clearly show that n1,±1 and n2,±2 are more relevant (in the sense above) over the full evolution [(a1) and (a4)]. Identification of relevant
groups is also possible by analyzing joint data sets: For pairs of observables, n1,+1 ‖ n1,−1 and n2,+2 ‖ n2,−2, have the lowest SPCA [� markers
in (a2)] (see ranking of all possible pairs in Appendix B). Features from both “relevant” pairs are in fact required to better describe space B
[points with �(A → B) ≈ 0 in (a5), for which A is defined by the set of features of n1,±1 ‖ n2,±2. Note that these points are almost on top of
each other.] Relevant new operators defined from the measured observables can also be identified, as illustrated here for a few combinations of
n1,+1 and n1,−1, with n1,+1 − n1,−1 being the most relevant [(a3) and (a6)]. (b) Histogram of the transverse spin variable in the Fx − Fy plane at
t = 3 s, featuring a ringlike structure. Based on physical arguments [30–33], this variable is the relevant field to describe the quenched system.
Our theory-agnostic approach identifies the relevant observables from which this variable is inferred [see Eq. (4)], hence cross-validating the
latter analysis.

The framework presented here builds on the complemen-
tary tools discussed in Secs. II A and II B. We first compute the
PCA entropy of the measured spatial density profiles and their
combinations, and use it as a direct probe of the spatial corre-
lations captured by those observables at each evolution time.
Next, we use information imbalance as a way to determine
which observables retain more information from the full space
of observations, thereby providing a complementary metric
for observable relevance. Let us note that, as discussed in
Sec. II A, SPCA cannot reveal the presence of correlations if the
embedding manifold of the data is curved. On the other hand,
the estimator of the information imbalance in Eq. (2) depends
only on the local neighborhood of each data point, and hence
is well-suited to deal with arbitrarily nonlinear manifolds [13].
In this sense, ranking the relevance of observables with both
techniques provides a way to cross-verify the validity of our
results.

Our main results are shown in Fig. 2(a). Let us first analyze
the results for the PCA entropy [panels (a1)–(a3)]. A clear
separation between two groups of observables is noted as the
system evolves [panel (a1)], with n1,±1 and n2,±2 having lower
values of SPCA. We conclude that these observables capture
stronger spatial correlations and are hence more relevant in the
sense specified above. Next, we consider joint data sets of two
observables [panel (a2)]. The most relevant pairs according
to this analysis are {n1,+1, n1,−1} and {n2,+2, n2,−2}. The latter
result is in excellent agreement with the physics-motivated
analysis, in which such observables play a key role in the defi-
nition of the transverse spin [see Eq. (4) and Fig. 2(b)]. Going
one step further, in panel (a3), we explore concrete func-
tional combinations of the pair of observables {n1,+1, n1,−1}

(similar results are found for {n2,+2, n2,−2}), which define new
operators. We find that n1,+1 − n1,−1 has the lowest SPCA,
once again in agreement with the physics-motivated ansatz
[Eq. (4)].

We now turn our attention to the information imbalance
analysis [panels (a4)–(a6)], which provides a complementary
view on the relevance of observables. Here, A refers to the
space of features associated to a given observable, while B
is the full space of (184 × 6 = 1104) measured features. In
panel (a4), we can see that the observables with a lower
PCA entropy have also a lower information imbalance. In
other words, the observables that capture dominant spatial
correlations are also more informative of the full space of data
features (in the information imbalance sense). Interestingly,
in the analysis of pairs of observables [panel (a5)], we note
that in order to describe the full space of observations, one
needs to consider features from both of the relevant pairs.
Indeed, we see that the space A that combines features from
the observables n1,±1 and n2,±2 have �(A → B) ≈ 0, for the
full evolution [note that the points corresponding to the four
possible combinations of these observables are almost on top
of each other in panel (a5)]. The new operator n1,+1 − n1,−1

has also a significantly lower information imbalance than the
other considered operators in panel (a6).

In Appendix A, we show some instances of single realiza-
tions of the measured density profiles. While one can see a
certain correlation in the behavior of the identified relevant
observables (at the level of single realizations), our analysis
rules out, in a systematic and unbiased way, the presence of
other important correlations among the measured quantities.
Further results for the analysis carried out here are shown in
Appendix B.
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V. ALGORITHMIC COMPLEXITY
OF THE QUANTUM DYNAMICS

Finally, we provide a further characterization of the data
sets. Specifically, we study their intrinsic dimension Id , at
the considered evolution times. This allows us to characterize
the algorithmic complexity of the quantum dynamics probed
in our experiment. We note that this notion of complexity
is fundamentally different from computational complexity –
prominent examples of the latter being entanglement [61–63]
and quantum circuit complexity [64,65]. In the context
of quantum many-body systems, computational complexity
deals in general with characterizing the number of classical
resources needed to efficiently simulate a quantum state (e.g.,
the bond dimension of a matrix product state representation or
the number of gates needed in a quantum circuit to describe
a target state). On a very distinct note, algorithmic complex-
ity quantifies the notion of compression of information in a
classical object, which in our particular case refers to the
classical encoding of a quantum state given by the output
of measurements (or even classical calculations). We note
that these two notions of complexity do not necessarily align
with each other, and while the computational complexity has
been explored intensively in the realm of strongly interacting
systems, much less is known about the algorithmic complexity
of quantum many-body states.

As explored in recent studies on critical phenomena in
many-body systems [44,54–56], the algorithmic complexity
does provide a physical picture of the complexity of many-
body states, revealing for example an emergent simplification
of the data manifold in systems featuring universality, where
the physics also becomes parametrically simpler and can
be described by a handful of universal exponents and func-
tions. The present work thus extends the study of this kind
of complexity to the realm of far-from-equilibrium quantum
many-body dynamics.

Shown in Fig. 3(a) is the plot of Id as a function of time, of
the data sets corresponding to the identified relevant operators,
n1,+1 − n1,−1 and n2,+2 − n2,−2. We observe the same trend in
both instances: a quick decay of Id to considerably smaller
values, subsequently displaying long, stable plateaus. The re-
duction of the Id signals a simplification of the data structure
due to the buildup of correlations among the input variables.
The latter is a direct manifestation of the correlations among
the elementary constituents of the system. From the physical
viewpoint, the postquench correlations are associated with the
formation of a ringlike structure, with approximately constant
radius, in the transverse component of the collective spin de-
gree of freedom (insets) [30,31]. In turn, spatial correlations of
the spin phase excitations exhibit universal scaling dynamics
[31]. In the present experiment, the universal scaling regime
starts approximately at t ∼ 6 s [30]. The physical basis for
such scaling evolution is a dynamical reduction of the rel-
evant parameters in the system. This is strongly consistent
with the observed structural simplification of the data, as also
observed in recent studies of critical behavior—in and out of
equilibrium—in classical and quantum statistical mechanics
systems [44,54–56]. Therefore, in the present case, the ob-
served Id plateau provides a theory-agnostic lower bound for
the timescale after which the dynamics may become simpler,
allowing for the emergence of self-similar behavior.

FIG. 3. Intrinsic dimension as a function of time for (a) the rel-
evant observables, n1,+1 − n1,−1 and n2,+2 − n2,−2, (b) all measured
densities individually, and (c) joint data sets of all six observables to-
gether. In all instances, an initially large Id quickly decays to smaller
values (around t = 0.6 s), subsequently exhibiting long plateaus. The
insets in panel (a) show histograms of the transverse spin in the Fx-Fy

plane at selected times. The first drop in the Id is associated to a grow
in the spin length, which remains approximately constant for t � 1 s.
In the latter regime a ringlike structure is then observed (illustrated
here at t = 3 and 12 s). Spatial correlations of spin phase excitations
exhibit self-similar dynamics in a regime that starts around t � 3 s
[30]. The observed structural simplification of the data strongly cor-
relates with such universal dynamics. Hence, the plateaus in the plot
of Id provide a lower bound for the onset of simpler dynamics and
universal scaling. Panel (c) also shows the Id estimate based on PCA
for various values of the cutoff ζ (see main text).

Importantly, this prediction can be made by directly study-
ing the Id of data sets of all measured densities, as shown
in Fig. 3(b), where we observe an overall similar trend. We
note, however, that the “irrelevant” observables n1,0 and n2,0,
have a growing Id , rather than a plateau. This further confirms
the relevance predictions based on PCA entropy and informa-
tion imbalance. Further, in Fig. 3(c), we plot the Id of joint
data sets of the six measured observables together, showing
once again the noted trend. In this plot, we also show an Id

estimation based on PCA, which is defined by choosing an
ad hoc cutoff parameter ζ , for the integrated spectrum of the
covariance matrix [45,55], i.e.,

∑Id
k=1 λ̃k ≈ ζ . We find that for

all considered values of ζ , we recover the same qualitative
features as the TWO-NN Id estimate. A quantitative agree-
ment can also be achieved for a suitable choice of ζ in the
range 0.7 � ζ � 0.9, at the different evolution times. Since
the TWO-NN estimator only depends on local neighborhoods
and is therefore well-suited to deal with curved manifolds, as
opposed to the PCA method, this agreement further confirms
the applicability of PCA in our previous analysis and implies
that curvature effects in the data manifold are negligible.
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FIG. 4. Experimentally observed density profiles in the hyperfine manifold F = 1. Single realizations of the measured densities are shown
at selected evolution times in the subsequent rows.

In Appendix C, we show some examples of the linear fits
used to estimate Id as prescribed by the TWO-NN algorithm;
see Eq. (3). Statistical error on the results presented in this
work were computed using a version of the delete-d Jackknife
standard error estimator via a stochastic subsampling algo-
rithm without repetitions [66,67], as detailed in Appendix D.

VI. CONCLUSIONS

We have introduced an assumption-free method to di-
agnose and rank relevant correlations in the dynamics of
out-of-equilibrium quantum systems. The method exploits the
full spectrum of principal components, as well as recently de-
veloped techniques based on information imbalance. We have
successfully identified the most relevant operators describ-
ing the dynamics of Bose Einstein condensates, confirming
previous heuristic approaches (and thus, validating the phys-
ical relevance based solely on experimental observations).
Utilizing manifold characterization methods, we have also
found stable plateaus of the intrinsic dimension of the data
sets corresponding to different times, thus providing bounds
on the time frame realizing universal quantum dynamics.
Our approach is immediately extended to other classes of

quantum simulators—including fermion gases and lattice spin
models—providing a flexible, assumption-free framework to
discover physical phenomena, as well as to validate their
functioning. Our work complements recent theoretical ap-
proaches with similar goals regarding the identification of
relevant observables [68,69] and characterizing the complex-
ity of quantum dynamics [54,70,71].
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FIG. 5. Experimentally observed density profiles in the hyperfine manifold F = 2. Single realizations of the measured densities are shown
at selected evolution times in the subsequent rows.

APPENDIX A: EXPERIMENTALLY
MEASURED OBSERVABLES

In this Appendix we show, for completeness, examples of
single realizations of the measured density profiles at selected
evolution times. We refer the reader to Ref. [30], where the
experimental data analysed in this work were taken from, for
further experimental details. For the sake of clarity, we plot
the density profiles corresponding to the hyperfine manifolds
F = 1 and 2, separately in Figs. 4 and 5, respectively. The

FIG. 6. PCA entropy of joint data sets of two observables. This
plot shows the results for all joint data sets of two observables [cf.
Fig. 2(a.2) of the main text].

structure of the experimental data is as follows: before mea-
suring the atomic densities a π/2 rotation around a transverse
spin axis is performed. That means that measurements are

FIG. 7. Information imbalance from the space of features of
joint data sets combining two observables to the full space of mea-
sured features. This plot shows the results for all joint data sets
of two observables [cf. Fig. 2(a.5) of the main text]. Note that
the points corresponding to the joint data sets n1,+1 ‖ n2,+2, n1,+1 ‖
n2,−2, n1,−1 ‖ n2,+2, and n1,−1 ‖ n2,−2, lie basically on top of each
other (they are equally informative), with an information imbalance
�(A → B) ≈ 0. These four data sets combine features of the two
relevant pairs {n1,+1, n1,−1} and {n2,+2, n2,−2}.
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FIG. 8. PCA entropy of joint data sets of four observables. The joint data set with the smallest PCA entropy is the one that combines the
two relevant pairs (� markers).

done in the x or y basis. The states at the poles of the spin
sphere, therefore, correspond to fully elongated spins along
the x or y direction, respectively. At the poles one then mea-
sures all atoms in the internal states (F, mF ) = (1,±1) or
(F, mF ) = (2,±2) [7].

In the initial state, all atoms are in the magnetic substate
mF = 0, as discussed in the main text. However, due to the
applied π/2 pulse before imaging the atoms, the atomic den-
sities get modified and the initial mF = 0 population is split
between the substates mF = ±1 and mF = ±2, for the read-
outs in F = 1 and 2, respectively. This is precisely what we
observe in the first row of in Figs. 4 and 5, which corresponds
to t = 0.0 s. We note however that no spatial correlations are
imprinted in such an initial state. This is why both the PCA
entropy and the intrinsic dimension of the measured densities
are initially large (see Figs. 2 and 3, in the main text). That
is, the corresponding data collections at short times exhibit
the largest algorithmic complexity due to the statistical inde-
pendence of the input variables (densities at different spatial
positions).

At later evolution times, certain correlations between
atomic densities in different substates can be observed at
the level of single realizations. These are a consequence
of certain symmetries of the system under study. For ex-
ample, rotational invariance is ultimately responsible for a
conserved population imbalance between the substates mF =
±1 during the spin-changing collisions that drive the spinor
Bose gas out of equilibrium [32,33]. However, excluding the
presence of other important correlations by direct inspection
becomes very hard and one needs to rely on techniques such
as the ones introduced in this work, which allow to iden-
tify dominant correlations in a fully systematic and unbiased
manner.

APPENDIX B: FURTHER RESULTS
ON RELEVANT OBSERVABLES

In this section, we show the ranking of operators beyond
the ones discussed in the main text. In particular, in panels
(a2) and (a5) of Fig. 2, we only show results for some of
the possible combinations of two of the observed densities. In
Figs. 6 and 7, we show the results for all possible 15 combi-
nations. In these plots we can better appreciate the separation
into three groups of combinations. Focusing first on SPCA, we

can distinguish the two most informative pairs of observables
with lower values of SPCA, throughout almost the whole evo-
lution, namely, {n1,+1, n1,−1} and {n2,+2, n2,−2} (� markers in
Fig. 6). These are follow by an set of combinations—each
containing at least one of the observables in the identified
relevant pairs—with intermediates values of SPCA, and finally
the “least” informative combination {n1,0, n2,0}. The informa-
tion imbalance in Fig. 7, reveals a similar separation. First,
with an almost zero information imbalance, we have the space
of features corresponding to the combinations {n1,±1, n2,±2}
(points with a darker color in Fig. 7). This results, as discussed
in the main text, means that in order to describe the full space
of measured features we need to combine features from each
of the two relevant pairs {n1,+1, n1,−1} and {n2,+2, n2,−2}. The
next group of combinations, yielding intermediate values of
�(A → B), contain features within only one of such relevant
pairs, e.g., {n1,0, n1,−1} or {n2,+2, n2,−2}. Finally, once again,
we identify as the “least” informative combination that of
{n1,0, n2,0}.

Similar observations are obtained if one considers groups
of more than two observables. This is illustrated here for
groups of four observables (quadruplets) in Figs. 8 and 9.
In terms of PCA entropy the most relevant combination is
the one that combines the features of the two relevant pairs,
namely, the joint data set n1,+1 ‖ n1,−1 ‖ n2,+2 ‖ n2,−2 (� mark-
ers in Fig. 8). We note however that in this case the relative
difference in PCA entropy is not as pronounced as in the
case of single or two observables. Regarding information
imbalance, we observe once again those joint data sets that
combine features from the two relevant pairs can predict
almost entirely the full space of features. There are indeed
only two combinations that only involve features from a sin-
gle relevant pair (plus the two “irrelevant” observables n1,0

and n2,0), namely, n1,0 ‖ n1,+1 ‖ n1,+1 ‖ n2,0 and n1,0 ‖ n2,0 ‖
n2,+2 ‖ n2,−2 (square markers in Fig. 9), which clearly have
a significantly larger information imbalance compared to the
rest.

APPENDIX C: LINEAR FIT TO ESTIMATE ID FROM THE
EMPIRICAL CUMULATES IN THE TWO-NN METHOD

In this section, we show examples of the linear fitting
procedure used to estimate the value of the intrinsic dimension
in the TWO-NN method; see Eq. (3) in the main text. In
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FIG. 9. Information imbalance from the space of features of joint data sets combining four observables to the full space of measured
features. All joint data sets that include features from the two relevant pairs {n1,+1, n1,−1} and {n2,+2, n2,−2} have a very small information
imbalance. Instead, the joint data sets that only include features from one of the relevant pairs cannot predict so well the full space of features.
The latter are indicated with square markers in this plot.

Fig. 10, we show the empirical cumulative distributions of
the ratios μi = ri2/ri1 , sorted in ascending order, for the ob-
servable n2,+2 − n2,−2, at all evolution times. If the condition
of constant density in the range of first two nearest neighbors
holds, a plot of the resulting points {ln(μ),− ln[1 − Femp(μ)]}
will be a line that passes through the origin and whose slope

gives the estimated value of Id . Verifying that the empirical
cumulates are indeed consistent with a Pareto distribution as
described above, is the first step to guarantee the applicabil-
ity of the TWO-NN method. Besides, on its own, this kind
of plot is also very informative about the local structure of
complicated data manifolds.

FIG. 10. Empirical cumulative distributions at all evolution times for the data sets corresponding to the relevant field n2,+2 − n2,−2. The
black curve show the linear fit according to Eq. (3) in the main text, whose slope gives the estimated value of Id . This procedure is valid as long
as the empirical cumulative distribution function is consistent with a Pareto distribution, at least over a significant range of values of ln(μ), as
is clearly the case here.
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APPENDIX D: SUBSAMPLING ERROR ESTIMATION

Due to the limited number of realizations used in the
present analysis, we opted for using a technique known
as subsampling [66,67] to have a sensible estimation of
statistical errors. The subsampling algorithm is described
below.

At a given time and for a given measured observable, we
have Nr = 225 independent realizations forming our data set,
that is, M = {�ni}Nr

i=1, where for simplicity we have omitted
the indices labeling the internal state and the evolution time.
Using these data we compute a certain numerical statistic
ϑ . Given two preset integers b and q < Nr , the subsampling
analysis proceeds as follows.

1. Form b random “batches” (subsamples) of data by draw-
ing q < Nr points at random but without replacement from the
data set M.

2. Estimate the statistic of interest on each subsample, that
is, ϑ j , for j ∈ {1, . . . , b}.

3. Compute the mean of such estimates ϑ =
1
b

∑b
j=1 ϑ j . The standard error can then be estimated as

follows:

SE ≈
√

q

Nr − q
·
√√√√1

b

b∑
j=1

(ϑ j − ϑ )2. (D1)

This formula is known as the delete-d Jackknife standard error
estimator (with stochastic subsampling) [66,67].

While formally this method requires q/Nr → 0, q → ∞,
and b → ∞ as Nr → ∞ (so that the distribution of the ϑi

converges to the sampling distribution of ϑ), in practice the
choice of these parameters is problem specific. In our analysis,
we did not find significant changes for b � 30. Hence, we
fixed b = 30. Furthermore, to compute a meaningful statis-
tic on each subsample, we set q = 100, satisfying at least
q/Nr < 1.

We used this method since sampling is performed without
replacement. This is important as the TWO-NN algorithm
used to estimate the Id works under the assumption of no
repetitions among the data points.
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