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Chapter 1

Introduction

This work deals with the development and applications of Radial Basis Functions
(RBF) to the solution of Partial Differential Equations (PDEs) involving fluid
flow and heat transfer. More specifically, the main focus is the study of those
stability and accuracy issues arising in presence of Neumann boundary conditions
and the consequent development of stabilization techniques.

The algorithms presented fall in the broad category of meshless solvers, which
are aimed at solving PDEs without relying on the mesh data structure. In
order to approximate the solution to a given boundary value problem, these
algorithms usually rely on a set of nodes which are scattered on the computational
domain with no connectivity information. The two approaches investigated in
the present thesis are called Radial Basis Function-Finite Difference (RBF-FD)
and Radial Basis Function-Hermite Finite Difference (RBF-HFD). The lack
of connectivity information and the reliance on radial functions allow them to
provide better geometrical flexibility than traditional mesh-based methods, at
the same time, they also enable finite difference-like discretization of differential
operators. The interest in meshless methods is motivated by the fact that, as
new Computer Aided Engineering (CAE) techniques are developed, it seems
that a major obstacle to their greater diffusion is constituted by the intrinsic
limitations of the mesh generation. This happens, for instance, in applications
requiring automatic shape optimization, where the domain of calculus is subject
to extensive deformations requiring frequent remeshing and quality assessments.
Similar problems also arise in presence of moving boundaries or multi-phase
simulations, furthermore, especially in the field of CFD, highly valuable and
experienced operators are often kept busy by activities related to mesh generation
for extended periods of time.

The starting point of the research activity presented below was the work
done at the University of Trieste by Riccardo Zamolo and Enrico Nobile [117]:
a clear vision of how to implement the first solver for generic 3D geometries
was already established, along with ideas on possible further improvements.
However, after some initial success in the solution of heat conduction problems
on complex geometries [73], it soon became clear that some stability issues
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10 CHAPTER 1. INTRODUCTION

had to be addressed when dealing with more complex physics. The main topic
of research has then become the stability and accuracy of the Radial Basis
Function-Finite Difference method in presence of Neumann boundary conditions
(BC). This is of critical importance in many cases, for example in the solution
of incompressible flows where the projection scheme for pressure correction is
adopted and Neumann BC are enforced in the associated elliptic equation.

1.1 Outline of the work

The remainder of chapter 1 provides a motivation for the development of a
new numerical meshless solver based on Radial Basis Functions (RBF) and
also outlines the numerical procedure in order to provide some context for the
subsequent discussion.
Chapter 2 reviews the theory of RBF-based scattered data interpolation, this is
the theoretical foundation for the following chapters. The theory of interpolation
can be adapted with minimal changes to the solution of boundary value problems
involving partial differential equations (PDEs) where many theoretical results
remain true.
Chapter 3 discusses the process of node generation, which is adopted in meshless
methods instead of the usual mesh generation. This chapter also provides an
overview of the main features of the algorithm adopted by the author.
Chapter 4 presents the Radial Basis Function-Finite Difference (RBF-FD) algo-
rithm for the solution of PDEs and presents some results in order to justify the
analysis of ill-conditioning issues related to the presence of Neumann boundary
conditions.
Chapter 5 discusses in detail the topic of ill-conditioning induced by boundary
conditions and proposes two approaches for their solution within the RBF-FD
method. This is a review of the unpublished work [122] on the same topic. In
order to split an otherwise very long discussion, Appendices A.1, A.2 and A.3 are
used to complement the discussion on the stabilization procedures. Stabilization
approaches discussed in chapter 5 are put at the test in chapter 6, where the
resulting stabilized RBF-FD method is applied to the solution of two benchmark
problems involving natural convection in 3D. The unpublished work [120] is
reported almost unchanged in this chapter, appendices B.1 and B.2 contain
further visualizations of the results.
Chapter 7 provides an overall presentation of the theory of Generalized Hermite
Interpolation, which can be understood as a generalization of the Scattered Data
Interpolation discussed in chapter 2 and presents two algorithms resulting from
the application of this theory to the RBF-FD method. The first, called Minimal
RBF-HFD is an alternative for the stabilization approaches discussed in chapter
5, while the second, called Compact RBF-HFD is ment to improve the spatial
resolution of Minimal RBF-FD for specific applications. The assessment of the
accuracy of Compact RBF-FD is a review of the unpublished work [1].
Finally, conclusions are drawn in chapter 8.
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1.2 Radial Basis Functions

Over time a growing activity of research has been focused on the development
of new numerical methods based on RBFs and has produced remarkable results
and a voluminous literature. Since the ’90s a good uniformity in notation and
terminology was adopted by many authors and few monographs published in
recent times provide a good overall picture of the theoretical background and
report some major results. [35, 12, 66, 27]

A good starting point might be to give an idea of what a radial basis function
is: given a point x1, which is known, the RBF associated to x1 can be written as

φ(∥x− x1∥2)

where ∥ · ∥2 is the euclidean distance between x and x1. If x ∈ Rd, then
φ(∥x− x1∥2) is to be intended as a scalar field defined on Rd, which take the
same value at any point x lying at given distance from x1, thus satisfying a
radial symmetry in Rd, hence the term radial.

Once a set of (distinct) nodes X = {x1, . . . ,xN} contained in a domain
Ω ⊂ Rd is given, the set of radial functions φ(∥x−xi∥2) associated to each node
of X form a basis for the following space of functions, hence the term basis.

FΦ :=

{
N∑
i=1

αiφ(∥x− xi∥2), αi ∈ R, xi ∈ X

}

1.3 Mesh-based methods

The research in the field of Computational Fluid Dynamics (CFD) dates back to
the early ’50s but the investigation of new numerical methods for the solution
of Navier-Stokes equations still motivates a prolific community. Indeed, many
approaches have proven successful over time, the most established ones being
the Finite Volume Method (FVM) [107, 21] and the Finite Element Method
(FEM) [124, 5], such methods have been adopted throughout the academy and
industry. While there are many differences between the two, a common feature
is the presence of a mesh, i.e. a data structure which describes how the domain
of calculus is divided into simpler interconnected cells. In practice the mesh is
always generated with the help of a computer program once the shape of the
computational domain has been defined and it is fed to the program in charge
of performing the actual solution of the equations.

1.3.1 Integration with CAE software

As the availability of computational resources increases, numerical methods
responsible for the solution of the partial differential equations, the solvers, are
integrated in larger software packages along with other design tools such as 3D
CAD (Computer Aided Design) and optimization algorithms. Such packages are
usually generically labeled as CAE (Computer Aided Engineering) software and
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OPTIMIZATION

DESIGN

PARAMETERS
CAD MESH SOLVER COST

Figure 1.1: Block diagram describing an optimization process: an initial set of
design parameters is modified in order to minimize a cost function calculated
from the output of a numerical solver.

their goal is to aggregate every software tool required for a complete assessment
of the performance of a given design and for its optimization. In other words,
CAE software help the user in managing complex design processes, such as the
one described by the block diagram of Figure 1.1: a set of design parameters is
fed to a parametric CAD which is used to generate a geometry, this in turn is
discretized by a mesh generator, a solver is then used to perform some simulation
and a cost function is finally calculated from the solver’s output. The loop is
then closed with an optimization algorithm that modifies the design parameters
in order to minimize the cost function.

In this process the physical simulation performed by the solver is probably
the most important step, not only it needs to provide reliable results, but its level
of flexibility and integration with the other software packages determines the
efficiency of the overall design process and to which extent it can be automated.
Therefore, in developing modern solvers the objective can no longer be limited
to the maximization of computational efficiency or accuracy: its capability of
integration within a CAE environment should be regarded as equally important.
Furthermore, the design of CAE software is increasingly focusing on the so
called democratization. That is the simplification of the user experience and
the minimization of compulsory input parameters, in order to make advanced
engineering tools accessible even to less experienced practitioners. In other
words, ideal simulation tools should require as little human supervision as
possible and still provide accurate and consistent results even as the shape of
the computational domain is modified by an optimization algorithm within a
CAE environment.

1.3.2 Mesh-related issues

Most CAE software packages are developed around preexisting solvers, typically
based on FEMs and FVMs. While both methods provide a satisfactory level
of accuracy and computational efficiency for most applications, their flexibility
and the resulting real-life performance is limited by the reliance on a mesh.
The mesh generation process could theoretically be carried out automatically
by some specific software, but this is not always recommended and a lot of
human intervention is usually required in order to achieve satisfactory results
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[66], especially when higher accuracy is sought. Furthermore, the adoption of a
mesh present some important weaknesses [66], two of them are:

1. the cost of the mesh creation,

2. the inability to allow large (geometric) deformations of the domain, since
this may lead to an unacceptable decrease of the quality of the mesh.

The first one refers to both computational and economical costs, indeed operator
costs now outweigh the cost of CPU time for the computer [66]. A well trained
operator with some knowledge on the physics of the problem will produce a high
quality mesh by manually controlling the level of refinement in different parts
of the domain and the subsequent simulation will achieve high computational
efficiency since no unnecessary data are stored or processed by the solver. Such
a workflow often requires lower computational resources and provides the best
end results but is often very expensive in economical terms. An automatic mesh
generator, on the other side, does not require much human intervention but its
employment will most likely result in either lower computational efficiency, in
the case of a mesh that is highly refined everywhere, or in lower accuracy, in the
case of a mesh that is not adequately refined at some specific location. This can
be compensated only partially with the adoption of Automatic Mesh Refinement
(AMR) tools, which are capable of performing refinement or coarsening where
needed. The second weakness becomes of interest in many practical cases, for
example when the solver is paired with some optimization algorithm, like in
Figure 1.1, and the geometry is changed many times in a closed loop. At each
step the mesh is degraded in quality and even when morphing algorithms are
employed, the solution usually becomes less reliable at every iteration. In most
cases a periodic complete re-meshing of the domain becomes necessary [66].

In order to address the issues enumerated above, a large research community
is increasingly focused on the development of mesh-free or meshless methods,
in this category fall the ones discussed in this thesis. While the underlying
theory has reached a certain maturity and most inherent shortcomings of the
main meshless algorithms have been addressed, their widespread adoption by
the industry is still to come.

1.4 Why the Radial Basis Functions

1.4.1 Node clouds instead of a mesh

In meshless solvers the mesh data structure is usually replaced by a set of nodes
(or node cloud) generated within the domain of calculus and over its boundary.
The generation of a node cloud in the domain is especially advantageous with
respect to a mesh generation when it allows to avoid any storage of connectivity
information, i.e. information on the mutual relation between nodes. In other
words, the nodes scattered must satisfy only minimal requirements, such as
variable spatial resolution and adequate filling of the boundary, but do not need
to form any local polygons or polyhedrons, this in turns allows greater geometrical
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flexibility, memory efficiency and parallel execution. The only information stored
once the node generation process is finished is a set of nodes’ coordinates, in
order to avoid the introduction of further structure in the data, it is therefore
advantageous to adopt a collocation approach towards the solution of PDEs.
This means that the the governing equations are enforced locally at the nodes
and, for efficiency requirements (i.e. in order to ensure some sparsity), also the
differential operators are discretized using only local information available in
the neigborhood of each node. Theoretically, this approach is justified since any
derivative is a local property of a function and therefore it should be an optimal
choice to rely on spatially localized approximations [36]. The resulting freedom
in the node placement is balanced by a much more constrained choice of the
discretization scheme: it must take into account the lack of any rigid structure
in the node placement. Since no strict requirement was made on the relative
position of the nodes it is not possible to assume that they are placed on a grid
of any kind and therefore no out-of-the-box Finite Difference (FD) scheme can
be used.

The selection of a suitable discretization scheme therefore requires some extra
care, luckily such a scheme can be derived from the well developed theory of
scattered data interpolation. Here follows a brief presentation on how this theory
can be applied to the discretization of linear differential operators in a simple
case.

1.4.2 Solution from scattered data interpolation

Suppose that we have generated N nodes xj , j = 1, . . . , N inside the domain
Ω ∈ Rd, and we look for a solution to the following Dirichlet boundary value
problem in strong form: {

Lu(x) = f(x) in Ω

u(x) = g(x) on ∂Ω
(1.1)

L being a linear differential operator, b(x) and g(x) two known functions.
The basic idea is to assume that the real valued solution u(x) of the problem

can be approximated by a function uh(x) defined as a linear combination of
suitable basis functions Bk(x) [27]:

uh(x) =

N∑
k=1

αkBk(x) (1.2)

Because of the linearity of (1.2), we can therefore write:

Luh(x) =
N∑

k=1

αkLBk(x) (1.3)

The theory on scattered data interpolation tells us that coefficients αk can
be uniquely determined by enforcing an equal number of conditions:

uh(xj) = u(xj) j = 1 . . . N (1.4)
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or equivalently, in matrix form and substituting (1.2) into (1.4):B1(x1) . . . BN (x1)
...

. . .
...

B1(xN ) . . . BN (xN )


︸ ︷︷ ︸

B

α1

...
αN

 =

u(x1)
...

u(xN )

 (1.5)

The solution to problem (1.1) is obtained instead by enforcing the following
collocation conditions:

Luh(xj) = f(xj) if xj ∈ Ω

uh(xj) = g(xj) if xj ∈ ∂Ω
(1.6)

Suppose that the nodes were numbered so that the first NI are internal and the
last NB lie on the boundary, with N = NI +NB , we can find the approximate
solution uh(xj) by solving the following linear system: c1,1 . . . c1,NI

...
. . .

...
cNI ,1 . . . cNI ,NI


 uh(x1)

...
uh(xNI

)

 = f −

 c1,NI+1 . . . c1,NB

...
. . .

...
cNI ,NI+1 . . . cNI ,NB

 g (1.7)

where f = {f(x1) . . . f(xNI
)}T and g = {g(xNI+1) . . . g(xNB

)}T , and the coeffi-
cient matrix C is found as the solution of: c1,1 . . . cNI ,1

...
. . .

...
c1,N . . . cNI ,N

 = B−T

LB1(x1) . . . LB1(xNI
)

...
. . .

...
LBN (x1) . . . LBN (xNI

)

 (1.8)

Thus, the coefficients ci = {ci,1 . . . ci,N} of each line of equation (1.7) are
calculated by solving the following linear system, which is closely related to that
of scattered data interpolation of equation (1.5):

BT ci =

LB1(xi)
...

LBN (xi)

 (1.9)

Indeed, by comparing equation (1.9) and equation (1.5) it is clear that both
scattered data interpolation and the solution of partial differential equations
are associated to the same matrix B. This is why most of the literature on
the solution of PDEs using radial basis functions is focused on the properties
of matrix B and of equation (1.5). An important remark to be made here is
that equation (1.8), with matrix B defined as in equation (1.5) is only correct
if Dirichlet boundary conditions are enforced, if this is not the case different
boundary conditions appear inside matrix B.
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Chapter 2

RBF Interpolation

As stated in the Introduction, the theory of scattered data interpolation with
RBFs really is at the foundation of their use in the solution of Partial Differential
Equations. The aim of this chapter is therefore to summarize some results from
the theory of interpolation which I find essential for an intuitive understanding
of the mechanisms underlying the solvers based on RBFs and are especially
important for CFD applications.

2.1 The Mairhuber-Curtis Theorem

In equation (1.8) at page 15 we see how matrix B needs to be non-singular in
order to allow for the solution of the boundary value problem, moreover, this
must hold regardless of the node placement as long as the nodes are distinct: the
solver must work for any shape or discretization of the domain Ω. The choice of
a suitable set of basis functions, however, is not trivial: if for example we assume
that Bk(x) ∈ Πd

P is a polynomial basis of the space Πd
P of polynomials of degree

at most P in Rd, then we are guaranteed that B is non-singular only for d = 1,
i.e. for one-dimensional problems, but we cannot be sure it is invertible for
d > 1. This negative result is formalized in the Mairhuber-Curtis theorem
[20, 69, 36]:

Theorem. Given any set of basis functions Bk(x), k = 1, . . . , N with x ∈ Rd,
d ≥ 2, the problem of determining an interpolant defined as in (1.2) and satisfying
conditions (1.4), is singular for infinitely many configurations of distinct nodes
xk, k = 1, . . . , N .

The proof in [36] is given by pointing out that in more than one dimension it is
possible to move the nodes continuously so that two nodes end up interchanged
following two non intersecting paths. If all the other nodes remain at their
initial positions, the determinant of matrix B after this exchange has changed
sign because B now appears with two rows exchanged. By continuity, there
must be a position at which matrix B is singular. In other words, if the basis

17
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{B1(x), . . . , BN (x)} is independent from the nodes position, it is bound to
produce a singular matrix B sooner or later. However, by choosing a basis
that is also a function of the nodes positions, it is in general possible to ensure
the non singularity of the interpolation problem and hence proceed to solve
differential equations. This is because if we move the collocation nodes the basis
also changes and if two nodes switch places not only the rows are switched but
also the columns.

2.2 Interpolation with Radial Basis Functions

At first we remark that in equation (1.2) the basis functions Bk(x) need to be
multivariate, since x ∈ Rd. Following the treatment of the topic proposed in
[27], in order to introduce the (multivariate) basis functions it is convenient to
illustrate how these are derived from the (univariate) basic functions. Consider
the univariate Gaussian function:

φ(r) = e−(εr)2 , r ∈ R (2.1)

This can be made multivariate by composition with the Euclidean distance
function ||x− xk||2 from a given center xk ∈ Rd:

Φk(x) = φ(∥x− xk∥2) = e−ε2∥x−xk∥2
2 , x ∈ Rd (2.2)

Sometimes the notations Φ(x− xk) or Φ(·,xk) are also used instead of Φk(x).
Following the naming introduced in [27], φ is called a basic function and Φk

is called a basis function, one single basic function generates all of the basis
functions that are used in expansion (1.2). We also remark that the centers
used to define the basis functions can be different from the collocation nodes, as
highlighted in [12]. More often, and it will also be the case here, the centers of
the basis functions and the collocation points (or nodes) coincide, this leads to a
square and symmetric matrix B:

B =

φ(||x1 − x1||) . . . φ(||x1 − xN ||)
...

. . .
...

φ(||xN − x1||) . . . φ(||xN − xN ||)

 (2.3)

Along with the Gaussian basic function, many others have been proposed
in the literature, some of them are listed in Table 2.1. The smoothness of each
function, indicated in the leftmost column, is linked to the theoretical order of
convergence allowed by the associated interpolation scheme, more details will
be provided in the following pages. As for the rightmost column, the status of
strictly and conditionally positive definiteness really requires further explanation,
a very minimal and by no means exhaustive one is provided in the next section.
The interested reader is encouraged to see [110, 27, 35].
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Smoothness Name Definition φ((ε)r) Positive definite, order

Infinitely S. Gaussian (GA) e−(ε r)2 strictly

Multiquadric (MQ)
√

1 + (ε r)2 s. conditionally, 1

Inverse Multiquadric (IMQ) 1/
√

1 + (ε r)2 strictly

Inverse Quadratic (IQ) 1/(1 + (ε r)2) strictly

Piecewise S. Monomial PHS r2k+1, k ∈ N s. conditionally, k + 1

Thin Plate Spline PHS r2k log r, k ∈ N s. conditionally, k + 1

Table 2.1: most common basic functions

2.3 Positive Definiteness

In Table 2.1 basic functions are denoted either as strictly positive definite or
as strictly conditionally positive definite, the same attributes are inherited by
associated RBFs Φ. In agreement with the most traditional terminology [27],
we will call strictly positive definite those RBFs which are associated with a
positive definite matrix (2.3). The associated interpolation system Bα = u
of equation (1.5) is always well posed and therefore yields a unique solution.
Strictly conditionally positive definite functions of order P , instead, are those
basic functions which require polynomial augmentation with a basis for all
polynomials of order at least P − 1 for the interpolation problem to be non
singular. Furthermore, in case of polynomial augmentation, nodes must also be
positioned in order to form a polynomially unisolvent set [110].

2.3.1 Definitions and terminology

The definition of positive definite functions provided in [27] is for generic complex
valued continuous functions Φ : Rd → C. Since we are only interested in real
valued functions Φ : Rd → R, we report a theorem which provides a unique
characterization [27]:

Theorem. A real-valued continuous function Φ is positive definite on Rd if and
only if it is even and

N∑
j=1

N∑
k=1

αjαkΦ(xj − xk) ≥ 0

for any pairwise different points picked from x1, . . . ,xN ∈ Rd, and α =
[α1, . . . , αN ]T ∈ RN . The function Φ is strictly positive definite on Rd if the
quadratic form above is zero only for α = 0.

Analogously to the case of positive definite functions, also conditionally
positive definite ones are associated to specific interpolation matrices, we follow
once again the terminology proposed in [27]. Many radial basis functions are
not strictly positive definite and thus the associated matrix B in (2.3) is not
guaranteed to be non-singular for any possible node arrangement. In the case of
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the generic strictly conditionally positive definite basic function of order 1, the
uniqueness of the solution to the interpolation problem can be guaranteed by
requiring that the coefficients αi in (1.5) satisfy the additional condition:

N∑
i=1

αi = 0 (2.4)

This makes the associated matrix B conditionally positive definite of order one.

Definition. A real symmetric matrix B is called conditionally positive semi-
definite of order one if the associated quadratic form is non singular, i.e:

N∑
j=1

N∑
k=1

αjαkBjk ≥ 0 (2.5)

for all α = {α1, ..., αN}T ∈ RN that satisfy equation (2.4). If α ≠ 0 implies
strict inequality in (2.5) then B is called conditionally positive definite of order
one. [27]

We see now that equation (1.5) is no longer uniquely solvable in general for
conditionally positive definite matrices of order 1 or higher, fortunately it can
be modified according to the following theorem [27], which will be proven later.

Theorem. Let B be a real symmetric N×N matrix that is conditionally positive
definite of order 1, and let P0 = {1, . . . , 1}T ∈ RN . Then the system of linear
equations  B P0

P0
T 0

α
d

 =

u
0

 (2.6)

is uniquely solvable.

We will call strictly conditionally positive definite (again, as in [27]) of order 1
those functions which yield conditionally positive definite matrices. This concept
is formalized in the following theorem (modified from [27]).

Theorem. A real valued continuous function Φ is called strictly conditionally
positive definite of order one on Rd if it is even and

N∑
j=1

N∑
k=1

αjαkΦ(xj − xk) ≥ 0 (2.7)

for any pairwise different points picked from x1, . . . ,xN ∈ Rd, and α =
{α1, . . . , αN}T ∈ RN satisfying (2.4). And the quadratic form above is zero
only for α = 0.

If a strictly conditionally positive definite function Φ is chosen as basis
function, the associated matrix in the interpolation system becomes the one



2.3. POSITIVE DEFINITENESS 21

at the left-hand-side of Equation (2.6). We remark that such a matrix is still
symmetric and the whole process of solution of PDEs explained in subsection
1.4.2 can still be followed with minimal changes, i.e. by using the augmented
matrix instead of matrix B.

In the case of Monomial Poly Harmonic Splines (PHS) and Thin Plate spline
PHS in Table 2.1 and other conditionally positive definite functions of order
P > 1, in order to ensure that the interpolation problem is well posed, further
conditions are required. We characterize conditionally positive definite functions
of order P as follows [27].

Theorem. A real valued continuous function Φ is called strictly conditionally
positive definite of order P on Rd if it is even and

N∑
j=1

N∑
k=1

αjαkΦ(xj − xk) ≥ 0 (2.8)

for any N pairwise different points x1, . . . ,xN ∈ Rd, and α = {α1, . . . , αN}T ∈
RN satisfying

N∑
i=1

αip(xi) = 0 (2.9)

for any real-valued polynomial p of degree at most P − 1. The quadratic form
above is zero only for α = 0.

2.3.2 Derivation from a quadratic programming problem

We remark that condition (2.6) can be viewed as a particular case of (2.9),
where p(xi) is the constant polynomial of degree 0. In order to derive a general
approach for the treatment of interpolation problems with conditionally positive
definite functions of order P we propose the following procedure, based on the
theory of constrained optimization [77].

Suppose once again that a function u(x) is given at a set of points xi, i =
1, . . . , N , with u = {u(x1), . . . , u(xN )}T . We are now interested in finding the
solution to the following equality constrained quadratic programming problem.

min
α∈RN

q(α) =
1

2
αTBα−αTu

subject to P Tα = 0

(2.10)

Where:

B =


Φ(x1 − x1) . . . Φ(x1 − xN )

...
. . .

...

Φ(xN − x1) . . . Φ(xN − xN )


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is the same matrix as in (2.3), reported here again for convenience, and

P T =


p0(x1) . . . p0(xN )

...
. . .

...

pM (x1) . . . pM (xN )

 (2.11)

is a matrix associated to a polynomial base of the space Πd
P−1 of multivariate

polynomials of degree up to P − 1 defined on Rd. Each row corresponds to
an element of the basis evaluated at the points xi, for instance, the first row
is made of ones: {1, . . . , 1}T ∈ RN , there are M =

(
d+(P−1)

P−1

)
elements in the

basis and therefore M rows. For the moment we suppose that the M rows are
linearly independent and therefore that P has full rank. We remark that the
quadratic form in problem (2.10) is the same as the one in equation (2.8) and
that, by definition of strictly conditionally positive definite functions it must be
αTBα ≥ 0 for any α in the null space of Πd

P−1 and is = 0 only if α is the zero
vector.

In order to solve the problem (2.10), the following Lagrangian function can
be defined:

J(α,β) =
1

2
αTBα−αTu+ βT (P Tα) (2.12)

Where the sign of the multiplier β is not important because of the presence
of null equality constraints P Tα = 0, we proceed to require the first order
necessary conditions for a minimum α∗ and thus write ∇α,βJ(α,β) = 0 in
matrix form as follows.  B P

P T 0


︸ ︷︷ ︸

M

α
β

 =

u
0

 (2.13)

Since P has full rank and Φ is strictly conditionally positive definite, matrix
M is non singular and therefore equation (2.13) has a unique solution (α∗,β∗),
which is also the global minimum for the problem (2.10) (Lemma 16.1 and
Lemma 16.2 in [77]). Non singularity of M is proven as follows, suppose there
are vectors w and v such that: B P

P T 0

w
v

 = 0 (2.14)

From the second row of (2.14) we have P Tw = 0, it follows that:

0 =
(
wT vT

)
M

w
v

 = wTBw
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Furthermore, since w lies in the null space of P T we know that wTBw = 0 can
only happen if w = 0 because of the definition of strictly conditionally positive
definite function. From the first row of equation (2.14) we then have Pv = 0,
but this can only happen if v = 0 because P is full rank by hypothesis. We
conclude that equation (2.14) can only be true if w = 0 and v = 0, and therefore
M is non singular.

Matrix P T is a Vandermonde-like matrix associated to a multivariate poly-
nomial basis of degree up to P − 1 and equation (2.13) can be interpreted as the
matrix form of the following interpolation problem.

uh(xi) =

N∑
j=1

αjΦ(xi − xj) +

M∑
k=1

βkpk(xi) =u(xi) i = 1, . . . , N

N∑
i=1

αipk(xi) = 0 k = 1, . . . ,M

(2.15)

We conclude that, given a set of collocation points xi, i = 1, . . . , N where
a function u is given, it can be approximated by an interpolant uh defined as
in (2.15) and that such approximation problem is well defined for any strictly
conditionally positive definite function Φ of order ≤ P . When Φ is obtained from
an RBF basic function chosen from Table 2.1, then (2.15) defines the associated
interpolation problem with polynomial augmentation, i.e. where a polynomial
basis is added to the usual basis made of RBFs.

2.4 Polynomial Augmentation

As explained in the previous subsection, given a function u, this can be approxi-
mated by another function uh which is defined by equation (2.15). Because of
the non singularity of the associated matrix B, uh is unique and satisfies the
collocation conditions uh(xi) = u(xi), for each xi in a given set of collocation
nodes. The proof of the non-singularity of M , however, assumed that P in
equation (2.13) was full-rank, i.e. had linearly independent columns. This
requirement is seemingly in contrast with what stated in the Mairhuber-Curtis
Theorem. Indeed, while the theoretical limit for the size of matrix P is M = N ,
where the matrix becomes square and P is the polynomial interpolation matrix,
ill-conditioning and singularity issues might already appear for polynomials of
lower degree (and hence with M < N).

For the matrix P to be full rank, the set of points x1, . . . ,xN must be
(P-1)-unisolvent, where P-1 is the degree of the polynomials. Here is a formal
definition [27]:

Definition. We call a set of points X = {x1, . . . ,xN} ⊂ Rd P-unisolvent if the
only polynomial of total degree at most P interpolating zero data on X is the
zero polynomial.

This property is also called nondegeneracy of the set X for Πd
P [114]. In [27]

this topic is discussed in greater detail, we remark that with the node generation
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techniques discussed in the present work, a safe rule for a stable implementation
of the polynomial augmentation is to use 2M ≤ N .

Aside from the fact that polynomial augmentation of a suitable degree unlocks
the possibility to use strictly conditionally positive definite RBFs, it also has other
advantages. The most important is that, regardless of the nodes distribution, as
long as it is P-unisolvent, a polynomial basis of degree P enables polynomial
precision of the same degree. This means that, if the data u(xi) come from a
polynomial of total degree less than or equal to P , then they are fitted exactly
by uh(xi) and we have uh(x) = u(x) not only at the collocation points but
everywhere. Furthermore, granted that the set of points is P-unisolvent, P can
be as high as we want and the invertibility of matrix (M) in equation (2.13) is
still granted, indeed, a function that is strictly conditionally positive definite of
order P0 is also strictly conditionally positive definite of any higher order [27].

2.5 Cardinal Functions

Up to this point the most complete formulation for uh is written in equation
(2.15) and for a generic x takes the form:

uh(x) =

N∑
j=1

αjΦ(x− xj) +

M∑
k=1

βkpk(x) (2.16)

It is however possible to find a different formulation in terms of the so-called
cardinal functions ψj , j = 1, . . . , N , which takes the form:

uh(x) =

N∑
j=1

ψj(x)u(xj) (2.17)

where the cardinal functions ψj for a given set of nodes x1, . . . ,xN satisfy the
following property:

ψj(xi) = δij , i, j = 1, . . . , N (2.18)

We can obtain the vector ψ = {ψ1(x), . . . ψN (x)}T by solving the following
linear system.

MT

ψ
0

 =

Φ(x)

p(x)

 (2.19)

where Φ(x) = {Φ(x− x1), . . . ,Φ(x− xN )}T , and p(x) = {p1(x), . . . , pM (x)}T
is the usual polynomial base evaluated at x. Equation (2.19) is obtained by
substituting uh as defined in (2.17) into (2.16) and substituting coefficients
α = {α1, . . . , αN}T and β = {β1, . . . , βN}T from equation (2.13), as follows.u

0

T ψ(x)
0

 =

α
β

T Φ(x)

p(x)

 =

u
0

T

M−T

Φ(x)

p(x)

 (2.20)
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The uniqueness of the cardinal functions is guaranteed if Φ is strictly conditionally
positive definite and therefore matrix M is non-singular. By evaluating the
right-hand-side of equation (2.19) at the nodes xj it can easily be seen that ψj

satisfy conditions (2.18).

2.6 Reproducing Kernels

In order to discuss the main error estimates for the interpolation methods based
on radial basis functions, it is necessary to introduce the notions of reproducing
kernel and native space. The goal of this section is only to introduce these
concepts at an intuitive level along with the related notation, therefore no proofs
will be given and the discussion will mostly be limited to the case of strictly
positive definite functions. Extensions to the case of conditionally positive definite
functions require more calculations but follow naturally from the definitions
given in the previous sections.

As explained above, a function u can be approximated by uh defined as in
equation (2.16) or (2.17). The simplest case is when Φ is strictly positive definite
and therefore the approximation uh for each u is unique and written as:

u(x) ≈ uh(x) =
N∑
j=1

αjΦ(x− xj) (2.21)

In order to adapt our notation to the one usually adopted in this field, we denote
variables as ”·” and write for example Φ(·,x) to indicate that the first argument
varies freely in the domain Ω and the second is fixed. With this notation it is
implied that:

Φ(x,y) = Φ(x− y) (2.22)

Φ(·, ·) then becomes a real valued function defined on the Cartesian product
Ω× Ω. In summary, all of radial basis functions associated to basic functions in
Table 2.1 can also be associated with functions Φ : Ω× Ω→ R, which are also
called kernels, according to the definition of kernel given in [88].

Consider now the set of functions uh =
∑N

i=1 αiΦ(·,xi), u
h can be evaluated

at any given point x by substituting x in the first argument of all Φ(·,xi):

uh(x) =
∑N

i=1 αiΦ(x,xi). The action of evaluating uh at x can be described
as that of a linear point evaluation functional. Indicating point evaluation
functionals with δx we write δxΦ(·,xi) = Φ(x,xi) and also δxu

h = uh(x), where
δx is defined to be linear and therefore distributes on the expansion of uh.

Two notable properties of strictly positive RBFs are:

Φ(x,y) = Φ(y,x) (2.23)

N∑
j=1

N∑
k=1

αjαkΦ(xj ,xk) ≥ 0, and = 0 only if α = 0 (2.24)
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If we define ⟨·, ·⟩H to be the bilinear product which satisfies:

⟨Φ(·,x),Φ(·,y)⟩H = Φ(x,y) (2.25)

and the symmetry of ⟨·, ·⟩H is a consequence of (2.23).
Furthermore, ⟨uh,Φ(·,x)⟩H = δxu

h is also satisfied since:

⟨uh,Φ(·,x)⟩H = ⟨
N∑
i=1

αiΦ(·,xi),Φ(·,x)⟩H

=

N∑
i=1

αi⟨Φ(·,xi),Φ(·,x)⟩H

=
N∑
i=1

αiΦ(x,xi) = uh(x)

(2.26)

Finally, ⟨·, ·⟩H induces a norm because of (2.24): ⟨uh, uh⟩H > 0 and = 0 only
if uh = 0, as shown below:

⟨uh, uh⟩H = ⟨
N∑
i=1

αiΦ(·,xi),

N∑
j=1

αjΦ(·,xi)⟩H

=

N∑
i=1

N∑
j=1

αiαj⟨Φ(·,xi),Φ(·,xj)⟩H

=

N∑
i=1

N∑
j=1

αiαjΦ(xi,xj)

(2.27)

We can now have an intuitive understanding of how the radial basis function
Φ, considered as a function of two arguments can be used to generate a Hilbert
Space H with an inner product ⟨·, ·⟩H such that (2.25) is satisfied, H is often
called the native space associated with the function Φ.

In the case of strictly conditionally positive definite functions, H contains
linear combinations of the basis Φ(·,x) that vanish on ΠP . For conditionally
positive definite functions the inner product induces a seminorm instead of
a norm. In the case of strictly conditionally positive definite functions, the
interpolant uh can be shown to be the solution of (2.10).

All Radial Basis Functions discussed in this thesis are reproducing kernels
for the associated native spaces, the concept of reproducing kernel is formally
defined as [27]:

Definition. Let H be a real Hilbert space of functions f : Ω(⊆ Rd)→ R with
inner product ⟨·, ·⟩H. A function Φ : Ω× Ω→ R is called reproducing kernel for
H if

Φ(·,x) ∈ H for all x ∈ Ω

f(x) = ⟨f,Φ(·,x)⟩H for all f ∈ H and all x ∈ Ω
(2.28)
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Where property (2.28) is called reproducing property. The existence of a
reproducing kernel for a given Hilbert space is equivalent to the fact that the
point evaluation functionals δx are bounded linear functionals on Ω, this fact is
a consequence of the Riesz-Frechet representation theorem [27, 8].

We also have the following two uniqueness results [87]:

Theorem. The native space for a given strictly positive definite function Φ is
unique if it exists, and it coincides with the closure of the space of finite linear
combinations of functions Φ(·,x), x ∈ Ω under the inner product defined via
equation (2.25)

And vice versa:

Theorem. Any strictly positive definite function Φ on some domain Ω has a
unique native space which is the closure of the space

FΦ(Ω) =

{
N∑
i=1

αiΦ(·,xi), αi ∈ R, N ∈ N, xi ∈ Ω

}

and the elements of the native space can be interpreted as functions on Ω.

The results obtained for strictly positive definite functions can be extended
to strictly conditionally positive definite ones with some revisions, see also [87].
In order to avoid further theoretical details we conclude here the discussion on
the reproducing kernel Hilbert spaces, interested readers are strongly advised to
research original material on [110, 88, 28].

2.7 Error estimates and orders of convergence

In the case of meshless methods based on Radial Basis Functions, as hinted
in section 1.4.2, the same matrices appear in the linear systems associated to
the discretization of linear operators and the interpolation of scattered data.
It is therefore very reasonable to expect that reconstruction errors affecting
scattered data interpolation also appear in the discretization of linear operators.
Indeed, while many different sources of errors might affect the discretization of
differential operators over a given domain, the study of the interpolation errors
is somewhat simpler and has been conducted with success by multiple authors
[110, 35]. In this section we discuss the main error estimates for the scattered
data interpolation using different types of RBFs.

2.7.1 The Power Function

When the function to be interpolated u lies in the Native Hilbert Space H
associated with the basis function Φ, i.e. it can be written as u(·) =

∑
i αiΦ(·,xi).

Then given an interpolant uh obtained using the nodes in X , the interpolation
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error can be written as EΦ,X (u) = |u(x)− uh(x)|, where both u and uh lie in H.

EΦ,X (u) = |u(x)− uh(x)| = |⟨u,Φ(·,x)⟩H −
N∑
j=1

ψj(x)⟨u,Φ(·,xj)⟩H|

= |⟨u,Φ(·,x)−
N∑
j=1

ψj(x)Φ(·,xj)⟩H|

≤ ∥u∥H ∥Φ(·,x)−
N∑
j=1

ψj(x)Φ(·,xj)∥H

(2.29)

where ψj(x) with j = 1 . . . N are the cardinal functions evaluated at x and the
expansion (2.17) was used. Following [27, 86] we define the power function PΦ,X
as follows.

PΦ,X (x) = ∥Φ(·,x)−
N∑
j=1

ψj(x)Φ(·,xj)∥H (2.30)

We see that for xi ∈ X , PΦ,X (xi) = 0, furthermore PΦ,X does not depend on u
and a first estimate of the interpolation norm can be written as:

|u(x)− uh(x)| ≤ PΦ,X (x)∥u∥H (2.31)

Before concluding we state a few more remarks on the power function, if we
evaluate P 2

Φ,X we have:

P 2
Φ,X = ⟨PΦ,X , PΦ,X ⟩H

= ⟨Φ(·,x),Φ(·, x)⟩H − 2

N∑
j=1

ψj(x)⟨Φ(·,x),Φ(·,xj)⟩H

+

N∑
j=1

N∑
k=1

ψj(x)ψk(x)⟨Φ(·,xj),Φ(·,xk)⟩H

= Φ(x,x)− 2

N∑
j=1

ψj(x)Φ(x,xj) +

N∑
j=1

N∑
k=1

ψj(x)ψk(x)Φ(xj ,xk)

(2.32)

which can also be written in matrix form as follows:

P 2
Φ,X = Φ(x,x)− 2ψTΦ(x)+ψTBψ (2.33)

where the notation is the same used in section 2.5 where the cardinal functions
are defined. Furthermore, suppose we had calculated (2.33) using another vector
ψ, if we seek to find the minimum for PΦ,X with respect to ψ, we obtain the
following necessary condition:

Bψ = Φ(x) (2.34)

which is precisely the definiton of the cardinal functions ψi(x) given in equation
(2.19). Therefore, PΦ,X is the smallest function satisfying (2.31) and can therefore
be considered the operator norm of the error operator inside the native space
generated by Φ(·, ·) [86].
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2.7.2 Fill Distance

In general, in order to improve the accuracy of the available solution to a given
Partial Differential Equation, the most immediate thing to do is to increase the
spatial resolution by increasing the density of nodes or cells in a given domain.
The single most important requirement for a numerical method is therefore the
ability to improve its estimates of the exact solution as the density of nodes
or cells is increased. This is even more true for problems of interpolation over
scattered data, where increasing the density of available data is always expected
to reduce the error. It is clear, however, that the mere increase in the number of
nodes is not enough to guarantee an improvement and that some regularity in
the node distribution must be required for it to be effective. A measure of the
effective node density that is used in approximation theory is the so-called fill
distance. Given a set of nodes X scattered on a domain Ω, the fill distance h is
defined as follows:

h = hX ,Ω = sup
x∈Ω

min
xi∈X

∥x− xi∥2 (2.35)

The fill distance denotes the radius of the largest empty (or data-less) ball that
can be placed among the nodes xi ∈ X , i.e. it measures the largest gap in the
data [12] or the maximum distance any point in Ω can be from X [76]. Given
an exact function u, in this section we provide a few notable estimates for how
fast a given norm of the error ∥u− uh∥ tends to zero as h→ 0.

2.7.3 Approximation Order

This term is used to indicate the speed of convergence to zero of the approximation
error with respect to the fill distance. In [27, 110] this concept is formalized as
follows. We say that the approximation operator A(h) has Lp-approximation
order k if:

∥u−A(h)
u ∥p = O(hk) for h→ 0 (2.36)

where A(h)
u is the interpolant provided by the approximation operator on a node

distribution X with a fill distance h.
Usually, the interpolation error converges to zero as h→ 0 at a rate dictated

by the minimum smoothness of u and basic function φ used to derive Φ. [12].

2.7.4 Error bound as a function of the fill distance

A lot of research activity around Radial Basis Functions has been focused on the
derivation of error bounds that take h into account, both for functions belonging
to the native space and outside of it. An interested reader is encouraged to
consult [110, 27, 76, 114].

The notation Dα, with multi-index α = {α1, . . . , αd} and |α| =
∑

i αi will
be used, it indicates the differential operator:

Dα =
∂|α|

(∂x1)α1 . . . (∂xd)αd
(2.37)
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andDα2 Φ(·, ·) indicates that such operator is applied to Φ considered as a function
of the second argument.

Non Stationary Interpolation

The most basic results (cfr. Theorem 14.5 and Theorem 14.6 in [27]) can be
summarized as follows: suppose Ω is bounded and satisfies the interior cone
condition, and that Φ ∈ C2k(Ω× Ω) is symmetric and strictly positive definite.
If u is in the native space H of Φ, then from the upper bound of equation (2.31)
it is possible to derive the following limits:

|u(x)− uh(x)| ≤ C1(Φ,x)h
k
X ,Ω|u|H

|Dαu(x)−Dαuh(x)| ≤ C2(Φ,x)h
k−|α|
X ,Ω |u|H

(2.38)

For functions which are infinitely smooth (cfr. Table 2.1) it is possible to improve
the limit above [110], in the case of multiquadric, under the same hypotheses we
obtain that there is a real constant c such that:

∥u− uh∥L∞(Ω) ≤ |u|H exp

(
−c
hX ,Ω

)
(2.39)

whereas for the Gaussian:

∥u− uh∥L∞(Ω) ≤ |u|H exp

(
−c| log hX ,Ω|

hX ,Ω

)
(2.40)

Therefore infinitely smooth radial basis functions provide a so-called spectral
accuracy, i.e. they potentially allow an approximation order that is higher than
any polynomial order.

Similar error bounds have also been proven for functions u lying outside the
native space and in Sobolev Spaces, i.e. those containing the solutions to some
partial differential equations [27].

Stationary Interpolation

At this point an important clarification must be given, in Table 2.1 some basic
functions (the infinitely smooth ones) are defined with a factor ε multiplying the
radius r, usually called scaling or shape factor. All of the error bounds above
are derived under the assumption that ε remains fixed as the node density is
increased. This is the so-called non stationary approximation and implicitly
assume that, as the node density increase, the product ε r can tend to zero
and the interpolation problem remains well posed. While this can be true
analytically, all authors highlight that in practice some ill-conditioning issues
arise for the interpolation when (ε r) → 0. If r → 0 while ε remains constant
this can intuitively be easily understood by looking at matrix B in equation
(2.3): the closer any two nodes come together and the smaller their distance
becomes, at the limit two or more rows (and columns) become identical.
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The simplest solution to this problem is to define the scaling factor ε to be
related to hX ,Ω with inverse proportionality:

εhX ,Ω = ε0 (2.41)

for some real number ε0 which can also be optimized, in this case we have
the so-called stationary interpolation scheme. However, when this is done, the
approximation orders decrease drastically. The worst case is that of the Gaussian
(GA) basic function, which does not provide any positive approximation order
[27]. In the case of the multiquadrics (MQ), [115] provides error bounds even
for the stationary interpolation. As defined in our table 2.1, MQ still guarantees
an order O(h2X ,Ω) for functions in the Sobolev Space W 2

2 [115, 27].

Fortunately, high accuracy can still be achieved even in the case of stationary
interpolation thanks to polynomial augmentation: if the RBF is augmented
with a polynomial term, the exact polynomial reconstruction is maintained even
with stationary interpolation. Therefore, if a polynomial of degree P is added
to the RBF, a polynomial convergence order O(hPX ,Ω) can still be achieved. In
practice even higher approximation orders are attained [27] and this is why it
is often convenient to employ polynomials of higher order than that required
for ensuring the non-singularity of the interpolation problem. The combination
of stationary interpolation and polynomial augmentation has many advantages:
it is stable even when node density is increased and allows high accuracy. The
penalty in terms of computational cost is in most cases lower than that of stable
non-stationary RBF schemes [35].

2.8 The Trade-off Principle

A severely ill conditioned linear system (2.13) associated to the interpolation
problem leads to high reconstruction errors. The mechanism is purely numerical:
when matrixM has a very high condition number cond(M), the sensitivity with
respect to minimal perturbations on the right hand side or even in the matrix
entries becomes so high that the linear system can no longer be reliably solved
in double precision floating-point arithmetic. This fact led many to believe that
system (2.13) is either well conditioned or highly accurate but not both, this
idea was formalized in a so-called trade-off principle (also called uncertainty
principle by some authors [86]).

2.8.1 Separation Distance

At the end of the previous section the discussion on the conditioning of B
matrix was taken into account in dealing with stationary and non stationary
interpolation. We stated that, in the non stationary framework, the more we
increase the node density, the worse the conditioning of the B matrix becomes
and that this happens because the distance between any two collocation nodes xi

decreases. The parameter used for monitoring the distance between collocation
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nodes is the separation distance, defined as follows [86, 12]:

s(X ) = 1

2
min

1≤j<k≤N
∥xj − xk∥2 (2.42)

where X = {x1, . . . ,xN} as usual. A node distribution is called quasi uniform
if there is a positive constant γ ≤ 1 such that:

γhX ,Ω ≤ s(X ) ≤ hX ,Ω (2.43)

It follows that if the node density is increased while maintaining a quasi uniform
node distribution, s(X ) and hX ,Ω are not unrelated. The node distribution will
be assumed to be quasi uniform from now on.

2.8.2 Bounds for Condition Number

In the solution of system (2.13) the conditioning of matrix M is important since
it determines the sensitivity of the solution vector with respect to the known
data vector. Suppose that no polynomial augmentation is used and that Φ is
strictly positive definite, the interpolation problem becomes:

Bα = u (2.44)

where now α is the solution vector and u is the data vector and the sensitivity
of the former with respect to the latter is described by the conditioning cond(B)
of matrix B.

cond(B) = ∥B∥2∥B∥−1
2 =

σmax

σmin
(2.45)

where σmax and σmin are the largest and smallest singular values respectively.
Since B is positive definite, cond(B) can also be computed as the ratio of the
largest λmax and lowest λmin eigenvalues [27]:

λmax

λmin
(2.46)

λmax grows slowly as nodes are refined, therefore ill-conditioning issues must
be related to a rapid growth of λ−1

min [27]. In [74, 86] lower bounds for λmin are
provided as functions GΦ of the separation distance s(X ), which gives smaller
values as s(X ) decreases:

λmin ≥ GΦ(s(X )) (2.47)

and, under the additional hypothesis of quasi uniform node distribution they are
put in relation with a function FΦ of the fill distance which satisfies P 2

Φ,X (hX ,Ω) ≤
FΦ(hX ,Ω) (P

2
Φ,X being the power function) [27]:

GΦ(s(X )) ≤ λmin ≤ P 2
Φ,X (hX ,Ω) ≤ FΦ(hX ,Ω) (2.48)

If the interpolation problem is solved directly, it is not possible to arbitrarily
increase accuracy by reducing hX ,Ω and have good conditioning at the same
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(a) ε = 1 (b) ε = 2

(c) ε = 3 (d) ε = 4

Figure 2.1: Gaussian (GA) Radial Basis Function Φ = e−ε2∥x∥2

at different
values of the shape parameter ε, as ε→ 0 the graph becomes more flat.

time: s(X ) will also be reduced and cause a proportional reduction of λmin,
eventually leading to instability. This fact is often called trade-off principle [27]
or uncertainty principle [86, 12, 35]. In [12] it is stated as follows: it is impossible
to construct radial basis functions which guarantee good stability and small
errors at the same time.

In reality, while the error estimates on the approximation order, i.e. those
derived from the power function, are unrelated from the conditioning of the
interpolation problem and are unavoidable, numerical errors introduced by ill-
conditioning can be mitigated [12] or even eliminated altogether [38, 37, 44, 35].

2.9 Flat limit for ε→ 0

By looking at the definitions of infinitely smooth RBFs given in Table 2.1, it is
clear that ε→ 0 has similar effect as r → 0 in practice (i.e. if neither is allowed
to grow unbounded).

In Figure 2.1 the Gaussian (GA) radial basis function is visualized at various
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Figure 2.2: Error behavior at the flat limit on a 2D domain with Gaussian RBF.
On the left the relative error is reported against the value of ε, u and uh are to be
interpreted as vectors, where each entry is associated to the value of the analytic
function u or the interpolant uh at a specific evaluation point. On the right
the collocation points are depicted as blue circles and the evaluation points are
represented by red crosses. The analytic function is u(x, y) = sin(πx) sin(πy).

numbers of the shape parameter ε, other basis functions have similar behavior.
It is possible to see that as ε→ 0, the graphs associated with the basic function
ϕ(εr) becomes more flat, intuitively it is as if the nodes were perceived as being
closer. The first analysis of the error as ε → 0 seems to be that in [99]: the
approximation error rapidly decreases with ε until the associated linear system
becomes too ill-conditioned and therefore unstable. This phenomenon is visible
in Figure 2.2, where the approximation error is visualized against the value of ε
in the case of the Gaussian RBF and is closely related to the trade-off principle
from [86], discussed above.

As pointed out by Fornberg and others in many works [25, 41], ill-conditioning
issues are particular to the RBF-Direct procedure: where the linear system (2.13)
is solved using a square matrix M . Over time multiple alternative procedures
have been developed by Fornberg et al. in order allow stable interpolation
problems at very low values of the scaling parameter ε. It was observed that
for node sets with some irregularity, the interpolant in the flat limit ε→ 0 will
take the form of a multivariate polynomial [25, 41, 36], which is often the most
accurate interpolation scheme in absence of the Runge phenomenon [40].

2.9.1 Eigenvalue patterns

Further understanding on the ill-conditioning issues of matrix B can be gained
by looking at the pattern formed by its eigenvalues if an infinitely smooth basic
function is employed. In the case of a 2D non periodic geometry the pattern is
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[36]:

{O(ε0)}
{O(ε2),O(ε2)}
{O(ε4),O(ε4),O(ε4)}
{O(ε6),O(ε6),O(ε6),O(ε6)}
. . .

(2.49)

Which is intended to be read as follows: there is one eigenvalue which has order
O(1), 2 with order O(ε2), 3 with order O(ε4) and so on. Different patterns are
reported in [36] also for other geometries, in all of them the lower eigenvalues
of B are proportional to high powers of ε. The worst case is also the most
interesting, i.e. the one for non periodic 3D geometries: 1×O(ε0), 3×O(ε2), 6×
O(ε4), 10×O(ε6), . . . .

These patterns can be used to obtain an immediate estimate of cond(B) and
det(B) and thus gaining a broad assessment of the stability of the associated
interpolation process.

2.9.2 Stable Algorithms in the flat limit

Since the condition number is proportional to the sensitivities with respect to the
numerical entries in the linear system (2.13), if no perturbation or uncertainty
affects the right-hand-side or the matrix M , then the only source of errors in
the solution of the linear system is given by the round-off associated to the
double precision arithmetic. A straightforward approach to address numerical
ill-conditioning affecting the RBF-Direct solution is to use extended precision
arithmetic [35, 14, 52, 85]. The increase in computational cost, however, is
considerable even if higher precision hardware is used, if extended precision
is available only by means of emulation software, the cost penalty already for
stepping past the hardware-provided double precision (64 bit) is more likely
to be in the 40 to 200 range or higher [35]. It is therefore clear that extended
precision arithmetic, while possible, is not a practicable way for general purpose
implementations aimed at solving Computational Fluid Dynamic problems of
engineering interest. The goal of stable algorithms discussed in this subsection
is therefore to find computational paths that are genuinely numerically well-
conditioned all the way into the ε→ 0 limit and therefore requiring only standard
double precision arithmetic no matter how small ε is [35].

In [12] a stable approach based on regularization is proposed and it works
because of the special form of the degeneration affecting RBF linear systems
discussed in 2.8.2: large eigenvalues usually remain moderate but in the flat
limit smaller ones go to zero leading to bad conditioning [12]. The authors
propose to circumvent this issue by opting for an approximate solution, achieved
by calculating a singular value decomposition [47] first and then using only the
subsystem corresponding to large singular values, an interested reader might
wish to consult the referenced paper for implementation details. While the
techniques is promising and has strong theoretical foundations, in my opinion it
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is unpractical when paired with local RBF-FD or RBF-HFD approaches (cfr.
chapters 4 and 7) because it requires the calculation of a certain number of
singular values for each node lying in the interior of the domain. For this reason
it will not be discussed in greater detail.

Other algorithms achieving stability at the flat limit are listed below.

• Contour-Padé [39]: this algorithm was developed for the Gaussian (GA)
basic function. The starting point, shared with other stable algorithms,
is to consider the interpolant uh(x, ε) as a function of ε ∈ C, i.e. ε is
a complex number. Furthermore, uh(x, 0) is known to be finite, and
the authors conclude that ε = 0 is a removable singularity. To obtain
uh(x, ε) ε=0, a set of values uh(x, εi) are computed with εi lying on the
periphery of a circle centered at the origin, then, if no poles lie inside the
circle, the sought value can be taken as the average of the values around
the periphery [35]. This algorithm is still affected by some limitations and
is no longer advised by the author but it is nonetheless historically relevant
since it was the first to achieve the stability in the flat limit and therefore
paved the way for subsequent developments.

• RBF-QR [38]: was developed from the concept that the reason behind
ill-conditioning of the interpolation process in the flat limit is due to the
fact that the standard RBF basis is no longer a good basis because its
element become almost indistinguishable from each other. In the RBF-QR
the RBF basis is converted into a different one and then ε is sent to zero.
In [38] this was done in the case of a spherical geometry by adopting a
spherical harmonics expansion of radial functions like the ones in Table
2.1. Further developments of this method and applications to different
geometries, but limited to the case of the Gaussian (GA) RBF, are also
discussed in [29, 43].

• RBF-GA [44]: was developed as an alternative for the RBF-QR in the
case of the GA radial function (hence the name) and it is still based on
the idea of finding a better conditioned basis for its native space. We skip
the explanation of this method, any discursive description which does not
rely on equations would indeed end up being longer and probably more
convoluted than the original or the one in [35]. To this day, this algorithm
remains the fastest stable algorithm in the flat limit and in the 3D case it
is about 10 times slower than the standard RBF-Direct approach.

• RBF-RA [113]: intended as an improvement over the initial Contour-Padé
algorithm in terms of robustness, accuracy and ease of implementation,
it is reportedly the most flexible in this list. It is based on the vector
valued approximation of functions f(ε) : C → CM ; in the case of RBF
interpolation, f becomes the interpolant uh, which is considered as a
function of ε evaluated at a given set of M nodes. This algorithm applies
to any type of smooth RBF, to any dimension and can be immediately
integrated in the RBF-FD or RBF-HFD mehods (discussed in chapters 4
and 7).



Chapter 3

Node Generation

Traditional numerical methods for the solution of partial differential equations
often rely on a mesh or a grid. In order to achieve the geometrical flexibility
required for solving engineering problems involving complex geometries unstruc-
tured mesh are usually sought [79]. As mentioned above, however, even the most
modern mesh generators require some expertise and the search for alternatives is
open. In the case of meshless methods a set of nodes distributed over a computa-
tional domain is all that is required in order to perform a numerical simulation.
Such a node distribution, while being more flexible than an unstructured mesh, is
nonetheless required to satisfy some quality requirements as hinted by the results
on approximation order. Furthermore, spatially variable nodes distribution must
be allowed since it permits localized refinement where the solution is expected
to vary rapidly. Therefore, while the distance between any two neighbouring
nodes can vary in different portions of the domain, it is important that a local
uniformity, as defined in Equation (2.43), is maintained.

For clarification, the terms point and node will be used as synonyms through-
out the discussion and the same holds for node generation, node distribution,
point clouds, node initialization or any other term indicating the placement of
nodes within a domain and/or over its boundary.

3.1 Classification

Most of the algorithms for node generations can be categorized into either mesh-
based, iterative, advancing front or sphere-packing [93]. In [97] other methods
are also proposed, like random or quasi-random points or methods based on
oversampling followed by thinning or, working in reverse, those based on under-
sampling followed by filling; these do not fall in one of the categories proposed
above but are somewhat limited to lower dimensions or simpler geometries.

Mesh-based ones are usually employed because already available from tradi-
tional FEM preprocessors [65], they are generally not recommended because they
apparently defeat one of the main reasons behind the use of meshless methods

37
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and also for stability issues [90]. We remark, however, that when this solution is
adopted there is no need for storing connectivity information and hence a point
cloud can be saved simply in the form of a set of unrelated coordinates. This
allows great freedom for modifications of node positions at a later stage and
therefore an improvement in geometrical flexibility over standard mesh-based
method is still achieved. As pointed out in [97], the use of a mesh generator in
the context of meshless methods also makes sense in specific circumstances. For
instance it makes easier to perform comparisons and validation against mesh-
based solutions and it allows to recycle mesh quality metrics in the assessment
of the quality of node distributions. Indeed, the idea of applying some metrics
derived from those used in the context of mesh-based methods might have some
advantages. At the moment, the assessment of the quality of node distributions
and its impact over the stability and accuracy of RBF-based methods are still
subject of research and usually different authors chose to adopt different metrics.
A final reason for adopting a mesh-based approach for generating a node dis-
tribution, according to [97], is that the meshless algorithm might rely on some
mesh-based calculations at some stage, like for some Lagrangian methods.

Examples of iterative approaches are those simulating the movement of
charged particles minimizing some energy function defined via an inter-particle
repulsion force like [49], other examples are processes based on Voronoi relaxation
[2]. Iterative nodes generation processes are also those called pre-simulations,
which start from an initial node placement and then use time integration proce-
dures, instead of optimization, to obtain the desired point cloud [97], an example
is the bubble simulation procedure [67]. Iterative node generation algorithms are
affected by different flaws: are considered to be more computationally expensive
and require an initial node distribution that satisfies certain quality constraints.
On the other side, they are regarded as being a useful tool for improving the
quality of an available distribution [34]. Therefore, while they are not advised
as stand-alone solutions, they can be paired with an efficient algorithm that
provides an almost optimal initial node placement.

Advancing front techniques seem to be regarded as the most promising
methods and working implementations have been recently discussed in [93, 105].
Even though the implementation detail vary among different authors, the key
idea is that, given the coordinates of a node, new neighboring nodes can be
generated in its proximity so that an optimal packing is obtained locally. A
node which is taken as reference to generate its neighbors is usually labelled as
active, once the space surrounding an active node has been saturated, that node
is removed from the set of active nodes. The reason behind the name is that
while the algorithm is proceeding, the set of active nodes constitute the frontier
separating the space which has already been filled with nodes from the empty
portion of the domain. The definition of an initial active front can be done in
multiple ways, in [93] it is stated that the active front can be initialized as the
set of boundary nodes, a set of internal seed nodes or a union of both. Major
advantages of this method derive from the fact the function responsible for the
placement of new nodes operates locally, therefore very steep variation in the
spacing between nodes can be easily obtained, for example by defining a spacing
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function s(x) which prescribes how far from the active node x new nodes must
be placed. Furthermore, advancing front implementations proposed in [93, 105]
are remarkably efficient and allow a good quality of the node placement, making
further refinement based on iterative node repel only optional in the case of
simple geometries. An important remark must be made on the boundary node
generation: while a good packing is guaranteed in the interior of the domain, node
generation at the boundary must be performed separately. This is important not
only because boundary nodes can be used to initialize the active front [93], but
also because the relative position of boundary nodes and interior nodes in their
immediate proximity is of paramount importance for the correct enforcement
of boundary conditions. In the author’s opinion, the limitations of advancing
front methods seem to be related to the initialization phase, in [93], where the
initial set of active nodes is defined to be the boundary distribution, irregularities
appear at the encounter of advancing fronts originating from surfaces with
different orientations and seem to propagates from the edges of the boundary.
In [105], where the distribution of internal nodes is entirely separate from that
of boundary nodes, irregularities might appear in the proximity of the boundary.
It seems reasonable to conclude that if we assume the domain to be arbitrarily
complex, we need to give for granted that a certain number of node refinement
iterations will be needed after an initial advancing front phase.

The last category of algorithms is that of the circle or sphere packing methods
[62], a recent example is that in [90], where Poisson disk sampling [19] is used.
This algorithm is also analysed in [93] and to this day is considered one of the
best node generators to be paired with the RBF-FD method. Its major drawback
is the lack of support for variable nodal spacing [93], which prevents its use in
problems where sharp variations in the solutions are expected.

3.2 Performance Assessment

In order to make comparisons between different algorithms and advance the
development of those already existing some metrics must be introduced that
take into account not only the quality of node distributions but also geometrical
flexibility and ease of use.

3.2.1 Node quality metrics

As highlighted above, assessing the quality of a node distributions is not an
easy task due to the absence, at the best of author’s knowledge, of a definitive
mathematical model estimating the errors in the solution of PDEs as a function
of the node placement. Error estimates from the theory of scattered data
interpolations suggest that a first idea might be to minimize the fill distance for
a given amount of nodes and this is achieved by a uniform distribution. On the
other side it is often advantageous to reduce the node density (thus increasing
the fill distance) and therefore the maximum theoretical accuracy, in areas where
the solution varies slowly and increase it where sharp variations are expected.
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The optimal node placement therefore seems to be the one that minimizes the
fill distance, i.e. empty spaces in the domain, at a local level while allowing
variations in the node density where needed. In 2D such a node placement can
be achieved by making sure that at each point the nodes are scattered according
to the hexagonal configuration and that variations in node density do not alter
such a lattice configuration, Figure 3.1. In 3D the highest density arrangements
are the face-centered cubic (FCC) and the hexagonal close-pack (HCP) lattice.
Each of these 3D arrangements can be obtained by packing planes filled with 2D
hexagonal node arrangements [123]. In order to assess how close to the hexagonal
node placement a given distribution is, the most sensible metric in the author’s
opinion is that of the so-called distance ratio RH . In the 2D case, at any given
node xi, RH is given by the ratio of maximum and minimum distances between
the node xi and each one of its 6 nearest neighbours xj , j = 1, . . . , 6. In the 3D
case, the same holds with the difference that the number of equally distanced
neighbors from any point in expected to be 12, the 1D case is also included for
completeness.

RH(xi) =



max
xj∈X 2

i

∥xi − xj∥2

min
xj∈X 2

i

∥xi − xj∥2
in 1D

max
xj∈X 6

i

∥xi − xj∥2

min
xj∈X 6

i

∥xi − xj∥2
in 2D

max
xj∈X 12

i

∥xi − xj∥2

min
xj∈X 12

i

∥xi − xj∥2
in 3D

(3.1)

where X 6
i is the set made of the 6 closest neighbors to xi, X 12

i is the set of the
12 closest neighbors and X 2

i is the set of the 2 closest neighbors in the 1D case.
Of course RH(xi) ≥ 1 and RH = 1 holds in the ideal case of hexagonal (2D) or
FCC/HCC (3D) lattices. A visualization of the 2D hexagonal lattice is provided
in Figure 3.1 from [123], where circumference at different radii are drawn around
a central node encompassing an increasing number of neighbors.

Another quality indicator is the mean distance indicator dH , which can be
defined similarly to RH :

dH(xi) =

{
1
6

∑
j∈X 6

i
∥xi − xj∥2 in 2D

1
12

∑
j∈X 12

i
∥xi − xj∥2 in 3D

(3.2)

In the case of perfectly isotropic distributions achieving the prescribed spacing
function s(x) at each node the relation dH(xi) = s(xi) must hold. The ratio
dH(xi)/s(xi) can therefore be used to assess how much the effective node
distribution approximates the desired one. Even smaller numbers of neighbours
can be used to define dH , for example in [93] only the closest 3 neighbors are
used.
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Figure 3.1: Hexagonal node two-dimensional lattice, from [123]

We conclude by remarking that node distributions satisfying the hexagonal
lattice or the HCP which are locally isotropic (i.e. node distances do not
vary as a function of direction) are stable with respect to node-repel iterative
algorithms. Given an initial distribution, the application of one of such methods
will eventually converge to a lattice which satisfies these node arrangements,
provided that some containment strategy is implemented in order to prevent the
nodes from escaping the domain.

3.2.2 Requirement list

An assessment of the performance of a node generation algorithm can be achieved
by measuring how much it satisfies a certain number of requirements. In [93]
the following list of properties is reported, with the remark that an ideal node-
positioning algorithm should possess them all. Consequently, a qualitative
but comprehensive performance assessment might be done by giving a certain
algorithm a score in each one of the voices of the following list, loosely ordered
by decreasing importance:

1. Local regularity Indicates the quality of the resulting node distribution, we
suggest the use of the distance ratio RH to derive a quantitative indicator.

2. Minimal spacing guarantees This is again a property of the node distribu-
tion, in case an RBF-based interpolation procedure is attempted, nodes
that are too close might lead to ill-conditioning issues of the associated
matrix, as explained in the previous chapter. While the ill-conditioning
issues can be overcome adopting stable algorithms, it is nonetheless prefer-
able to ensure that the minimum distance between any two nodes is never
less than a certain threshold. The satisfaction of this requirement can be
easily checked.

3. Spatially variable densities The algorithm should be able to generate
distributions with spatially variable nodal spacing, which is usually defined
by means of a scalar field s(x) : Ω→ (0,∞) [93]. The ratio dH(xi)/s(xi)
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then indicates the deviation from the prescribed spacing function at each
node.

4. Computational efficiency and scalability In the ideal algorithm time com-
plexity should scale linearly with respect to the number of generated nodes.
The level of satisfaction for this requirement is checked by measuring how
execution time varies as the number of generated nodes is increased.

5. Compatibility with boundary discretization The generated discretization of
the whole domain should seamlessly join with the boundary discretization
[93]. This can be quantified by measuring RH for boundary nodes and
comparing it with that of interior nodes, we remark that the difference in
dimension must be taken into account: in case of 3D domain distributions
RH at the boundary must be calculated using the 2D formula, in case of
2D domain the 1D formula must be used, cfr. equation (3.1).

6. Compatibility with irregular domains This capability is tested by monitoring
how much quality indicators like RH or dH/s(x) degrade in such cases.

7. Dimension independence The perfect algorithm should be able to work in
2D and 3D providing equally good results.

8. Direction independence The orientation of the domain should not affect
the node generation.

9. No free parameters In order to maximize the possibility of automation the
algorithm should not require any tuning by the user and work out of the
box. In case this is not possible default values for free parameters should
work satisfactorily and if they are slightly changed this should not disrupt
the correct execution.

10. Simplicity While this is a vague statement, we might interpret it in the
sense that the algorithm should work correctly without requiring multiple
modifications and additions for the treatment of special geometrical features
or for addressing particular issues. In this sense simplicity is somewhat
related to Compatibility with irregular domains.

3.3 Proposed node generation algorithm

The node generation algorithm adopted for this work is almost identical to the
one proposed by Zamolo & Nobile in [116, 123, 118] based on the dithered Octree
node generation followed by a node-repel refinement process. Here follows an
introductory presentation of the method and a description of its performance
according to the list proposed by Slak & Kosek in [93].
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3.3.1 Underlying Principles

The underlying idea behind the design choices is that the node generation has to
be used for the subsequent solution of Navier-Stokes partial differential equations
over generic and arbitrarily complex 2D and 3D domains. In other words, the
most importance must be given to the requirement number 6. Furthermore,
because of the high cost of any CFD simulation, computational efficiency of the
node generation process at point 4 can be considered less impacting on the overall
cost, and thus much less important than points 5 and 6, since such requirements
are those enabling the application of the CFD solver to engineering problems in
the first place. Once such a rearrangement of priorities is done, it emerges that
node repel iterative processes, which are the ones allowing higher quality of the
node generation and greater geometrical flexibility should be considered as an
integral part of the node generation algorithm rather than an optional addition.

An important remark on iterative node refinement techniques regards the
effectiveness in the treatment of deviations from the prescribed spacing that are
present in the initial node distribution. When such deviations appear at a high
frequency, they are eliminated very efficiently and few iterations are required
with a properly tuned implementation, on the contrary, deviations with low
frequency are smoothed out very slowly. This fact was pointed out by Fornberg
in [34] and in the 1D case is illustrated in Figure 3.2, taken from [123]. In this
figure the target spacing function is constant and is satisfied when N nodes are
equally spaced on the closed interval [0, 1]: s(x) = 1/(N − 1). In the picture
above the initial node distribution is affected by a low frequency perturbation,
in the one at the bottom a low frequency error is present. The deviation σ[∆x]
from the target spacing s(x) is calculated as:

σ[∆x] =

√√√√ 1

N − 1

N−1∑
i=1

(
∆x

s(x)
− 1

)2

(3.3)

As can be easily seen, the number of iterations required in order to smooth lower
frequency errors is two to three order of magnitudes higher.

3.3.2 Quadtree\Octree

The fist stage of the node generation algorithm is constituted by the initial
node placement, for this purpose a dithered Octree (called Quadtree in the
2D case) algorithm was chosen. This algorithm was originally developed for
space partitioning [83, 84] and has already been applied to the node generation
problem in [106].

General Description

For the implementation details we direct the reader to [116, 123, 118]. The
operation of the 2D variant, i.e. quadtree, can be broadly understood by looking
at Figure 3.3: the domain enclosed within Γ is recursively split into smaller
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Figure 3.2: Evolution of the node-repel phase for 1D node distributions with an
initially high-frequency (top) and low-frequency (bottom) error in space in the
case of a constant spacing function and N = 80 nodes [123].

boxes until some nodes are placed in the smaller ones, called leaf boxes so that
a spacing function s(x) is locally approximated. In the case of Figure 3.3 the
spacing function is prescribed to be bigger at the center, hence smaller boxes
appear in that area producing a higher density of nodes. The algorithm proceeds
as follows, at first a root box B containing the whole domain boundary Γ is
constructed and then it is split into smaller ones, the split operation generate
K smaller boxes every time, with K = 4 for the Quadtree and K = 8 for the
Octree, as shown in Figure 3.4, thus creating a tree-like structure where the leaf
boxes are the lowest level. The number of nodes calculated for each leaf box
neb ∈ R is such that a prescribed spacing function s(x) is satisfied overall and is
given by equation (3.4), where Vbox is the volume (in 3D) or the surface (in 2D)
of the box [123].

neb =

∫
Vbox

2

ζs(x)d
dµ (3.4)

where ζ =
√
3 if d = 3, i.e. 3D case, ζ =

√
2 if d = 2 and ζ = 2 if d = 1. The

splitting continues until the condition on the maximum numbers of nodes is met:

neb ≤ nmax (3.5)

where nmax ∈ N is the maximum numbers of nodes allowed in a leaf box, in
Figure 3.3 nmax = 3. When condition (3.5) is satisfied, an integer number of
nodes ⌊nb⌉ ∈ N is placed inside the box. Finally, the difference Eb = ⌊nb⌉ − neb
is called the quantization error and is diffused towards the neighboring cells
according to the Floyd-Steinberg dithering algorithm [31].

The pseudocode for the Quadtree \ Octree algorithm is reported below in
the form of a recursive function named GenerateNodesDitheredTree. In
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Figure 3.4: Recursive Quadtree splitting, from [123]
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order to make it understandable we clarify some notation: Ms is the numerosity
variable and for any box b it is defined as follows:

Ms(b) =


nb if b is a leaf box
K∑

k=1

Ms(bk) if b has child boxes bk with k = 1, . . . ,K
(3.6)

We have that Ms(B) = N for the root box B, N being the total number of
nodes. The dithering correction function DitheringTree(N, b, ⌊nb⌉) diffuses
the nodal quantization error Eb by modifying the values of Ms for the unvisited
neighbouring boxes according to the Floyd-Steinberg algorithm [31]. In order
to ensure that the definition of Ms retains the summation property in equation
(3.6), any modification in Ms is then propagated by recursively updating child
boxes until the leaf level and parent boxes until the root level (this correction
feature is assumed to be contained within DitheringTree for simplicity).

Algorithm 1 Pseudocode for the Quadtree \ Octree recursive function

1: function GenerateNodesDitheredTree(N, b,Ms, n
e
b)

2: nb ←Ms(b)
3: if nb < neb + 0.5 then
4: InsertNodes(N, b, ⌊nb⌉)
5: Ms ← ⌊nb⌉ − neb
6: DitheringTree(N, b, ⌊nb⌉)
7: else
8: for all bk child box of b do
9: GenerateNodesDitheredTree(N, bk,Ms, n

e
b)

10: end for
11: end if
12: end function

where InsertNodes(N, b, ⌊nb⌉) appropriately insert ⌊nb⌉ in the box b when
b is a leaf box.

Performance Description

If we were to apply this algorithm on its own, its performance assessment
following the list proposed in [93] would be:

• we begin with the most important for our purposes: requirement number 6
is satisfied, not only it is possible to effectively generate nodes on complex
domains defined analytically by means of a level set function, but it is
also possible to obtain an initial node distribution for any 3D geometry
contained within an .stl surface of whatever complexity like the one in
Figure 3.5.

• requirements number 1, 3 and 2, which regard the quality of node distribu-
tion, are poorly fulfilled, this is particularly true for requirement number
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1, since the attained lattice is far from the ideal isotropic distribution
with RH = 1, as can be seen in Figure 3.6 and Figure 3.8. Fulfillment of
requirement number 3 is only partial, as can be seen in Figure 3.6, this is
because while low frequency error is at an acceptable level, high frequency
errors are present. This means that the spacing is correct at a larger scale
but considerable errors are present at the scale of the hexagonal lattice.
Furthermore, as the nodes are positioned in some pre-defined cartesian
arrangement within each leaf box the RH histogram shows some character-
istic clustering and empty areas are present in some areas of the domain,
see Figure 3.8. While this phenomenon can be mitigated by applying
random perturbations to the node locations within each leaf box, it will
never be eliminated completely.

• requirement number 4 is easily satisfied, indeed, computational complexity
of the case of dithered Quadtree/Octree algorithm is O(N logN), N being
the total number of nodes generated. If dithering is skipped a marginal
speed-up can be achieved and the extra computational time required is well
worth it since the dithering reduces the number of refinement iterations
required at a later stage.

• requirement number 5 is not satisfied at all since no boundary distribution
is provided by the algorithm, only nodes belonging to the interior are kept
and the ones falling outside of the domain are deleted.

• requirements number 7 and 8 are largely fulfilled since the same algorithm,
with some obvious modifications manageable within the code at no addi-
tional computational cost, can work in 2 and 3 dimensions and no difficulty
is introduced if the domain is rotated although the node placement may
vary slightly.

• requirement 9 is largely satisfied since the only free parameter is the number
of nodes in each leaf box nmax, however this has no major impact on the
correct execution and the value nmax = 2d − 1 can be used leading to
optimal results, with d = 2 in 2D and d = 3 in 3D. The same can be said
about requirement 10, while the implementation is somewhat delicate and
not straightfarward in the case of geometries defined by means of .stl
files, there is no need to implement modifications for dealing with special
cases.

3.3.3 Node Repel Refinement

Once an initial node distribution has been attained by means of the Quadtree\Octree
algorithm discussed above, a node-repel refinement is carried out in order to
improve the quality of the distribution and project nodes on the boundary. This
belongs to the class of iterative node generation algorithms, and more specifically
to the ones aimed at minimizing an energy function.
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Figure 3.5: example of a complex geometry discretized by means of the dithered
Octree algorithm followed by iterative node-repel refinement, the surface nodes
are visible on the .stl surface, from [73]

Figure 3.6: Histograms used for quality assessment of the node distribution
provided by the Quadtree algorithm on the 2D square geometry [0, 1]2 with
uniform spacing s(x) = 0.025. Probability of bin value vi is calculated as ci/N ,
where ci is the number of nodes in the bin i, N is total number of nodes, 30 bins
are used.
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General Description

The iterative process scan every node xi and for each one finds the m nearest
neighbors Xm

i = {x1, . . . ,xm}, some of them might belong to the boundary ∂Ω
and some to the interior Ω \ ∂Ω, then proceed to displace xi according to a

repulsive force. At iteration k the displacement of node x
(k)
i normalized by the

spacing function is given by:

x
(k+1)
i − x(k)

i

s(x
(k)
i )

= − 1

α

 ∑
xj∈Xm

i

F (r
(k)
ij )

(
x
(k)
i − x(k)

j

)
∥x(k)

i − x(k)
j ∥2

 (3.7)

where r
(k)
ij = ∥x(k)

i −x
(k)
j ∥2/s(x

(k)
i ) is the normalized radius and F (r) is a radial

basic function defined as:

F (r) =
1

(r2 + β)2
(3.8)

Since the distances between nodes rij of equation (3.7) are normalized with
respect to the prescribed spacing function s(x), any localized concentration of
nodes prescribed by s(x) will be preserved and satisfied throughout the node
repel refinement.

The parameters α in equation (3.7) and β in equation (3.8) are free param-
eters: 1/α acts as a gain factor which has to be tuned by trial and error in
order to maximize the convergence speed while avoiding instabilities [123] and
β prevents an infinite force when two nodes are superposed. The two are not
completely independent: large values of α make the refinement process slow but
robust and there is little to no need to define β, smaller values of α increase the
speed of convergence but reduce the stability and hence larger values of β are

required. We remark that since r
(k)
ij is normalized with respect to the spacing

functions the two parameters can be chosen once and for all, suggested values
are: α = 10 and β = 0.2 and can be safely tuned. Another free parameter is m,
i.e. the number of neighbors to be chosen in the nearest neighbors search, too
little numbers reduce the computational burden but slow down the convergence
while larger numbers make the algorithm inefficient. Safe choices are m = 20 for
the 2D case and m = 30 in the 3D case, this parameter can also be tuned safely
in the intervals m ∈ [15, 25] for 2D and m ∈ [20, 37] for 3D.

In order to prevent the nodes from leaving the domain under the action of
unbalanced repulsion forces a containment strategy is required. This is attained

by checking whether any new position x
(k+1)
i lies outside the domain and, if so,

by projecting it on the boundary ∂Ω. Once xi is projected on the boundary, it
will systematically be projected at every iteration without performing further
checks and will continue to exert repulsive forces on its neighbors. This ensures an
efficient containment as long as α is small enough, furthermore, mutual repulsion
between boundary nodes ensures a good cover of very complicated domains and
a perfect compatibility between boundary and interior discretization.
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Performance Description

At last, here is the evaluation of the resulting node generation process following
the list from [93]:

• The adoption of an iterative algorithm consistently ensures very high
quality in the node arrangement when this is evaluated using the proposed
indices RH and dH . Thus points 1, 2 and 3 are all fulfilled, as is also
evident from Figure 3.7 and Figure 3.8.

• The fulfillment of requirement number 4 is penalized by the iterative
nature of the node-repel refinement, which makes it less computation-
ally efficient. Nonetheless, this can be contextualized by considering the
following remarks:

– only high frequency deviations from the optimal HCP positioning
of the nodes are left after the execution of the Octree algorithm,
thus the number of iteration needed is minimized by the initial node
placement,

– the execution of the node-repel refinement gives a boundary distribu-
tion which also satisfies the hexagonal lattice as a byproduct, therefore
there is no need for a separate algorithm that initializes boundary
nodes,

– some node-repel refinement is also presumably needed in most practi-
cal cases, even when advancing front or sphere packing algorithms are
employed, indeed in [93] some iterations of it are given for granted
and excluded from the comparison between algorithms. Probably
other methods require a smaller number of such iterations but they
often need a separate generation of a boundary distribution,

– the amount of time required for the node generation process including
the node-repel refinement will ultimately be almost negligible relative
to that consumed by the solution of Navier-Stokes equations.

A measurement of times required for a complete node generations have
been included in the following subsection 3.3.3.

• Compatibility requirements 5 and 6 are fulfilled, as well as direction
independence 8.

• Dimension independence, i.e. requirement number 7 remains the same as
that of the Quadtree\Octree algorithm.

• Requirement 9 prescribes the limitation of the number of free parameters
needed for the correct execution of the algorithm. While the node-repel
refinement process requires 3 parameters, experiments done so far suggest
that fixed values can be used safely regardless of the shape of the domain
or the spacing function and that small changes in their values influence
the speed of convergence but not the final result in any appreciable way.
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• Finally, the proposed algorithm fulfill the requirement number 10 on
simplicity because it does not require any separate treatment of boundary
nodes and relies on the combination of well established techniques.

Any additional detail concerning implementation details or performance
measure can be found in [116, 123, 118].

Computational Times

In order to assess the computational performances of the proposed algorithm
here follows a brief prsentation of the actual computational times required for
an execution using the Julia programming language [6] and an optimized C
implementation written by Zamolo for [123]. This was also done in order to
highlight the suitability of the presented algorithm to be executed in parallel on
multiple threads.

The following results have been obtained in the case of a unit ball domain,
i.e., f(x) = 1− ∥x∥, and a spacing function s(x) ∝ (∥x∥2 + 1)−1. The chosen
number of neighboring nodes for the refinement phase is m = 13 in 2D and
m = 36 in 3D, whith 100 refinement iterations. Two examples of Julia-generated
node distributions in 2D and 3D are depicted in Figure 3.9.

An important remark is that the times in seconds (s) reported in Table 3.1
are referred to the sum of the times taken by the Quadtree\Octree algorithm
and those taken by the node-repel refinement phase. However, the initial node
placement achieved by means of the Quadtree\Octree algorithm is usually
completed in less than a second. More specifically, in the case of N = 106 and
single core, the time required is 0.33s for Quadtree and 1.45s for Octree.

Multi-core parallelism for the for loops over the N nodes in the refinement
phase is achieved by using Distributed and Threads modules with @threads

macro in Julia, while OpenMP API with #pragma omp directives have been
employed for the C code. Both codes have been run on a modern laptop
equipped with an Intel® i7 2.6GHz processor with 4 cores (8 threads).

A performance comparison between Julia and C implementations is also
reported in Table 3.1 in terms of computing times and speedup when using more
than 1 thread, for both 2D and 3D cases, for different number of nodes N and
for different number of threads. Single thread computing times for the Julia
implementation are 30%− 50% higher than those with C, while this performance
gap increases when using multiple threads, encountering the worst performance
for the Julia implementation for the 2D case with the smallest number of nodes
N = 50, 000 and with the maximum number of threads, i.e., 8. This fact can be
better appreciated by comparing the speedup values: the C (OpenMP) speedup
is always larger than the Julia one (Threads module), with larger differences for
small N and large number of threads. Furthermore, the C speedup is almost
independent upon the number of nodes N and upon the dimensionality d, while
the Julia speedup shows an asymptotical behaviour, tending to the C speedup
for large values of N .
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Figure 3.7: Histograms used for quality assessment of the node distribution
provided by the node-repel refinement algorithm on the 2D square geometry
[0, 1]2 with uniform spacing s(x) = 0.025. Upper row refers to the results
attained after 20 iterations, the bottom one after 200 iterations. Probability of
bin value vi is calculated as ci/N , where ci is the number of nodes in the bin i,
N is total number of nodes, 30 bins are used. The columns in the bottom row
appear narrower because the same number of bins is used to cluster a narrower
distribution.
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Figure 3.8: Distributions of nodes in the square domain [0, 1]2 with uniform
spacing s(x) = 0.025. On the left the nodes generated by the Quadtree algorithm,
on the right those obtained after 200 iterations of the node-repel refinement
algorithm.
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Figure 3.9: Examples of node distributions achieved after node-refinement:
N = 10, 000 nodes inside a 2D circle (a), N = 40, 000 nodes inside a 3D sphere
(b).

3.3.4 Conclusions

The proposed node generation algorithm was selected primarily for its geometrical
flexibility and robustness when adopted for very complex geometries. The penalty
in terms of computational efficiency due to the reliance on an iterative node-repel
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refinement technique is justified by the quality of the final result. Ultimately,
overall computational times of few seconds for a multithreaded execution can be
considered more than satisfactory for practical applications where the solution
of simple natural convection problems can take multiple minutes.

The implementation written in the Julia has been adopted as the starting
point for the future development of 3D solvers based on the RBF-FD and
RBF-HFD methods.

Table 3.1: computing times (s) and speedup, Julia code vs. (C code).

N Number of threads

1 2 4 8

2D

50,000 3.07 (2.45) 1.95 (1.25) 1.41 (0.81) 1.12 (0.49)

1.6 (2.0) 2.2 (3.0) 2.7 (5.0)

100,000 6.17 (4.63) 3.58 (2.53) 2.60 (1.61) 1.85 (1.00)

1.7 (1.8) 2.4 (2.9) 3.3 (4.6)

300,000 19.1 (14.2) 10.9 (7.70) 6.84 (4.92) 5.02 (2.89)

1.8 (1.8) 2.8 (2.9) 3.8 (4.9)

3D

50,000 12.0 (7.90) 6.62 (4.26) 4.26 (2.78) 2.97 (1.62)

1.8 (1.9) 2.8 (3.0) 4.0 (4.9)

100,000 21.1 (16.0) 11.6 (8.37) 7.23 (5.54) 5.05 (3.18)

1.8 (1.9) 2.9 (2.8) 4.2 (5.0)



Chapter 4

RBF-FD method

As anticipated, the theory of interpolation of scattered data can be applied to
the solution of partial differential equations. In this chapter the Radial Basis
Function-Finite Difference method is presented. In the following discussion
it is supposed that a point cloud consisting of N collocation nodes has been
generated in the domain of calculus Ω and on its boundary ∂Ω using a suitable
node generation technique.

4.1 Global RBF-based methods

The first to propose the use of analytic derivatives of radial basis functions was
Kansa in [54, 55], the resulting method became known as Kansa’s or unsymmetric
formulation.

We recall that the theory of scattered data interpolation allows to approximate
a scalar field u(x), which is known at a set of points X = {x1, . . . ,xN} ⊂ Ω,
with a function uh(x) defined as in equation (2.16), that is repeated here for
convenience:

uh(x) =

N∑
j=1

αjΦ(x− xj) +

M∑
k=1

βkpk(x) (4.1)

We also recall that the vector of coefficients α = {α1, . . . , αN} and β =
{β1, . . . , βM} are found by solving equation (2.13): B P

P T 0


︸ ︷︷ ︸

M

α
β

 =

u
0

 (4.2)

Suppose now that the following linear PDE is given:{
Lu = f in Ω

Bu = g on ∂Ω
(4.3)

55
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where L and B are linear operators, L is the partial differential operator acting
on function u in the interior of Ω, whereas B is the operator enforcing some
boundary condition (BC) and does not necessarily involve partial derivatives. f
and g are known functions.

The most commonly encountered BC in numerical simulations involving fluid
motions or heat exchange are:

Dirichlet BC: u = g (4.4)

Neumann BC:
∂u

∂n
= g (4.5)

Robin BC: au+ b
∂u

∂n
= g (4.6)

where ∂u/∂n is the normal derivative of u and a and b in (4.6) are known
functions. The Robin BC at a point x becomes Dirichlet if b(x) = 0 and
Neumann if a(x) = 0.

From the theory of interpolation we know that uh given by equation (2.16)
is the best approximation of u in the native space H associated with Φ which
satisfies interpolation conditions [27]. Since Lu and Bu are the known functions
at the set of collocation nodes X , it is natural to use the theory of interpolation
on Lu(x) itself. The idea behind Kansa’s formulation is therefore to look for
a function uh(x) such that Luh(x) ≈ Lu(x) in Ω and to also require that:
uh(x) = u(x) if x is a collocation node inside Ω and Buh(x) = Bu(x) if x is a
node generated on ∂Ω.

When solving an interpolation problem there is usually no reason for dealing
with BC, but they are unavoidable in boundary value problems and sometimes
more complicated than the Robin BC of equation (4.6). In order to enforce them
it is recommended to split the set of collocation nodes X into the set XI of the
NI nodes lying inside Ω and the set XB of the NB nodes lying on the boundary.
From now on we will number the nodes so that the first NI are internal and the
last NB lie on the boundary, with N = NI +NB

If we apply the linear operator L to the definition of uh given in equation
(2.16) and evaluate the resulting Luh at a generic point x, we have that by
linearity L distributes over the basis functions (Radial and polynomial) and
gives:

Luh(x) =
N∑
j=1

αjLΦ(x− xj) +

M∑
k=1

βkLpk(x)

=
(
α β

)LΦ(x)

Lp(x)

 (4.7)

where LΦ(x) = {LΦ(x−x1), . . . ,LΦ(x−xN )} and Lp = {Lp1(x), . . . ,LpM (x)},
and the same hold for linear operator B associated with boundary conditions.

We remark that LΦ(·,xi) still lies in the native space H of Φ for all linear
differential operators and infinitely differentiable Radial Basis functions of Table
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2.1. Therefore Luh ∈ H is determined as soon as we calculate the coefficient
vectors α = {α1, . . . , αN} and β = {β1, . . . , βM}.

Conditions (4.3) could be readily enforced by collocation, however, the real
strength in the unsymmetric formulation lies in the possibility of attaining a
Finite Difference-like discretization of L. In order to do so, α and β should be
found by enforcing the following collocation conditions on uh:

uh(xi) = u(xi) if xi ∈ XI

Buh(xi) = g(xi) if xi ∈ XB

(4.8)

Which take the following matrix form:
ΦI PI

BΦB BPB
P T 0


︸ ︷︷ ︸

MBC

α
β

 =


uI

g

0

 (4.9)

where uI = {u(x1), . . . , u(xNI
)}, g = {g(xNI+1

), . . . , g(xN )} and new terms in
matrix MBC are defined as follows:

ΦI =


Φ(x1,x1) . . . Φ(x1,xN )

...
. . .

...

Φ(xNI
,x1) . . . Φ(xNI

,xN )

 ∈ RNI ,N

PI =


p1(x1) . . . pM (x1)

...
. . .

...

p1(xNI
) . . . pM (xNI

)

 ∈ RNI ,M

BΦB =


BΦ(xNI+1,x1) . . . BΦ(xNI+1,xN )

...
. . .

...

BΦ(xN ,x1) . . . BΦ(xN ,xN )

 ∈ RNB ,N

BPB =


Bp1(xNI+1) . . . BpM (xNI+1)

...
. . .

...

Bp1(xN ) . . . BpM (xN )

 ∈ RNB ,M

(4.10)

When Dirichlet BC are enforced, operator B is simply the identity operator and
the linear system (4.9) coincides with that associated with the interpolation
problem of equation (2.13). In that case the problem is ensured to be uniquely
solvable regardless of the shape of domain Ω, this however does not hold in case
of Neumann BC, as will be discussed in the following chapter.
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It is now possible to substitute α and β into equation (4.7) and thus obtain:

Luh(x) =
(
uI g 0

)
MBC

−T

LΦ(x)

Lp(x)

 (4.11)

It follows that the discrete form of the linear partial differential operator L is
given by the following Finite Difference formulation:

Luh(x) = cI(x)TuI + cB(x)Tg

=

NI∑
j=1

cj(x)u(xj) +

N∑
k=NI+1

ck(x)g(xk)
(4.12)

where coefficient vectors cI(x) and cB(x) are found by solving the dual problem:

MBC
T


cI(x)

cB(x)

cp(x)

 =

LΦ(x)

Lp(x)

 (4.13)

Proceeding with the solution of boundary value problem (4.3), the unknown
values associated with the NI interior points XI can now be found by enforcing
the following NI collocation conditions, i.e. requiring uh to approximate the
exact solution at each point xi ∈ XI :

Luh(xi) = Lu(xi) = f(xi) if xi ∈ XI (4.14)

Which takes the matrix form:

CI


uh(x1)

...

uh(xNI
)

 =


f(x1)

...

f(xNI
)

−CB

g(xNI+1

)
...

g(xN )

 (4.15)

where matrices CI and CB are formed by row vectors cI(xi)
T and cB(xi)

T

respectively, found by solving equation (4.13) NI times:

CI =


c1(x1) . . . cNI

(x1)
...

. . .
...

c1(xNI
) . . . cNI

(xNI
)

 ∈ RNI ,NI

CB =


cNI+1(x1) . . . cN (x1)

...
. . .

...

cNI+1(xNI
) . . . cN (xNI

)

 ∈ RNI ,NB

(4.16)
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Figure 4.1: Example of a 2D stencil

Equation (4.15) can finally be solved using an iterative program to find the
unknown values {uh(x1), . . . , u

h(xNI
)}.

When the number of nodes N is very high, however, this method becomes
highly inefficient because the solution of system (4.13) has to be repeated for
each node xi ∈ XI , every time with a cost of at least O(N3). Furthermore, the
resulting matrix CI is full even if derivatives are local properties of functions.
Computational efficiency issues make global approaches like the one discussed
so far extremely impractical and are the reason why local methods, like the
RBF-FD were introduced [35]. Computational efficiency could be improved if
conditions (4.3) were enforced directly using collocation techniques, however in
that case there is no warranty on the solvability of the resulting linear system.

4.2 RBF-FD formulation

The first to introduce the Radial Basis Function-Finite Difference (RBF-FD)
method seems to have been Tolstykh in [100], and the method was also treated
in early works [101, 91, 11, 111]. In recent years the RBF-FD approach is being
developed and applied with success [9, 10, 57, 58].

The main difference from the global formulation lies in the introduction of
a stencil. Given a node xi ∈ XI , the stencil associated to xi is the set Xi ⊆ X
formed by its neighbors, which may lie in the interior Ω or on the boundary ∂Ω
of the domain. An example of a stencil in 2D is depicted in Figure 4.1, where
the central node is marked with a red cross while its neighbors included in the
stencil are marked with a red circle. The stencil nodes which belong to ∂Ω are
associated to boundary normals n depicted as red arrows.

The solution of a boundary value problem by means of the RBF-FD method
proceeds as explained for global RBF-based methods in the previous section,
with the important difference that the interpolation scheme is now local, i.e.
uh(x) is expanded locally using a basis that changes depending on the position
x. Given a point xi, a stencil of m nodes Xi = {x1, . . . ,xm} around xi must be
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found. Stencil nodes Xi are split in two groups: the first mI lie in the interior
and form the set Xi,I = {x1, . . . ,xmI

}, whereas the following mB lie on the
boundary and form the set Xi,B = {xmI+1, . . . ,xm}, with m = mI +mB . u

h(x)
can then be expressed as:

uh(xi) =

m∑
j=1

αjΦ(xi − xj) +

M∑
k=1

βkpk(xi) (4.17)

With this initial remark, Kansa’s formulation can be adopted almost un-
changed, with the difference that equation (4.7) now holds locally at each interior
point xi ∈ XI :

Luh(xi) =

m∑
j=1

αjLΦ(xi − xj) +

M∑
k=1

βkLpk(xi)

=
(
α β

)LΦ(xi,Xi,I)

Lp(xi)

 (4.18)

As a consequence, different vector of coefficients α = {α1, . . . , αm} ∈ Rm and
β = {β1, . . . , βM} ∈ RM are now to be found for each xi. This also means
that internal and boundary conditions (4.8) are enforced locally. Equation
(4.9) can still be written with the same notation, paying attention that now
uI is the unknown field at the stencil nodes uI = {u(x1), . . . , u(xmI

)} and
g is the boundary condition enforced on neighbors belonging to Xi,B: g =
{g(xmI+1), . . . , g(xm)}. Equation (4.12) becomes:

Luh(xi) = cI(xi)
TuI + cB(xi)

Tg

=

mI∑
j=1

cj(xi)u(xj) +

m∑
k=mI+1

ck(xi)g(xk)
(4.19)

with coefficient vectors cI ∈ RmI and cB ∈ RmB defined as the solution of the
local problem:

MBC
T


cI(xi)

cB(xi)

cp(xi)

 =

LΦ(xi,Xi,I)

Lp(xi)

 (4.20)

where the size of matrix MBC ∈ R(m+M),(m+M) is now determined by the size
of the local stencil.

As a consequence of the local formulation, the resulting coefficient matri-
ces CI ∈ RNI ,NI and CB ∈ RNI ,NB are now sparse. The improvement in
computational efficiency is therefore given by two factors:

• linear systems (4.20) must still be solved at any point xi ∈ XI but are now
associated to matrices MBC of a much smaller and fixed size
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• matrix CI ∈ RNI ,NI is sparse with a number of nonzero entries in each
row i equal to the number of internal nodes belonging to the stencil Xi.

An important remark on practical implementations of the RBF-FD method
concerns the nearest neighbors research algorithm. The brute force approach
requires finding all pairwise distances between nodes and then sorting them, such
algorithm with a cost of O(N2) operations would almost defeat the advantage
of a local approach, more efficient algorithms, like a k-d tree require O(N logN)
operations for rearranging the nodes and other O(N logN) operations for finding
some fixed number of nearest neighbors to all nodes [35]. In case a node-repel
refinement algorithm is used for generating the nodes, the same nearest-neighbors
research method can also be employed for the implementation of the RBF-FD
method. Another important aspect in the solution of system (4.20), or system
(4.13) in case of a global approach, is the conditioning of matrixMBC enforcing
boundary conditions. MatrixMBC is closely related to the original interpolation
matrix M in (2.13) and the two are identical in absence of boundary nodes
or when all boundary nodes have Dirichlet conditions. In the case of infinitely
smooth RBFs, when the node density is increased or the scaling factor ε in Φ is
changed, the same considerations on the stability of the interpolation problem
continue to hold. For instance, if equation (4.20) is solved explicitly, stability
issues arise unless the value of ε is changed accordingly because we still fall in
the case of non stationary interpolation. The remedy is to adopt stationary
interpolation also for the RBF-FD method as explained in equation (2.41). In
practice, since hX ,Ω is not available, this is achieved by defining ε to be a function
of the value s(xi) taken by a prescribed spacing function at the central node of
stencil Xi. More specifically, every time a stencil Xi is built around point xi, the
following value ε(xi) is used in all terms of blocks ΦI and BΦB within matrix
MBC :

ε(xi) =
ε0

s(xi)
(4.21)

where ε0 is a fixed constant. As pointed out for the case of stationary interpo-
lation, the approximation order of the resulting scheme is determined by the
degree of the polynomial augmentation [53]: a polynomial base of degree P will
allow an approximation order O(sP ) at best.

Finally, when polynomial augmentation in combination with stationary inter-
polation is adopted, the number of nodes included in the stencil must guarantee
that the stencil is q-unisolvent, cfr. definition at page 23. Such a condition can
be easily met by setting the number of nodes included in the stencil m to be at
least twice the number of polynomial terms M [3]:

m ≥ 2M = 2

(
P + d

P

)
(4.22)

Further investigation on the influence of the stencil size has been recently
discussed in [56], where changing the stencil size was found to induce oscillations
in both the solution and discretization errors for the Poisson equation. This
phenomenon is currently under research and can be considered a promising
research topic.
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4.3 RBF-FD errors

In this section some results from [73] are reported, showing the convergence
curves with the discretization error of the Laplacian operator ∆ = ∇2 and the
solution of the Poisson equation (4.23) in the case of two different 3D geometries.{

−∆u(x) = f(x) in Ω

au(x) + b ∂u
∂n (x) = g(x) on ∂Ω

(4.23)

The Multiquadric Radial Basis Function is used (cfr. Table 2.1):

Φ(x,xi) :=
√
1 + ε2∥x− xi∥22 (4.24)

Solution Error

The accuracy in the solution of the Poisson equation (4.23) is assessed by
comparing it with the exact solution:

u(x) = exp(x1 + x2 + x3) (4.25)

with x = {x1, x2, x3} ∈ R3.
Values (f(x1), . . . , f(xNI

)) and (g(xNI+1), . . . , g(xN )) are computed analytically
from u(x) and substituted in equation (4.15).

Discretization Error

The discretization error on the Laplacian operator, instead, is computed by
comparing the value ∆u(xi) obtained analytically from (4.25) at xi ∈ XI with
∆hu(xi) defined as:

∆hu(xi) = cI(xi)
TuI + cB(xi)

Tg (4.26)

where uI is the exact solution at the inner nodes, g is the boundary condition
at boundary nodes and vectors cI(xi) and cB(xi) satisfy:

MBC
T


cI(xi)

cB(xi)

cp(xi)

 =

∆Φ(xi,Xi,I)

∆p(xi)

 (4.27)

4.3.1 3D Sphere

The domain of calculus Ω is delimited by a spherical boundary ∂Ω depicted
in figure 4.2 with collocation nodes. This geometry is characterized by the
absence of any edge which may induce some instability when Robin or Neumann
boundary conditions are enforced.
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(a) Boundary nodes (b) Inner nodes

Figure 4.2: Example of node distribution with N ≈ 50k nodes in the sphere:
boundary nodes are represented in red, inner nodes in black.

In Figure 4.3 the convergence curves for the solution error (Figures 4.3a,4.3c)
and discretization error (Figures 4.3b,4.3d) are shown with polynomial augmen-
tation of degrees up to P = 6. The number of nodes generated ranges from
N = 5k to N = 500k, boundary conditions considered are Dirichlet (a = 1, b = 0
in Equation (4.23)) and Robin (a = 1, b = 1 in Equation (4.23)). The spac-
ing function is set to be uniform s(x) = h with h ∝ N−1/3, as can be seen
the discretization errors depicted in Figures 4.3b and 4.3d follow the expected
pattern:

∥∆hu−∆u∥
∥∆u∥

∝ hP (4.28)

When considering solution errors, the expected pattern is satisfied by polynomial
of even degrees when solving Poisson equation, which is a second order PDE. In
the case of P = 6 and N > 200k the normalized error becomes close to machine
epsilon and further increase do not translate into better performance and the
graph displays some oscillations. FEM convergence curves are also displayed in
Figure 4.3a,c for comparison; it can be observed that the FEM curve is very
similar to the ones for the cases P = 2, 3 for Dirichlet b.c., while for Robin b.c.
the FEM curve lies between the cases P = 3 and P = 4, this indicates some loss
of accuracy for the RBF-FD method.

Finally, the estimation of the condition number κ(CI) of the final sparse
matrix CI is shown in Figure 4.4. κ(CI) being defined as κ(C) = ∥C∥2∥C−1∥2.
It is possible to see how in this case the condition nomber grows with order
O(N0.7) in both cases regardless of P , thus very much comparable with the
order O(N2/3) of classic finite difference schemes for the 3D Laplacian operator
on uniform grids [48]. The condition number for Robin BC reported in Figure
4.4b is approximately 7 times larger than that for Dirichlet BC of Figure 4.4a,
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(a) Solution error, Dirichlet BC (b) Discretization error, Dirichlet BC

(c) Solution error, Robin BC (d) Discretization error, Robin BC

Figure 4.3: Convergence curves for solution and Laplace operator (or Discretiza-
tion Error) for Dirichlet and Robin b.c., Ω: Sphere.
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(a) Dirichlet BC (b) Robin BC

Figure 4.4: Condition number of the sparse matrix CI .

which is again comparable to the value 5.78 of classic finite difference schemes
with the same BC [73].

4.3.2 3D Engine Crankcase .stl

In this case the domain of calculus is delimited by a 3D model of the crankcase of
a V8 ICE (Internal Combustion Engine) defined as a set of triangles in the .stl
format. This domain is depicted in Figure 4.5. A variety of features is present
on the .stl surface and these can trigger some ill-conditioning in presence of
boundary conditions involving normal derivatives, leading to a degradation of
accuracy.

In Figure 4.6 convergence curves for the solution and discretization errors
are displayed. Polynomial degrees are P = 2, 3, 4, and total number of nodes
ranges from N = 5k to N = 750k nodes. In the case of Dirichlet BC the results
in Figure 4.6a and 4.6b are somewhat similar to those attained on the sphere,
some oscillations arise in the case of polynomial of degree P = 4. In the case
of Robin BC, instead, ill-conditioning issues affecting matrix MBC disrupt the
stability of the overall solution process. In order to obtain the data displayed in
Figures 4.6c and 4.6d, some modifications to the usual nearest neighbor research
were applied. Every time a boundary node xj had to be included in a given
stencil centered at xi, the following requirements had to be satisfied [73]:

• Angle requirement:
xj − xi

∥xj − xi∥2
· nj > 0.6 (4.29)

where nj is the normal direction at point xj . Equation (4.29) states that
a boundary node xb can be included in the stencil only if the angle γ
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(a) Enlarged view of a particular (b) Enlarged view of a particular

(c) Boundary nodes (d) Enlarged view of a particular

Figure 4.5: Enlarged views of some details of the .stl crankcase model and an
example of node distribution with N ≈ 75k nodes.
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between the outer normal nxj associated to the boundary node xj and
the line connecting xj to xi satisfies γ < arccos(0.6) ≈ 53◦.

• Distance requirement: ∥xj − xi∥2 < 2s, i.e., only boundary nodes closer
to the center xi than twice the spacing function can be included in the
stencil.

• Number requirement: no more than 10 boundary nodes can be included in
the stencil. If more then 10 are found, only the 10 closest are included.

Such requirements were motivated by the assumption that instability issues
related to Robin or Neumann boundary conditions are only triggered by the
normal directions associated to boundary nodes. The insurgence of such in-
stabilities is a completely different phenomenon than the Runge phenomenon,
the instability due to flat RBFs or singularity of the polynomial augmentation
related to unisolvency issues. Even when the solution process was stabilized
and ill-conditioning issues affecting matrix MBC were solved achieving high
orders of convergence, evident oscillations appeared in the convergence curves, a
symptom that the underlying issue was solved only partially.

The awareness of the problem of ill-conditioning due to the presence of
Neumann BC motivated the deeper investigation which is presented in chapter
5.
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(a) Solution error, Dirichlet BC (b) Discretization error, Dirichlet BC

(c) Solution error, Robin BC (d) Discretization error, Robin BC

Figure 4.6: Convergence curves for solution and Laplace operator (or discretiza-
tion error) for Dirichlet and Robin BC, Ω: Engine.



Chapter 5

Neumann Stability

5.1 Introduction

In the chapter 4 it was conjectured that the RBF-FD method, based on an
unsymmetric formulation, is affected by ill-conditioning of the local interpolation
matrix in presence of Neumann or Robin boundary conditions. Ill-conditioning
issues of this kind translate into instability and sometimes the whole solution
process is disrupted. Because Dirichlet BC do not induce any such problem,
this chapter will focus on the insurgence of such instabilities linked to Neumann
BC only and some improvements for the traditional unsymmetric interpolation
scheme will also be proposed.

In order not to defeat the major advantages offered by meshless methods,
the proposed solutions must work with any possible shape of the boundary ∂Ω.
Furthermore, any modification of the node generation algorithm should not
compromise the fulfillment of requirements listed in subsection 3.2.2 at page
41, for example by forcing the user to input specific parameters based on the
specific shape of ∂Ω. As a consequence, it is not possible to make any a priory
assumption on the direction of the boundary normals.

Neumann BC can be enforced both at the stencil level, i.e. when the local
interpolants exactly satisfy the BC at the boundary nodes [70, 72, 71, 73, 119],
or at the assembly level, i.e. when the equations for the BCs at the boundary
nodes appear explicitly in the final sparse matrix [92, 53]. This kind of boundary
condition is essential in most boundary value problems of engineering interest and
related instability issues constitute a major obstacle for any practical application
of the unsymmetric RBF-FD method. Some effective solutions for these problems
have been suggested, however no one has been universally adopted yet.

While the stability problem due to the presence of Neumann BCs is unrelated
to that due to the flat limit with non stationary interpolation (cfr. section 2.9
page 33), both are caused by ill-conditioning of the interpolation matrix and
therefore may be solved at once. This might be the case when the stabilization
is achieved by means of least squares procedures like the ones presented in

69
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[64, 103, 102], where the interpolation matrix is not solved directly. The one in
[102] seems especially capable of providing both stable and accurate results by
using two different node sets.

An approach to the stabilization which is instead specific for the management
of boundary conditions is the one based on the so called ghost nodes. In [32]
one layer of ghost nodes is placed outside the domain at a distance roughly
continuing the pattern of the interior nodes in order to address the issues related
to one-sided boundary stencils. In [63] the authors propose instead the use of
fictitious nodes that extend far outside the domain, resembling the approach
from the method of fundamental solutions [26]. In another implementation [30]
the authors add a set of nodes, which can lie inside or outside of the domain,
adjacent to the boundary and, correspondingly, add an additional set of equations
obtained via collocation of the PDE on the boundary. The strategy of ghost
nodes is successfully employed also in [24], for the stable RBF-FD solution of
elliptic PDEs problems on complex 3D geometries and even in higher dimension
in [53].

Alternatively to the ghost nodes, in [89] additional nodes are placed close
to the boundary, but within the domain, in order to reduce the error in those
areas in the context of the overlapped RBF-FD method. The overlapped variant
differs from the traditional RBF-FD in the selection of the interpolation stencils
and can be intended as a generalization of the latter.

Yet another approach specific for boundary stabilization is adopted in [13, 70],
where every time a Neumann boundary node has to be included in the stencil,
its normal is checked according to different geometric criteria, similar to that
adopted in [73] and explained in the previous chapter.

The main result contained in this chapter is the observation that, given a
certain stencil, it is always possible to find normal directions that make the local
discretization matrix MBC singular. Such singular directions can simply be
calculated as the ones that send the determinant of the said matrix to zero.

The most straightforward solution and the first to be presented, is the
implementation of a control which discards from a given stencil those nodes
associated with dangerous normal directions. This approach, somewhat similar
to the one adopted in [70], is more expensive but totally robust and it is tested
with good results. At the best of the authors’ knowledge it represents the
only possible solution that carries on the traditional RBF-FD method totally
unchanged and does not require any intervention on the node generation.

Alternatively, it is also possible to properly move the nodes on the boundary in
order to rule out the possibility of singular interpolation matrices. This operation
appears to be the most computationally efficient and the simplest to implement
on smooth and regular domains but requires non-trivial geometrical operations
on generic domains. A robust implementation of this approach, capable of
working on arbitrarily complex domains, can theoretically be developed at the
price of introducing more free parameters within the node-repel algorithm.

We remark that the proposed strategies for the prevention of ill-conditioning
problems due to Neumann BCs were developed specifically for the unsymmetric
RBF-FD. Other RBF-based schemes which are inherently stable regardless of
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normal directions, like the symmetric RBF-HFD method discussed in chapter 7,
do not require the adoption of any of those stabilization strategies.

5.2 RBF-FD with Neumann BC

This section mainly serves as a clarification for the notation that will be adopted
in the following pages, where the interest will be solely focused on stencils with
Neumann boundary nodes. When there is no risk of confusion, the normal
derivative will be indicated as:

∂F (xi) :=
∂F

∂n
(xi) (5.1)

where n is the unit normal at xi.

Suppose therefore that we are interested in solving the following boundary
value problem: {

Lu = f in Ω

∂u = g on ∂Ω
(5.2)

As done above, we assume that the nodes are listed in the following order
within the interpolation stencil: the first mI are internal nodes, the following mB

are boundary nodes and mI +mB = m holds. Index mI +1, i.e. that associated
to the first boundary node, will be written as mI +1 = mJ , the subset of internal
nodes within a stencil will be written as: XI = {x1, . . . ,xmI

}, whereas that of
boundary nodes will be: XI = {xmJ

, . . . ,xm}. In the unsymmetric formulation,
boundary conditions are enforced at a local level by requiring that uh(x) satisfies
conditions in equation (4.8), which in the present case becomes:

uh(xi) = u(xi) if xi ∈ XI

∂uh(xi) = g(xi) if xi ∈ XB

(5.3)

With the following matrix form where blocks ΦI and BΦB of equation (4.9)
have been united as well as PI and BPB:

ΦN PN

P T 0


︸ ︷︷ ︸

M

α
β

 =


uI

g

0

 (5.4)

Matrix M in equation (5.4) corresponds to matrix MBC of the previous
chapter. The subscript BC was dropped throughout this chapter since there is no
confusion: Neumann BC, being the main topic, are always present. Furthermore,
M will sometimes be called interpolation matrix since it is obtained by enforcing
conditions (5.3) within the standard framework of scattered data interpolation
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theory:

ΦN =



Φ(x1,x1) . . . Φ(x1,xm)
...

. . .
...

Φ(xmI
,x1) . . . Φ(xmI

,xm)

∂Φ(xmJ
,x1) . . . ∂Φ(xmJ

,xm)
...

. . .
...

∂Φ(xm,x1) . . . ∂Φ(xm,xm)


(5.5)

PN =



p1(x1) . . . pM (x1)
...

. . .
...

p1(xmI
. . . pM (xmI

)

∂p1(xmJ
) . . . ∂pM (xmJ

)
...

. . .
...

∂p1(xm . . . ∂pM (xm)


(5.6)

P T =


p1(x1) . . . p1(xm)

...
. . .

...

pM (x1) . . . pM (xm)

 (5.7)

The normal derivatives of RBFs in equation (5.5) are calculated by implying
that Φ(·,x) is in a function with respect to the first argument:

∂Φ(xk,xi) =
∂Φ

∂n
(xk,xk) = φ′(ri,k) ei,k · n (5.8)

where φ′(ri,k) is the derivative of the associated basic function, ri,k = ∥xk−xi∥2,
ei,k = (xk − xi)/ri,k is the unit direction from node xi towards node xk and n
is always the normal at point xk taken as first argument.

We also require the basic functions to satisfy the following condition, which is
necessary for the associated RBF Φ(·,xi) to be differentiable also at the nodes:

φ′(0) = 0 (5.9)

Equation (5.9) implies that the diagonal entries ∂Φ(xi,xi) of the last mB rows
of ΦN are all 0.

As for the rest, the solution procedure remains unchanged, as explained in
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section 4.2, leading to the final sparse system of equation (4.15):

CI


uh(x1)

...

uh(xNI
)

 =


f(x1)

...

f(xNI
)

−CB

g(xNI+1

)
...

g(xN )

 (5.10)

which can also be written more compactly as:

CI u
h = f −CB g (5.11)

Equation (5.11), which is the discrete version of the boundary value problem (5.2)
can now be solved for uh ∈ RNI . Furthermore, because of the lack of connectivity
information, local interpolation systems (4.27) can be solved independently from
one another.

We will show that the onset of instabilities at the boundary is due to ill-
conditioning of the interpolation matrix M , and that such ill-conditioning can
also be induced by the direction of the boundary normals appearing in the
corresponding rows in blocks (5.5) and (5.6). It is important to remark that high
condition numbers for matrix M do not necessarily imply any loss of accuracy
in the method. Indeed, in presence of a regular domain, like the spherical one
adopted in section 4.3.1, ill-conditioning of matrixM , if present, was not serious
enough to impact the final solution calculated in double precision arithmetic.
The present study was indeed motivated by those cases where, in proximity of
some strangely shaped domain, matrix M becomes so badly conditioned that
final accuracy is compromised.

5.2.1 Cardinal functions with Neumann BC

As pointed out in section 2.5 at page 24, an expression with cardinal functions
of uh is obtained by considering the identity operator L = I in the left side of
equation (4.13):

Iuh(xi) = uh(x) =

mI∑
j=1

u(xj)ψj(xi) +

m∑
k=mJ

∂u(xk)ψk(xi) (5.12)

where the cardinal functions {ψ1(xi), . . . , ψm(xi)} are given by the first m
elements {c1(xi), . . . , cm(xi)} in equation (4.27) in the case L = I, i.e., when
the right side of the same equation is the column vector of the bare basis
functions:

MT

ψ(xi)

0

 =

Φ(xi,Xi,I)

p(xi)

 (5.13)

with ψ(xi) = {ψ1(xi), . . . , ψm(xi)}, Φ(xi,Xi,I) = {Φ(xi−x1), . . . ,Φ(xi−xm)}
and p(xi) = {p1(xi), . . . , pM (xi)}. These cardinal functions extend the definition
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given in [23, 40] to the case with Neumann BCs. The cardinal functions associated
to the internal nodes, i.e., {ψ1(xi), . . . , ψmI

(xi)}, satisfy:{
ψj(xi) = δij if xi ∈ XI

∂ψj(xi) = 0 otherwise
(5.14)

while the ones associated to the boundary nodes, i.e., {ψmJ
(xi), . . . , ψm(xi)},

satisfy: {
ψk(xi) = 0 if xi ∈ XI

∂ψk(xi) = δkj otherwise
(5.15)

where δij is the Kronecker delta.
In order to separate the contributions of internal and boundary nodes, we

define two different Lebesgue functions:

λI(xi) =

mI∑
j=1

|ψj(xi)|

λB(xi) =

m∑
k=mJ

|ψk(xi)|
(5.16)

where λI is associated to the internal nodes and λB to the boundary nodes.
When the interpolation stencil is restricted to lie in a compact set K ⊂ Rd,

then the Lebesgue constant is defined as the maximum of the Lebesgue function
on K [23, 40]. In our case we will consider K to be the minimal convex set
containing all of the stencil nodes (including those lying on the boundary). In
order to keep the distinction between boundary nodes and inner nodes, we define
separately the following two Lebesgue constants, ΛI for the interior and ΛB for
the boundary:

ΛI = max
x∈K

λI(x)

ΛB = max
x∈K

λB(x)
(5.17)

5.3 Neumann Ill-Conditioning

5.3.1 Preliminary considerations

In order to study the causal relationship between Neumann BCs and ill-conditioning
issues affecting matrix M , it is necessary to reproduce them in an environment
isolated from other factors influencing the solvability of system (4.27). For this
purpose the reference stencil of Figure 5.1 was introduced, it represents the
typical situation encountered when system (4.27) is solved for a stencil including
several boundary nodes. In the reference stencil of Figure 5.1 nodes are arranged
in a perfectly hexagonal layout and normal vectors are aligned with the segments
connecting each boundary node with point G. In this way the direction of the
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G

®

Figure 5.1: reference stencil with mI = 15 internal nodes (filled dots) and
mB = 7 boundary nodes (empty circles).

normals can be controlled by moving the point G along the axis of symmetry
and an angle α ∈ [−π/2 , π/2] remains defined by the normal located further to
the right. It also follows that α > 0 if G is above the line of the boundary nodes
and α < 0 otherwise. The whole analysis is performed for the 2D case but the
results continue to hold also in the 3D case.

Figure 5.2 depicts the condition number κ(M) and the constant ΛI , defined
in equation (5.17), against the angle α in the case of the reference stencil of
Figure 5.1. Whenever one of these quantities grows unbounded, we have a very
ill-conditioned system in equation (4.27), which translates into large errors and
most likely stability issues. All plots of Figures 5.2 and 5.3 are attained using
MQ RBF (cfr. 2.1) with shape parameter ε satisfying ε0 = 0.5 in equation
(4.21).

Negative values of α are the most dangerous, they are associated with
locations of the point G placed below the boundary in Figure 5.1 and for small
values approximate the normal directions in case of a concave boundary profile.
From Figure 5.2 we see that multiple singularities appear for certain negative
values of α, near which both κ(M) and ΛI assume very large values. We also
remark that the very same values of α are detected as problematic in both charts.
Furthermore such singular configurations exist for modest values of α regardless
of the degree of the polynomial augmentation and this remains true even with
larger stencils. These remarks seem to tell us that no matter the node density
or the polynomial degree, even a slight local concavity of the boundary might
cause severe ill-conditioning issues for the considered RBF interpolations. It is
true that the actual position of boundary nodes in the reference stencil of Figure
5.1 does not change, but it is also true that it is not possible to forecast any
possible node arrangement attainable in reality. The purpose of this construction
is therefore not so much to mimic the behavior of matrix M in any realistic
situation, but rather to reproduce the insurgency of ill-conditioning issues due
to Neumann BC in a controlled environment.

Values taken by λI(x) and λB(x) for two particular values of the angle α
are displayed in Figure 5.3. These plots are again attained using the same MQ
RBF scheme with no polynomial augmentation, polynomial augmentation would
have increased even more the values of λI and λB near the edges of the stencil.
Once again it emerges that, for certain negative values of α, large interpolation
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Figure 5.2: condition number of the interpolation matrix (left), and Lebesgue
constant ΛI (right), for the RBF interpolation on the reference stencil of Figure
5.1.

errors can occur. This is yet another hint at the fact that Neumann BC can
compromise the accuracy and the well-posedness of the system (4.27) and thus
introduce large errors in the final solution of system (5.11). In the following
sections this phenomenon is analysed quantitatively in the case of one or multiple
boundary neighbors.

5.3.2 Bare RBF with one boundary node

Singular direction

Consider for simplicity a stencil with mB = 1 boundary node xm and an
interpolant with no polynomial augmentation. The m×m interpolation matrix
is therefore:

M = ΦN =


Φ(x1,x1) · · · Φ(x1,xm)

...
. . .

...

Φ(xmI
,x1) · · · Φ(xmI

,xm)

∂Φ(xm,x1) · · · ∂Φ(xm,xm)

 (5.18)

The determinant of M can be expressed through a cofactor expansion along
the last row:

det(M) =

mI∑
j=1

Cm,j∂Φ(xm,xj) (5.19)

In equation (5.19), Cm,j is the cofactor of entry (m, j) = ∂Φ(xm,xj) in M :

Cm,j = (−1)m+jDm,j (5.20)
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π
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− 0.02 α =

π
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Figure 5.3: 3D visualization of the Lebesgue functions λI(x) and λB(x) for
the MQ RBF interpolation (ε0 = 0.5 and no polynomial augmentation) on the
stencil of Figure 5.1. Note the large difference in the z-axis scaling for the two
values of α.
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where Dm,j is the minor of the corresponding entry, i.e., the determinant of the
submatrix obtained by deleting row m and column j from M . The expansion
in equation (5.19) has mI = m− 1 terms because the diagonal entry of the last
row is ∂Φ(xm,xm) = 0, from equation (5.9).

Recalling the form of the normal derivative and the notation of equation
(5.8), the determinant can be expressed as:

det(M) =

mI∑
j=1

Cm,jφ
′(rj,m) ej,m · n = n̂ · n (5.21)

where n is the unit normal at the boundary node xm and n̂ is a linear combination
of ej,m terms, which are the unit directions pointing towards the boundary node
xm:

n̂ =

mI∑
j=1

wj,mej,m (5.22)

where coefficients wj,m are:

wj,m = Cm,jφ
′(rj,m) (5.23)

When the location of the boundary node xm is fixed and the unit normal n
can vary, the direction of n̂ can be interpreted as the optimal direction for n
since it maximizes det(M). On the other hand, equation (5.21) states that if n
is orthogonal to n̂, then M becomes singular.

The existence of such singular directions can also be directly deduced from the
fact that det(M(n)) in (5.18) is a continuous function of n and det(M(−n)) =
− det(M(n)) for any n, since the reversal of n results in the change of sign
of the last row of M(n). Since n can be changed continuously to reach −n,
there exist at least one normal direction for which the determinant vanishes.
This conclusion is similar to the proof of the Mairhuber-Curtis theorem [27]
stated at page 17 and this is to be expected since the unsymmetric RBF basis
{Φ(·,x1), . . . ,Φ(·,xm)} is independent from the direction of the normal vector
n.

In turn this imply that it is not possible to rule out the possibility of singular
M on a generic domain and for this reason some countermeasures must be taken
in order to make the standard RBF-FD formulation applicable to engineering
problems.

Possible remedies

In this chapter two approaches will be proposed as stabilization techniques
against ill-conditioning induced by Neumann BC, they are:

Approach 1. Discard a boundary node if the corresponding dot product
|n̂ · n|/∥n̂∥2 is too small.

Approach 2. Change the boundary node position xm according to the
corresponding normal n in such a way that n̂ and n become
more aligned.
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ε0 = 0.1 ε0 = 1 ε0 = 10

Figure 5.4: coefficients wj,m in equation (5.21) for the optimal direction, shown
as a blue arrow, associated to the boundary node, shown as a red cross. Positive
and negative coefficients are respectively represented as filled dots and empty
circles. The size of the circles is proportional to the magnitude of the coefficients.
Top row: symmetric position of the boundary node; bottom row: asymmetric
position of the boundary node.

Both approaches are inspired by the parallel with the Mairhuber-Curtis
theorem and involve some modifications to the discretization problem aimed
at embedding some awareness of the actual direction of the normals without
modifying the RBF basis.

Heuristic approaches for estimating n̂

At first it is clear that a calculation of n̂ or at least a suitable approximation is
required. Given the definition of n̂ in equation (5.22), the easiest approximation
is to consider the direction pointing from the boundary node towards some
reference point, e.g., the stencil centroid. If the coefficients wj,m in equation
(5.22) are very similar to each other this approximation becomes a good one.
Unfortunately, this condition never occurs, as shown in Figure 5.4. In this figure
the magnitude and the sign of the coefficients wj,m are shown in the case of
the MQ RBF for a boundary stencil, i.e., one-sided stencil close to a straight
boundary, with hexagonal node arrangement and for two different positions of the
boundary node, shown as a red cross. Three different values for the parameter
ε0 are considered, the case ε0 = 0.1 has been computed with MATLAB variable
precision arithmetic in order to compensate for to the flat-limit effect.

Figure 5.4 shows that moving away from the boundary node, the coefficients
wj,m have alternating signs and a decay rate growing with ε0, which is in perfect
accordance with theoretical observations for RBF interpolation on equispaced
infinite lattices [42]. More specifically, by qualitative arguments based on the
adaptation to a finite stencil, the cardinal expansion coefficients λk defined in
[42] correspond to the cofactors Cm,j in equation (5.19) up to a multiplicative
constant, where the subscript k is the nondimensional distance from the boundary
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node.

The qualitative behaviour of the magnitude of the coefficients wj,m is therefore
given by the following equation, where the second proportionality can be found
in [42] for the exponential regime:

|wj,m| ∝ |λkφ′(ks)| ∝ e−µk|φ′(ks)| (5.24)

s being the spacing between nodes.

In the case of MQ RBF, equation (5.24) can be expressed in the form:

|wj,m| ∝
ke−µk√
1 + (ε0k)2

= w̃(k) (5.25)

When ε0 = 0.1, then µ = 0.15 [42] and w̃(k) has a maximum for k ≈ 5,
which in Figure 5.4 corresponds to the large magnitude coefficients wj,m far
from the boundary node. When ε0 = 1, then µ = 1.04 [42] and w̃(k) has a
maximum for k ≈ 1, which in Figure 5.4 corresponds to the large magnitude
coefficients wj,m immediately close to the boundary node, followed by a rapid
decay. When ε0 = 10 the coefficients with largest magnitude are associated to
the nodes immediately close to the boundary node, followed by a faster decay.

Figure 5.4 also shows the optimal direction, i.e., the direction of n̂ defined
in equation (5.22), as a blue vector. In the case of the symmetric position of
the boundary node (top row in Figure 5.4), the optimal direction is vertical,
regardless of ε0, as expected for symmetry. In the case of the lateral placement
of the boundary node (bottom row in Figure 5.4), the optimal direction changes
from almost vertical for ε0 = 0.1 to a certain inclination for ε0 = 10, in accordance
to the previous observations. Indeed, the larger the shape parameter ε, the larger
the coefficients wj,m associated to the closest nodes and therefore the more the
optimal direction points towards these closest node.

Figure 5.5 shows the direction and the magnitude of the optimal vectors n̂,
depicted with solid black lines at different location of the boundary, indicated
with a blue dashed curve. On the left the case of a stencil with mI = 3 internal
nodes and on the right one with mI = 15 hexagonal internal nodes. The blue
dashed curve indicating the boundary is formed by those points that have
constant distance s from the nearest internal node. MQ RBF with ε0 = 0.5 has
been employed. The envelopes of the optimal directions of n̂ are shown as solid
red curves, these were displayed in order to show that the strategy of comparing
the actual boundary normal with some direction connecting the boundary node
with some inner point is not viable. Indeed, if optimal directions were found to
converge in some accumulation point contained within the stencil, it would be
possible to avoid further calculations and approximate them as the line joining
the boundary node with that accumulation point.

We conclude that an estimate for the optimal direction n̂ can not be obtained
through simple geometric heuristics and a more robust calculation is therefore
mandatory in the general case. Such calculation follows below.
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Envelope
Envelope

Figure 5.5: optimal vectors n̂ (solid black lines) and their envelopes (solid red
curves) for two stencils with mI = 3 (left) and mI = 15 (right) internal nodes as
the boundary node moves along the blue dashed curve. This last curve represents
the points having constant distance s, i.e., the nodal spacing, from the nearest
internal node.

Analytic calculation of n̂

The formulation given in equation (5.22) for n̂, is not practical due to the high
computational cost involved in the calculation of the cofactors Cm,j . In order to
develop a more convenient approach we split matrix M into smaller boxes in
order to separate the rows associated with internal nodes from those associated
with the boundary node:

M =


Φ(x1,x1) · · · Φ(x1,xmI

) Φ(x1,xm)
...

. . .
...

...

Φ(xmI
,x1) · · · Φ(xmI

,xmI
) Φ(xmI

,xm)

∂Φ(xm,x1) · · · ∂Φ(xm,xmI
) 0


=

 ΦII ΦIB

∂ΦBI 0


(5.26)

The Schur complement SBB of the block ΦII is:

SBB = −∂ΦBIΦ
−1
II ΦIB (5.27)

and for a property of the Schur complement one more formulation for the
determinant of matrix M is possible:

det(M) = det(ΦII)SBB (5.28)

We give for granted the nonsingularity of ΦII , it is also important to notice
that the Schur complement SBB is efficient to compute since does not require the
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evaluation of any determinant. In a sense the formulation with SBB allowed to
factor many smaller determinants hidden within the Cm,j terms into one larger
det(ΦII).

Because of the symmetry of the RBFs, i.e., Φ(xj ,xm) = Φ(xm,xj), the
column vector ΦIB can also be interpreted as the values of the RBFs centered
at the mI internal nodes and evaluated at the boundary node xm. Therefore,
the column vector Φ−1

II ΦIB in (5.27) can be interpreted as the vector of cardinal
functions ψ̄j associated to the internal nodes only and evaluated at the boundary
node xm ( cfr. definition of cardinal functions in equation (2.19) at page 24):

ψ̄ = Φ−1
II ΦIB (5.29)

where ψ̄ = {ψ̄1(xm), . . . , ψ̄mI
(xm)}T .

It is now possible to perform further substitutions in the formulation of
det(M) involving cofactors. This is because, up to the multiplicative con-
stant −det(ΦII), the cofactors Cm,j correspond to the aforementioned cardinal
functions ψ̄.

Cm,j = −det(ΦII)ψ̄j(xm) , j = 1, . . . ,mI (5.30)

which lead to the following formulation of n̂ where cofactors do not appear:

n̂ = −det(ΦII)

mI∑
j=1

ψ̄j(xm)φ′(rj,m)ej,m (5.31)

We conclude by remarking that in (5.31) there is no need to evaluate det(ΦII)
if we are only interested in calculating the optimal direction n̂ since it is a scalar
and that values ψ̄j(xm) can be computed all at once from equation (5.29).

Qualitative interpretation of SBB

By transposing equation (5.27), by the symmetry of ΦII we obtain:

SBB = −ΦT
IBΦ

−1
II ∂Φ

T
BI (5.32)

which is still a valid expression for the Schur complement.

We start by remarking that entries of ∂ΦBI are antisymmetric (cfr equation
(5.8)):

∂Φ(xm,xj) = −∂Φ(xj ,xm) (5.33)

contrary to Φ(·, ·), which instead is symmetric, this means that SBB can also be
written as:

SBB =
(
Φ(xm,x1) . . .Φ(xm,xmI

)
)
Φ−1

II


∂Φ(x1,xm)

...

∂Φ(xmI
,xm)

 (5.34)
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Suppose we only had the internal nodes XI and we wanted to approximate the
function u(·) = ∂Φ(·,xm) at xm, then we would solve the interpolation system
arising from the usual conditions uh(xi) = u(xi) with i ∈ XI and then write:

uh(xm) =
(
Φ(xm,x1) . . .Φ(xm,xmI

)
)

α1

...

αmI

 (5.35)

We now proceed by comparing the two equations: we see that the rightmost term
in (5.34) are the values taken by the function ∂Φ(·,xm) at XI and its product
with Φ−1

II coincides with the vector of interpolation coefficients {α1, . . . , αmI
}T

of equation 5.35 because ΦII is exactly the matrix arising from the associated
interpolation conditions.

Therefore SBB is uh(xm) where uh is the RBF interpolation of ∂Φ(·,xm)
attained using the internal nodes. If such interpolation was exact, then matrix
M would have been singular since u(xm) = ∂Φ(xm,xm) = 0. We conclude
that SBB measures the error made when the normal derivative of the RBFs is
approximated using the internal nodes only.

Additional remarks

A final remark before concluding the discussion about the case with a single
boundary node concerns the following questions. Given a node arrangement for
the mI internal nodes, are there particular locations of the boundary node for
which det(M) = 0 regardless of the direction of the normal n, i.e., for which
n̂ = 0 in equation (5.21) or, equivalently, SBB = 0 in equation (5.28), provided
that det(ΦII) ̸= 0? If so, is it possible that a Neumann boundary condition ends
up being defined in one of such singular locations?

Fortunately, this seems not to be the case: Figure 5.6 shows these singular
locations as red dots for different node arrangements in the case of MQ RBF
with ε0 = 0.5, together with a representation of ∥n̂∥. From this figure it can be
observed that all singular locations fall inside the stencil and dangerous locations,
i.e., locations of the boundary node for which ∥n̂∥ is close to 0, are also in the
neighbourhood of the stencil. In other words, the further the boundary node is
from the internal nodes, the further M is from being singular, provided that
the normal is not orthogonal to the optimal direction n̂. Whenever we have
a boundary node lying outside the region delimited by the internal nodes, we
do not need therefore to worry about the singular locations. This principle has
been verified numerically for each type of RBF presented in Table 2.1 which is
at least conditionally positive definite of order 1, i.e., RBFs that can be used for
RBF interpolation without the need of any polynomial augmentation.
This result support the conjecture that Neumann BC-induced ill-conditioning
issues are exclusively caused by orthogonality of n and n̂.
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Figure 5.6: norm of n̂ for different node arrangements as the position of the
boundary node changes. The mI internal nodes are shown as black empty circles
and the red dots represent the positions of the boundary node for which n̂ = 0.
Red dots represent therefore forbidden positions for the boundary node. Top
row: hexagonal arrangements; bottom row: hexagonal arrangements perturbed
by random displacements. ∥n̂max∥ represents the maximum norm of n̂ for each
subfigure.

5.3.3 Bare RBF with multiple boundary nodes

Preliminary results

Consider now a stencil with mB > 1 boundary nodes and, again, an interpolant
with no polynomial augmentation. The m×m interpolation matrix is therefore:

M = ΦBC =



Φ(x1,x1) . . . Φ(x1,xm)
...

. . .
...

Φ(xmI
,x1) . . . Φ(xmI

,xm)

∂Φ(xmJ
,x1) . . . ∂Φ(xmJ

,xm)
...

. . .
...

∂Φ(xm,x1) . . . ∂Φ(xm,xm)


(5.36)

where mJ = mI + 1.

Similarly to what was done in section 5.3.2, consider the following splitting
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of M :

M =



Φ(x1,x1) . . . Φ(x1,xmI ) Φ(x1,xmJ ) . . . Φ(x1,xm)

...
. . .

...
...

. . .
...

Φ(xmI ,x1) . . . Φ(xmI ,xmI ) Φ(xmI ,xmJ ) . . . Φ(xmI ,xm)

∂Φ(xmJ ,x1) . . . ∂Φ(xmJ ,xmI ) ∂Φ(xmJ ,xmJ ) . . . ∂Φ(xmJ ,xm)

...
. . .

...
...

. . .
...

∂Φ(xm,x1) . . . ∂Φ(xm,xmI ) ∂Φ(xm,xmJ ) . . . ∂Φ(xm,xm)


=

 ΦII ΦIB

∂ΦBI ∂ΦBB


(5.37)

where the mB diagonal entries of ∂ΦBB are zeros.

By taking the Schur complement SBB of ΦII , we obtain the following
mB ×mB Schur complement matrix:

SBB = ∂ΦBB − ∂ΦBIΦ
−1
II ΦIB (5.38)

The following equality also holds:

det(M) = det(ΦII) det(SBB) (5.39)

where, again, det(ΦII) ̸= 0 when using strictly positive definite or conditionally
positive definite functions Φ(r) or order 1.

Qualitative interpretation of SBB

In order to repeat the procedure used for the case with mB = 1, the following
notation must be introduced, if xk is one of the boundary nodes in XB , then we
write:

∂2Φ(xi,xk) :=
∂Φ

∂nk
(xi,xk) (5.40)

where nk is the normal at xk and the symbol ∂2 indicates that the derivative is
done by considering with respect to the second argument.

Because of the symmetry of the RBFs, from equation (5.8) we have:

∂Φ(xk,xi) =
∂Φ

∂n
(xk,xi) = −∂2Φ(xi,xk) (5.41)

and then from equation (5.38) we have:

SBB = −
(
∂2ΦBB − ∂2ΦBIΦ

−1
II ΦIB

)
(5.42)

where ∂2ΦBB and ∂2ΦBI are obtained from ∂ΦBB and ∂ΦBI respectively, by
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replacing ∂ with ∂2 and exchanging the arguments within each RBF function:

∂2ΦBB =


∂2Φ(xmJ

,xmJ
) · · · ∂2Φ(xm,xmJ

)
...

. . .
...

∂2Φ(xmJ
,xm) · · · ∂2Φ(xm,xm)

 (5.43)

∂2ΦBI =


∂2Φ(x1,xmJ

) · · · ∂2Φ(xmI
,xmJ

)
...

. . .
...

∂2Φ(x1,xm) · · · ∂2Φ(xmI
,xm)

 (5.44)

By following the same arguments presented in the previous section, we have
that column j of Φ−1

II ΦIB in equation (5.42) contains the values of the mI

cardinal functions associated with the internal nodes only and evaluated at the
jth boundary node.
Row i of ∂2ΦBI in equation (5.44), on the other hand, contains the values of
the function ∂2Φ(·,xmI+i), evaluated at the mI internal nodes.
Therefore, entry (i, j) of matrix ∂2ΦBIΦ

−1
II ΦIB in equation (5.42) is the approx-

imation at the jth boundary node xmI+j of the function ∂2Φ(·,xmI+i) achieved
using the internal nodes only. On the other hand, entry (i, j) of matrix ∂2ΦBB

is the actual value of ∂2Φ(·,xmI+i) at that same node xmI+j .
Once again, given the definition of ∂2, we conclude that entry (i, j) of SBB

can be interpreted as the error made when the normal derivative ∂2Φ(·,xmI+i)
is approximated at xMI+j using the standard interpolation procedure with
collocation conditions on the internal nodes only. Similarly to the case with one
boundary node, this tells us that the interpolation matrix M in equation (5.36)
will be well-conditioned if the additional information provided by the Neumann
BCs, i.e., the last mB rows inM , are not redundant with the RBF interpolation
based on the internal nodes only. This can therefore be interpreted as a form of
linear independence of the rows corresponding with boundary conditions.

Dependance upon the normals

Equation (5.38) can be written as follows:

SBB = ∂ΦBB − ∂ΦBIψ̄ (5.45)

where ψ̄ = Φ−1
II ΦIB, already defined in equation (5.29), is now a mI × mB

matrix in the case of mB boundary nodes.
Despite the matrices in equation (5.45) could be handled directly, it is

convenient to use the notation introduced in section A.1. By denoting with di,k
the following term appearing in equation (5.8):

di,k = φ′(ri,k) ei,k (5.46)
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the normal derivatives in ∂ΦBB and in ∂ΦBI of equation (5.37) can be written
as simple dot products:

∂Φ(xk,xi) = di,k · nk (5.47)

and therefore ∂ΦBB and ∂ΦBI can be written using the operator H, as defined
in equation (A.5), as follows:

∂ΦBB = H(DBB ,N )

∂ΦBI = H(DBI ,N )
(5.48)

In the previous equations DBB ∈ RmB ,mB and DBI ∈ RmB ,mI are d-matrices
storing purely geometric information:

DBB =


dmJ ,mJ

· · · dm,mJ

...
. . .

...

dmJ ,m · · · dm,m



DBI =


d1,mJ

· · · dmI ,mJ

...
. . .

...

d1,m · · · dmI ,m


(5.49)

and N = {nmJ
, . . . ,nm} ∈ RmB

d is the d-matrix storing the unit normals at
the mB boundary nodes. By considering the vector entries of DBB , we see that
di,k = −dk,i for k ̸= i by definition (5.46), while the diagonal entries are zeros
because of equation (5.9), i.e., DBB is an antisymmetric d-matrix.

By using the previous notations and properties (A.6)-(A.7), equation (5.45)
becomes:

SBB = H(DBB ,N )−H(DBI ,N )ψ̄ = H(DBB −DBIψ̄︸ ︷︷ ︸
GBB

,N ) (5.50)

where GBB = (gij) ∈ RmB ,mB .
By comparing equation (5.50) with interpretation of SBB given in section

5.3.3 we conclude that vector gij of GBB represents the difference between the
gradient of the RBF Φ(·,xmI+i) and its approximation obtained through a RBF
interpolation based on the mI internal nodes only, both evaluated at the jth

boundary node xmI+j .
The main reason for deriving equation (5.50) is that the determinant of SBB

can now be explicitly written as follows:

det(SBB) = det
(
H(GBB ,N )

)
=

∣∣∣∣∣∣∣∣∣
g1,1 · n̄1 · · · g1,mB

· n̄1

...
. . .

...

gmB ,1 · n̄mB
· · · gmB ,mB

· n̄mB

∣∣∣∣∣∣∣∣∣ (5.51)
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ε0 = 0.1 ε0 = 1 ε0 = 10

Figure 5.7: optimal directions for the reference stencil of Figure 5.1 (top row)
and for the same stencil with random nodal displacements (bottom row).

where the notation n̄i (with a bar) indicates the unit normal at the ith boundary
node and is introduced for reducing the number of indices: n̄i = nmI+i. In the
case with mB = 1 boundary nodes, equation (5.51) becomes:

det(SBB) = SBB = g1,1 · n̄1 (5.52)

which corresponds to equation (5.21) with n̂ = det(ΦII)g1,1.

Optimal directions

Given the formulation of equation (5.51), one may ask which is the set N̂ of
unit vectors N̂ = {n̂1, . . . , n̂mB

} that maximize det(SBB), i.e., the optimal
directions of the mB normals leading to a well-conditioned interpolation matrix.
Such optimal directions can be obtained by solving the following constrained
maximization problem:

argmax
N̂

det
(
H(GBB ,N )

)
subject to ∥n̂i∥22 = 1, i = 1, . . . ,mB

(5.53)

Problem (5.53) can be solved by the Lagrange multipliers method as presented
in A.2. Such optimal directions are shown in Figure 5.7 for the reference stencil
of Figure 5.1 when using MQ RBF with different values of the shape factor ε0.
In order to highlight the effect of the relative position of the nodes, optimal
directions are also shown when the reference stencil is perturbed with random
nodal displacements.

In the case of the reference stencil, the optimal directions are approximately
pointing towards some reference mid point of the stencil, which however depends
upon the shape factor ε0, analogously to the case with one boundary node
depicted in Figure 5.4. When ε0 = 0.1, the long range influence of the internal
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nodes on the optimal normals seems to dominate: as a result, the optimal
directions have a radial pattern originating from the geometrical center of the
internal nodes. For larger shape factors, conversely, the short range mutual
influence of the boundary nodes seems to dominate, leading to a more flat
pattern. In the case of the perturbed stencil, instead, the optimal directions are
quite unpredictable, as there are boundary nodes close to each other with quite
different optimal directions. This last remark suggests that a simple geometric
approximation of the optimal directions is not safe when nodes are not scattered
according to some regular pattern.

Figure 5.7 suggest that the likelihood of a singularity of matrix M caused
by the actual normals being orthogonal to the optimal ones is larger for higher
values of ε0. This idea is suggested by the fact that optimal normals at high
ε0 are almost parallel to the boundary for the reference stencil whereas those
at lower ε0 are somewhat pointed outwards. Unfortunately this phenomenon is
compensated by the ill-conditioning of matrix M induced by flattness of RBFs
at low values of ε0, for instance, stationary interpolation schemes with ε0 = 0.1
are already almost unsolvable using double precision arithmetic in the standard
procedure.

5.3.4 Influence of polynomial augmentation

In order to also take into account the effects of polynomial augmentation, let us
consider again the interpolation matrix M in equation (5.4). By using the same
matrix splitting employed in equation (5.37), submatrix ΦBC initially defined
in equation (5.5) can be expressed as:

ΦBC =

 ΦII ΦIB

∂ΦBI ∂ΦBB

 (5.54)

while matrices PBC and P T , defined in equations (5.6) and (5.7) are:

PBC =



p1(x1) · · · pM (x1)
...

. . .
...

p1(xmI
) · · · pM (xmI

)

∂p1(xmJ
) · · · ∂pM (xmJ

)
...

. . .
...

∂p1(xm) · · · ∂pM (xm)


=

 P I

∂PB

 (5.55)

P T =


p1(x1) · · · p1(xmI ) p1(xmJ ) · · · p1(xm)

...
. . .

...
...

. . .
...

pM (x1) · · · pM (xmI ) pM (xmJ ) · · · pM (xm)

 =
(

P T
I P T

B

)
(5.56)
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By rearranging rows and columns of M in order to separate internal nodes,
polynomial terms and boundary nodes, the interpolation matrix in block form
becomes:

M =


ΦII P I ΦIB

P T
I 0 P T

B

∂ΦBI ∂PB ∂ΦBB

 =

 M II QIB

∂QBI ∂ΦBB

 (5.57)

Similarly to the approach employed in section 5.3.3, we consider the Schur
complement SBB of the M II block of M :

SBB = ∂ΦBB − ∂QBIM
−1
II QIB︸ ︷︷ ︸

WBB

(5.58)

where M II is not singular as long as the internal stencil is unisolvent for the
chosen degree of the polynomial augmentation.

By comparing equation (5.58) with the corresponding equation (5.38), ob-
tained without polynomial augmentation, we see that the only difference is in the
double matrix-product term WBB , that in the case of polynomial augmentation
can be written as follows:

WBB =
(
∂ΦBI ∂PB

)ΦII P I

P T
I 0

−1ΦIB

P T
B

 = ∂ΦBIK1 + ∂PBK2

(5.59)
where K1 and K2 are:

K1 = Φ−1
II

(
ΦIB − P IK2

)
K2 =

(
P T

I Φ
−1
II P I

)−1︸ ︷︷ ︸
S

(
ΦT

IBΦ
−1
II P I − PB

)T (5.60)

Further algebraic manipulations lead to the following form:

WBB = ∂ΦBIΦ
−1
II ΦIB −

(
∂ΦBIΦ

−1
II P I − ∂PB

)
K2︸ ︷︷ ︸

∆W

(5.61)

which, compared to the corresponding term ∂ΦBIΦ
−1
II ΦIB in equation (5.38),

reveals that the difference in the Schur complement of the interpolation matrix,
with and without polynomial augmentation, is solely due to the term ∆W .
Substituting K into ∆W we write:

∆W =
(
∂ΦBIΦ

−1
II P I − ∂PB

)︸ ︷︷ ︸
∂E

S
(
ΦT

IBΦ
−1
II P I − PB︸ ︷︷ ︸
E

)T
(5.62)

Similarly to the qualitative interpretations given to the Schur complement
in the previous sections, we can also interpret terms E and ∂E. Entry (i, j) of
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ε0 = 0.1 ε0 = 1 ε0 = 10

Figure 5.8: optimal directions for the reference stencil of Figure 5.1 without
polynomial augmentation (black solid vectors) and with polynomial augmentation
with degree P = 2 (red dashed vectors).

matrix ∂E can be understood as the error in the approximation of the value
∂pj(xmI+i) at the ith boundary node obtained through a RBF interpolation
based on the mI internal nodes only. On the other hand, entry (i, j) of matrix
E can be interpreted as the error in the approximation of pj(xmI+i) obtained
through an RBF interpolation based on the mI internal nodes only.

If the internal stencil is unisolvent for the chosen degree of the polynomial
augmentation, each entry of matrices ∂E and E vanishes as ε→ 0 and the same
holds for the entries of matrix S except for the diagonal entry corresponding to
the constant monomial of the polynomial basis, which tends to a constant value.
We argue that in practice matrix ∆W vanishes rapidly as ε → 0, and in the
usable range ε0 ∈ [0.2, 0.6] its value is small enough that the role of polynomial
augmentation in the insurgence of ill-conditioning due to Neumann BC can be
rightfully neglected.

The influence of the polynomial augmentation, with degree P = 2, on the
optimal directions for the reference stencil of Figure 5.1 is shown in Figure
5.8 in the case of MQ RBF for different values of the shape parameter ε0. In
the case ε0 = 0.1 there is no noticeable difference in the optimal directions
with and without polynomial augmentation, confirming the previous theoretical
observations that the influence of the polynomial augmentation is negligible for
sufficiently small values of ε. For larger values of ε0, i.e., in the cases ε0 = 1 and
ε0 = 10, the differences in the optimal direction start to be visually noticeable,
although very small and almost negligible from a practical point of view.

In conclusion we remark that, since in practical cases ε0 ∈ [0.2, 0.6] when MQ
RBF-FD method is employed and m > 2M in equation (4.17), the calculation of
the optimal directions can be reasonably carried out without taking into account
the polynomial terms.

5.4 Techniques for an improved interpolation

For reference, we report here the proposed stabilization approaches introduced
in the case of stencils with a single boundary node:
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Approach 1. Discard a boundary node if the corresponding dot product
|n̂ · n|/∥n̂∥2 is too small, where n̂ is the optimal boundary
normal.

Approach 2. Change the node locations in order to avoid configurations
where, for some boundary node |n̂ · n|/∥n̂∥2 is too small.

5.4.1 Approach 1: boundary node selection based on opti-
mal directions

Once the optimal directions n̂i have been calculated according to equation (5.53),
it is possible to extend Approach 1 in section 5.3.2 to the case with multiple
boundary nodes, i.e., discarding from the stencil those boundary nodes whose
normal vectors are too different from the corresponding optimal normals. This
strategy allows to rule out the possibility of a singular interpolation matrix
M by dropping both the rows and columns associated with dangerous nodes.
We remark that discarded nodes are not eliminated from the node cloud, they
simply are not included in the present stencil, very often such nodes are quite far
from the center node and will be included in the neighboring stencils. It is very
unlikely that some boundary node is discarded from all stencils built around
neighboring inner nodes, therefore boundary information should be preserved.
Furthermore, whenever some boundary node is discarded from a given stencil
centered around node xi, it can be replaced by looking for the nearest node to
xi not yet included in that same stencil.

The boundary node selection can be implemented as an iterative process (see
A.2.3) that allows to discard the ith boundary node whenever the dot product
between the associated normal n̄i and the corresponding optimal direction n̂i is
less than a certain threshold value dmin:

discard boundary node i if |n̄i · n̂i| < dmin (5.63)

where the absolute value comes from the fact that the reversal of any normal
has no effect on the interpolation.

The condition number κ(M), the Lebesgue constant ΛI and the number of
removed nodes Nrem for the reference stencil of Figure 5.1 are shown in Figure
5.9 as functions of the angle α. From a comparison with Figure 5.2 it emerges
that all singularities for α < 0 have been deleted. Both κ(M) and ΛI become
bounded and a more stable interpolation is attained. Figure 5.9 is obtained
with MQ RBF (ε0 = 0.5) and with a threshold value dmin = 0.6 in equation
(5.63). Lower values are not able to bound the Lebesgue constant ΛI when α
approaches the limit values of π/2 and −π/2. When 6 nodes are removed, only
the central boundary node associated to a vertical normal is included in the
stencil. The algorithm removes a number of boundary nodes Nrem which is
always even because of the symmetry of the reference stencil.
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Figure 5.9: condition number κ(M) of the interpolation matrix (top left), and
Lebesgue constant ΛI (top right) for the RBF interpolation on the reference
stencil of Figure 5.1 when the selection of boundary nodes is based on the
optimal directions. Bottom row: number of removed nodes Nrem (the same plot
is reported twice in order to simplify comparisons).

5.4.2 Approach 2: optimal placement for boundary nodes

As hinted in section 5.3.2, another strategy for avoiding a singular interpolation
matrix consists in moving the stencil nodes in an appropriate way. It follows
that any implementation of this strategy involves a modification of the node
placement which also depends on the direction of the normals.

In section A.3 the optimization of the boundary node position is discussed,
it emerges that the interpolation can be improved by placing boundary nodes
in a very specific manner. For each boundary node there should be a paired
inner node in its immediate vicinity and the two should be perfectly alingned
along the normal direction. In in Figure A.1 the projected nodes are depicted as
asterisks, when the curvature of the boundary is limited, in general they provide
a very good approximation for an optimal locations for boundary nodes. In
practice, the adoption of the projected boundary nodes can be implemented with
minimal computational cost, here we discuss the attained improvement on the
interpolation properties when this is done for the reference stencil of Figure 5.1.

In Figure 5.10 the condition number κ(M) and the Lebesgue constant ΛI are
plotted against the angle α when the boundary nodes of the reference stencil are
replaced by the projected ones. The angle α is bounded within a smaller interval
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Figure 5.10: condition number of the interpolation matrix (left) and Lebesgue
constant ΛI (right) for the RBF interpolation on the reference stencil of Figure
5.1 with projected boundary nodes.

α ∈ [−π/3 , π/3], for values outside this interval the projected nodes end up
being either too close together or too far from one another. From Figure 5.10
emerges that, for moderate angles, i.e. approx α ≥ −π/8, the node projection
alone prevents the appearance of ill-conditioning problems.

Finally, since the use of the projected boundary nodes does not impact the
solution process, it can be applied in conjunction with the selection based on
the optimal normals explained above without any undesirable effect.

In Figure 5.11 the interpolation error obtained with the different techniques
described so far is displayed against the angle α. The interpolation error
|u(xeval) − uh(xeval)| is evaluated at the point xeval = (s/2, s/2), willingly
chosen not to be on the symmetry axis, where s is the distance between any two
inner nodes of the reference stencil of Figure 5.1 and the analytic function is
defined as u = exp (x+ 2y). For the selection of boundary nodes based on the
optimal directions (right column) the same settings were used as in Figure 5.9.

We can see once again that both stabilization techniques succeed in improving
the interpolation for small variations of the angle α. For the projection of the
boundary nodes, α varies within the interval α ∈ [−π/4 , π/4] for the reasons
explained above. We can see that the spikes in the errors on the left column,
corresponding to singular configurations, are located as in Figures 5.2 and 5.10,
this confirms the reliability of the Lebesgue constant ΛI as a measure for accuracy
and stability of the interpolation scheme.
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Figure 5.11: interpolation error |u(xeval) − uh(xeval)| at a given location
xeval = (s/2, s/2) for the reference stencil of Figure 5.1. No improvement
strategy (top left), node selection based on the optimal directions (top right)
with the corresponding number Nrem of removed boundary nodes (bottom
right), boundary node projection (bottom left). The interpolated function is
u = exp (x+ 2y).
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5.5 Applications

5.5.1 Stability of the Helmholtz-Hodge Decomposition

In this section the boundary node selection and the node projection strategies,
discussed above, are applied to the stabilization of the Helmholtz-Hodge de-
composition (HHD) [51]. The HHD plays a pivotal role in many theoretical
and practical applications [7], among others, it is at the base of the projection
methods for the numerical solution of the incompressible Navier-Stokes equations
[15, 17]. According to the HHD, under certain hypothesis, any vector field u∗ can
be expressed as a sum of the gradient of a scalar potential ϕ and a divergence-free
vector field u:

u∗ = ∇ϕ+ u (5.64)

When solving incompressible Navier-Stokes equations through projection
methods, the computation of the unknown velocity field u is carried out iteratively
or by marching in time. In any case, each iteration or time step is subdivided into
two substeps: first an intermediate velocity u∗ is obtained from the momentum
equations, then u is obtained from equation (5.64) as follows:

u = u∗ −∇ϕ (5.65)

where the unknown scalar potential ϕ is calculated from equation (5.66), that
results from taking the divergence of equation (5.64), recalling ∇ · u = 0:

∇2ϕ = ∇ · u∗ (5.66)

In the case of known velocity at the boundary, e.g., in a cavity, homogeneous
Neumann BC must be enforced in order to solve Poisson equation (5.66):

∂ϕ/∂n = 0 (5.67)

Since the HHD expressed by equations (5.65)-(5.66) is repeated many times,
once for every iteration (or time step), it is critical that the discretization of
such equations is stable, i.e., it does not introduce any spurious mode which
grows indefinitely, thus compromising the whole simulation. In order to assess
the stability properties of the strategies presented in this work, it was decided to
apply multiple times the projection scheme described in equations (5.65)-(5.66)
starting from a given vector field w, defined on the complex-shaped domain
depicted in Figure 5.12. The boundary is characterized by locally convex and
concave features with varying curvature, designed to trigger ill-conditioning
issues described in section 5.3. A Lagrange multiplier is employed to solve the
linear systems arising from the RBF-FD discretization of equation (5.66) since
Neumann BCs are prescribed on the whole boundary [121].

The pseudocode for the stability test is presented in Algorithm 2. It is worth
mentioning that any conservative discretization scheme, e.g., FVM, implicitly
satisfies the previous stability test since the value of the discretized divergence
operator vanishes after the first iteration. On the other hand, the basic formula-
tion of the RBF-FD discretization, as presented in chapter 4, is not conservative,
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Figure 5.12: test domain with NI ≈ 3, 300 internal nodes.
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Figure 5.13: stability range for the dmin parameter in the case of approach 1, i.e.,
boundary node selection based on optimal directions. Upper and lower bounds
for dmin values are displayed with red and blue curves, respectively.

therefore the value of the discretized divergence operator never vanishes at the
nodes. Algorithm 2 might therefore diverge if the Poisson equation is solved
with the basic RBF-FD method without a proper treatment of the Neumann
BC.

Since the equations involved in Algorithm 2 are linear, the choice of the initial
vector field w does not affect the stability of the iterative process. The employed
initial vector field w is chosen to be an irrotational vortex for simplicity: the
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tangential velocity is wθ = r−1 where r is the distance from the origin.

The results for approach 1 presented in section 5.4.1, i.e., boundary node
selection, are shown in Figure 5.13 in the case of MQ RBF with polynomial
degrees P = 2, 3, 4 and for different values of the shape parameter ε, such that
εs ∈ [0.2, 0.9]. The total number of nodes inside the domain is NI ≈ 15, 000. The
number of internal nodes for each stencil is chosen to follow the rule mI = 2q [3]:
mI = 20 for P = 3 and mI = 30 for P = 4. In the case P = 2 it was decided
to use slightly larger stencils with mI = 15 internal nodes, since this enhanced
stability. In Figure 5.13 the values of dmin allowing a stable computation were
identified as those lying between the two curves. As expected, too small values
of dmin, e.g., dmin < 0.2, lead to instability due to stencils with boundary nodes
whose actual normal is too different from the corresponding optimal direction,
resulting in ill-conditioned local interpolants. On the other hand, too large
values of dmin, e.g., dmin > 0.95, lead to instability due to stencils with too few
boundary nodes enforcing the prescribed Neumann BCs (5.67). From the same
figure it is possible to observe that the stability range is slightly reduced when
P is increased from P = 2 to P = 4, while a general and reasonably good choice
is dmin = 0.7.

In the case of approach 2 presented in section 5.4.2, i.e., projected boundary
nodes, stability is always attained for P = 2, 3, 4 in the range ε0 ∈ [0.2, 0.9]
previously considered, highlighting the remarkable stabilization effect of this
approach. Stability issues are still encountered for shape factors outside this
range.

Figure 5.14 shows the effect of the proposed stabilization approaches on
the condition number of the local interpolation matrix, in the case of MQ
RBF with εs = 0.5 and P = 3 (results with different shape parameters ε and
polynomial degrees P are qualitatively similar). As expected from the theoretical
observations presented in section 5.3, stencils close to locally concave boundaries
can be very ill-conditioned if no stabilization technique is employed (red nodes
in Figure 5.14, left), leading to large errors and stability issues.

By using the stabilization approach 1 with dmin = 0.7, this issue is properly
addressed and ill-conditioned stencil are no longer present (Figure 5.14, center).
The same result is attained by employing the stabilization approach 2 (Figure 5.14,
right). In the latter case we observe an increase in the condition number for the
stencils close to locally convex boundaries: this is due to the employed projection
technique that is performed from the boundary inward. Therefore, internal nodes
projected from locally convex boundaries are very close to each other, leading

Algorithm 2 Pseudocode for the stability test of repeated HHD

1: Initialize: u(1) ← w
2: for i = 1, 2, . . . do
3: Solve ∇2ϕ = ∇ · u(i) for ϕ with homogeneous Neumann BCs
4: Update: u(i+1) ← u(i) −∇ϕ
5: end for
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Figure 5.14: condition number of the local interpolation matrix. Top row, from
left to right: no stabilization, boundary selection based on optimal directions,
boundary projection. Bottom row: enlarged visualization of a portion of the
plots of the top row.

to an increased condition number. This geometrical issue is common to any
simple geometrical projection technique, regardless of the direction and starting
locations employed for the projection. With reference to arbitrary geometries,
such problem can only be addressed by taking into account the need for projected
boundary nodes already at the node generation phase, thus requiring a proper
modification of the node generation algorithm.
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Figure 5.15: Solution error for the Poisson problem (5.68) when employing
stabilization approach 1: initial node distribution (left), projected boundary
nodes (right).

5.5.2 Accuracy

Besides the stability considerations presented in the previous section, we also
provide some insight about the influence of the proposed stabilization approaches
on the accuracy of the RBF-FD discretization. In order to do so, we consider
the following Poisson equation:

∇2u = f (5.68)

defined over the previously employed domain depicted in Figure 5.12. Neumann
BCs are prescribed on the whole boundary:

∂u

∂n
= g (5.69)

and the analytic solution is chosen to be u = r−1, where r is the distance
from the origin. The node distributions and the parameters for the RBF-FD
discretization are the same as those used in the previous section 5.5.1, and a
Lagrange multiplier is again employed to solve the corresponding discretized
linear system.

The normalized RMS errors are shown in Figure 5.15 when approach 1 is
applied to both node distributions without and with projected boundary nodes.
The latter case is therefore a combination of both the proposed stabilization
techniques. In the former case, and for all polynomial degrees P = 2, 3, 4,
the error is lower when dmin ranges from 0.4 to 0.8. As expected, the error
grows when dmin is decreased below 0.4 because of the increasing number of
ill-conditioned stencils near the boundary. The limit case dmin = 0 corresponds
indeed to no stabilization action at all. On the other hand, the error also grows
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when dmin is increased beyond 0.8 because of the increasing number of boundary
stencils with an insufficient number of boundary nodes where BCs are enforced.

When both the stabilization approaches are employed, Figure 5.15, the
increase in the error for dmin < 0.4 is no longer present since the ill-conditioning
issues are already addressed by the projected nodes on the boundary. The
increased error for dmin > 0.8, instead, is still present and is caused by the fact
that too few boundary nodes are included in the boundary stencils. In this
case we also observe that the boundary node selection based on the optimal
directions does not affect the accuracy of the discretization at all if dmin < 0.8,
as expected.

5.6 Conclusions

In conclusion, the main pros and cons of the two stabilization strategies are the
following:

• Approach 1 is the most robust and does not require any control over the
node placement. However, the price to pay for its application is a higher
computational effort, required to estimate the optimal directions for all the
boundary stencils. We remark that this cost can be significantly reduced
if the optimal directions are approximated with lower accuracy.

• Approach 2 does not involve any additional computation and is even more
effective at ensuring the stabilization of the RBF-FD method. Unfor-
tunately, it requires the implementation of a more sophisticated node
generation algorithm.

At last we remark that both approaches can be applied without any modi-
fication to the 3D cases, where all of the considerations made in this chapter
remain valid. The application of the stabilization techniques described above
does not require the user to intervene during the simulation process. Even the
dmin parameter can be set once for all to be dmin = 0.7 without incurring in any
undesired effect. This fact is especially important since it preserves the main
advantage of the RBF-FD meshless method, namely high geometrical flexibility
and ease of automation.

Furthermore, the presented approaches can also be adopted simultaneously in
order to further increase the robustness of the unsymmetric RBF-FD method.
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Chapter 6

Verification Test

6.1 Introduction

In order to assess the performance achieved by the RBF-FD scheme stabilized
against ill-conditioning induced by Neumann BC, the resulting implementation
has been subjected to some tests. In [78], the theory of verification and validation
(V&V) of CFD codes is discussed, according to that terminology the present
chapter can be regarded as the report of a verification test focused on the
algorithm only, where any details concerning the software quality testing are
omitted. The reader will be able to assess the level of accuracy of the present
implementation of the RBF-FD meshless method, when applied to two different
laminar natural convection problems in 3D.

The first verification test to be presented is a natural convection problem in
a differentially heated cubic cavity. While an abundant literature is available for
the 2D case of the square cavity, the 3D version, is much less common. Indeed,
we were able to select five cases in which the problem is solved for Rayleigh
number 103 ≤ Ra ≤ 105, here follows a brief review of the literature. In [104] the
very same problem is solved using a pseudo-spectral Chebyshev algorithm based
on the projection-diffusion method for 103 ≤ Ra ≤ 107 on a fine discretization
grid. The authors provide very clear definitions for a number of characteristic
values in order to simplify any future comparison with other solutions. Because
of the well-known accuracy of the adopted numerical method, the amount of
available results and their clear presentation, we will consider [104] as the main
benchmark reference for this test case. In [46] the discretization is achieved via a
finite difference procedure, the iterative SIMPLE algorithm [80] is adopted along
with the Strongly Implicit Scheme (SIP) [96], the convection terms are treated
by the QUICK methodology [61, 45]. This paper was published much earlier
and reports the results for 103 ≤ Ra ≤ 106 for the 3D case and, compared to
[104], a coarser grid along with a less accurate numerical method were employed.
In [81] the Lattice Boltzmann method is used with D3Q15 and D3Q19 particle
velocity models. Full 3D results are reported for 103 ≤ Ra ≤ 104 and partial

103
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(representative values on the symmetry plane) for Ra = 105. In the present
paper the results attained using the D3Q19 model are reported for comparison
since it was indicated by the author as the best fit for the investigated case. In
[68] a differential quadrature (DQ) method is proposed to solve the problem
with the cubic cavity inclined at different angles by using the velocity-vorticity
formulation. Complete results are provided by the authors for 103 ≤ Ra ≤ 105.
The results corresponding to angle 0, i.e., the horizontal cube, are considered
here. In [109] the problem is solved for 103 ≤ Ra ≤ 106 with a finite volume
method called DUGKS and the attained results are compared with those of
[46]. In [108] the problem is solved for 104 ≤ Ra ≤ 106 with a fourth-order
finite difference method for space discretization and a third-order backward finite
difference scheme for time discretization. The authors in [108] also compare
their results to the ones presented by [46].

The comparison between the results reported by the different authors needed
some manipulation due either to different reference systems or to different
definition of the boundary conditions. In some cases, however, the agreement
between different literature results was lower then expected. In order to be able
to conclude which of the available data were more trustworthy, and to offer the
reader further reliable reference results, additional solutions were calculated with
the commercial Finite Volume solver ANSYS Fluent.

The second verification test consists in a natural convection problem in a
spherical shell enclosed between two concentric spheres with radii ratio equal to 5.
The temperature is fixed on both the spheres, the inner being the hotter. Even
though the problem is axisymmetric, all meshless computations are performed
on the whole 3D domain, in order to provide further insights into the accuracy
of the RBF-FD approach for the solution of natural convection problems in
3D. The axial symmetry of the problem is only exploited in the generation of
reference solutions, obtained with a commercial solver: a simple axisymmetric
2D model was employed and solved with very high accuracy.

The whole RBF-FD code employed to obtain the presented results is developed
using Julia programming language [6] and can be executed in parallel on multiple
cores, although only the discretization phase has been parallelized in the present
implementation. The adoption of Julia allowed extensive code reuse and excellent
computational performances already at the development stage.

The chapter is laid out as follows. In Section 6.2 the governing equations are
presented and the practical solution procedure is discussed in Section 6.3. In
Section 6.4 the adopted stabilization technique, with reference to those discussed
in the previous chapter, is presented. In Section 6.5 the differentially heated
cubic cavity benchmark is discussed. In Section 6.6 the spherical shell benchmark
is discussed.

6.2 Governing Equations

Both the thermo-fluid problems of interest are described by the following cou-
pled conservation equations of mass, momentum and energy with Boussinesq



6.3. SOLUTION PROCEDURE 105

approximation:

∇ · u = 0, (6.1)

∂u

∂t
+ (u · ∇)u = −∇p+ Pr∇2u+RaPr T ẑ, (6.2)

∂T

∂t
+ u · ∇T = ∇2T, (6.3)

where ẑ is the unit vector along the vertical direction z. In the above equations,
length l, velocity u, time t, pressure p and temperature T are made dimensionless
by taking respectively L, u0 = α/L, L/u0, ρu

2
0 and ∆T as reference quantities,

where L is a reference length, α is the thermal diffusivity and ρ is the reference
density. This formulation of the governing equations is the same as in [104]. The
following dimensionless numbers are defined:

• Pr = ν/α is the Prandtl Number, which is chosen to be Pr = 0.71 for all
configurations,

• Ra = gβL3∆T/να is the Rayleigh number, which varies in the interval
102 ≤ Ra ≤ 105,

where ν is the kinematic viscosity, g is the gravitational acceleration and β is
the thermal expansion coefficient. Such values lead to steady state solutions for
both problems.

6.3 Solution procedure

At each time step, the computation of velocity, pressure and temperature through
Equations (6.1)-(6.3) is decoupled using a projection scheme [16] with a three-
level Gear scheme for the time discretization. Since steady-state solutions are
sought, no subiterations within each time step are employed. First, the following
linearized momentum equation is solved for the tentative velocity u∗:

3u∗ − 4ul + ul−1

2∆t
+ (ul · ∇)u∗ = −∇pl +∇2u∗ +RaPr T lẑ (6.4)

where l is the time level and ∆t = 0.2 is the chosen time step size.
The tentative velocity u∗ is then forced to satisfy the continuity Eq. (6.1)

by means of an irrotational correction ul+1 = u∗ −∇Θ, leading to the following
Poisson Eq. (6.5) in the auxiliary variable Θ:

∇2Θ = ∇ · u∗ (6.5)

with zero normal correction ∇Θ ·n = 0 at the boundary, i.e. Neumann BC. Such
BCs are appropriate since both geometries are cavities and therefore have no
inlets or outlets. When no Dirichlet BC are given, equation (6.5) is undetermined
up to a constant, in order to guarantee the uniqueness of the solution field Θ,
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the problem can be augmented with a Lagrange multiplier λ which constraints
the result to have null integral mean:

∇2Θ+ λ = ∇ · u∗∫
Ω

Θ = 0
(6.6)

This corresponds to adding a constant row and a constant column to the resulting
coefficient matrix, with a zero on the bottom-right corner of the main diagonal.

The pressure is then updated as pl+1 = pl +Θ/∆t and the temperature is
computed from the energy equation:

3T l+1 − 4T l + T l−1

2∆t
+ ul+1 · ∇T l+1 = ∇2T l+1 (6.7)

We remark that this is the most commonly adopted approach for pressure-
velocity deocupling in incompressible flows, however, alternative formulations
aimed at impriving stability have been proposed and succesfully tested in recent
years for the RBF-FD method [9].

6.3.1 Collocation

Each partial derivative in the considered system of PDEs, Eqs. (6.4)-(6.7), is
approximated at each internal node through the RBF-FD discretization method
with stationary interpolation. By composing the linear terms associated to each
differential operator, the following sparse linear systems are obtained:

Auu
∗
i,I = qui

, i = 1, 2, 3 (6.8)

AΘΘI = qΘ, (6.9)

ATT
l+1
I = qT , (6.10)

which represent the discrete versions of Eqs. (6.4)-(6.7): Eq. (6.8) is the discrete
momentum equation for each of the three cartesian components of the tentative
velocity u∗ = (u∗1, u

∗
2, u

∗
3), Eq. (6.9) is the discrete Poisson equation in the

auxiliary variable Θ and Eq. (6.10) is the discrete energy equation for the
temperature field T l+1. Each field is therefore computed and stored at the
internal nodes only, including the vectors ul+1

i,I , i = 1, 2, 3, and pl+1
I of the

cartesian components of the velocity and pressure, respectively, at the end of
each time step.

6.3.2 Final solution

The resulting sparse linear systems, Eqs. (6.8)-(6.10), are solved using an
iterative method. Such linear systems are preconditioned with an Incomplete LU
factorization (ILU) (package IncompleteLU in Julia) with absolute dropping
tolerance τ = 100 for the Poisson equation and τ = 0.5 for the momentum and
energy equations. In the case of the Poisson Eq. (6.9), ILU factorization is
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Table 6.1: CPU times per time step and memory usage, normalized to NI =
100, 000 nodes.

Memory [MB]

P t [s] CI ILU(Au) ILU(AΘ)

2 1.7 27 52 47

3 2.0 46 56 52

4 2.9 80 85 73

performed only once at the beginning of the simulation since the related matrix
AΘ is constant, in contrast to the matrices Au and AT which change over time
due to the implicit formulation of the advective term in the momentum and
energy equations, respectively. Furthermore, because of the Neumann BC, a
Lagrange multiplier is added to the Poisson equation in order to obtain a solvable
linear system. The Biconjugate Gradient Stabilized Method (BiCGSTAB) [95]
(package IterativeSolvers in Julia) is employed as iterative solver with a
relative tolerance of 10−8. In each case the typical number of BiCGSTAB
iterations is 45 for the Poisson equation and 3 for both the momentum and
energy equations.

The typical CPU time t per time step and the typical memory usage, both
normalized to NI = 100, 000 nodes, are reported in Table 6.1. The memory usage
refers to the memory required to store the following sparse matrices in double
precision (Float64 in Julia): the internal matrix CI for a generic operator (cfr.
equation (4.15) page 58), the ILU factorization of Au and the ILU factorization
of AΘ. In the current implementation, neither the iterative solver (BiCGSTAB)
nor the ILU factorization is parallelized.

The steady-state is considered to be reached when the following conditions
are both met:

max
i=1,2,3

(
∥ul+1

i,I − u
l
i,I∥1

)
< 10−8∆t

√
RaPr (6.11)

∥T l+1
I − T l

I∥1 < 10−8∆t (6.12)

6.4 Stabilization Technique

A stabilization technique is required in order to ensure the accurate resolution of
the partial differential equations described in sections 6.2 in presence of Neumann
BC, and especially the Poisson Equation (6.5) of section 6.3.

For this purpose the technique of projected nodes has been adopted, cfr.
Chapter 5 Section 5.4.2: each boundary node has a corresponding internal node
at fixed distance along the direction of the corresponding boundary normal.



108 CHAPTER 6. VERIFICATION TEST

x

yz

T = -0.5

T = 0.5
symmetry plane (sp)

m
id

li
n
e 

(m
)

Figure 6.1: differentially heated cu-
bic cavity domain.

Table 6.2: node distributions and Fluent
grids

RBF-FD (3D) Fluent (3D)

ID Nodes ID Nx ×Ny ×Nz

N1 161217 G1 80× 40× 80

N2 249560 G2 96× 48× 96

N3 386421 G3 114× 57× 114

N4 593836 G4 134× 67× 134

N5 919146 G5 160× 80× 160

G6 190× 95× 190

In addition, the following control on the inclusion of boundary nodes within
each stencil was implemented as an approximation of the selection based on
optimal normals (cfr. 5.4.1). A boundary node xj associated to Neumann or
Robin BC is added to the stencil Xi only if:∣∣∣∣ xj − x̄

∥xj − x̄∥
· n
∣∣∣∣ ≥ dmin (6.13)

where x̄ is the mean coordinate of the internal nodes of the stencil Xi, n is the
normal at the boundary node xj and dmin = 0.65.

6.5 Differentially heated cubic cavity

6.5.1 Domain, BCs and node distributions

The domain is a cubic cavity with side length L, chosen as the reference length.
Therefore the actual computational domain is a cube with unitary side length.
A schematic representation of the domain is shown in Figure 6.1, where the
Cartesian coordinates system, centered at the center of the cube, and the
positions of the hot and cold walls are also shown. The difference between the
temperatures TH and TC of the hot and cold walls, respectively, is chosen as the
reference temperature scale ∆T = TH −TC , while their mean value (TH +TC)/2
is taken as the reference temperature.

The following BCs have been considered:

• velocity: no-slip walls (Dirichlet);

• fixed temperature at the hot and cold vertical walls, respectively: T = 0.5
at x = −0.5 and T = −0.5 at x = 0.5 (Dirichlet); adiabatic ∂T/∂n = 0 at
the other walls (Neumann).
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(a) (b)

Figure 6.2: example of a meshless node distribution for the differentially heated
cubic cavity: boundary distribution (a), enlarged view of a corner (b). Node
distribution N1 (144846 internal nodes, 16371 boundary nodes).

Five node distributions N1, . . . , N5 have been generated with a number of
nodes N ranging from about 150,000 nodes to about 900,000 nodes, as reported
in Table 6.2. In order to simplify the comparisons for each of the simulation
parameters, uniform node distributions have been employed, i.e., obtained with
constant spacing function s(x). In Figure 6.2 it is possible to qualitatively see
how nodes are generated: in Figure 6.2a the overall geometry is visible along
with boundary nodes, shown in red. Figure 6.2b shows an enlarged view of the
upper-left corner of the cubic cavity where internal nodes, coloured in black, are
distinguishable.

6.5.2 Fluent reference solution

In order to obtain very accurate and reliable reference results, uniform Cartesian
grids are employed. Because of the symmetry of the problem with respect to
the symmetry plane, see Figure 6.1, the chosen computational domain is half of
the cubic cavity. Six grids G1, . . . , G6 are employed, for each one the number of
cells along the three dimensions is reported in Table 6.2. In order to minimize
numerical diffusion, central difference schemes are used for both the momentum
and energy equations. Computations are performed in double precision and
the equations are solved to machine precision, i.e., calculation is stopped when
relative residuals reach the machine lower bound.

6.5.3 Verification of the RBF-FD discretization

In order to assess the correctness and the accuracy of the current implementation
of the RBF-FD method, the discretization error for the differential operators
∇ and ∇2, required by the governing PDEs, is computed for the five node
distributions N1, . . . , N5 and for polynomial degrees P = 2, 3, 4. The employed
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Dirichlet BC (u) Neumann BC (Θ) Mixed BC (T )

Figure 6.3: discretization error on the cubic cavity geometry with different boundary conditions, analytic
function defined by a(x, y, z) = sin(ωx) sin(ωy) sin(ωz).
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Ra = 103 Ra = 104 Ra = 105

Figure 6.4: isothermal surfaces T = 0,±1/6,±2/6 for different values of the
Rayleigh (Ra) number.

analytical solution is a(x, y, z) = sin(ωx) sin(ωy) sin(ωz) with ω = 6π. Three
types of BCs are employed with reference to the same type of BC used for the
computation of the three fields u, Θ and T on this geometry. The results are
shown in Figure 6.3, where the notation ∇h and ∇2

h indicate the approximate
operators calculated using the RBF-FD method described above, while ∇ and
∇2 indicate instead the exact ones. The employed norm ∥f∥ is the 2-norm of
the vector of values f(xi) at the internal nodes if f is a scalar, i.e., in the case
of the ∇2 operator, otherwise it is intended as the the 2-norm of the vector of
values ∥f(xi)∥2 at the internal nodes if f is a vector, i.e., in the case of the ∇
operator.

From Figure 6.3 it is possible to see how, for the ∇ operator, the convergence
rate q is approximately equal to the degree of the employed polynomial, q ≈ P .
For the ∇2 operator, the rule q ≈ P − 1 holds instead. Furthermore, the
relative errors varies very little when Neumann or Mixed BCs are enforced, thus
confirming the effectiveness of the projected nodes strategy in combination with
the boundary nodes selection based on the dot product described in chapter 5.
The reader is encouraged to compare these results with the ones reported at the
end of chapter 4, where no stabilization technique was employed.

6.5.4 Results

The differentially heated cubic cavity benchmark is solved for three different
values of the Rayleigh number: Ra = 103, 104 and 105. In Figure 6.4 the
isothermal surfaces are shown for five values of the temperature: T = 0, T = ±1/6
and T = ±2/6. This figure allows to qualitatively identify the flow regimes and
the areas of the domain which are interested the most by the appearance of
sharp variations in the temperature field, i.e., the boundary layers, especially for
the larger Ra numbers.

The RBF-FD simulations are computed for each combination of the Ra
number, node distributions N1, . . . , N5 and polynomial degrees P = 2, 3, 4,
giving a total of 45 simulations. In order to assess the level of independence of
the computed steady-state solutions upon the meshless discretizations, some local
and global meaningful quantities obtained from each simulation are reported
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in Tables 6.3, 6.4 and 6.5 for Ra = 103, Ra = 104 and Ra = 105, respectively.
The reported values are the overall Nusselt number Nu, the mean Nusselt
number Num along the midline m, i.e, the line (0.5, 0, z) (see Figure 6.1), the
maximum values of the Cartesian components of the velocity (u, v, w)max and the
corresponding locations. The reported values of Nu and Num for the RBF-FD
simulations are the mean of the two corresponding values computed at the hot
and cold walls. Fluent results for grids G1, . . . , G6 are also reported in the same
table for comparison.

For the lines marked by the symbol ∞ the values are obtained by using the
extrapolation defined by the following equation:

aID ≈ a∞ + ξaM
− q

d

ID (6.14)

where aID is a generic quantity a computed with a node distribution/mesh
identified by ID, MID is the corresponding number of nodes/cells, q is the
convergence rate and d is the dimension (d = 3, except for the spherical shell
problem presented in Section 6.6 solved in Fluent, where d = 2; q = P is used
for the RBF-FD method, while q = 2 is used for the Fluent results). Values a∞
and ξa are fitted using least squares and the extrapolated value is therefore a∞.

The comparisons reveal an excellent agreement with Fluent results, with a
very satisfying level of convergence for each quantity in all cases. Within the
considered range of the Ra number it is observed that the higher the polynomial
degree P , the faster the values converge towards the reference ones, the case
with P = 4 being particularly reliable even for very coarse node distributions.
We remark that, even if very fine meshes are adopted for the Fluent solution, it
is not possible to assess whether the Fluent G6 solutions, i.e., on the finest grid,
are more accurate than the RBF-FD solution obtained for P = 4 on the finest
node distributions.

For Ra = 105, Table 6.5, a slower convergence of the flow quantities emerges,
especially for vmax with P = 2: this is due to the thin boundary layers, occurring
at the isothermal walls, that have not been fully resolved properly by the
employed meshless discretizations. Indeed, the node distributions employed in
this work are uniform, which are not optimal when dealing with thin boundary
layers. Accurate solutions at higher Ra numbers therefore require locally refined
node distributions.

Tables 6.6, 6.7 and 6.8 show some comparisons with literature results. Addi-
tional quantities are presented in these tables: the maximum values of the Carte-
sian components (u,w) of the velocity on the symmetry plane sp, (u,w)max,sp,
and along the z and x center-lines, i.e., umax,z along the line (0, 0, z) and wmax,x

along the line (x, 0, 0) (cfr. Figure 6.1), together with the corresponding locations,
defined as in [104]. The comparisons with literature results are not complete
since most authors presented only partial results. The reported quantities are
calculated by keeping into account the differences in the definition of the problem,
in the size of the domain or in the coordinate system employed by the different
authors. For example, velocity values from [46, 81, 68, 109, 108] were obtained by
scaling the reported values by a factor

√
RaPr. This was done in order to allow
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an immediate comparison with the results obtained here and those published
by [104], which is assumed to be the main reference. As outlined before, the
largest differences between the RBF-FD and the main reference, [104], occur
for Ra = 105, Table 6.8, due to the inability of the uniform node distributions
to fully resolve the thin boundary layers. Nonetheless, there is a very strong
agreement between the RBF-FD and the reference results in all cases. Favorable
agreement is also found with the other references, although incomplete. Among
the the reported literature references, the presented RBF-FD implementation
seems to be the closest both to the results provided by Fluent and to those found
in [104].

Additional results can be found in Appendix B.1, where relative errors on
some meaningful flow quantities are displayed if Figures B.1, B.2, B.3 and B.4.
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Table 6.3: results for the differentially heated cavity, Ra = 103.

ID Nu Num umax (x, y, z) vmax (x,−y, z) wmax (−x, y,−z)

R
B
F
-F
D
,
P

=
2

N1 1.0711 1.0885 3.5390 (0.0166, 8E-4, 0.3169) 0.1729 (6E-4, 0.2515, 1E-4) 3.543 (0.3234, 5E-4, 0.0033)

N2 1.0711 1.0884 3.5392 (0.0168, 4E-4, 0.3170) 0.1728 (6E-4, 0.2525, 4E-4) 3.542 (0.3236, 1E-3, 0.0031)

N3 1.0711 1.0885 3.5390 (0.0167, 6E-5, 0.3170) 0.1727 (4E-4, 0.2520, 7E-5) 3.542 (0.3234, 6E-4, 0.0034)

N4 1.0711 1.0885 3.5390 (0.0167, 1E-3, 0.3173) 0.1727 (2E-4, 0.2520, 9E-5) 3.542 (0.3233, 7E-4, 0.0033)

N5 1.0711 1.0885 3.5390 (0.0169, 5E-4, 0.3170) 0.1727 (1E-5, 0.2524, 8E-5) 3.541 (0.3233, 1E-3, 0.0033)

∞ 1.0711 1.0885 3.5389 − 0.1726 − 3.541 −

R
B
F
-F
D
,
P

=
3

N1 1.0710 1.0883 3.5391 (0.0167, 6E-4, 0.3170) 0.1725 (9E-5, 0.2521, 3E-5) 3.541 (0.3231, 1E-3, 0.0033)

N2 1.0710 1.0884 3.5395 (0.0167, 2E-4, 0.3170) 0.1725 (4E-5, 0.2521, 7E-5) 3.541 (0.3233, 1E-3, 0.0033)

N3 1.0710 1.0884 3.5394 (0.0167, 1E-5, 0.3170) 0.1726 (8E-5, 0.2521, 7E-5) 3.541 (0.3234, 6E-6, 0.0033)

N4 1.0710 1.0884 3.5393 (0.0167, 2E-4, 0.3170) 0.1726 (4E-5, 0.2521, 5E-5) 3.541 (0.3233, 1E-4, 0.0033)

N5 1.0711 1.0884 3.5393 (0.0167, 1E-5, 0.3170) 0.1726 (3E-6, 0.2521, 1E-5) 3.541 (0.3233, 6E-5, 0.0033)

∞ 1.0711 1.0884 3.5392 − 0.1726 − 3.541 −

R
B
F
-F
D
,
P

=
4

N1 1.0711 1.0885 3.5396 (0.0167, 3E-4, 0.3170) 0.1727 (9E-5, 0.2522, 2E-5) 3.541 (0.3234, 2E-4, 0.0033)

N2 1.0711 1.0885 3.5393 (0.0167, 3E-4, 0.3170) 0.1726 (5E-5, 0.2521, 2E-5) 3.541 (0.3234, 8E-4, 0.0033)

N3 1.0711 1.0885 3.5392 (0.0167, 7E-5, 0.3170) 0.1726 (1E-5, 0.2521, 2E-5) 3.541 (0.3234, 5E-6, 0.0033)

N4 1.0711 1.0885 3.5393 (0.0167, 2E-4, 0.3170) 0.1726 (1E-5, 0.2521, 1E-5) 3.541 (0.3234, 2E-4, 0.0033)

N5 1.0711 1.0885 3.5392 (0.0167, 1E-5, 0.3170) 0.1726 (5E-6, 0.2521, 1E-5) 3.541 (0.3234, 2E-4, 0.0033)

∞ 1.0711 1.0885 3.5392 − 0.1726 − 3.541 −

F
lu
en
t

G1 1.0714 1.0889 3.5423 (0.0167, 0, 0.3169) 0.1731 (0, 0.2521, 0) 3.544 (0.3234, 0, 0.0033)

G2 1.0713 1.0887 3.5413 (0.0168, 0, 0.3169) 0.1730 (0, 0.2521, 0) 3.543 (0.3234, 0, 0.0033)

G3 1.0713 1.0887 3.5408 (0.0167, 0, 0.3170) 0.1729 (0, 0.2523, 0) 3.542 (0.3234, 0, 0.0033)

G4 1.0712 1.0886 3.5403 (0.0167, 0, 0.3169) 0.1728 (0, 0.2523, 0) 3.542 (0.3233, 0, 0.0033)

G5 1.0712 1.0886 3.5400 (0.0167, 0, 0.3170) 0.1727 (0, 0.2521, 0) 3.542 (0.3234, 0, 0.0033)

G6 1.0712 1.0885 3.5398 (0.0167, 0, 0.3170) 0.1727 (0, 0.2522, 0) 3.541 (0.3234, 0, 0.0034)

∞ 1.0711 1.0885 3.5393 − 0.1726 − 3.541 −
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Table 6.4: results for the differentially heated cavity, Ra = 104.

ID Nu Num umax (x, y, z) vmax (x, y, z) wmax (−x, y,−z)

R
B
F
-F
D
,
P

=
2

N1 2.0555 2.2518 16.734 (0.0198, 1E-2, 0.3254) 2.155 (0.3849, 0.2806, 0.3479) 19.000 (0.3840, 0.2277, 0.0189)

N2 2.0554 2.2521 16.726 (0.0197, 1E-2, 0.3251) 2.164 (0.3833, 0.2815, 0.3459) 18.997 (0.3834, 0.2297, 0.0192)

N3 2.0553 2.2518 16.724 (0.0198, 2E-3, 0.3248) 2.161 (0.3820, 0.2824, 0.3446) 18.994 (0.3835, 0.2325, 0.0207)

N4 2.0551 2.2516 16.721 (0.0196, 7E-3, 0.3250) 2.160 (0.3826, 0.2822, 0.3446) 18.989 (0.3834, 0.2313, 0.0203)

N5 2.0551 2.2516 16.720 (0.0195, 2E-3, 0.3249) 2.158 (0.3821, 0.2826, 0.3448) 18.986 (0.3835, 0.2268, 0.0212)

∞ 2.0549 2.2515 16.719 − 2.157 − 18.982 −

R
B
F
-F
D
,
P

=
3

N1 2.0544 2.2510 16.730 (0.0200, 2E-2, 0.3250) 2.157 (0.3828, 0.2822, 0.3451) 19.001 (0.3834, 0.2313, 0.0208)

N2 2.0546 2.2512 16.727 (0.0198, 1E-2, 0.3249) 2.160 (0.3823, 0.2826, 0.3436) 18.995 (0.3834, 0.2297, 0.0206)

N3 2.0548 2.2514 16.726 (0.0197, 1E-4, 0.3249) 2.159 (0.3821, 0.2823, 0.3449) 18.992 (0.3834, 0.2311, 0.0208)

N4 2.0548 2.2514 16.723 (0.0197, 9E-3, 0.3250) 2.158 (0.3823, 0.2826, 0.3449) 18.990 (0.3834, 0.2312, 0.0207)

N5 2.0549 2.2514 16.721 (0.0197, 4E-3, 0.3249) 2.158 (0.3823, 0.2825, 0.3448) 18.989 (0.3834, 0.2309, 0.0207)

∞ 2.0550 2.2515 16.720 − 2.157 − 18.987 −

R
B
F
-F
D
,
P

=
4

N1 2.0553 2.2519 16.717 (0.0197, 2E-2, 0.3250) 2.158 (0.3826, 0.2822, 0.3445) 18.986 (0.3835, 0.2294, 0.0205)

N2 2.0552 2.2518 16.716 (0.0196, 1E-2, 0.3250) 2.158 (0.3822, 0.2826, 0.3451) 18.984 (0.3835, 0.2285, 0.0205)

N3 2.0552 2.2517 16.717 (0.0198, 2E-4, 0.3249) 2.158 (0.3824, 0.2825, 0.3450) 18.984 (0.3834, 0.2312, 0.0208)

N4 2.0552 2.2517 16.717 (0.0197, 1E-2, 0.3250) 2.157 (0.3824, 0.2825, 0.3447) 18.985 (0.3834, 0.2314, 0.0207)

N5 2.0551 2.2516 16.717 (0.0197, 5E-3, 0.3250) 2.157 (0.3823, 0.2826, 0.3448) 18.984 (0.3834, 0.2304, 0.0206)

∞ 2.0551 2.2516 16.717 − 2.157 − 18.984 −

F
lu
en
t

G1 2.0592 2.2563 16.727 (0.0197, 0, 0.3251) 2.161 (0.3824, 0.2827, 0.3447) 18.986 (0.3834, 0.2304, 0.0203)

G2 2.0580 2.2549 16.724 (0.0199, 0, 0.3249) 2.160 (0.3824, 0.2827, 0.3448) 18.985 (0.3835, 0.2309, 0.0207)

G3 2.0572 2.2539 16.722 (0.0198, 0, 0.3250) 2.159 (0.3824, 0.2827, 0.3448) 18.985 (0.3834, 0.2306, 0.0205)

G4 2.0566 2.2533 16.720 (0.0198, 0, 0.3249) 2.159 (0.3824, 0.2827, 0.3448) 18.985 (0.3834, 0.2307, 0.0205)

G5 2.0562 2.2528 16.720 (0.0198, 0, 0.3250) 2.158 (0.3823, 0.2826, 0.3448) 18.985 (0.3834, 0.2306, 0.0205)

G6 2.0559 2.2524 16.719 (0.0197, 0, 0.3249) 2.158 (0.3823, 0.2826, 0.3448) 18.984 (0.3835, 0.2306, 0.0207)

∞ 2.0551 2.2516 16.717 − 2.158 − 18.984 −
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Table 6.5: results for the differentially heated cavity, Ra = 105.

ID Nu Num umax (−x, y, z) vmax (x, y, z) wmax (−x, y,−z)

R
B
F
-F
D
,
P

=
2

N1 4.340 4.611 44.52 (0.1781, 0.216, 0.3858) 9.905 (0.4218, 0.3479, 0.3834) 71.387 (0.4303, 0.3722, 0.0036)

N2 4.339 4.616 44.25 (0.1839, 0.241, 0.3885) 9.770 (0.4155, 0.3334, 0.3837) 71.258 (0.4303, 0.3749, 0.0083)

N3 4.337 4.613 44.22 (0.1838, 0.216, 0.3885) 9.716 (0.4170, 0.3439, 0.3825) 71.241 (0.4302, 0.3731, 0.0017)

N4 4.337 4.612 44.13 (0.1830, 0.221, 0.3887) 9.781 (0.4173, 0.3384, 0.3816) 71.140 (0.4295, 0.3709, 0.0052)

N5 4.336 4.611 44.07 (0.1841, 0.224, 0.3880) 9.724 (0.4175, 0.3391, 0.3807) 71.150 (0.4302, 0.3734, 0.0046)

∞ 4.335 4.607 − − − − − −

R
B
F
-F
D
,
P

=
3

N1 4.333 4.609 44.07 (0.1831, 0.215, 0.3861) 9.755 (0.4173, 0.3412, 0.3863) 71.246 (0.4302, 0.3725, 0.0021)

N2 4.334 4.610 44.05 (0.1836, 0.222, 0.3868) 9.732 (0.4166, 0.3385, 0.3834) 71.225 (0.4303, 0.3737, 0.0071)

N3 4.335 4.611 44.01 (0.1840, 0.218, 0.3873) 9.715 (0.4169, 0.3366, 0.3800) 71.173 (0.4306, 0.3738, 0.0083)

N4 4.335 4.611 44.00 (0.1838, 0.222, 0.3875) 9.725 (0.4177, 0.3386, 0.3800) 71.146 (0.4299, 0.3725, 0.0004)

N5 4.336 4.612 43.98 (0.1840, 0.221, 0.3875) 9.719 (0.4177, 0.3392, 0.3800) 71.128 (0.4302, 0.3732, 0.0041)

∞ 4.336 4.612 − − − − − −

R
B
F
-F
D
,
P

=
4

N1 4.338 4.613 43.93 (0.1848, 0.217, 0.3871) 9.717 (0.4183, 0.3392, 0.3792) 71.076 (0.4300, 0.3729, 0.0020)

N2 4.337 4.613 43.93 (0.1835, 0.216, 0.3870) 9.702 (0.4178, 0.3395, 0.3823) 71.071 (0.4305, 0.3737, 0.0078)

N3 4.337 4.613 43.93 (0.1843, 0.219, 0.3874) 9.718 (0.4177, 0.3391, 0.3809) 71.065 (0.4300, 0.3724, 0.0006)

N4 4.337 4.613 43.93 (0.1841, 0.219, 0.3877) 9.700 (0.4176, 0.3391, 0.3805) 71.066 (0.4300, 0.3725, 0.0004)

N5 4.337 4.613 43.92 (0.1842, 0.222, 0.3874) 9.700 (0.4178, 0.3388, 0.3796) 71.070 (0.4303, 0.3734, 0.0046)

∞ 4.337 4.613 − − − − − −

F
lu
en
t

G1 4.363 4.644 44.02 (0.1840, 0.219, 0.3875) 9.719 (0.4176, 0.3391, 0.3797) 71.091 (0.4302, 0.3732, 0.0034)

G2 4.355 4.634 44.00 (0.1839, 0.219, 0.3873) 9.715 (0.4176, 0.3390, 0.3797) 71.096 (0.4304, 0.3732, 0.0043)

G3 4.350 4.628 43.97 (0.1840, 0.220, 0.3873) 9.708 (0.4176, 0.3390, 0.3799) 71.095 (0.4306, 0.3732, 0.0056)

G4 4.346 4.623 43.95 (0.1839, 0.220, 0.3874) 9.706 (0.4177, 0.3390, 0.3801) 71.072 (0.4304, 0.3735, 0.0052)

G5 4.344 4.620 43.94 (0.1840, 0.220, 0.3874) 9.704 (0.4176, 0.3390, 0.3801) 71.067 (0.4304, 0.3734, 0.0055)

G6 4.342 4.618 43.94 (0.1841, 0.220, 0.3873) 9.703 (0.4175, 0.3390, 0.3801) 71.068 (0.4304, 0.3735, 0.0055)

∞ 4.337 4.612 43.92 − 9.700 − − −
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Table 6.6: comparison with literature results for the differentially heated cavity
at Ra = 103.

Present results Others

P = 2 P = 3 P = 4 [104] [46] [81] [68] [109]

ID/Grid N5 N5 N5 813 323 913 > 413 503

Nu 1.0711 1.0711 1.0711 1.0700 1.085 1.076 1.0710 1.0700

Num 1.0885 1.0884 1.0885 1.0873 1.105 1.098 1.0884 1.0880

umax 3.5390 3.5393 3.5392 3.54356 - - 3.5227 -

x 0.0169 0.0167 0.0167 0.0166 - - 0.0000 -

y 5E-4 1E-5 1E-5 5E-12 - - 0.0000 -

z 0.3170 0.3170 0.3170 0.3169 - - 0.3044 -

vmax 0.1727 0.1726 0.1726 0.17331 - - 0.1726 -

x 1E-5 3E-6 5E-6 1E-11 - - 0.0000 -

−y 0.2524 0.2521 0.2521 0.2521 - - 0.2500 -

z 8E-5 1E-5 1E-5 4E-11 - - 0.0000 -

wmax 3.541 3.541 3.541 3.54469 - - 3.5167 -

−x 0.3233 0.3233 0.3234 0.3223 - - 0.3044 -

y 1E-3 6E-5 2E-4 4E-11 - - 0.0000 -

−z 0.0033 0.0033 0.0033 0.0032 - - 0.0000 -

umax,sp 3.5390 3.5393 3.5392 3.54356 - - 3.5227 -

x 0.0167 0.0167 0.0167 0.0166 - - 0.0000 -

z 0.3170 0.3170 0.3170 0.3169 - - 0.3044 -

wmax,sp 3.5414 3.5410 3.5409 3.54477 - - 3.5163 -

−x 0.3234 0.3233 0.3234 0.3233 - - 0.3044 -

−z 0.0035 0.0033 0.0033 0.0032 - - 0.0000 -

umax,z 3.5327 3.5329 3.5329 3.53875 3.501 3.517 - 3.5039

z 0.3167 0.3167 0.3167 0.3151 0.300 0.312 - 0.3081

wmax,x 3.5412 3.5407 3.5406 3.54185 3.517 3.544 - 3.5332

−x 0.3231 0.3231 0.3231 0.3147 0.3333 0.333 - 0.3301
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Table 6.7: comparison with literature results for the differentially heated cavity
at Ra = 104.

Present results Others

P = 2 P = 3 P = 4 [104] [46] [81] [68] [109] [108]

ID/Grid N5 N5 N5 813 623 61× 452 > 413 503 > 1203

Nu 2.0551 2.0549 2.0551 2.0542 2.100 2.085 2.0537 2.0535 2.0624

Num 2.2516 2.2514 2.2516 2.2505 2.302 2.304 2.2509 2.2478 -

umax 16.720 16.721 16.717 16.71986 - - 16.5312 - -

x 0.0195 0.0197 0.0197 0.0196 - - 0.0000 - -

y 2E-3 4E-3 5E-3 1E-11 - - 0.0000 - -

z 0.3249 0.3249 0.3250 0.3250 - - 0.3044 - -

vmax 2.158 2.158 2.157 2.15657 - - 2.1092 - -

x 0.3821 0.3823 0.3823 0.3823 - - 0.3967 - -

y 0.2826 0.2825 0.2826 0.2826 - - 0.3044 - -

z 0.3448 0.3448 0.3448 0.3447 - - 0.3536 - -

wmax 18.986 18.989 18.984 18.98359 - - 18.6971 - -

−x 0.3835 0.3834 0.3834 - - - 0.3967 - -

y 0.2268 0.2309 0.2304 0.2308 - - 0.1913 - -

−z 0.0212 0.0207 0.0206 0.0206 - - 0.0000 - -

umax,sp 16.720 16.722 16.718 16.71986 - - - - -

x 0.0196 0.0197 0.0197 0.0196 - - - - -

z 0.3250 0.3249 0.3250 0.3250 - - - - -

wmax,sp 18.688 18.688 18.684 18.68247 - - - - -

−x 0.3871 0.3870 0.3870 0.3870 - - - - -

−z 0.0226 0.0219 0.0221 0.0219 - - - - -

umax,z 16.698 16.699 16.695 16.72128 16.962 17.36 - 16.583 16.718

z 0.3260 0.3262 0.3262 0.3244 0.3167 0.3370 - 0.3201 0.3250

wmax,x 18.635 18.634 18.630 18.61615 18.976 18.62 - 18.689 18.672

−x 0.3842 0.3841 0.3841 0.3802 0.3833 0.387 - 0.3873 0.3823
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Table 6.8: comparison with literature results for the differentially heated cavity
at Ra = 105.

Present results Others

P = 2 P = 3 P = 4 [104] [46] [81] [68] [109] [108]

ID/Grid N5 N5 N5 813 623 91× 652 > 413 503 > 1203

Nu 4.336 4.336 4.337 4.3370 4.361 4.378 4.3329 4.3248 4.3665

Num 4.611 4.612 4.613 4.6127 4.646 4.658 4.6110 4.5995 -

umax 44.07 43.98 43.92 43.9037 - - 43.6877 - -

−x 0.1841 0.1840 0.1842 0.1841 - - 0.1913 - -

y 0.224 0.221 0.222 0.2203 - - 0.2500 - -

z 0.3880 0.3875 0.3874 0.3873 - - 0.3967 - -

vmax 9.724 9.719 9.700 9.6973 - - 9.3720 - -

x 0.4175 0.4177 0.4178 0.4175 - - 0.4330 - -

y 0.3391 0.3392 0.3388 0.3390 - - 0.3536 - -

z 0.3807 0.3800 0.3796 0.3801 - - 0.3967 - -

wmax 71.150 71.128 71.070 71.0680 - - 70.6267 - -

−x 0.4302 0.4302 0.4303 0.4304 - - 0.4330 - -

y 0.3734 0.3732 0.3734 0.3736 - - 0.3536 - -

−z 0.0046 0.0041 0.0046 0.00604 - - 0.0000 - -

umax,sp 43.18 43.12 43.08 43.0610 - 39.70 42.7846 - -

−x 0.1867 0.1864 0.1863 0.1865 - 0 0.1913 - -

z 0.3851 0.3848 0.3848 0.3848 - 0.364 0.3967 - -

wmax,sp 65.50 65.49 65.44 65.4362 - 63.95 65.3083 - -

−x 0.4369 0.4368 0.4369 0.4368 - 0.435 0.4330 - -

−z 0.0095 0.0121 0.0116 0.0100 - 0 0.0000 - -

umax,z 37.75 37.71 37.68 37.5612 39.116 39.70 - 37.997 37.731

z 0.3538 0.3536 0.3536 0.3535 0.3547 0.364 - 0.3507 0.3500

wmax,x 65.48 65.47 65.42 65.2113 65.842 63.95 - 65.069 65.655

−x 0.4361 0.4361 0.4361 0.4330 0.4353 0.435 - 0.4317 0.4323
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6.6 Differentially heated spherical shell

6.6.1 Domain, BCs and node distributions

T = 0

T = 1

R =
 0.5

1R
  

 =
 2.5

2

z

r

q

q

Figure 6.5: spherical shell domain.

Table 6.9: node distributions and Fluent
grids.

RBF-FD (3D) Fluent (2D)

ID Nodes ID Nr ×Nθ

N1 151260 G1 100× 200

N2 233800 G2 142× 284

N3 360973 G3 200× 400

N4 557582 G4 284× 568

N5 864261 G5 400× 800

G6 568× 1136

G7 800× 1600

G8 1136× 2272

The domain is a spherical shell enclosed between two concentric spheres
of radius R1 and R2, where the chosen ratio is R2/R1 = 5. The diameter
of the inner sphere is chosen as the reference length, therefore the radii of
the spheres in the actual computational domain are R1 = 0.5 and R2 = 2.5.
A schematic representation of the domain is visible in Figure 6.5, where the
cylindrical coordinates system (r, z) is centered at the center of the spheres with
z as the symmetry axis. The azimuthal angle in the horizontal plane is neither
shown nor employed since the problem is axisymmetric. The polar angle θ is
shown instead, since it will be employed to display the (axisymmetric) normal
derivatives over the spheres. The difference between the temperatures TH and TC
of the hot and cold spheres, respectively, is chosen as the reference temperature
scale ∆T = TH − TC , while TC is taken as the reference temperature.

The following BCs have been considered:

• velocity: no-slip walls (Dirichlet);

• fixed temperature T = 1 at the inner (hot) sphere and T = 0 at the outer
(cold) sphere.

Five node distributions N1, . . . , N5 have been generated with a number of
nodes N ranging from about 150,000 nodes to about 900,000 nodes, as reported
in Table 6.9. Uniform nodes distributions have been chosen once again in order
to make any comparison simpler. In Figure 6.6 it is possible to qualitatively see
how nodes are generated: in Figure 6.6a the overall geometry is visible together
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(a) (b)

Figure 6.6: example of a meshless node distribution for the spherical shell:
boundary distribution (a), enlarged view of an octant (b). Node distribution N1
(138172 internal nodes, 13088 boundary nodes).

with boundary nodes, shown in red. Figure 6.6b shows an enlarged view of an
octant of the spherical shell, allowing to also see the distribution of internal
nodes, shown in black.

6.6.2 Fluent reference solution

Because of the axial symmetry of the problem, an axisymmetric 2D model is
employed and therefore the computational domain consists of half of a 2D annulus.
In order to obtain very accurate and reliable reference results, structured grids
with quadrilateral cells with aspect ratio close to 1 are employed. Eight grids
G1, . . . , G8 are used, whose number of cells along the radial (Nr) and polar (Nθ)
directions are reported in Table 6.9. In order to minimize numerical diffusion,
central difference schemes are used for both the momentum and energy equations.
Computations are performed in double precision and the equations are solved to
machine precision, i.e., the relative residuals reached the machine lower bound.

6.6.3 Verification of the RBF-FD discretization

The verification on this geometry has been performed in exactly the same way
as presented for the cubic cavity, subsection 6.5.3. The results are quite similar
to those shown in Figure 6.3 and therefore they are not reported.

6.6.4 Results

The spherical shell problem is solved for three values of the Ra number: Ra = 100,
Ra = 500 and Ra = 1000. In Figure 6.7 the isothermal curves are shown on
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Ra = 100 Ra = 500 Ra = 1000

T

Figure 6.7: isothermal curves (top) and temperature distributions over the node
distribution N1 (bottom) for the spherical shell problem.

the 2D axisymmetric domain, while the corresponding 3D meshless temperature
fields, rendered over one upper octant of the spherical shell, are also shown in
the same figure.

Even though the problem is axisymmetric, the equations are solved on the
whole 3D domain, using Cartesian components, in order to provide a deeper
comprehension of the accuracy of the RBF-FD approach in 3D. Similarly to the
case of the cubic cavity, for each value of the Ra number, five node distributions
and three different values of the polynomial degree have been used, giving a
total of 45 simulations. The steady state solutions for Ra = 100, Ra = 500
and Ra = 1000 are described by using some meaningful quantities reported in
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Table 6.10: results for the spherical shell, Ra = 100.

ID Nu ur,max (r, z) uz,max (r, z) −uz,min (r, z)

P
=

2

N1 2.6859 1.1301 (1.1139, 1.5991) 2.790 (0.7414, 0.200) 1.1179 (1.936, 0.569)

N2 2.6880 1.1282 (1.1166, 1.5975) 2.785 (0.7498, 0.187) 1.1168 (1.931, 0.571)

N3 2.6881 1.1230 (1.1178, 1.5961) 2.770 (0.7524, 0.170) 1.1137 (1.937, 0.552)

N4 2.6890 1.1228 (1.1172, 1.5969) 2.764 (0.7537, 0.182) 1.1132 (1.937, 0.553)

N5 2.6885 1.1200 (1.1186, 1.5960) 2.758 (0.7551, 0.178) 1.1115 (1.936, 0.558)

R
B
F
-F
D

(3
D
)

P
=

3

N1 2.6874 1.1214 (1.1168, 1.5968) 2.775 (0.7574, 0.172) 1.1126 (1.938, 0.548)

N2 2.6874 1.1210 (1.1181, 1.5955) 2.766 (0.7549, 0.177) 1.1120 (1.943, 0.562)

N3 2.6878 1.1194 (1.1181, 1.5958) 2.761 (0.7558, 0.179) 1.1113 (1.937, 0.555)

N4 2.6880 1.1188 (1.1184, 1.5958) 2.757 (0.7555, 0.176) 1.1110 (1.936, 0.565)

N5 2.6879 1.1183 (1.1185, 1.5957) 2.756 (0.7559, 0.174) 1.1108 (1.938, 0.562)

P
=

4

N1 2.6861 1.1180 (1.1185, 1.5958) 2.763 (0.7551, 0.177) 1.1103 (1.936, 0.564)

N2 2.6873 1.1183 (1.1184, 1.5958) 2.761 (0.7550, 0.177) 1.1107 (1.942, 0.551)

N3 2.6874 1.1180 (1.1184, 1.5959) 2.757 (0.7561, 0.174) 1.1104 (1.935, 0.568)

N4 2.6877 1.1181 (1.1185, 1.5958) 2.755 (0.7560, 0.176) 1.1104 (1.938, 0.565)

N5 2.6879 1.1180 (1.1185, 1.5959) 2.755 (0.7560, 0.175) 1.1103 (1.939, 0.559)

F
lu
en
t
(2
D
)

G1 2.688101 1.11883 (1.1185, 1.5963) 2.75505 (0.75604, 0.1766) 1.11052 (1.9397, 0.5577)

G2 2.688143 1.11859 (1.1191, 1.5958) 2.75448 (0.75602, 0.1762) 1.11048 (1.9396, 0.5579)

G3 2.688163 1.11841 (1.1186, 1.5960) 2.75416 (0.75601, 0.1764) 1.11044 (1.9395, 0.5582)

G4 2.688173 1.11832 (1.1180, 1.5954) 2.75400 (0.75603, 0.1763) 1.11044 (1.9396, 0.5580)

G5 2.688178 1.11828 (1.1185, 1.5959) 2.75392 (0.75603, 0.1763) 1.11043 (1.9395, 0.5583)

G6 2.688181 1.11826 (1.1185, 1.5959) 2.75388 (0.75600, 0.1763) 1.11043 (1.9395, 0.5583)

G7 2.688182 1.11825 (1.1185, 1.5959) 2.75386 (0.75603, 0.1762) 1.11043 (1.9395, 0.5583)

G8 2.688183 1.11825 (1.1185, 1.5959) 2.75385 (0.75602, 0.1763) 1.11043 (1.9395, 0.5581)

∞ 2.688184 1.11824 − 2.75384 − 1.11043 −

Tables 6.10, 6.11 and 6.12, respectively. These quantities are: the overall Nusselt
number Nu, the maximum values of the components of the velocity in cylindrical
coordinates, i.e., the radial ur and the vertical uz components, the minimum
value of the vertical component of the velocity and the corresponding locations.
Fluent results, obtained for the 2D axisymmetric case, are also shown in the
same tables. The extrapolated results for the Fluent simulations are reported
in the lines marked by the ∞ symbol and they are obtained by using the same
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Table 6.11: results for the spherical shell, Ra = 500.

ID Nu ur,max (r, z) uz,max (r, z) −uz,min (r, z)
P

=
2

N1 3.5708 5.9301 (0.9779, 1.9344) 12.353 (2E-2, 1.4019) 4.3047 (1.684, 1.267)

N2 3.5665 5.9168 (0.9778, 1.9301) 12.342 (8E-3, 1.4014) 4.2951 (1.700, 1.255)

N3 3.5627 5.8876 (0.9801, 1.9326) 12.270 (4E-3, 1.4033) 4.2836 (1.700, 1.247)

N4 3.5626 5.8894 (0.9805, 1.9318) 12.264 (1E-3, 1.4029) 4.2829 (1.694, 1.252)

N5 3.5593 5.8762 (0.9810, 1.9314) 12.228 (2E-3, 1.4037) 4.2752 (1.700, 1.242)

R
B
F
-F
D

(3
D
)

P
=

3

N1 3.5574 5.8933 (0.9779, 1.9322) 12.271 (4E-3, 1.4008) 4.2814 (1.686, 1.266)

N2 3.5544 5.8838 (0.9805, 1.9305) 12.251 (1E-3, 1.4021) 4.2769 (1.703, 1.242)

N3 3.5549 5.8749 (0.9798, 1.9312) 12.227 (9E-4, 1.4026) 4.2740 (1.692, 1.265)

N4 3.5554 5.8709 (0.9810, 1.9306) 12.218 (2E-3, 1.4031) 4.2727 (1.694, 1.256)

N5 3.5544 5.8680 (0.9807, 1.9309) 12.207 (9E-4, 1.4034) 4.2720 (1.694, 1.253)

P
=

4

N1 3.5479 5.8622 (0.9815, 1.9308) 12.210 (1E-3, 1.4033) 4.2680 (1.697, 1.253)

N2 3.5521 5.8655 (0.9811, 1.9308) 12.196 (1E-3, 1.4039) 4.2702 (1.703, 1.242)

N3 3.5521 5.8640 (0.9810, 1.9309) 12.196 (3E-3, 1.4037) 4.2692 (1.700, 1.248)

N4 3.5531 5.8653 (0.9815, 1.9307) 12.202 (3E-4, 1.4037) 4.2694 (1.697, 1.252)

N5 3.5537 5.8653 (0.9809, 1.9311) 12.201 (7E-4, 1.4037) 4.2696 (1.690, 1.261)

F
lu
en
t
(2
D
)

G1 3.55507 5.8656 (0.9812, 1.9314) 12.2148 (0, 1.4033) 4.26972 (1.6946, 1.2533)

G2 3.55500 5.8649 (0.9811, 1.9311) 12.2107 (0, 1.4034) 4.27013 (1.6961, 1.2527)

G3 3.55496 5.8656 (0.9812, 1.9311) 12.2086 (0, 1.4035) 4.26996 (1.6958, 1.2522)

G4 3.55494 5.8657 (0.9809, 1.9310) 12.2076 (0, 1.4035) 4.26995 (1.6959, 1.2517)

G5 3.55494 5.8658 (0.9811, 1.9310) 12.2071 (0, 1.4036) 4.26986 (1.6955, 1.2526)

G6 3.55493 5.8659 (0.9810, 1.9310) 12.2068 (0, 1.4036) 4.26987 (1.6954, 1.2529)

G7 3.55493 5.8659 (0.9814, 1.9306) 12.2067 (0, 1.4036) 4.26987 (1.6957, 1.2520)

G8 3.55493 5.8660 (0.9810, 1.9310) 12.2066 (0, 1.4036) 4.26987 (1.6955, 1.2526)

∞ 3.55493 5.8660 − 12.2066 − 4.26987 −

technique presented in subsection 6.5.4.
Similarly to the differentially heated cavity, comparisons with Fluent results

reveal an excellent agreement. Also in this case, within the considered range
of the Ra number, it is observed that the higher the polynomial degree P , the
faster the values converge towards the reference ones, the case with P = 4 being
particularly accurate even for coarse node distributions.



6.6. DIFFERENTIALLY HEATED SPHERICAL SHELL 125

Table 6.12: results for the spherical shell, Ra = 1000.

ID Nu ur,max (r, z) uz,max (r, z) −uz,min (r, z)

P
=

2

N1 4.073 10.324 (0.9155, 2.0358) 20.599 (1E-2, 1.4619) 6.8566 (1.618, 1.437)

N2 4.061 10.292 (0.9267, 2.0307) 20.555 (6E-3, 1.4588) 6.8334 (1.599, 1.456)

N3 4.055 10.240 (0.9235, 2.0329) 20.427 (9E-4, 1.4607) 6.8131 (1.607, 1.433)

N4 4.055 10.247 (0.9277, 2.0295) 20.412 (1E-3, 1.4605) 6.8129 (1.608, 1.440)

N5 4.049 10.214 (0.9258, 2.0297) 20.349 (3E-3, 1.4607) 6.7993 (1.612, 1.434)

R
B
F
-F
D

(3
D
)

P
=

3

N1 4.045 10.239 (0.9298, 2.0264) 20.415 (4E-3, 1.4584) 6.8113 (1.600, 1.440)

N2 4.039 10.233 (0.9255, 2.0289) 20.377 (8E-4, 1.4577) 6.7998 (1.605, 1.444)

N3 4.041 10.212 (0.9276, 2.0277) 20.338 (4E-4, 1.4596) 6.7964 (1.608, 1.433)

N4 4.042 10.203 (0.9288, 2.0273) 20.325 (2E-3, 1.4596) 6.7943 (1.613, 1.431)

N5 4.040 10.197 (0.9291, 2.0269) 20.306 (9E-4, 1.4601) 6.7926 (1.608, 1.439)

P
=

4

N1 4.029 10.185 (0.9278, 2.0282) 20.302 (1E-3, 1.4606) 6.7829 (1.606, 1.441)

N2 4.036 10.186 (0.9296, 2.0269) 20.283 (1E-3, 1.4604) 6.7888 (1.621, 1.420)

N3 4.037 10.187 (0.9288, 2.0276) 20.285 (2E-3, 1.4604) 6.7874 (1.618, 1.426)

N4 4.038 10.190 (0.9299, 2.0270) 20.295 (1E-4, 1.4604) 6.7869 (1.615, 1.432)

N5 4.039 10.191 (0.9296, 2.0271) 20.295 (8E-4, 1.4604) 6.7881 (1.613, 1.434)

F
lu
en
t
(2
D
)

G1 4.04186 10.1832 (0.9331, 2.0212) 20.3223 (0, 1.4603) 6.7890 (1.6026, 1.4360)

G2 4.04167 10.1886 (0.9276, 2.0283) 20.3137 (0, 1.4604) 6.7895 (1.6112, 1.4335)

G3 4.04158 10.1899 (0.9288, 2.0276) 20.3095 (0, 1.4603) 6.7882 (1.6116, 1.4329)

G4 4.04154 10.1913 (0.9285, 2.0276) 20.3074 (0, 1.4603) 6.7886 (1.6119, 1.4322)

G5 4.04151 10.1916 (0.9290, 2.0275) 20.3063 (0, 1.4603) 6.7883 (1.6122, 1.4314)

G6 4.04150 10.1919 (0.9289, 2.0275) 20.3058 (0, 1.4603) 6.7884 (1.6117, 1.4324)

G7 4.04150 10.1920 (0.9290, 2.0275) 20.3056 (0, 1.4603) 6.7883 (1.6116, 1.4324)

G8 4.04149 10.1921 (0.9289, 2.0275) 20.3054 (0, 1.4603) 6.7883 (1.6115, 1.4326)

∞ 4.04149 10.1921 − 20.3053 − 6.7883 −

Again, for the highest Ra value, i.e., Ra = 1000, Table 6.12, a slower
convergence of the flow quantities emerges, although less evident than the cubic
cavity case. This is once again due to the thin boundary layer, occurring at
the inner sphere, that has not been fully resolved properly by the employed
meshless discretizations, which are based on uniform node distributions for ease
of comparison. Locally refined node distributions with smaller spacing around
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the inner sphere should be employed for accurate RBF-FD simulations at higher
Ra numbers.

Additional results can be found in Appendix B.2, where Figures B.5, B.6,
B.7, B.8, B.9 and B.10 display the relative errors on different meaningful flow
quantities with respect to a reference solution, for each combination of P and
Ra.

6.7 Conclusions

In this chapter some verification tests have been performed in order to assess the
accuracy and reliability of the RBF-FD method stabilized against ill-conditioning
issues due to Neumann BC. Attained results are compared against reference
solutions, which in turn are either gathered from the literature or obtained using
a commercial CFD solver.

In order to provide the reader with a clear and quantitative picture of the
performances of the numerical method under investigation, the comparison is
done in terms of meaningful flow quantities, e.g., Nusselt number, maximum
of velocity components and their corresponding locations, and also in terms
of relative error of flow variables along chosen locations with respect to the
reference ones.

Excellent agreement with reference solutions is consistently achieved for each
of the presented cases, thus proving the reliability and accuracy of the RBF-FD
method for the considered type of problems. The presented results are also
meant to allow further comparisons with other numerical methods and provide
support for further developments of similar models.



Chapter 7

RBF-HFD method

7.1 Generalized Hermite Interpolation

The RBF-FD solution method was developed from the standard RBF interpola-
tion theory, where a field u was known at a set of points xi. The availability of
data u = {u(x1), . . . , u(xN )} was given for granted and from the very beginning
a basis of Radial Functions {Φ(·,x1), . . . ,Φ(·,xN )} was adopted in order to
define the standard RBF interpolant:

uh(·) =
N∑
j=1

αjΦ(·,xj) (7.1)

which satisfies collocation conditions for interpolation uh(xi) = u(xi) for all
i = 1, . . . , N . In (7.1) (·) is the placeholder for the argument of the function:
uh(·) means that uh takes one argument which remains undefined, i.e. uh(·) is
not evaluated. The notation uh(x) = δxu

h(·) indicates instead that uh is being
evaluated at x by means of the application of a point-evaluation functional and
thus takes the corresponding real value.

When the theory of interpolation is applied to the solution of PDEs, point-
evaluation functionals are not the only operators acting on uh. In presence of
Neumann BC, for instance, the evaluation of the normal derivative at a certain
point x can be interpreted as the successive application of two operators:

∂

∂n
uh(x) =

(
δx ◦

∂

∂n

)
uh(·) (7.2)

In the standard interpolation scheme the basis made of radial functions is
obtained by applying a number of point evaluation functionals to the second
argument of the kernel function:

Φ(·,xj) = δ2,xj
Φ(·, ·) (7.3)

where the subscript 2 in δ2,xj
indicates that the functional is acting on the second

argument. As a further development, a more general basis could theoretically

127
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be constructed by applying a different set of functionals, other than simple
point evaluations, to the same kernel function Φ(·, ·). And this is precisely what
happens in the so-called Generalized Hermite Interpolation.

Suppose that, instead of the set {u(x1), . . . , u(xN )}, the function u which
must be interpolated is given along with a linearly independent set of continuous
linear functionals Λ = {λ1, . . . , λN}. For instance, λj could denote point evalua-
tion at xj : δxj

, or it could denote a combination of the evaluation functional
with some derivative operator: δxj

◦Dα.
An interpolant uh is now required to satisfy the Hermite interpolation condi-

tions [27]:

λju = λju
h j = 1, . . . , N (7.4)

If the standard basis of Radial Functions {Φ(·,x1), . . . ,Φ(·,xN )} was used, the
enforcement of Hermite Interpolation conditions (7.4) would produce a non
symmetric matrix:

Bold =


λ1Φ(x1,x1) . . . λ1Φ(x1,xN )

...
. . .

...

λNΦ(xN ,x1) . . . λNΦ(xN ,xN )

 (7.5)

Bold does not satisfy in general the usual conditions for positive definiteness
or non-singularity and therefore does not guarantee the well-posedness of the
interpolation problem associated with (7.4). A similar case happened when
dealing with Neumann BC, where functional λj = δxj ◦ ∂/∂nj for some j
associated with a boundary node was present in the corresponding row of Bold.

In order to avoid the singularity of matrix Bold the basis must be modified as
follows: for each λj the usual function Φ(·,xj) is replaced with λ2,jΦ(·, ·). The
resulting basis {λ2,1Φ(·, ·), . . . , λ2,NΦ(·, ·)} leverages the flexibility offered by the
fact that each Φ(·, ·) is a kernel which can be considered as a function of both
arguments. The functionals λ2,i therefore act on Φ(·, ·) considered as a function
of the second argument and the resulting basis incorporates a dependency on
the particular interpolation conditions (7.4).

The new iterpolant uh, defined according to the Generalized Hermite Inter-
polation scheme, is:

uh(·) =
N∑
j=1

αjλ2,jΦ(·, ·) (7.6)

By enforcing once again Hermite conditions (7.4), we obtain the following
interpolation matrix:

BH =


λ1,1λ2,1Φ(·, ·) . . . λ1,1λ2,NΦ(·, ·)

...
. . .

...

λ1,Nλ2,1Φ(·, ·) . . . λ1,Nλ2,NΦ(·, ·)

 (7.7)
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Matrix BH is symmetric if λ1,j = λ2,j for j = 1, . . . , N and the associated
matrix form for conditions (7.4) is:

BH


α1

...

αN

 =


λ1u(·)

...

λNu(·)

 (7.8)

The possibility of using multiquadric basis functions for Hermite interpola-
tions was first mentioned by R. Hardy in 1975 [50, 27]. It is in 1992 with [125],
however, that the research on the topic gains the much deserved attention, in
this article the authors suppose that only one interpolation condition can be
enforced per data point, in the form of some linear combination of function value
and derivatives [27]. This limitation is surpassed with further generalizations
presented in two researches published in 1994: [98] and [75] and the Generalized
Hermite interpolation problem was proven to be well-posed. The adoption of
Hermite formulation, also called symmetric is now widespread and comparison
with the traditional unsymmetric formulation are available [59, 82, 27].

From the perspective of a practitioner, the key point is that matrix BH
is symmetric and positive definite when the associated basic function φ is
strictly positive definite and operators λj are linearly independent. Furthermore,
polynomial augmentation is possible and the associated matrix is positive definite
for conditionally positive definite functions. In practice, the adoption of the
Hermite scheme allows the stable solution of a much larger set of problems.

The adoption of polynomial augmentation requires that operators λj are
considered in the orthogonality conditions, the resulting interpolant uh is:

uh(·) =
N∑
j=1

αjλ2,jΦ(·, ·) +
M∑
k=1

βkpk(·) (7.9)

with the conditions:

N∑
j=1

αjλjpk(·) = 0, k = 1 . . . ,M (7.10)

Equation (7.8) then becomes:BH PH

PH
T 0


︸ ︷︷ ︸

M

α
β

 =

Λu

0

 (7.11)

where Λu = {λ1u, . . . , λNu} and block matrix PH associated with the polyno-
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mial augmentation is:

PH =


λ1p1(·) . . . λ1pM (·)

...
. . .

...

λNp1(·) . . . λNpM (·)

 (7.12)

We remark that when Λ = {δx1
, . . . , δxN

}, the Generalized Hermite Interpo-
lation reduces to the traditional RBF Interpolation.

7.2 Global Symmetric formulation

The Hermite Interpolation scheme can be adopted in place of the standard
Kansa’s approach [27] and its main advantage lies in the fact that it yields
symmetric non-singular matrices.

Suppose the method is applied to the solution of problem (4.3) of page 55.
In order to enforce appropriate boundary conditions the set of colloca-

tion nodes X = {x1, . . . ,xN} is split as usual into that of inner nodes XI =
{x1, . . . ,xNI

} and that of boundary nodes XB = {xNJ
, . . . ,xN}, with NJ =

NI + 1.
Collocation conditions are:

Luh(xi) = Lu(xi) if xi ∈ XI

Buh(xi) = g(xi) if xi ∈ XB

(7.13)

where notation Luh(xi) is used for simplicity instead of the more rigorous
(δxi ◦ L)uh(·).

While in the non-symmetric framework uh is independent of the linear
operators L and B, these are now incorporated in the augmented RBF basis:

uh(·) =
NI∑
j=1

αjL2Φ(·,xj) +

N∑
j=NJ

αjB2Φ(·,xj) +

M∑
k=1

βkpk(·) (7.14)

along with orthogonality conditions required by the polynomial augmentation:

NI∑
j=1

αjLpk(xj) +

N∑
j=NJ

αjBpk(xj) = 0, k = 1 . . . ,M (7.15)

The resulting global linear system is:
L1L2ΦI,I L1B2ΦI,B LP I

B1L2ΦB,I B1B2ΦB,B BPB

LP T
I BP T

B 0



αI

αB

β

 =


LuI
BuB
0

 (7.16)
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where subscripts I and B indicate the sets of node coordinates which are used as
first or second argument, for instance, L1L2ΦI,I is the block matrix obtained
when L1L2Φ(·, ·) is evaluated at all combinations of internal nodes. Contrary
to what happens in equation (4.13) there is no need to solve a dual problem in
order to estimate the discretization coefficients cI and cB because the solution
is already uniquely defined by coefficient vectors αI and αB. While this might
be advantageous in a global scheme, where local stencils are not adopted, it
does not constitute an advantage when a local discretization scheme is adopted
in practice. Available literature resources suggest that, aside from the already
mentioned advantage in making the interpolation problem well-posed, there
seem to be no clear-cut difference in terms of accuracy between stable solutions
provided by the two methods [59, 82, 27].

We also remark that, if additional information were available at the nodes,
the Generalized Hermite Interpolation would allow the enforcement of multiple
conditions at each node. For instance, δxj ◦ L and δxj ◦ F , even if evaluated at
the same point xj , might very well be linearly independent and therefore lead
to different interpolation conditions. This in turn would translate into having
multiples lines and columns of matrix MH referred to the same node xj .

Finally, the new possibilities offered by the Hermite construction of the RBF
basis are at the core of the so-called RBF-HFD method [35], which is the main
topic of the followin section.

7.3 RBF-HFD Formulation

As outlined in the case of the RBF-FD scheme in chapter 4, a big improvement
in computational efficiency is achieved by adopting a local formulation. The
RBF-FD method allowed to achieve accurate results in presence of Dirichlet
boundary conditions but lacked stability against ill-conditioning issues due to
specific BC, as explained in chapters 4 and 5. The stabilization methods proposed
in chapter 5 were found to be successful in the specific case of Neumann BC but
at the cost of adding some additional complications to the solution method.

On the other side, the global Hermite Interpolation scheme described in
the previous section is not affected by the same ill-conditioning issues but does
not lend itself as well to a local formulation because the intermediate finite
difference discretization coefficients c are not calculated. This reduces somehow
the flexibility of the method when more complex boundary value problems are
being solved iteratively and complicates the implementation of a numerical solver
for engineering applications.

In the attempt of combining the strength of both approaches, the Hermite
scheme is adopted at a local level within the RBF-FD framework, thus leading to
a hybrid method which may be called RBF-HFD (Radial Basis Functions-Hermite
Finite Difference).

Here follows a step-by-step explanation of the method, in order to make
the reading simpler and avoiding excessive referencing, some statements and
equations will be a repetition of what is written in chapter 4.
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The problem to be solved is once again:{
Lu = f in Ω

Bu = g on ∂Ω
(7.17)

We introduce local stencils as for the RBF-FD method: a stencil of m nodes
Xi = {x1, . . . ,xm} can be constructed around each internal node xi by picking
them nearest neighbors. Suppose that within Xi, the nodes are ordered as for the
RBF-FD case: the first mI are internal giving the set Xi,I = {x1, . . . ,xmI

} and
the following mB are boundary giving Xi,B = {xmJ

, . . . ,xm} with mJ = mI+1.

7.3.1 Minimal Formulation

In the Generalized Hermite Interpolation scheme multiple linear functionals
can be obtained by evaluating at the same point different linear operators. As
long as the continuous linear functionals λi are linearly independent, additional
information can be added to the interpolation without necessarily increasing
the number of nodes. For instance, linear combinations of multiple derivatives
of u at the surrounding nodes xj ̸= xi can be employed [112]. In its minimal
formulation, however, the properties of the Generalized Hermite Interpolation
are only used to ensure the non-singularity of the local interpolation system. In
the present section the minimal formulation is presented, whereas a more generic
implementation of the Hermite scheme is discussed in the next one.

Within each stencil Xi, the approximate solution uh is defined in order to
satisfy the following Hermite Interpolation conditions at each xj ∈ Xi:

uh(xj) = u(xj) if xj ∈ Xi,I

Buh(xj) = Bu(xj) if xj ∈ Xi,B

(7.18)

Therefore, according to the theory of Hermite interpolation, when uh is evaluated
at the stencil center xi it takes the form:

uh(xi) =

mI∑
j=1

Φ(xi,xj) +

m∑
j=mJ

B2Φ(xi,xj) +

M∑
k=1

pk(xi) (7.19)

where αI = {α1, . . . , αmI
} and αB = {αmJ

, . . . , αm} are restricted to satisfy:

mI∑
j=1

αjpk(xj) +

m∑
j=mJ

αjBpk(xj) = 0, k = 1, . . . ,M (7.20)

We remark that conditions 7.18 are exactly the same as the usual RBF-
FD method but the local interpolant uh is defined according to the theory of
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Generalized Hermite Interpolation, the resulting local system is:
ΦI,I B2ΦI,B PI

B1ΦB,I B1B2ΦB,B BPB
PI

T BPBT 0


︸ ︷︷ ︸

MBC


αI

αB

β

 =


uI

g

0

 (7.21)

Matrix MBC is now symmetric and positive definite with an appropriate RBF
Φ(·, ·), as a consequence system (7.21) is well posed regardless of the boundary
condition.

Application of linear operator δxi ◦ L to the interpolant uh, defined in (7.19),
yields:

Luh(xi) =

mI∑
j=1

αjL1Φ(xi,xj) +

m∑
j=mJ

αjL1B2Φ(xi,xj) +

M∑
k=1

βkLpk(xi)

=
(
αI αB β

)
L1Φ(xi,Xi,I)

L1B2Φ(xi,Xi,B)

Lp(xi)


(7.22)

Coefficient vectors αI , αB and β can then be substituted from equation
(7.21) inside equation (7.22) giving:

Luh(xi) =
(
uI g 0

)
MBC

−T


L1Φ(xi,Xi,I)

L1B2Φ(xi,Xi,B)

Lp(xi)

 (7.23)

As for the RBF-FD method, it follows that Luh(xi) can be written in a finite
difference formulation as follows:

Luh(xi) = cI(xi)
TuI + cB(xi)

Tg

=

mI∑
j=1

cj(xi)u(xj) +

m∑
j=mJ

cj(xi)g(xj)
(7.24)

where the coefficient vectors cI(xi) ∈ RmI and cB(xi) ∈ RmB are defined as
the solution of the local problem:

MBC
T


cI(xi)

cB(xi)

cp(xi)

 =


L1Φ(xi,Xi,I)

L1B2Φ(xi,Xi,B)

Lp(xi)

 (7.25)
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The discretization proceeds as the local interpolant uh is required to satisfy
the collocation condition at all internal nodes xi ∈ XI , each one considered as
the center of an associated stencil Xi:

Luh(xi) = Lu(xi) = f(xi) if xi ∈ XI (7.26)

yielding the following sparse linear system, which has the same form as that of
equation (7.27) obtained for the RBF-FD method:

CI


uh(x1)

...

uh(xNI
)

 =


f(x1)

...

f(xNI
)

−CB

g(xNJ

)
...

g(xN )

 (7.27)

where matrices CI and CB are formed by row vectors cI(xi)
T and cB(xi)

T

respectively, found by solving equation (7.25) at each of the NI stencil centers
xi ∈ XI .

CI =


c1(x1) . . . cNI

(x1)
...

. . .
...

c1(xNI
) . . . cNI

(xNI
)

 ∈ RNI ,NI

CB =


cNJ

(x1) . . . cN (x1)
...

. . .
...

cNJ
(xNI

) . . . cN (xNI
)

 ∈ RNI ,NB

(7.28)

Equation (7.27) can finally be solved using an iterative program to find the
unknown values {uh(x1), . . . , u

h(xNI
)}.

The major advantage obtained with the RBF-HFD method is the resolution
of any ill-conditining due to the presence of boundary conditions associated with
differential operators B different from the identity operator which is used for
Dirichlet BC.

The additional computational cost is negligible since none of the linear
systems changes in size and the construction of the new local interpolation
matrix MBC does not require any additional information. Furthermore, the
flexibility of the Finite Difference formulation of equation (7.24) allows the
combination of multiple linear operators when the final matrices CI and CB
are assembled.

We remark that the RBF-HFD method is not immune to ill-conditioning
issues related to the flattness of the RBF basis function and therefore the
adoption of stationary interpolation (4.21) is still recommended when systems
(7.25) are solved directly. This in turn implies that the order of accuracy is once
again given by the degree of the polynomial augmentation, as for the RBF-FD
method.
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Figures 7.1 and 7.2 depict the convergence curves achieved when the Poisson
Equation is solved on the domain of Figure 5.12 with all Neumann BC. In order
to assess the accuracy allowed by the different approaches toward stabilization
the analytic function u(x, y) = sin(ωx) sin(ωy) was used as the exact solution
with ω = 4π. Discretization and solution error are calculated respectively as:

Discretization error =
∥ △h uI −△uI∥2
∥ △ uI∥2

Solution error =
∥uhI − uI∥2
∥u∥2

(7.29)

where △huI = CIuI + CB(∂uB/∂n), uI being the vector of u at the inner
nodes {u(x1), . . . , u(xN )}T and (∂uB/∂n) the vector of boundary conditions at
all boundary nodes. Results were attained using stationary interpolation with
ε0 = 0.4 in (4.21), the number of nodes included in each stencil is m = 2M , M
being the length of the polynomial basis. The node placement was achieved with
200 iterations of node-repel refinement with uniform spacing function s(x), the
slight variation in N in the case of projected nodes is due to the implementation
of a node-refinement strategy which generates additional boundary nodes in
order to achieve the desired placement for arbitrarily complex 2D geometries.
Even if the problem is solved also in the case of standard RBF-FD, because of
Neumann BC solution errors are higher than expected and visible oscillations
are present in the convergence curves. All stabilization techniques succeed
in reducing errors due to ill-conditioning due to Neumann BC, with a slight
advantage of the methods examined in Figure 7.2. The Minimal RBF-HFD is
however the simplest approach and the most efficient having the exact same
computational cost as the standard RBF-FD method.

7.4 Implicit/Compact Scheme formulation

7.4.1 Differences with Minimal RBF-HFD

In the case of the minimal formulation, given a stencil Xi, the interpolant (7.19)
was adopted in combination with interpolation conditions (7.18). This allows
the stabilization of with respect to boundary conditions but only requires uh

to satisfy δxj
uh = δxj

u at nodes xj ∈ Xi,I . In order to improve accuracy, the
polynomial degree in (7.19) can be increased, however, for Xi to be unisolvent its
size must increase rapidly, to the point that computational efficiency and memory
requirements soon become unacceptable. To circumvent this problem, in [112]
the authors propose a generalization to the compact FD formulas introduced
by Collatz [18] and later developed by Lele [60]. The basic idea is to keep the
stencil size fixed and to also include in the FD formula a linear combination of
derivatives of u at the surrounding nodes, other implementation details on this
method within the RBF-HFD framework can be found in [22]. In [112, 22] the
resulting method, which involves the inclusion of other differential operators in
the interpolant uh, is simply called RBF-HFD. In accordance with this practice,
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Figure 7.1: convergence curves for discretization error and solution error of the Poisson Equation on the
geometry of Figure 5.12 for non stabilized RBF-FD method (top row) and for RBF-FD stabilized with
Approach 1 (cfr. 5.4.1)
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Figure 7.2: convergence curves for discretization error and solution error of the Poisson Equation on the
geometry of Figure 5.12 for RBF-FD stabilized with Approach 2 (cfr. 5.4.1) and for Minimal RBF-HFD
formulation
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we will keep this naming and use the RBF-HFD acronym regardless of the type
of functionals included in uh. When required by the context, however, in order
to distinguish it from the minimal formulation stated above, we will refer to this
enhanced scheme as implicit or compact scheme RBF-HFD formulation.

Here follows a presentation of the Compact scheme formulation where operator
F is included in the interpolant uh.

Suppose that the new uh is required to satisfy the following conditions:

uh(xj) = u(xj) if xj ∈ Xi,I

Fuh(xj) = Fu(xj) if xj ∈ Xi,C

Buh(xj) = Bu(xj) if xj ∈ Xi,B

(7.30)

where Xi,C is a set of nodes placed in the vicinity of xi with xi /∈ Xi,C . Xi,C

does not need to be a subset of the stencil Xi, in the sense that it might even
include nodes picked from a different node cloud, like in [22]. That said, in order
to avoid any additional notation, we will suppose that Xi,C ⊆ Xi \ xi.

The matching Hermite interpolant uh needs to be:

uh(x) =

mI∑
j=1

αjΦ(x,xj) +

m∑
j=mJ

αjB2Φ(x,xj)

+

mq∑
q=1

γqF2Φ(x,xq) +

M∑
k=1

βkpk(x)

(7.31)

with the usual orthogonality conditions:

mI∑
j=1

αjpk(xj) +

m∑
j=mJ

αjBpk(xj) +

mq∑
q=1

γqFpk(xq) = 0, k = 1, . . . ,M (7.32)

And the resulting linear system is:
ΦI,I B2ΦI,B F2ΦI,C PI

B1ΦB,I B1B2ΦB,B B1F2ΦB,C BPB
F1ΦC,I F1B2ΦC,B F1F2ΦC,C FPC
PI

T BPBT FPCT 0


︸ ︷︷ ︸

MCS


αI

αB

γ

β

 =


uI

BuB
FuC
0

 (7.33)

Matrix MCS at the left-hand side is usually symmetric and non singular, when
this is the case, the solution can proceed as explained for the minimal formulation.
When the final sparse linear system like (7.27) is built, additional equations will
be required, thus partially defeating the computational advantage offered by the
use of smaller stencils. This issue can be avoided only in specific circumstances,
like the one encountered in the following section.

The main advantage offered by the compact scheme approach lies in the
increase resolution in the reconstruction of the true partial differential operators.
This is the topic of the following section.
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7.4.2 Experimental Results

In this section some results attained using the RBF-HFD method are reported,
they can also be found in the master’s thesis [1].

The problem of interest is the Poisson Equation with Dirichlet boundary
conditions: {

△u = f in Ω

u = g on ∂Ω
(7.34)

where f and g are known functions. The Multiquadric (MQ) basic function was
used, cfr. 2.1. Most results were achieved using stationary interpolation, where
ε is adjusted as a function of the spacing s between nodes according to equation
(4.21).

The Hermite interpolation scheme is required to satisfy the following condi-
tions at the stencil level:

uh(xj) = u(xj) if xj ∈ Xi

△uh(xj) = △u(xj) if xj ∈ Xi,C

(7.35)

where Xi,C is the set of all nodes except the central one xi and u(xj) = g(xj) if
xj ∈ Xi,B. Furthermore, because of the choice F = △ we have that △u(xj) =
f(xj) if xj ∈ Xi,C . In order to simplify the notation, we suppose that in the
local numbering of the nodes the central node is the first, i.e. xi = xj if j = 1.

The interpolant uh takes the form:

uh(x) =

m∑
j=1

αjΦ(x,xj) +

m∑
q=2

γq △2 Φ(x,xq) +

M∑
k=1

βkpk(x) (7.36)

with the usual orthogonality conditions.
Since F is the same differential operator operator appearing in the governing

equation (7.34), some simplifications are possible at the moment of assembling
the global linear system. At the center of each stencil we have:

△uh(xi) =
(
α γ β

)
△1Φ(xi,Xi)

△1 △2 Φ(xi,Xi,C)

△p(xi)


︸ ︷︷ ︸

BCS(xi)

(7.37)

Which, by substituting interpolation coefficients α, β and γ, becomes:

△uh(xi) = cI(xi)
T


u(x1)

...

u(xmI
)

+ cB(xi)
T


g(xmJ

)
...

g(xm)


︸ ︷︷ ︸

g

+cCS(xi)
T


f(x2)

...

f(xm)


︸ ︷︷ ︸

f
(7.38)
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where coefficient vectors cI(xi), cB(xi) and cCS(xi) satisfy:

MCS
−T


cI(xi)

cB(xi)

cCS(xi)

cp(xi)

 = BCS(xi) (7.39)

When the final sparse linear system like (7.27) is built, the products cB
Tg and

cCS
Tf , being known, will go at the right-hand side, thus leading to a system of

size NI ×NI , as those attained with standard RBF-FD or minimal formulation.
In cases like this, adopting a compact scheme RBF-HFD will also allow significant
improvements in terms of computational efficiency.

We remark that, because of the presence of Dirichlet BC, minimal RBF-HFD
and RBF-FD coincide and are simply characterized by empty sets Xi,C .

7.4.3 1D Case

The 1D case consists in finding the solution to the Poisson equation when the
domain is the closed interval [0, 1]. The function q(x) = −ω2 sin(ωx) is being
used as source term, yielding the following conditions:

∆u(x) = −ω2 sin(ωx) for x ∈ [0, 1]

u(x) = sin(ωx) for x ∈ {0, 1}

with ω = 2π.
The domain is discretized with equally spaced nodes and the distance between

two nodes is s = h = |x2 − x1|. A stencil Xi is composed of three nodes as in
the figure 7.4 and the center node xi is always the one in the middle.

x0 x1 xN−1 xN

· · ·

x : 0 h 1− h 1

Figure 7.3: Domain in the 1D case.

The maximum degree P for the polynomial basis varies with the chosen
method. For the RBF-FD method, where three interpolation conditions are
enforced, we can have a polynomial degree up to P = 2. For the compact scheme,
instead, there are five interpolation conditions (three on the function values
and two on the differential operator values) and polynomials of degree P = 3
and P = 4 are made possible. We remark that in the 1D case there are no
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x1 x2 x3

Figure 7.4: Stencil of the 1D case.

unisolvency issues, therefore the maximum polynomial degree can be chosen
safely.

In order to improve the conditioning of the interpolation matrix MCS ,
operator F = 1

ε2∆ is enforced instead of the simplest △, in order to compensate
for the appearance of ε2 terms in the derivation of the MQ RBF.

With these assumptions, we have studied the differences between the RBF-
FD method and the RBF-HFD method by comparing the respective orders of
accuracy and by performing a Fourier analysis. The solution error is defined as
in equation (7.29).

(a) RBF-FD (b) RBF-HFD

Figure 7.5: convergence curves for the solution error

Figures 7.5a and 7.5b compare the orders of accuracy achieved by the two
methods. The main highlight is that the adoption of compact schemes does
increase the discretization error but it is nonetheless advantageous. Indeed, the
RBF-HFD reduces the solution error by an order of magnitude when P is the
same but it also permits the adoption of a polynomial of degree P = 4. In the
compact scheme with P = 4, the error is much smaller than any other of the
methods and has an order of convergence O(h4).
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x−1 x0 x1

x : −h 0 +h

k : −1 0 +1

Figure 7.6: stencil considered during the Fourier analysis.

Fourier Analysis

The Fourier analysis, described in [60], has been adopted in order to compare the
resolution characteristics of the RBF-FD and RBF-HFD methods. That is, the
accuracy with which the discretization allowed by the two methods represents
the exact result over the full range of length scales that can be realized on the
given set of nodes (cfr. definition in [60]).

Consider the 1D Laplace operator d2u/dx2 applied to u. When u is the
eigenfunction:

u(x) = eiωx (7.40)

then the second derivative, evaluated at any point x is u′′(x) = −ω2u(x), −ω2

being the corresponding eigenvalue.
If such operator is discretized using the RBF-HFD method we have:

Luh(xi) =
1∑

j=−1

cI,j(xi)u(xj) +
∑

k=−1,1

cCS,k(xi)
d2u

dx2
(xk) (7.41)

In order to compare the approximate discretization coefficient we focus on a
single stencil from the 1D domain, as depicted in Figure 7.6, where xj = kh.

By evaluating Luh(x) at the central node, we obtain a value A(ω, h) such
that

Luh(x) = A(ω, h)eiω(kh)

where A(ω, h) is the RBF-HFD approximation of the exact eigenvalue −ω2 and
the same procedure can be followed for the classical RBF-FD method.

It turns out that |A(ω, h)| deviates from ω2 more significantly as ω−1 reaches
the minimum wavelength that can be theoretically resolved by the stencil. Figure
7.7 compares |A(ω, h)| with ω2 using RBF-HFD and RBF-FD with different
polynomial augmentation. Values of ω are reported on the x-axis while

√
A(ω, h)

varies along the y-axis, both are scaled by the value h/π, which is the highest
resolvable frequency. The diagonal blue line, given by the identity y = x,
represents the target and make it easier to identify any deviation induced by the
discrete approximation. It can be seen how the adoption of compact schemes
significantly improves the approximation of the exact second derivative for a
wider range of wavenumbers. This fact is also confirmed by the result obtained by
Lele [60], where grid-based methods were used. We also remark that the impact
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Figure 7.7: comparison of eigenvalues given by RBF-HFD (C) and RBF-FD
(NC). “Exact” represents the exact derivative.

on accuracy provided by the adoption of compact schemes is not redundant with
polynomial augmentation, indeed, from Figure 7.7 clearly emerges that higher
polynomial degrees do not improve the resolution at lower wavelengths.

7.4.4 2D Case

The Poisson equation (7.34) is solved on the 2D domain Ω that can be seen in
figure 7.8 with the following known functions f and g:

f(x, y) = −2ω2 sin(ωx) sin(ωy) for (x, y) ∈ Ω

g(x, y) = sin(ωx) sin(ωy) for (x, y) ∈ ∂Ω

with ω = 4π.
The influence of the following parameters has been investigate:

• the node spacing, s ∝
√

1/N ,

• the degree P of the polynomial term,

• the shape factor ϵ, that is the parameter of the RBFs,

• the number m of nodes included in each stencil.

We remind that the number of the nodes included in the stencil m is linked to
P since there is a minimum number of required nodes for any order of polynomial
term. It has been shown that, in the case of the standard RBF-FD method, a
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Figure 7.8: domain for the 2D case: green dots are boundary nodes, blue dots
are internal nodes.

good choice for the number of nodes in the stencil is given by m = 2M [33, 3, 4].
In order to determine m using a single digit, it was decided to use a factor nm
which satisfies m = nmM , M being the number of terms in the polynomial basis.

In the results presented below the error is always calculated using equation
(7.29) as for the 1D case.

Figure 7.9 highlights how the compact schemes better approximate the
solution if compared to the classic RBF-FD method: in all the cases investigated
by varying P , nm and N , the error given by the RBF-HFD is consistently smaller.

Figures 7.10 and 7.11 show the dependence of the error on the value ε when εs
varies from 0.05 to 1.0. Results attained with different node densities are reported
together, the polynomial degree remains fixed at P = 4. In the case of the non
compact scheme (figure 7.10) the error trend show significant improvements at
lower values of εs. The flattening of the RBF eventually induces a degradation
in the performances due to ill-conditioning of the interpolation matrix but this
happens at εs < 2.5. The size of the stencil has a negligible impact in the case
of the RBF-FD method.

For compact scheme RBF-HFD (figure 7.11), on the other hand, increasing
the number of stencil nodes seems to shift the stability limit toward higher values
of εs. Figure 7.12 is a zoom of what happens when ϵs varies from 0.05 to 0.5
with nm = 2.0 and N = 5022. It appears that along with improving accuracy,
compact schemes also worsen stability for flatter RBFs.

A good choice for the product εs in the case of the RBF-HFD should take
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(a) nm = 1.6 (b) nm = 2.0

(c) nm = 2.4 (d) nm = 2.8

Figure 7.9: convergence curves for the solution error, comparison between RBF-
HFD (C) and RBF-FD (NC).

these remarks into account and therefore be higher than ε0 = 0.4 as a rule of
thumb.

Figure 7.13 is the same as Figure 7.5 but for the 2D case and shows the
convergence of the solution error when stationary interpolation is used. In 2D,
if the value of εs is reduced until εs = 0.5, the error decrease as expected.
For εs < 0.5, however, the effect of round-off errors becomes more and more
pronounced due to the ill conditioned interpolation matrices MCS , leading to
a significant impact on the error. This can be seen, for instance, in figure 7.13
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(a) nm = 1.6 (b) nm = 2.0

Figure 7.10: solution error against ε with the classic RBF-FD method in a range
of node densities. Comparisons between stencils of different size nm.

(a) nm = 1.6 (b) nm = 2.0

Figure 7.11: solution error against ε with the compact RBF-HFD method in a
range of node densities. Comparisons between stencils of different size nm.
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Figure 7.12: closer look at the case N = 5022, nm = 2.0, RBF-HFD.

with the compact scheme RBF-HFD and nm = 1.6.

(a) nm = 1.6 (b) nm = 2.0

Figure 7.13: solution error with RBF-HFD method.

For the results reported Figure 7.14, the convergence curves achieved with
stencils of different sizes are displayed together while the polynomial degree is
kept fixed at P = 2 or P = 4. In order to avoid numerical instabilities, stationary
interpolation with εs = 0.5 was adopted.

Figure 7.15 is meant to provide a visual appreciation of the advantage in
terms of accuracy retained by the compact RBF-HFD approach. It is a zoomed
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(a) P = 2 (b) P = 4

Figure 7.14: convergence curves for the RBF-FD method (NC) and RBF-HFD
method (C) when the number of nodes in the stencil (nm) is varied while keeping
the polynomial degree fixed at P = 2 or P = 4.

in view of the chosen domain and shows by how much stencil size and node
density can be reduced using RBF-HFD method without losing accuracy. In
this case the error is fixed approximately at 1.5 · 10−5 with P = 4 and εs = 0.5.
nm = 2.0 for the RBF-FD, which is also the most commonly adopted value,
and N = 5073. In the compact scheme, in order to have the same error, only
N = 2494 nodes are required and nm = 1.4.

Fourier Analysis

The same exponential test function defined in (7.40) for in the 1D case was used
here. In the 2D case the formulation of this analysis is slightly different since
the value of ω can vary both along the x direction and the y direction. For this
reason equation (7.40) becomes

u(x, y) = ei(ωx(x−x0)+ωy(y−y0))

where (x0, y0) is the center of the stencil and ωx and ωy are the wave numbers
defined along the x-axis and the y-axis respectively. The Laplacian of this
function is given by

∆u(x, y) = −(ω2
x + ω2

y)e
i(ωx(x−x0)+ωy(y−y0))

The approximation of the Laplacian operator is evaluated both with the RBF-FD
method and the compact scheme RBF-HFD method and will be written as

Luh(x, y) = A(ωx, ωy, d)e
i(ωx(x−x0)+ωy(y−y0))
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(a) One stencil using the non compact
scheme, the RBF-FD method
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(b) One stencil using the compact scheme,
the RBF-HFD method

Figure 7.15: the two figures show the number of nodes and the size of the stencil
that is needed to reach a given error. The plotted area in the figure is is a zoom
of the domain of Figure 7.8: red dots are those included in the stencil.

The value d is fixed and defined as the mean of the distances between the central
node and the six nearest neighbors. This choice is motivated by the assumption of
an hexagonal node arrangement achieved after an adequate number of iterations
of the node-repel refinement (cfr Figure 3.1 page 41). The chosen stencil is the
one in the middle of the domain that does not take into account nodes on the
boundary as shown in figure 7.15. Parameters N = 5022, nm = 2.0 and εd = 0.4
were used for both methods.

Figure 7.16a shows the dependence of the factor A(ωx, ωy, d) upon ωy when
ωx = 0. As in the 1D case, the compact schemes provide a better approximation
for the derivatives but the difference from the standard RBF-FD is smaller. In
order to highlight the error between the methods we have defined the value errω,
given by:

errω =

∣∣∣∣ dπ
√
|A(ωx, ωy, d)| − d

π

√
|∆u(x0, y0)|

d
π

√
|∆u(x0, y0)|

∣∣∣∣ (7.42)

In Figure 7.16b errω is visualized against ωy while ωx = 0 is always kept fixed.
Slightly different conclusions can be drawn from the 2D case: while compact
RBF-HFD approach remains the most efficient way to improve the resolution
characteristics, the polynomial degree P also has a significant impact, suggesting
that the adoption of the compact schemes in the 2D case is somewhat less
compelling.

The situation is different, however, when both ωx and ωy can vary. In such
case the Fourier analysis also provides information regarding the isotropy of the
discrete approximation.

Figures 7.17a and 7.17b show the contour lines of
√
|A(ωx, ωy, d)|, i.e., the
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(a) Magnitude of the scaled Laplacian
eigevalue.

(b) Magnitude of the scaled Laplacian error
(errω)

Figure 7.16: Fourier analysis with ωx = 0. C stands for the RBF-HFD method,
NC stands for the RBF-FD method.

square root of the magnitude of the approximation of the Laplacian eigenvalue
obtained with different schemes. The two wavenumbers ωx and ωy are scaled
and plotted along the two axis. The dotted lines represent the exact solution,
evaluated with the equation ω2

x + ω2
y = c, where c is a constant value, while the

solid ones represent different approximations. The scaled wavenumbers ωxd/π
and ωyd/π can vary in the interval [0, 1], which is half of the period of the chosen
periodic function.

In Figures 7.17a and 7.17b the lines correspond to the function A(ωx, ωy, d)
evaluated with a different number of polynomial terms for the standard RBF-FD
and RBF-HFD schemes, respectively. Deviations from the circular dotted lines,
especially visible for P = 2, are due to the shape of the stencil not being perfectly
isotropic. As more nodes are included, in order to increase P , deviations from
isotropy are also reduced. Unlike the one-dimensional analysis of Figure 7.16a,
the comparison between Figures 7.17a and 7.17b reveal a significant difference
in performance between standard RBF-FD and compact RBF-HFD. Indeed, the
latter not only allows higher accuracy at smaller wavelength, but is also less
sensitive to the shape of the stencil.

7.4.5 Conclusions

The theory of Generalized Hermite Interpolation can be considered as a general-
ization of that of Scattered Data Interpolation presented in the first chapters
and naturally induce some radical improvements for the RBF-FD scheme.

To begin with, the minimal RBF-HFD scheme solves the problem of ill-
conditioning due to boundary condition for any possible differential operator
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Figure 7.17: approximation of the Laplacian operator

enforced at the boundary without introducing additional computational costs
and therefore should be recommended over the stabilization methods discussed
in chapter 5.

Furthermore, the compact RBF-HFD method seems to provide a clear advan-
tage in terms of resolution at higher wavelengths and was found to also improve
accuracy overall. While the computational advantage is probably debatable
and case-specific, compact RBF-HFD also make the adoption of polynomial
augmentation of higher degree possible without increasing the stencil size.

Results already attained by Lele in [60] for the Finite Difference method
were confirmed for the RBF-HFD method and similar improvements are to be
expected also for the 3D case.
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Chapter 8

Conclusions and Further
Developments

In this thesis we have discussed the development of a meshless solver based
on the RBF-FD method for CFD and heat transfer simulations on complex
geometries.

In order to effectively solve specific problems of engineering interest, the RBF-
FD method, which provides a discretization for a given linear partial differential
operator, can not be considered in isolation. The overall solution process can be
initially subdivided in the successive execution of 4 different steps:

1. the generation of an adequately refined node distribution on a computa-
tional domain,

2. the linearization of the governing equation, the definition of the linear
operators to be discretized and time integration strategies,

3. the discretization of the aforementioned differential linear operators by
means of the RBF-FD (or RBF-HFD) scheme,

4. the numerical solution of the resulting linear system,

5. post processing and visualization of the results

In this work most of the attention is dedicated to point 3 and, more specifically,
is focused on certain conditioning issues arising when the method is employed on
complex 3D domains. Chapter 3 also deals with point 1 in view of its integration
in the overall solution process. Some quality metrics for the node distribution
are proposed with references to the literature and some ideas on the relative
importance of the different aspects of a node generation algorithms are also
discussed. At the moment, the development of node generation procedures for
anisotropic node placement is underway in order to improve accuracy where the
solution exhibits sharp variations along a known direction. Further developments
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in this topic also include the implementation of an adaptive node refinement
technique inspired by Slak and Kosec [94].

Many of the topics discussed in this dissertation become especially relevant as
soon as the the solution process is applied to some basic engineering benchmark
problem. In our case, it became apparent that ill-conditioning issues arising
in presence of Neumann BC constituted a major obstacle preventing further
developments as soon as the basic RBF-FD solver was applied to problems
involving incompressible flow on 3D domains. Such issues were found not to be
related to those yielded by flatness of the Radial Basis Function, by the Runge
phenomenon or by inadequate quality of the node placement. Indeed, in most
cases the reconstruction properties of RBF-based methods remain very good also
as the conditioning of the interpolation problem deteriorates and becomes a real
issue only as very high accuracy is sought with the stationary interpolation or in
the flat limit in the non-stationary case. With arbitrary boundary conditions
on arbitrarily complex domains, however, a straightforward adoption of the
standard basis generated with translates of a radial kernel is no longer feasible.

The subsequent investigation of possible remedies constitutes most of my
contributions to the subject and is largely exposed in Chapters 5 and 7. Mul-
tiple alternative improvements to the basic procedure, capable of overcoming
the aforementioned ill-conditioning issues, were tested and few were found to
enable the simulation of simple convection problems on arbitrarily complex 3D
geometries. The three approaches presented here, namely node selection based
on optimal directions, boundary node projection and Minimal RBF-HFD scheme,
were selected for their robustness and geometrical flexibility. In particular,
the investigation of the Generalized Hermite Interpolation and of its possible
integration within the preexisting RBF-FD solver, led to the minimal RBF-
HFD approach, which I consider to be the most versatile among the different
stabilization techniques discussed above.

Finally, Compact RBF-HFD methods were also analyzed in their more
traditional form and their impact on the spatial resolution was assessed by
means of the Fourier Analysis. As a further development, Compact RBF-HFD
might be adopted to improve the accuracy of the solution of the pressure Poisson
equation in presence of incompressible fluid flows.

The vast majority of the code used for attaining the reported results was
written using Julia programming language [6]. Its high-level syntax along with
easily accessible high performance have been instrumental in allowing the rapid
development and testing of prototypes based on countless different ideas. The
adoption of this language helped in reducing the time required for obtaining
initial implementations of the various numerical methods and, once that was
done, for developing them to the level of refinement where meaningful tests and
comparisons can be made.

In the long term,it is believed that solvers based on the RBF-HFD method will
simplify the execution of complex simulations of engineering relevance and allow
better integration with CAE software. Furthermore, stable implementations
might also be used for highly accurate simulations of complex multi-phase
phenomena.



Appendix A

Neumann Stability

A.1 d-matrices

Definition (d-matrix). An m× n d-matrix is defined as the following m× n
matrix A = (aij) of d-dimensional vectors aij ∈ Rd:

A =


a11 · · · a1n

...
. . .

...

am1 · · · amn

 (A.1)

and the set of all m × n d-matrices will be denoted by Rm,n
d . When n = 1 a

d-matrix becomes a d-vector, d-vectors will be denoted as Rm
d .

Operations involving d-matrices are defined as follows:

• product of A = (aij) ∈ Rm,n
d with a scalar λ ∈ R:

λA = (λaij) ∈ Rm,n
d (A.2)

• sum of A = (aij) ∈ Rm,n
d and B = (bij) ∈ Rm,n

d :

A+ B = (aij + bij) ∈ Rm,n
d (A.3)

• product of A = (aij) ∈ Rm,n
d with Q = (qij) ∈ Rn×p:

AQ =

(
n∑

k=1

aikqkj

)
∈ Rm,p

d (A.4)

For A = (aij) ∈ Rm,n
d and V = (vi) ∈ Rm

d , by using the dot product · in Rd

we can define the following operator H:

H(A,V) = (aij · vi) ∈ Rm×n (A.5)
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Given A,B ∈ Rm,n
d , V = (vi) ∈ Rm

d and Q ∈ Rn×p, the following equalities
hold:

H(A,V) +H(B,V) = H(A+ B,V) (A.6)

H(A,V)Q = H(AQ,V) (A.7)

∂

∂vi,η
det
(
H(A,V)

)
= det

(
H(A,Vi,η)

)
(A.8)

for i = 1, . . . ,m and η = 1, . . . , d.
Equations (A.6),(A.7) follow from the simple distributive property of the dot

product and the notation introduced above.
Equality (A.8), however, is less immediate and deserves a special attention

because it is used for the calculation of optimal normal directions, we begin by
explaining the notation used for the partial derivative. Suppose {e1, . . . , ed} is
the canonical basis of Rd, then each element vi of the d-vector V is an Rd vector
itself. The notation vi,η is then used to indicate the projection on eη of the ith

component vi of vector V:

vi,η := vi · eη ∈ R (A.9)

or, in other words, the ηth component of the ith vector vi of V. We know
that

(
H(A,V)

)
is a traditional matrix in Rm,n and we are then interested in

understanding the sensitivities of its determinant with respect to each component
of the d-vector V and this is what the partial differential symbol indicates. On
the right-hand-side of the same equation, Vi,η is obtained from V by replacing
its ith element vi with eη. By applying the chain rule it is possible to see that
equality (A.8) follows from the multilinearity of the determinant and from the
definition of the operator H(·, ·) (A.5).

A.2 Optimal directions

A.2.1 Context

In an attempt to lighten the main discussion on the ill-conditioning due to
Neumann BC, the discussion on the algorithm adopted for the calculation of
optimal normals was moved in this appendix. For reference, equation (5.53),
which states the problem of finding the set of optimal normals is repeated here
as problem (A.10). We are interested in finding the set N̂ of optimal directions
{n̂1, . . . , n̂mB

} that satisfy:

argmax
N̂

det
(
H(GBB ,N )

)
subject to ∥n̂i∥22 = 1, i = 1, . . . ,mB

(A.10)

where a generic set of normals N is indicated with N = {n̄1, . . . , n̄mB
}.
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A.2.2 Generic properties

Equality constraints can be enforced by defining a Lagrangian function L with
multipliers ν = {ν1, . . . , νmB

} as follows:

L(N ,ν) = det
(
H(GBB ,N )

)
−

mB∑
i=1

νi
(
∥n̄i∥22 − 1

)
(A.11)

it follows that the solution of problem (A.10) is given by the proper solution of
the following system of equations:

∂

∂n̂i,η
L(N̂ ,ν) = ∂

∂n̂i,η
det
(
H(GBB , N̂ )

)
− 2νin̂i,η = 0

∥n̂i∥22 = 1

(A.12)

for i = 1, . . . ,mB and η = 1, . . . , d. It is now possible to apply property (A.8) of
appendix A.1:

∂

∂n̂i,η
det
(
H(GBB , N̂ )

)
= det

(
H(GBB , N̂i,η)

)
(A.13)

An equivalent formulation is obtained introducing the mB auxiliary vectors
ti = {ti,1, . . . , ti,d} ∈ Rd as follows, with the advantage of an easier enforcement
of the constraints on the norms ∥n̂i∥.

ti,η = det
(
H(GBB , N̂i,η)

)
(A.14)

n̂i,η = ± ti,η
∥ti∥2

(A.15)

for i = 1, . . . ,mB and η = 1, . . . , d. Where the connection between the two
formulations is given by:

2νi = ±∥ti∥2 (A.16)

We remark that the component η of n̂i, n̂i,η, does not appear in N̂i,η since it
has been eliminated by derivation, therefore ti does not depend on n̂i. In the
case of mB = 3 boundary nodes, for instance, ti,η with i = 2 and η = 1 becomes:

t2,1 = det (H(GBB ,N2,1)) =

∣∣∣∣∣∣∣∣∣
g1,1 · n̂1 g1,2 · n̂1 g1,3 · n̂1

g2,1 · e1 g2,2 · e1 g1,3 · e1
g3,1 · n̂3 g3,2 · n̂3 g3,3 · n̂3

∣∣∣∣∣∣∣∣∣ (A.17)

From equation (5.51) we see that det(SBB) is an odd function with respect
to each normal n̄i and reversing any n̄i results in a change of sign of det(SBB)
because of the properties of the determinant. Multiple combination of changes
in signs are possible and as a result the target function in equation (A.10) has at
least 2mB local extrema which are equivalent, hence the symbol ± in equation
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(A.15) for each of the mB normals. However, once the direction of the optimal
normals is known, their sign can easily be determined by picking those that are
directed outward from the domain, in accordance with the usual convention. In
other words, we are interested in the normals that maximize the magnitude of
the target function det(SBB), regardless of its sign. Furthermore, when mB > 1
the target function also has saddle points solving equations (A.14)-(A.15) and is
in general to be expected that multiple extrema can occur with mb > 3 boundary
nodes, both in 2D and in 3D.

We remark, however, that gi,j are not arbitrary vectors but rather they are
defined in equation (5.50) according to the relative positions of the stencil nodes.
In practice, a sufficiently regular distribution of nodes in the stencil is usually
enough to guarantee that the algorithm presented below provides the global
maximum up to changes in signs, as confirmed by numerical experiments.

A.2.3 Computation of the optimal directions

Equations (A.14)-(A.15) represent a nonlinear system of coupled algebraic equa-
tions in the mB unknown vectors n̂i and therefore an iterative solution process
is required. The iteration step can be directly obtained from equation (A.14) as
follows:

t
(k+1)
i,η = det

(
H(GBB , N̂ (k)

i,η )
)

(A.18)

where the superscript (k) refers to iteration k. The values t
(k+1)
i,η for i = 1, . . . ,mB

and η = 1, . . . , d are therefore computed explicitly by using equation (A.18) where

N̂ (k)
i,η contains the normals at iteration k. Then the actual normals n̂

(k+1)
i at

iteration k + 1 are obtained once again through the normalization expressed by
equation (A.15).

In order to increase computational efficiency, it is convenient to compute
the determinant in equation (A.18) as follows. Let us consider the explicit form
of equation (A.14) where both row i and column i of matrix H(GBB , N̂i,η) are
moved to the last row and to the last column, respectively:

ti,η = det
(
H(GBB , N̂i,η)

)
=

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

g1,1 · n̂1 · · · g1,mB
· n̂1 g1,i · n̂1

...
. . .

...
...

gmB ,1 · n̂mB
· · · gmB ,mB

· n̂mB
gmB ,i · n̂mB

gi,1 · eη · · · gi,mB
· eη gi,i · eη

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣ Si ci

ri,η Sii,η

∣∣∣∣∣∣
(A.19)

By the properties of the Schur complement of the block Si at the r.h.s. of
(A.19), we have:

ti,η =

∣∣∣∣∣∣ Si ci

ri,η Sii,η

∣∣∣∣∣∣ = det(Si)
(
Sii,η − ri,ηS−1

i ci
)

(A.20)
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Since equation (A.20) holds for each of the d components of the vector
ti = {ti,1, . . . , ti,d}, the whole vector can be written directly as follows:

ti = det(Si)

gi,i − mB∑
j=1
j ̸=i

wjgi,j

 (A.21)

where wj are the mB − 1 entries of the following column vector, which is the
only term which depends on the normal directions:

w = S−1
i ci (A.22)

Furthermore, there is no need to compute det(Si) in equation (A.21) because it
is a scalar and the vectors ti are to be normalized in order to satisfy constraint
(A.15).

With the above remarks, the iteration step (A.18) can be calculated without
the need of any determinant as:

t
(k+1)
i =

gi,i − mB∑
j=1
j ̸=i

w
(k)
j gi,j

 (A.23)

where the dependence of the right-hand side upon the iteration index k arises

only in the terms wj = w
(k)
j . We also remark that vector w = {w1, . . . , wmB

}
does not depend upon dimensional component η1, . . . , ηd, and therefore it can
be computed only once at each iteration for each of the mB vectors ti.

Since the system of equations (A.14)-(A.15) is nonlinear, it is important to

choose a proper set of initial vectors n̂
(0)
i for the iterative scheme (A.18) to

converge to the correct solution. Numerical experiments showed that a good
starting point can be obtained from the diagonal vectors of d-matrix GBB defined
in equation (5.50):

n̂
(0)
i =

gii
∥gii∥2

(A.24)

for i = 1, . . . ,mB. This choice corresponds the r.h.s. of equation (A.21) with
wj = 0 and the same equation (A.21) can also be employed to provide an
improved starting point if any initial guess for wj is available.

Another good starting point can be obtained from the following geometric
heuristic:

n̂
(0)
i =

xmI+i − x̄
∥xmI+i − x̄∥2

(A.25)

where x̄ is some geometrical reference point for the stencil, e.g., the centroid of
the internal nodes.
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A.2.4 Computational costs

The process of finding optimal directions can be split into two phases:

• the computation of the d-matrix GBB , equation (5.50),

• the iterative solution of the associated system, equation (A.18).

The computation of GBB requires in turn the computation of the mI × mB

matrix ψ̄ from equation (5.29), whose cost is therefore O(m3
I) + O(mB ·m2

I),
i.e., factorization of φII + solution of mB associated linear systems. Then, each
iteration updates the mB optimal directions through equation (A.23), each of
which involves the solution of the (mB − 1)× (mB − 1) linear system Siw = ci,
thus leading to a cost O(Nit ·m4

B), where Nit is the number of iterations which
depends upon the desired level of convergence. We remark that the optimal
directions do not need to be computed with high accuracy since they are only
used in equation (5.63).

From a practical point of view, our numerical experiments showed that most
of the computational time is due to the iterative phase, even if the number
of boundary nodes mB is usually much smaller than the number of internal
nodes mI of a single stencil. Finally, the computation of the optimal directions
is required only for those stencils having boundary nodes and their number is
usually much smaller than the total number of internal nodes NI .

Finally, in case a boundary node is eliminated, this corresponds to the
removal of the corresponding rows and columns of GBB and therefore once these
modifications are done there is no need to recompute the same matrix in order
to calculate the new optimal normals.

A.3 Optimal position for boundary nodes

A.3.1 Optimization process

In Figure 5.2 it is clearly visible how the singular configurations, that is, those
sending the condition number to infinity, are also characterized by the highest
values of the Lebesgue constant. Starting from these remarks it seems natural to
minimize the Lebesgue functions (as defined in equation (5.16)) by controlling
the position of boundary nodes. Here follows a brief discussion on a method
proposed for this purpose.

When no polynomial augmentation is used, cardinal functions ψi(x) can
be found by solving linear system (5.13) at page 73, Lebesgue functions and
Lebesgue constants can consequently be defined as (5.16) and (5.17) respectively.
In some cases λI and λB exhibit large values at the boundary when Neumann
boundary conditions are employed, see for example Figure 5.3.

In order to find the configuration of boundary nodes that minimizes the
Lebesgue constants ΛI and ΛB , the following cost function can be defined:

F(xmJ
, . . . ,xm) =

m∑
k=mJ

λI(xk) =

m∑
k=mJ

mI∑
i=1

|ψi(xk)| (A.26)
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with the usual indices. In equation (A.26) only the internal Lebesgue functions
λI is considered, however, it was observed that optimizing with respect to the
boundary Lebesgue functions λB leads to very similar optimal configurations.

By using a more compact vector notation, the sensitivities of the cost function
with respect to the position of a boundary node xj = {xj,1 , xj,2} in 2D are:

∂F
∂xj,η

=

m∑
k=mJ

sgn (ψI(xk))
T ∂ψ(xk)

∂xj,η
(A.27)

where ψ(xk) is the column vector {ψ1(xk), . . . , ψm(xk)}T and sgn(ψI(xk)) is
the column vector having the signs of ψ(xk) in the first mI entries, and zeros
for the last mB indices corresponding to the boundary nodes.

The term ∂ψ(xk)/∂xj,η in equation (A.27) can be obtained by deriving equation
(5.13) in the case with no polynomial augmentation as follows:

∂ψ(xk)

∂xj,η
= (MT )−1

(
∂Φ(xk)

∂xj,η
− ∂MT

∂xj,η
ψ(xk)

)
(A.28)

where ∂MT

∂xj,η
is obtained by taking the derivative of all the matrix entries.

We then substitute (A.28) into equation (A.27):

sgn (ψI(xk))
T
(MT )−1 =

(
M−1sgn (ψI(xk))

)T
= cT (A.29)

where c is the column vector given as the solution of the following adjoint
equation:

M c = sgn (ψI(xk)) (A.30)

The computational cost for the calculation of the sensitivities of (A.27) then
becomes independent of the dimension of the problem and requires the solution
of mB linear systems like equation (A.30), one for each boundary node.

The sensitivities can then be used to perform a gradient based optimization of
the boundary nodes positions, this is done by taking the components orthogonal
to the normals.

Whenever two nodes ended up overlapping during the optimization, one of
them was removed, this is why in Figure A.1 only 6 boundary nodes appear.

A.3.2 Results

The optimization process described above was performed by starting from the
reference stencil of Figure 5.1 and using MQ RBF with shape parameter ε
satisfying equation (4.21) with ε0 = 0.5. Once the convergence is reached, we are
left with the situation depicted in Figure A.1. We can see that different values of
the angle α correspond to different optimal placements of the boundary nodes.

We remark that, even if the procedure described so far gives the best place-
ment for the boundary nodes, this comes at a relatively high computational
cost. Indeed, it is required to solve mB local linear systems in order to calculate
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α = −π/12 α = 0 α = π/12

Figure A.1: optimal placement of boundary nodes obtained starting from the
reference stencil of Figure 5.1. Black solid lines are the actual normals, red
dotted lines are the optimal directions, asterisks are the position of boundary
nodes obtained by projecting the first layer of inner nodes along the normals.

the cardinal functions, in addition to mB linear systems like (A.30) in order to
estimate the sensitivities at each step of the optimization. On top of that, a
control on the normals, like the one explained in section 5.4.1, is still needed
when the boundary has high curvature, see the angle between actual and optimal
normals for the case α = −π/12 in Figure A.1.

A.3.3 Projected nodes

Fortunately, all results obtained so far suggest that the interpolation can also be
improved by placing the boundary nodes on the locations identified by projecting
along the normals the inner nodes of the first layer. This can be deduced also by
looking at Figure A.1, optimal node placement is obtained by projecting internal
nodes along the dashed black lines, which are almost parallel to the actual
normals. In all cases this was found to be beneficial for the stability in presence
of Neumann BC and also enhancing accuracy. Replacing standard boundary
nodes with the projected ones can be done within the node generation phase
and requires the adoption of a different node generation procedure. In presence
of complex geometries, for instance, a modification of the node-repel algorithm
might produce the desired result with a marginal increase in complexity.



Appendix B

Additional Benchmark
Results

B.1 Differentially Heated Cubic Cavity

Some visualizations of the relative error from the Differentially Heated Cubic
Cavity (DHCC) benchmark are reported below. They refer to the results
discussed in Chapter 6 and, more specifically, in subsection 6.5.4.

Figures B.1, B.2, B.3 and B.4 display the relative error of different meaningful
flow quantities with respect to a reference solution, for each combination of
P and Ra. In Figures B.1 and B.2 the relative error of temperature T and
vertical velocity w is depicted along the horizontal center-line (x, 0, 0). In Figure
B.3 the relative error of the horizontal velocity u is depicted along the vertical
center-line (0, 0, z). In Figure B.4 the relative error of the normal derivative of
the temperature ∂T/∂n is depicted along the vertical midline (0.5, 0, z). When
the normal derivative is averaged on this line it takes therefore the value Num
reported in Tables 6.6, 6.7 and 6.8.

Since grid-independent Fluent solutions would require a very high number of
cells for the required level of accuracy, the reference solution is obtained through
an extrapolation from the two finest Fluent meshes, i.e., G5 and G6, once again
by applying Eq. (6.14) with q = 2, d = 3. This yields the following expression
for the reference solution â(x) for a generic field a(x):

â(x) =
aG6(x)M

2/3
G6 − aG5(x)M

2/3
G5

M
2/3
G6 −M

2/3
G5

(B.1)

where MG5 and MG6 are the number of Fluent cells for meshes G5 and G6,
respectively.

The relative error er(x) is then obtained as follows:

er(x) =
|aID(x)− â(x)|

max
x∈Λ
|â(x)|

(B.2)
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where aID(x) is the RBF-FD solution computed with node distribution ID and
Λ is a given subset of the domain, e.g., center-lines or the midline in this case.

Figures B.1, B.2, B.3 and B.4 show that in most cases the decrease in the
relative error is monotone with respect to the number of meshless nodes, i.e.,
going from N1 to N5, although in some cases it is not, especially for P = 2.
A clear advantage is visible for the case when the polynomial degree is the
highest, i.e., P = 4, especially in the case Ra = 103. For higher Ra values the
advantage of a high polynomial degree P is somehow limited by the insufficient
node resolution in the boundary layers, as already pointed out. Once again we
outline that the node placement was not optimized by taking into account the
solution, but rather to make any comparison easier.

The decrease in the relative error with respect to the polynomial degree is
also monotone in most cases, with the most evident exception for the relative
error of the temperature along the horizontal center-line, Figure B.1, where
the intermediate case P = 3 seems to be the less accurate. Nonetheless, the
relative errors are less than 10−2 in most cases, which is generally acceptable in
the engineering practice. Extremely small relative errors, in the order of 10−5,
are obtained for the highest polynomial degree P = 4 and Ra = 103, while the
largest errors emerge in the opposite case, i.e., P = 2 and Ra = 105, as expected.

The noise effect visible in many of the figures, and especially evident for the
cases with very low relative error, is due to the fact that, when the RBF-FD
solution locally intersect the reference one, the error goes to zero in the point of
intersection, sending the logarithmic graph to −∞ very sharply. The noise thus
appear to be greater when there are more points of intersection between the two
solutions compared.
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Figure B.1: differentially heated cavity: relative error of temperature T along center-line (x, 0, 0).
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Figure B.2: differentially heated cavity: relative error of velocity component w along center-line (x, 0, 0).
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Figure B.3: differentially heated cavity: relative error of velocity component u along center-line (0, 0, z).
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Figure B.4: differentially heated cavity: relative error of the normal derivative along the midline (0.5, 0, z).
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B.2 Differentially Heated Spherical Shell

Figures B.5, B.6, B.7, B.8, B.9 and B.10 display the relative error of different
meaningful flow quantities with respect to a reference solution, for each com-
bination of P and Ra. The reference solution is the one obtained with the
most refined mesh in Fluent, i.e., G8, since the corresponding 2D axisymmetric
solution is sufficiently accurate and no infinite grid extrapolation is needed.

In Figures B.5 and B.7 the relative error of temperature T and vertical
velocity w is depicted along the upper portion of the symmetry axis z, i.e.,
0.5 ≤ z ≤ 2.5. Figures B.6 and B.8 show the same error along the lower portion
of the symmetry axis z, i.e., −2.5 ≤ z ≤ −0.5. The relative error of the normal
derivative of the temperature along the generatrices of the inner and outer
spheres is shown in Figures B.9 and B.10, respectively, as a function of the polar
angle 0 ≤ θ ≤ π (see Figure 6.5; θ = 0 is the north pole, θ = π is the south
pole). The RBF-FD values of the normal derivative of the temperature along
the generatrices of both spheres are averaged along the azimuthal direction in
order to map the results of a fully 3D RBF-FD simulation to a 2D axisymmetric
one.

In most cases the decrease in the relative error is monotone with respect to
the number of meshless nodes, i.e., going from N1 to N5, although in some cases
it is not, especially for the normal derivatives of the temperature at the inner
sphere for P = 3, 4, Figure B.9.

In Figure B.6 it is possible to see how the error increases closer to the south
pole of the inner sphere, i.e., z = −0.5, due to the presence of a thin boundary
layer. This effect is accentuated as the Ra number increases and is mitigated
both by the increase of the node density and of the polynomial degree P . Very
similar remarks can be made to explain the appearance of the high errors of
Figures B.7 and B.8 in the proximity of the poles of the inner sphere. The
effect on the accuracy of inadequate spatial sampling due to the boundary layer
is clearly visible in Figure B.8, where the relative error grows above 10−2 for
P = 2, 3. In the case of the velocity field, however, increasing the polynomial
degree turns out to be less effective then increasing the node density. About
that, we remark that the adoption of a local refinement strategy would allow
for a much greater increase in the local density of nodes than that achieved by
going from N1 to N5. However, even in the present case, the accuracy is always
good, i.e., the relative error is less than ≤ 10−2, the only exception being the
cases with P = 2, 3 and Ra = 1000 in Figure B.8.

In both Figures B.9 and B.10 the errors of the normal derivative of the
temperature appear to be effectively reduced both by increasing the node density
and polynomial degree P , the latter being more effective, contrary to what holds
for the velocity field. In the last figure we can also note that the error is larger
for θ = 0 due to the appearance of a thin boundary layer also at the north pole of
the outer sphere. This phenomenon is especially relevant for the case Ra = 1000
where the convective plume is more pronounced.
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Figure B.5: spherical shell: relative error of temperature T along the upper portion of the symmetry
axis z.
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Figure B.6: spherical shell: relative error of temperature T along the lower portion of the symmetry axis
z.



172 APPENDIX B. ADDITIONAL BENCHMARK RESULTS
R
a
=

10
0

P = 2 P = 3 P = 4

R
a
=

5
00

R
a
=

10
00

Figure B.7: spherical shell: relative error of vertical velocity w along the upper portion of the symmetry
axis z.
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Figure B.8: spherical shell: relative error of vertical velocity w along the lower portion of the symmetry
axis z.
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Figure B.9: spherical shell: relative error of the normal derivative along the generatrix of the inner
sphere.
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Figure B.10: spherical shell: relative error of the normal derivative along the generatrix of the outer
sphere.
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