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Simple Summary: This review explores the potential of artificial intelligence (AI) to predict the
effectiveness of antibody-drug conjugates (ADCs) in cancer treatment. The problem addressed is
the need for more accurate methods to predict how well cancer therapies will work, particularly in
personalized medicine. This study’s aim is to discuss how AI can enhance the precision of ADC
therapy by analyzing data from clinical trials and molecular biomarkers. This review highlights
that AI can significantly reduce the time and cost associated with drug discovery and improve
the targeting of cancer cells, reducing side effects and increasing treatment efficacy. We conclude
that as more data become available from ongoing clinical trials, AI has the potential to become a
standard tool in predicting ADC responses, thereby improving patient outcomes and advancing
cancer treatment. This research is valuable as it could lead to more effective and personalized cancer
therapies, benefiting society by potentially saving lives and reducing healthcare costs.

Abstract: The medical research field has been tremendously galvanized to improve the prediction
of therapy efficacy by the revolution in artificial intelligence (AI). An earnest desire to find better
ways to predict the effectiveness of therapy with the use of AI has propelled the evolution of new
models in which it can become more applicable in clinical settings such as breast cancer detection.
However, in some instances, the U.S. Food and Drug Administration was obliged to back some
previously approved inaccurate models for AI-based prognostic models because they eventually
produce inaccurate prognoses for specific patients who might be at risk of heart failure. In light of
instances in which the medical research community has often evolved some unrealistic expectations
regarding the advances in AI and its potential use for medical purposes, implementing standard
procedures for AI-based cancer models is critical. Specifically, models would have to meet some
general parameters for standardization, transparency of their logistic modules, and avoidance of
algorithm biases. In this review, we summarize the current knowledge about AI-based prognostic
methods and describe how they may be used in the future for predicting antibody-drug conjugate
efficacy in cancer patients. We also summarize the findings of recent late-phase clinical trials using
these conjugates for cancer therapy.

Keywords: artificial intelligence; antibody-drug conjugates; prognostic; clinical trials

1. Introduction

Many aspects of society have been influenced by the recent advancements in artificial
intelligence (AI). Medicine is one field with the potential for a gradual revolution through
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the use of AI in the development of drugs and their implementation in clinical trials, strati-
fication of patients for treatment, and prediction of response to cancer therapy. Overall, the
purpose of AI in medicine is to reduce humans’ workload while achieving objectives more
effectively. It fits in all aspects of medicine, ranging from communication and managerial
organization to aiding the more complex issue of selecting therapies for patients.

AI primarily functions through Machine Learning (ML). Deep learning (DL) is a
subset of ML that employs artificial neural networks. DL involves more sophisticated and
interconnected elements than ML, which resemble electrical impulses in the human brain [1].
When artificial neural networks receive an input, they are trained based on it and use single
or multiple linked algorithms to solve problems [2]. The three types of artificial neural
networks are multilayer perceptron networks, recurrent neural networks, and convolutional
neural networks. They use either supervised or unsupervised training procedures [2,3].

Pharmaceutical companies have used these new AI technologies recently for faster
testing of new drugs [4]. Worth noting is that newly discovered drugs have been ranked
based on efficacy values (IC50 and binding affinity) through molecular simulations and
ultimately via in vitro validation experiments [5,6]. This could be used to discover new
drugs more efficiently. Therefore, feeding such AI databases could derive more powerful
and targeted pharmaceutical products [5,6].

Historically, the process of drug development has been very slow and expensive. The
steps from initiation of a drug discovery program to approval by a national drug regulatory
agency take 12–15 years [1]. Also, the average cost to bring a drug to the market is USD
2.5 billion [7]. Demonstration of the effectiveness of AI-based methods in shortening these
times and reducing these costs in future clinical trials will prove their validity. Recently, a
Boston Consulting Group investigation evinced that AI could cut drug discovery costs and
time by 25–50% up to the clinical testing stage and that in a 2022 analysis, 20 AI-intensive
companies had developed 158 drug candidates compared with 333 candidates developed
by other 20 big pharmaceutical companies, which are the world’s largest pharmaceutical
companies [4]. This provides a glimpse at how fast this field is evolving and the way it
could be used to predict therapy efficacy holds immense implications.

In contrast with conventional chemotherapy, which can damage healthy cells, antibody-
drug conjugates (ADCs) deliver chemotherapeutic agents to cancer cells more specifi-
cally [8]. ADCs rely on a monoclonal antibody’s recognition of a specific receptor target
expressed on the surface of cancer cells. And after its binding ADC is internalized by
the cell, the ADC then releases the cytotoxic drug via a linker attached to the antibody
inside the cancer cell, permitting the specific release of the drug to the cancer cells. Fully
human monoclonal antibodies are highly targeted, have long circulating half-lives, and
have low immunogenicity. The role of the linker in this process is paramount because
they should firmly keep the payload bound to the antibody. These drug conjugates should
be constructed to be stable enough to prevent cleavage of the linker before they become
internalized in cancer cells [8,9]. If the payload is accidentally released before reaching its
target, it could cause toxicity. Among the benefits of this type of therapy related to the
specificity of antibody-receptor recognition is a reduction in toxicity because much fewer
normal cells are targeted than in conventional chemotherapy. Therefore, dose escalation
could be more easily performed using ADCs, enhancing the efficacy of treatment [10].
Currently, 13 ADCs are approved by the U.S. Food and Drug Administration (FDA), and
100 are going through clinical trials [10].

In this review, we summarize the current knowledge about AI-based prognostic
methods and describe how they may be used in the future for predicting antibody-drug
conjugate efficacy in cancer patients. We also summarize findings of recent late-phase
clinical trials using these conjugates for cancer therapy.

2. Prediction of Cancer Responsiveness and Resistance to ADCs

Various AI methods have been developed to develop new cancer drugs, cancer prog-
noses, and responses to cancer therapies. These technologies are discussed below to show
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how they can potentially be employed in the construction of new AI algorithms for the use
of ADCs, specifically, in identifying potential challenges in the field of oncology and cancer
therapy selection and determining how they could be solved based on the knowledge
generated in other related fields where AI has produced promising results.

Because drug discovery is beyond the scope of this review, we mention only a few
to explain how they are being employed in medical research around the world. The
mainstream AI methods employed for drug discovery use a wide variety of data resources,
such as ChEMBL and DrugBank. After the drugs’ potential efficacy is ranked, their toxicity,
bioactivity, and physicochemical properties are ranked [11]. Interestingly to ADC drug
discovery, the Response Algorithm for Drug Positioning and Rescue (Lantern Pharma) is
an AI platform capable of rapidly developing novel ADCs, including cryptomycin-derived
ADCs.; AtomNet is another effective technology predicting the binding activity of novel
chemicals to their intended therapeutical targets [12]. Various AI-based tools are capable of
identifying the physicochemical properties of drugs. Each pharmaceutical company may
have a patent-protected AI drug discovery method, which complicates the comparison of
the methods. These technologies integrate data from preclinical and clinical tests, such as
data in CellMinerCDB with The Cancer Genome Atlas, the Catalogue of Somatic Mutations
in Cancer, the Gene Expression Omnibus, and identify published articles to generate new
insights into the drug structures and targeting of proteins of interest [13–17]. A more
comprehensive review of AI drug discovery methods was performed by Paul et al. [1].

Conceivably, these algorithms and databases could be adapted to test ADC respon-
siveness during clinical trials. In this review we would like to share our expert opinion on
how the technologies of AI could be employed in the near future to generate a self-learning
algorithm, based on the information provided from the current clinical trials, to best predict
the outcomes. Once hopefully, properly tested, validated and consolidated, having such
an incredible technology at hand could be of paramount importance to guide clinicians
best decide on which course of therapy would be most effective without incurring errors.
Of note is that the potential of an AI system depends on the quality of the data used to
feed the ML process. Table 1 summarizes the current databases that could be used to create
AI models for cancer therapy response prediction and drug design. With the accrual of
information from clinical studies on molecular biomarkers in tumor tissue, circulating
tumor DNA, or circulating cell-free DNA, more data are generated that could help to
predict the responsiveness of cancer to therapy; having AI systems to help process such
data more efficiently would be beneficial [18–21]. This could result in the provision of
real-time information to physicians regarding the potential responsiveness of cancer to
ADCs and what courses of action could be planned in case a drug is statistically likely to
fail in a specific case.

Currently, AI-aided methods of cancer prognosis have demonstrated notable advances
when compared with image-based prognosis. For example, the combination of radiomics
and AI has successfully extracted and processed multidimensional data from cancer images,
such as magnetic resonance imaging, computed tomography, ultrasound (US), digital sub-
traction angiography, and X-ray images [22]. For hepatocellular carcinoma (HCC) patients,
AI coupled with radiomics has shown the potential to improve tumor characterization and
offer a better prognosis than conventional radiological methods. This coupling yields in-
sights into the complex relationship between radiomic variables and clinical outcomes [23].
The process of automatic segmentation in programming ML, which delineates the volume
of interest, could help predict treatment response [24,25]. Also, DL can bypass the conven-
tional steps of ML radiomic analysis. The output is calculated via DL through filtering
and calculations of unprocessed images of HCC lesions serving as inputs. The outputs can
include prediction of response or non-response to treatment. Furthermore, convolutional
neural networks are capable of learning, thereby increasing the accuracy of their overall
prediction of ML [26]. Notably, DL can incorporate time as a variable during the evaluation
of lesion enhancement patterns in images [27,28]. DL requires more computational power
than ML and is more dependent on training with large data sets and a variety of data. DL
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has greater potential than ML to predict the response of cancers to therapy. In the future,
this could be used for ADC-based therapy response prediction as well.

Table 1. Current database resources that could be used for building AI models for therapy prediction.

Name Main Features Web Link

CGHub Cancer genomics data repository
https://docs.gdc.cancer.gov/Encyclopedia/
pages/Cancer_Genomics_Hub/ (accessed on
2 September 2024)

TCGA Comprehensive database of cancer patients’ genomic,
epigenomic, transcriptomic, and proteomic data.

https://www.cancer.gov/ccg/research/genome-
sequencing/tcga (accessed on 2 September 2024)

CCLE Comprehensive genetic database of cancer cell lines https://sites.broadinstitute.org/ccle (accessed on
2 September 2024)

EGA European genetic, phenotypic, and clinical
data repository

https://ega-archive.org/ (accessed on
2 September 2024)

DepMap High data quality visualization tool https://depmap.org/portal/ (accessed on
2 September 2024)

SomamiR Cancer somatic mutation and miRNA correlation https://compbio.uthsc.edu/SomamiR/ (accessed
on 2 September 2024)

COSMIC Comprehensive somatic mutation database https://cancer.sanger.ac.uk/cosmic (accessed on
2 September 2024)

MethyCancer
DNA methylations, cancer-related genes, and

mutations in correlation with additional
cancer information

http://methycancer.psych.ac.cn/ (accessed on
2 September 2024)

CTRP connecting genetic, cellular features, lineage to cancer
cell-lines sensitivity to small molecules

https://portals.broadinstitute.org/ctrp/
(accessed on 2 September 2024)

gCSI Large number of transcriptomics data https://pharmacodb.pmgenomics.ca/datasets/4
(accessed on 2 September 2024)

GDSC Drug response, including genomics markers of
drug sensitivity

https://www.cancerrxgene.org/ (accessed on
2 September 2024)

NCI60 Large number of drug and genomics data

https://discover.nci.nih.gov/cellminer/
loadDownload.do (accessed on 2 September 2024)
https://dtp.cancer.gov/databases_tools/bulk_
data.htm (accessed on 2 September 2024)

canSAR Comprehensive drug discovery database https://cansarblack.icr.ac.uk/ (accessed on
2 September 2024)

cBioPortal Large database of cancer genomics data https://www.cbioportal.org/datasets (accessed on
2 September 2024)

UCSC Synthetical genomics information https://genome.ucsc.edu/ (accessed on
2 September 2024)

dbNSFP Non-synonymous single-nucleotide variants https://sites.google.com/site/jpopgen/dbNSFP
(accessed on 2 September 2024)

NONCODE Non-coding RNAs database http://www.noncode.org/ (accessed on
2 September 2024)

TCIA Comprehensive immunogenomic data from the NGS
of 20 solid tumors from TCGA

https://www.tcia.at/home (accessed on
2 September 2024)

ARCHS4 Comprehensive RNA-Sequenced data from human
and mouse

https://maayanlab.cloud/archs4/ (accessed on
2 September 2024)

Zhang et al. used a DL system to make an automatic tumor segmentation model
capable of integrating clinical variables and preprocedural digital subtraction angiography
videos to predict the response of ADCs to transarterial chemoembolization [27]. The

https://docs.gdc.cancer.gov/Encyclopedia/pages/Cancer_Genomics_Hub/
https://docs.gdc.cancer.gov/Encyclopedia/pages/Cancer_Genomics_Hub/
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://sites.broadinstitute.org/ccle
https://ega-archive.org/
https://depmap.org/portal/
https://compbio.uthsc.edu/SomamiR/
https://cancer.sanger.ac.uk/cosmic
http://methycancer.psych.ac.cn/
https://portals.broadinstitute.org/ctrp/
https://pharmacodb.pmgenomics.ca/datasets/4
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authors observed a marked difference in the 3-year progression-free survival rate between
responders and non-responders with their fully automated framework (DSA-Net). Their
DSA-Net entails a U-net model employed to automate tumor segmentation (Model 1) and a
ResNet model that is used to predict response to therapy to the first TACE (Model 2). Both
models were tested in 360 patients. For validation, 124 internal patients and 121 external
patients’ data were used. Also, Peng et al. [29] developed a PyRadiomics method to predict
the response of TACE treatment based on a conventional ML model that was capable of
predicting the initial response of cancer to transarterial chemoembolization by exploiting
pretreatment computed tomography images. They showed that patients predicted to be
treatment responders had longer progression-free and overall survival than predicted
non-responders. Additionally, Peng and colleagues applied this model to 46 HCC patients
with data in The Cancer Genome Atlas to analyze the differential gene expression across
their cohort and the TCGA-HCC cohort to explore the potential mechanisms of action of
transarterial chemoembolization. They further used ML to incorporate TCGA genetic data
into their data, again showing how versatile this ML method can be in processing large
data sets.

Researchers have also examined post-ablation prognosis for cancer therapy using
AI. For example, Ma et al. compared the performance of a DL model trained using
contrast-enhanced US (CEUS) with that of a conventional ML model trained using static
US to predict HCC recurrence after ablation. As expected, the DL model outperformed
the ML model, possibly because CEUS, besides providing morphological images, can
provide real-time dynamic blood perfusion information that correlates well with the success
of ablation [28].

In addition, Liu et al. used clinical data as well as features extracted from CEUS
images to predict the 2-year progression-free survival rate in early-stage HCC patients
who underwent radiofrequency ablation and surgical resection as well as to determine
the optimal treatment for these patients. They found that 17.3% and 27.3% of the patients
receiving radiofrequency ablation and surgical resection, respectively, would have had
better outcomes if they had received the other treatment instead. A multicenter study
with more patients is needed to determine the statistical power of this study. However,
this study still demonstrates the potential of AI methods in selecting optimal ADC-based
treatments for cancer patients [10].

Despite the encouraging findings, these image-based AI methods require further
testing and standardization before they can be effectively integrated into clinical practice.
They are operator-dependent and involve different machines, variables, and contrast doses
as well as timing [30].

These and similar AI models used for cancer prognostication must be improved to
ensure safe and effective patient care. They also must be submitted for and receive FDA
approval before implementation in clinical settings. Recently, the FDA proposed a pathway
that could lead to the use of ML software applications as medical devices [31]. The AI
model should include the following: (1) good ML practice, which means it should be
evidence-based for reproducibility purposes, have standardized steps (e.g., the extraction
algorithms), use different time points to permit generalizability, and have the consistency
of AI analysis and increase the operability across clinical institutions around the world;
(2) avoidance of algorithm biases, which should be ensured by validating the testing process
with external data to confirm the generalizability of the model; and (3) transparency of the
AI models’ logic, which could be achieved by clearly explaining the mechanisms of the AI
decision-making process and familiarizing oncologists with these new models [22,32–36].

Standardization of the protocols can be achieved by specifically following commonly
approved steps and protocols. One such step is having open databases where previous
ADC data could be stored and made available for training purposes.

For decades, prediction tools have been used to support clinical decisions regarding
therapy selection, including the ABCD score, the Framingham Risk Score, the Model for
End-Stage Liver Disease, and the Nottingham Prognostic Index. In recent years, hundreds
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of more prediction model studies have appeared [37–42]. To prevent the scientific com-
munity from becoming mesmerized by the AI revolution and to enable ML prediction
models to be appropriately developed, tested, and, if needed, tailored to different contexts
before they can be employed in daily medical practice, steps have been taken. In response,
new methods have been deemed necessary to resolve the issue of incomplete reporting
of models in prediction model studies [43,44]. Specifically, the Transparent Reporting of a
multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) method
was designed to guide the key items to report in new studies or update clinical prediction
models [45–47]. In AI-based discovery of medical diagnosis, one must also consider that
some FDA-approved, clinician-free, AI-based imaging diagnostic tools used for the identifi-
cation of wrist fractures and strokes in adults have given false diagnoses [48]. This shows
the importance of having methods to facilitate the organic, healthy development of new
AI-based prognostic methods. It also shows how today’s AI is not unfailing.

Previously, the TRIPOD method was based on the use of regression models. However,
a new TRIPOD initiative specific to ML has been developed. This initiative aims to use ML
prediction algorithms to establish long-term standardized methodologies for the predic-
tion of prognostic and diagnostic prediction models. New guidelines for the efficient use
of prognostic models should be made available with the TRIPOD-Artificial Intelligence
(TRIPOD-AI) tool and the Prediction model Risk of Bias Assessment Tool-Artificial Intelli-
gence (PROBAST-AI) [49]. These guidelines are valuable for many AI-based prognostic
models, including future methods to predict ADC efficacy. TRIPOD-AI and PROBAST-AI
are being developed following guidance from the EQUATOR Network, which consists
of five stages: (1) two systematic reviews to examine the quality of the published ML
prediction model studies, (2) consultation with key stakeholders using the Delphi method
to identify items that should be included in the method, (3) virtual consensus meetings
to consolidate and prioritize the key items to be included, (4) development of a TRIPOD-
AI checklist and the PROBAST-AI tool, and (5) dissemination of information about the
new written algorithms the TRIPOD-AI and PROBAST-AI in journals, conferences, and
social media [49].

Another field in which AI has recently shown great promise is cancer immunotherapy.
Immunotherapy consists of controlling and eliminating tumors in the human body by
eliciting the body’s immune system against cancer, leading to an antitumor immune
response. The two main cancer immunotherapy types are immune checkpoint blockade and
adoptive cell therapy [50]. AI technology can be used for neoantigen recognition, antibody
design, and immunotherapy response prediction [51]. Also, AI can be used to predict
new tumor antigens in patients’ cancer rapidly and accurately, reducing experimental
screening and validation costs. AI-enhanced antibodies that have the potential for further
success than conventional therapies in cancer treatment can be developed. Finally, AI
can be used to identify patients whose disease may respond to immunotherapy using
multimodal, multiscale biomarkers and immune microenvironments feeding the algorithms
for prediction [51].

3. Anticancer ADCs That Have Entered Clinical Trials

Years of research and refinement, significant technological advancements, and a deeper
understanding by the scientific community of ADC mechanisms have culminated in the
FDA’s approval of 11 ADCs, each offering tangible benefits to cancer patients. Among
them, fam-trastuzumab deruxtecan-nxki (Enhertu) stands out, as it is poised to capture
a substantial market share within the ADC landscape. Its versatility in treating various
breast cancer subsets (HER2+, HR+/HER2−, and triple-negative) and extended treatment
duration underscore its potential positive impact on breast cancer therapy.

Despite the inherent risks associated with drug development, the trajectory of novel
anticancer therapies suggests an imminent surge in ADC approvals. Whether through
the introduction of novel ADCs or chemical modification of previous drugs, the outlook
for ADC-based cancer therapy is promising. Since the inception of the first ADC clinical
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trial in 1997, the field has witnessed remarkable proliferation, with 266 additional ADCs
undergoing evaluation in more than 1200 clinical trials. This surge indicates a paradigm
shift toward targeted cancer therapy.

Presently, 275 clinical ADC trials are active (Table 2), in which investigators are testing
different ADCs for accurate delivery of cytotoxic agents (Figure 1), which in the future could
be achieved with the help of AI (Figure 2). Notably, discontinued ADCs also underwent
rigorous clinical testing, reflecting the commitment to scientific rigor and patient safety
regarding treatment with these agents.
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Although cancer has served as the proving ground for ADC-based therapies, their ap-
plicability across diverse medical domains is increasingly being recognized. With growing
interest from major pharmaceutical companies, the ADC market is poised for sustained
expansion, fueling optimism for the emergence of blockbuster ADCs in the near future.
The use of AI to predict their response poses a hopeful avenue across the different and
difficult medical domains.
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Table 2. List of active Phase III clinical trials investigating an antibody-conjugated drug in solid and blood malignancies.

NCT Number Study Title Study URL Study Status Conditions ADC Sponsor

NCT06340568

A Clinical Study of the Anti-cancer
Effects of an Investigational Therapy

or Chemotherapy in Patients With
Recurring Uterine Cancer

https://clinicaltrials.gov/
study/NCT06340568 (accessed

on 2 September 2024)
Not yet recruiting Endometrial Cancer

DRUG:
BNT323/DB-1303|DRUG:

Doxorubicin|DRUG:
Paclitaxel

BioNTech SE

NCT05609968

Study of Pembrolizumab (MK-3475)
Monotherapy Versus Sacituzumab

Govitecan in Combination With
Pembrolizumab for Participants With

Metastatic Non-small Cell Lung
Cancer (NSCLC) With Programmed
Cell Death Ligand 1 (PD-L1) Tumor

Proportion Score (TPS) ‚ ≥50%
(MK-3475-D46)

https://clinicaltrials.gov/
study/NCT05609968 (accessed

on 2 September 2024)
Recruiting

Carcinoma|Non-
Small Cell Lung

Cancer

BIOLOGICAL: Sacituzumab
govitecan|BIOLOGICAL:

Pembrolizumab

Merck Sharp &
Dohme LLC

NCT03529110

DS-8201a Versus T-DM1 for Human
Epidermal Growth Factor Receptor 2
(HER2)-Positive, Unresectable and/or
Metastatic Breast Cancer Previously

Treated With Trastuzumab and
Taxane [DESTINY-Breast03]

https://clinicaltrials.gov/
study/NCT03529110 (accessed

on 2 September 2024)

Active—Not yet
recruiting Breast Cancer

DRUG: Trastuzumab
deruxtecan (T-DXd)|DRUG:
Ado-trastuzumab emtansine

(T-DM1)

Daiichi Sankyo

NCT06203210

A Study of Ifinatamab Deruxtecan
Versus Treatment of Physician’s

Choice in Subjects With Relapsed
Small Cell Lung Cancer

https://clinicaltrials.gov/
study/NCT06203210 (accessed

on 2 September 2024)
Not yet recruiting Small Cell Lung

Cancer

DRUG: Ifinatamab
deruxtecan|DRUG:
Topotecan|DRUG:
Amrubicin|DRUG:

Lurbinectedin

Daiichi Sankyo

NCT02631876

A Study of Mirvetuximab
Soravtansine vs. Investigator’s

Choice of Chemotherapy in Women
With Folate Receptor (FR) Alpha

Positive Advanced Epithelial Ovarian
Cancer (EOC), Primary Peritoneal or

Fallopian Tube Cancer

https://clinicaltrials.gov/
study/NCT02631876 (accessed

on 2 September 2024)
Completed

Epithelial Ovarian
Cancer|Primary

Peritoneal
Carcinoma|Fallopian
Tube Cancer|Ovarian

Cancer

DRUG: Mirvetuximab
soravtansine|DRUG:

Paclitaxel|DRUG: Pegylated
liposomal

doxorubicin|DRUG:
Topotecan

ImmunoGen,
Inc.

https://clinicaltrials.gov/study/NCT06340568
https://clinicaltrials.gov/study/NCT06340568
https://clinicaltrials.gov/study/NCT05609968
https://clinicaltrials.gov/study/NCT05609968
https://clinicaltrials.gov/study/NCT03529110
https://clinicaltrials.gov/study/NCT03529110
https://clinicaltrials.gov/study/NCT06203210
https://clinicaltrials.gov/study/NCT06203210
https://clinicaltrials.gov/study/NCT02631876
https://clinicaltrials.gov/study/NCT02631876
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Table 2. Cont.

NCT Number Study Title Study URL Study Status Conditions ADC Sponsor

NCT03734029

Trastuzumab Deruxtecan (DS-8201a)
Versus Investigator’s Choice for

HER2-low Breast Cancer That Has
Spread or Cannot be Surgically
Removed [DESTINY-Breast04]

https://clinicaltrials.gov/
study/NCT03734029 (accessed

on 2 September 2024)

Active—Not yet
recruiting Breast Cancer

DRUG: Trastuzumab
deruxtecan

(DS-8201a)|DRUG:
Capecitabine|DRUG:

Eribulin|DRUG:
Gemcitabine|DRUG:

Paclitaxel|DRUG:
Nab-paclitaxel

Daiichi Sankyo

NCT04494425

Study of Trastuzumab Deruxtecan
(T-DXd) vs. Investigator’s Choice

Chemotherapy in HER2-low,
Hormone Receptor Positive,

Metastatic Breast Cancer

https://clinicaltrials.gov/
study/NCT04494425 (accessed

on 2 September 2024)

Active—Not yet
recruiting

Advanced or
Metastatic Breast

Cancer

DRUG: Trastuzumab
deruxtecan|DRUG:

Capecitabine|DRUG:
Paclitaxel|DRUG:

Nab-Paclitaxel

AstraZeneca

NCT04595565 Sacituzumab Govitecan in Primary
HER2-negative Breast Cancer

https://clinicaltrials.gov/
study/NCT04595565 (accessed

on 2 September 2024)
Recruiting

HER2-negative Breast
Cancer|Triple

Negative Breast Cancer

DRUG: Capecitabine|DRUG:
Carboplatin|DRUG:

Cisplatin|DRUG:
Sacituzumab govitecan

German Breast
Group

NCT05687266

Phase III, Open-label, First-line Study
of Dato-DXd in Combination With
Durvalumab and Carboplatin for

Advanced NSCLC Without
Actionable Genomic Alterations

https://clinicaltrials.gov/
study/NCT05687266 (accessed

on 2 September 2024)
Recruting NSCLC

DRUG: Datopotamab
deruxtecan|DRUG:

Durvalumab|DRUG:
Carboplatin|DRUG:

Pembrolizumab|DRUG:
Cisplatin|DRUG:

Pemetrexed|DRUG: Paclitaxel

AstraZeneca

NCT05104866

A Phase-3, Open-Label, Randomized
Study of Dato-DXd Versus

Investigator’s Choice of
Chemotherapy (ICC) in Participants

With Inoperable or Metastatic
HR-Positive, HER2-Negative Breast

Cancer Who Have Been Treated With
One or Two Prior Lines of Systemic

Chemotherapy (TROPION-Breast01)

https://clinicaltrials.gov/
study/NCT05104866 (accessed

on 2 September 2024)

Active—Not yet
recruiting Breast Cancer

DRUG: Dato-DXd|DRUG:
Capecitabine|DRUG:
Gemcitabine|DRUG:

Eribulin|DRUG: Vinorelbine

AstraZeneca

https://clinicaltrials.gov/study/NCT03734029
https://clinicaltrials.gov/study/NCT03734029
https://clinicaltrials.gov/study/NCT04494425
https://clinicaltrials.gov/study/NCT04494425
https://clinicaltrials.gov/study/NCT04595565
https://clinicaltrials.gov/study/NCT04595565
https://clinicaltrials.gov/study/NCT05687266
https://clinicaltrials.gov/study/NCT05687266
https://clinicaltrials.gov/study/NCT05104866
https://clinicaltrials.gov/study/NCT05104866
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NCT06161025

A Study of Raludotatug Deruxtecan
(R-DXd) in Subjects With

Platinum-resistant, High-grade
Ovarian, Primary Peritoneal, or

Fallopian Tube Cancer

https://clinicaltrials.gov/
study/NCT06161025 (accessed

on 2 September 2024)
Recruiting Solid Cancer

DRUG: R-DXd|DRUG:
Gemcitabine|DRUG:

Paclitaxel|DRUG:
Topotecan|DRUG: PLD

Daiichi Sankyo

NCT04639986

Asian Study of Sacituzumab
Govitecan (IMMU-132) in

HR+/HER2− Metastatic Breast
Cancer (MBC)

https://clinicaltrials.gov/
study/NCT04639986 (accessed

on 2 September 2024)

Active—Not yet
recruiting

Metastatic Breast
Cancer

DRUG: Sacituzumab
govitecan-hziy|DRUG:

Eribulin mesylate
injection|DRUG: Capecitabine

oral product|DRUG:
Gemcitabine injection|DRUG:

Vinorelbine injection

Gilead Sciences

NCT04296890

A Study of Mirvetuximab
Soravtansine in Platinum-Resistant,
Advanced High-Grade Epithelial
Ovarian, Primary Peritoneal, or

Fallopian Tube Cancers With High
Folate Receptor-Alpha Expression

https://clinicaltrials.gov/
study/NCT04296890 (accessed

on 2 September 2024)
Completed

Epithelial Ovarian
Cancer|Peritoneal

Cancer|Fallopian Tube
Cancer

DRUG: Mirvetuximab
soravtansine

ImmunoGen,
Inc.

NCT01100502

A Phase 3 Study of Brentuximab
Vedotin (SGN-35) in Patients at High
Risk of Residual Hodgkin Lymphoma
Following Stem Cell Transplant (The

AETHERA Trial)

https://clinicaltrials.gov/
study/NCT01100502 (accessed

on 2 September 2024)
Completed Disease, Hodgkin DRUG: Brentuximab

vedotin|DRUG: Placebo Seagen Inc.

NCT06103864

A Phase III Study of Dato-DXd With
or Without Durvalumab Compared

With Investigator’s Choice of
Chemotherapy in Combination With

Pembrolizumab in Patients With
PD-L1 Positive Locally Recurrent

Inoperable or Metastatic
Triple-negative Breast Cancer

https://clinicaltrials.gov/
study/NCT06103864 (accessed

on 2 September 2024)
Recruiting Breast Cancer

DRUG: Dato-DXd|DRUG:
Durvalumab|DRUG:

Paclitaxel|DRUG:
Nab-paclitaxel|DRUG:
Gemcitabine|DRUG:
Carboplatin|DRUG:

Pembrolizumab

AstraZeneca

https://clinicaltrials.gov/study/NCT06161025
https://clinicaltrials.gov/study/NCT06161025
https://clinicaltrials.gov/study/NCT04639986
https://clinicaltrials.gov/study/NCT04639986
https://clinicaltrials.gov/study/NCT04296890
https://clinicaltrials.gov/study/NCT04296890
https://clinicaltrials.gov/study/NCT01100502
https://clinicaltrials.gov/study/NCT01100502
https://clinicaltrials.gov/study/NCT06103864
https://clinicaltrials.gov/study/NCT06103864
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NCT01712490
A Frontline Therapy Trial in

Participants With Advanced Classical
Hodgkin Lymphoma

https://clinicaltrials.gov/
study/NCT01712490 (accessed

on 2 September 2024)

Active—Not yet
recruiting Hodgkin Lymphoma

DRUG: Brentuximab
vedotin|DRUG:

Doxorubicin|DRUG:
Bleomycin|DRUG:
Vinblastine|DRUG:

Dacarbazine

Takeda

NCT05622890

A Single-arm Clinical Trial of
IMGN853 in Chinese Adult Patients
With Platinum-resistant, Epithelial

Ovarian Cancer

https://clinicaltrials.gov/
study/NCT05622890 (accessed

on 2 September 2024)
Recruiting

Epithelial Ovarian
Cancer|Peritoneal

Cancer|Fallopian Tube
Cancer

DRUG: Mirvetuximab
soravtansine

Hangzhou
Zhongmei
Huadong

Pharmaceutical
Co., Ltd.

NCT06112379

A Phase III Randomised Study to
Evaluate Dato-DXd and Durvalumab
for Neoadjuvant/Adjuvant Treatment

of Triple-Negative or Hormone
Receptor-low/HER2-negative Breast

Cancer

https://clinicaltrials.gov/
study/NCT06112379 (accessed

on 2 September 2024)
Recruiting Breast Cancer

DRUG: Dato-DXd|DRUG:
Durvalumab|DRUG:

Pembrolizumab|DRUG:
Doxorubicin|DRUG:
Epirubicin|DRUG:

Cyclophosphamide|DRUG:
Paclitaxel|DRUG:

Carboplatin|DRUG:
Capecitabine|DRUG:

Olaparib

AstraZeneca

NCT04209855

A Study of Mirvetuximab
Soravtansine vs. Investigator’s

Choice of Chemotherapy in
Platinum-Resistant, Advanced
High-Grade Epithelial Ovarian,

Primary Peritoneal, or Fallopian Tube
Cancers With High Folate

Receptor-Alpha Expression

https://clinicaltrials.gov/
study/NCT04209855 (accessed

on 2 September 2024)

Active—Not yet
recruiting

Epithelial Ovarian
Cancer|Peritoneal

Cancer|Fallopian Tube
Cancer

DRUG: Mirvetuximab
soravtansine|DRUG:

Paclitaxel|DRUG:
Topotecan|DRUG: Pegylated

liposomal doxorubicin

ImmunoGen,
Inc.

NCT05751512

A Study to Evaluate MRG003 vs.
Cetuximab/Methotrexate in in the

Treatment of Patients With
RM-SCCHN

https://clinicaltrials.gov/
study/NCT05751512 (accessed

on 2 September 2024)
Not yet recruiting

Squamous Cell
Carcinoma of the Head

and Neck

DRUG: MRG003|DRUG:
Cetuximab injection|DRUG:

Methotrexate injection

Shanghai
Miracogen Inc.

https://clinicaltrials.gov/study/NCT01712490
https://clinicaltrials.gov/study/NCT01712490
https://clinicaltrials.gov/study/NCT05622890
https://clinicaltrials.gov/study/NCT05622890
https://clinicaltrials.gov/study/NCT06112379
https://clinicaltrials.gov/study/NCT06112379
https://clinicaltrials.gov/study/NCT04209855
https://clinicaltrials.gov/study/NCT04209855
https://clinicaltrials.gov/study/NCT05751512
https://clinicaltrials.gov/study/NCT05751512
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NCT05374512

A Study of Dato-DXd Versus
Investigator’s Choice Chemotherapy

in Patients With Locally Recurrent
Inoperable or Metastatic

Triple-negative Breast Cancer, Who
Are Not Candidates for PD-1/PD-L1

Inhibitor Therapy
(TROPION-Breast02)

https://clinicaltrials.gov/
study/NCT05374512 (accessed

on 2 September 2024)
Recruiting Breast Cancer

DRUG: Dato-DXd|DRUG:
Paclitaxel|DRUG:

Nab-paclitaxel|DRUG:
Carboplatin|DRUG:

Capecitabine|DRUG: Eribulin
mesylate

AstraZeneca

NCT05629585

A Study of Dato-DXd With or
Without Durvalumab Versus

Investigator’s Choice of Therapy in
Patients With Stage I-III

Triple-negative Breast Cancer Without
Pathological Complete Response
Following Neoadjuvant Therapy

(TROPION-Breast03)

https://clinicaltrials.gov/
study/NCT05629585 (accessed

on 2 September 2024)
Recruiting Breast Cancer

DRUG: Dato-DXd|DRUG:
Durvalumab|DRUG:
Capecitabine|DRUG:

Pembrolizumab

AstraZeneca

NCT03523585

DS-8201a in Pre-treated HER2 Breast
Cancer That Cannot be Surgically

Removed or Has Spread
[DESTINY-Breast02]

https://clinicaltrials.gov/
study/NCT03523585 (accessed

on 2 September 2024)

Active—Not yet
recruiting Breast Cancer

DRUG: Trastuzumab
deruxtecan|DRUG:

Capecitabine|DRUG:
Lapatinib|DRUG:

Trastuzumab

Daiichi Sankyo

NCT01777152

ECHELON-2: A Comparison of
Brentuximab Vedotin and CHP With

Standard-of-care CHOP in the
Treatment of Patients With

CD30-positive Mature T-cell
Lymphomas

https://clinicaltrials.gov/
study/NCT01777152 (accessed

on 2 September 2024)
Completed

Anaplastic Large-Cell
Lymphoma|Non-

Hodgkin
Lymphoma|T-Cell

Lymphoma

DRUG: Brentuximab
vedotin|DRUG:

Doxorubicin|DRUG:
Prednisone|DRUG:
Vincristine|DRUG:
Cyclophosphamide

Seagen Inc.

NCT06074588

MK-2870 Versus Chemotherapy in
Previously Treated Advanced or

Metastatic Nonsquamous Non-small
Cell Lung Cancer (NSCLC) With

EGFR Mutations or Other Genomic
Alterations (MK-2870-004)

https://clinicaltrials.gov/
study/NCT06074588 (accessed

on 2 September 2024)
Recruiting Non-small Cell Lung

Cancer (NSCLC)

BIOLOGICAL:
MK-2870|DRUG:
Docetaxel|DRUG:

Pemetrexed

Merck Sharp &
Dohme LLC

https://clinicaltrials.gov/study/NCT05374512
https://clinicaltrials.gov/study/NCT05374512
https://clinicaltrials.gov/study/NCT05629585
https://clinicaltrials.gov/study/NCT05629585
https://clinicaltrials.gov/study/NCT03523585
https://clinicaltrials.gov/study/NCT03523585
https://clinicaltrials.gov/study/NCT01777152
https://clinicaltrials.gov/study/NCT01777152
https://clinicaltrials.gov/study/NCT06074588
https://clinicaltrials.gov/study/NCT06074588
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NCT03474107

A Study to Evaluate Enfortumab
Vedotin Versus (vs) Chemotherapy in

Subjects With Previously Treated
Locally Advanced or Metastatic

Urothelial Cancer (EV-301)

https://clinicaltrials.gov/
study/NCT03474107 (accessed

on 2 September 2024)

Active—Not yet
recruiting

Ureteral
Cancer|Urothelial
Cancer|Bladder

Cancer

DRUG: Enfortumab
Vedotin|DRUG:

Docetaxel|DRUG:
Vinflunine|DRUG: Paclitaxel

Astellas
Pharma Global
Development,

Inc.

NCT05754853

A Study of MRG002 Versus
Investigator’s Choice of

Chemotherapy in the Treatment of
Patients With HER2-positive

Unresectable Advanced or Metastatic
Urothelial Cancer

https://clinicaltrials.gov/
study/NCT05754853 (accessed

on 2 September 2024)
Recruiting

Advanced or
Metastatic Urothelium

Cancer

DRUG: MRG002|DRUG:
Docetaxel injection|DRUG:
Paclitaxel injection|DRUG:
Gemcitabine hydrochloride

for injection|DRUG:
Pemetrexed disodium

injection

Shanghai
Miracogen Inc.

NCT05445778

Mirvetuximab Soravtansine With
Bevacizumab Versus Bevacizumab as

Maintenance in Platinum-sensitive
Ovarian, Fallopian Tube, or Peritoneal

Cancer (GLORIOSA)

https://clinicaltrials.gov/
study/NCT05445778 (accessed

on 2 September 2024)
Recruiting

Ovarian
Cancer|Peritoneal

Cancer|Fallopian Tube
Cancer

DRUG: Mirvetuximab
soravtansine plus

bevacizumab|DRUG:
Bevacizumab

ImmunoGen,
Inc.

NCT02785900

Vadastuximab Talirine (SGN-CD33A;
33A) Combined With Azacitidine or

Decitabine in Older Patients With
Newly Diagnosed Acute Myeloid

Leukemia

https://clinicaltrials.gov/
study/NCT02785900 (accessed

on 2 September 2024)
Terminated Acute Myeloid

Leukemia

DRUG: 33A|DRUG:
Placebo|DRUG:

Azacitidine|DRUG:
Decitabine

Seagen Inc.

NCT06132958
MK-2870 in Post Platinum and Post

Immunotherapy Endometrial Cancer
(MK-2870-005)

https://clinicaltrials.gov/
study/NCT06132958 (accessed

on 2 September 2024)
Recruiting Endometrial Cancer

BIOLOGICAL:
MK-2870|DRUG:

Doxorubicin|DRUG:
Paclitaxel

Merck Sharp &
Dohme LLC

NCT02573324

A Study of ABT-414 in Participants
With Newly Diagnosed Glioblastoma

(GBM) With Epidermal Growth
Factor Receptor (EGFR) Amplification

https://clinicaltrials.gov/
study/NCT02573324 (accessed

on 2 September 2024)
Completed Glioblastoma|Gliosarcoma

DRUG:
Temozolomide|DRUG:

Depatuxizumab
mafodotin|RADIATION:

Radiation|DRUG: Placebo for
ABT-414

AbbVie

https://clinicaltrials.gov/study/NCT03474107
https://clinicaltrials.gov/study/NCT03474107
https://clinicaltrials.gov/study/NCT05754853
https://clinicaltrials.gov/study/NCT05754853
https://clinicaltrials.gov/study/NCT05445778
https://clinicaltrials.gov/study/NCT05445778
https://clinicaltrials.gov/study/NCT02785900
https://clinicaltrials.gov/study/NCT02785900
https://clinicaltrials.gov/study/NCT06132958
https://clinicaltrials.gov/study/NCT06132958
https://clinicaltrials.gov/study/NCT02573324
https://clinicaltrials.gov/study/NCT02573324
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NCT03262935

SYD985 vs. Physician’s Choice in
Participants With HER2-positive
Locally Advanced or Metastatic

Breast Cancer

https://clinicaltrials.gov/
study/NCT03262935 (accessed

on 2 September 2024)
Completed Metastatic Breast

Cancer

DRUG: (Vic-)Trastuzumab
duocarmazine|DRUG:

Physician’s choice
Byondis B.V.

NCT04924699

A Study of MRG002 in the Treatment
of Patients With HER2-positive

Unresectable Locally Advanced or
Metastatic Breast Cancer

https://clinicaltrials.gov/
study/NCT04924699 (accessed

on 2 September 2024)
Recruiting

Advanced Breast
Cancer|Metastatic

Breast Cancer

DRUG: MRG002|DRUG:
Trastuzumab emtansine for

injection

Shanghai
Miracogen Inc.

NCT05950945

Trastuzumab Deruxtecan (T-DXd) in
Patients Who Have Hormone

Receptor-negative and Hormone
Receptor-positive HER2-low or HER2

IHC 0 Metastatic Breast Cancer

https://clinicaltrials.gov/
study/NCT05950945 (accessed

on 2 September 2024)
Recruiting Breast Cancer DRUG: Trastuzumab

deruxtecan Daiichi Sankyo

NCT05329545
Upifitamab Rilsodotin Maintenance

in Platinum-Sensitive Recurrent
Ovarian Cancer (UP-NEXT)

https://clinicaltrials.gov/
study/NCT05329545 (accessed

on 2 September 2024)
Terminated

High Grade Serous
Ovarian

Cancer|Fallopian Tube
Cancer|Primary

Peritoneal Cancer

DRUG: Upifitimab
rilsodotin|OTHER: Placebo

Mersana
Therapeutics

https://clinicaltrials.gov/study/NCT03262935
https://clinicaltrials.gov/study/NCT03262935
https://clinicaltrials.gov/study/NCT04924699
https://clinicaltrials.gov/study/NCT04924699
https://clinicaltrials.gov/study/NCT05950945
https://clinicaltrials.gov/study/NCT05950945
https://clinicaltrials.gov/study/NCT05329545
https://clinicaltrials.gov/study/NCT05329545


Cancers 2024, 16, 3089 15 of 18
Cancers 2024, 16, x FOR PEER REVIEW 16 of 19 
 

 

 

4. Discussion 
Over the past decade, advances in AI have pushed the boundaries of the medical field 

[1,22]. Despite the successful development and use of AI-based diagnostic tools for pre-
diction of cancer treatment response, response to certain targeted therapies remains un-
predictable. However, in the field of ADCs, in which cancer patients are stratified for treat-
ment based on the expression of a receptor on the cancer cell membrane that can be spe-
cifically bound by an antibody carrying the cytotoxic payload, more accurate prognostic 
methods that can predict whether patients’ disease would respond to ADCs are needed. 
ML has shown great potential in many fields, such as radiology or mammography, for 
early breast cancer detection. It can be used to predict the chemistry of novel compounds 
against cancer. For such reasons, AI models could play an important role in this prediction 
of ADC response in the future. Data from ADC clinical trials are always becoming more 
available biomarkers retrieved from liquid biopsy from circulating tumor DNA, cell-free 
DNA, tissue samples, or even the tumor microenvironment. Such data could be of para-
mount importance to feed new AI models to predict ADC therapy [18–21]. This review 
has limitations as the method of AI-based ADCs therapy response is still in its conceptual 
early stage. However, in this review, we summarize the current knowledge in this com-
plex field, ranging from AI models for chemical structure prediction to ongoing clinical 
trials testing ADCs, without implementing AI now. We hope that the knowledge we have 
summarized here could serve as a useful tool for generating new AI models in the future 
based on our hypothesis. Based on our knowledge, using AI models could be paramount 
for the prediction of ADC efficacy in the near future. As technology advances, it would be 
impossible to think that such achievements would leave out the field of medicine, in par-
ticular oncology, where there is a lot of hope filling lives [52]. 

The implementation of new AI models, similar to the ones currently available for 
other prognostic models, would need the close collaboration of software engineers, data 
scientists, and decision-making medical doctors and scientists. The first step would be for 

Figure 2. Artificial intelligence assisted antibody-drug conjugate selection for the treatment of cancer.

4. Discussion

Over the past decade, advances in AI have pushed the boundaries of the medical
field [1,22]. Despite the successful development and use of AI-based diagnostic tools for
prediction of cancer treatment response, response to certain targeted therapies remains
unpredictable. However, in the field of ADCs, in which cancer patients are stratified for
treatment based on the expression of a receptor on the cancer cell membrane that can be
specifically bound by an antibody carrying the cytotoxic payload, more accurate prognostic
methods that can predict whether patients’ disease would respond to ADCs are needed.
ML has shown great potential in many fields, such as radiology or mammography, for early
breast cancer detection. It can be used to predict the chemistry of novel compounds against
cancer. For such reasons, AI models could play an important role in this prediction of ADC
response in the future. Data from ADC clinical trials are always becoming more available
biomarkers retrieved from liquid biopsy from circulating tumor DNA, cell-free DNA,
tissue samples, or even the tumor microenvironment. Such data could be of paramount
importance to feed new AI models to predict ADC therapy [18–21]. This review has
limitations as the method of AI-based ADCs therapy response is still in its conceptual
early stage. However, in this review, we summarize the current knowledge in this complex
field, ranging from AI models for chemical structure prediction to ongoing clinical trials
testing ADCs, without implementing AI now. We hope that the knowledge we have
summarized here could serve as a useful tool for generating new AI models in the future
based on our hypothesis. Based on our knowledge, using AI models could be paramount
for the prediction of ADC efficacy in the near future. As technology advances, it would
be impossible to think that such achievements would leave out the field of medicine, in
particular oncology, where there is a lot of hope filling lives [52].

The implementation of new AI models, similar to the ones currently available for
other prognostic models, would need the close collaboration of software engineers, data
scientists, and decision-making medical doctors and scientists. The first step would be for
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software engineers to go through the different AI systems and modify them into systems
for ADC therapy prediction. Once the data science has been sorted, the contribution of the
medical doctors would be to provide information on response to therapy and blood-based
biomarkers, or even breath-based biomarkers, from ongoing and completed clinical trials
involving ADC in diseases. Secondly, the prediction system should be tested in a small
subset of cancer patients. The data generated should be used to train the machine learning
for its refinement. Thirdly, the model would be tested in a larger cohort of patients. After
all these steps have been completed, the method could be commercialized. The coming of
new brave ideas will require a shift in the way we are thinking medicine.

5. Conclusions

While AI has been implemented in different fields, ranging from the prediction of
chemical structure and diagnostic in radiology to other aspects of society, there is a lack
of tests for the prognostic of targeted therapies, such as ADCs in oncology at the moment.
As these technologies become more popular, more data from clinical trials such as from
the summarized ADC clinical trials, become more widely accessible, we envision that such
methods will become part of the standard of care.
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