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ABSTRACT

We review seven models which consistently couple quantum matter and (Newtonian) gravity in a nonstandard way. For each of them, we
present the underlying motivations, the main equations, and, when available, a comparison with experimental data.
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I. INTRODUCTION

Quantum Mechanics (QM) and General Relativity (GR) are the
two pillars of modern physics; in their regime of validity, they work
extremely well, and their predictions have been confirmed with great
accuracy. One expects that there should be a unified theory that, in the
appropriate regimes, reduces to QM and GR: to find such a theory is
one of the biggest open challenges in theoretical physics.

The most explored and, in some sense, obvious approach for
merging the two theories is to quantize gravity. Essentially, given the
classical variables of GR, i.e., the metric gl� and the stress–energy ten-
sor Tl� satisfying Einstein’s equations

Gl� ¼
8pG
c4

Tl�; (1)

one notes that matter has been successfully quantized (modulo the
interpretation issues of QM) by promoting the stress–energy tensor to
the operator level: Tl� ! T̂ l� ; then for consistency, the metric tensor
also needs to be quantized: Gl� ! Ĝl� . Several attempts have been
explored, but a consistent quantum theory of gravity is still lacking.1,2

Here, we consider seven proposals that aim at combining QM
and GR by focusing on the second logical possibility: instead of
directly quantizing space–time, one modifies QM in order to accom-
modate GR. In Penrose’s words, the idea of these approaches is to
achieve a “gravitization QM,”3 instead of quantizing GR. A point in
favor for this approach is the fact that modifications of quantum
mechanics were also suggested independently from gravity, to resolve
the measurement problem in QM.4–8

In the following, we present each proposal, focusing on their
motivations and assumptions, their main equations, point of strength
and weaknesses, and, when available, comparisons with experimental

data. Specifically, in Sec. II, we review the proposal by Karolyhazy; in
Sec. III, we introduce the Di�osi’s model, and in Sec. IV, the related pro-
posal by Penrose; in Sec. V, we review a model proposed by Adler; in
Sec. VI, we present the Schr€odinger–Newton (SN) equation; while in
Secs. VII and VIII, we discuss more recent proposals based on quan-
tummeasurement and feedback approaches.

II. THE PROPOSAL BY KAROLYHAZY

One of the first attempts to combine QM and GR without quantiz-
ing the space–time metric is due to Karolyhazy.9–11 His main idea is that
there is a fundamental uncertainty in the space–time structure, which
can be modeled by considering the metric gl� as a random variable. To
characterize this randomness, Karolyhazy considers the following ques-
tion: given a quantum probe subject to the uncertainty principle, and
given a length s¼ cT, what is the minimal uncertainty Ds with which it
can be determined by the probe? He shows thatDs can be estimated as9

Ds �
ffiffiffiffiffiffi
‘2Ps

3

q
; (2)

where ‘P ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�hG=c3

p
is the Planck length. This uncertainty is then

related to fluctuations of the space–time metric, and consequently, a
random family of space–time metrics gl� is introduced. To each reali-
zation of the metric, a length s is associated, with average�s ¼ E½s� and
standard deviation Ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðs��sÞ2�

q
, where E½…� denotes the

average over the metric fluctuations.
In the non-relativistic limit, the random deviations from flat

space–time affect only the component g00 of the metric; hence, one
assumes g00 ¼ g00 þ cðx; tÞ, and the fluctuations cðx; tÞ admit the
Fourier expansion,
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cðx; tÞ ¼ 1ffiffiffiffi
‘3
p

X
k

cðkÞeiðk�x�xtÞ þ c�ðkÞe�iðk�x�xtÞ
� �

; (3)

where ‘ is the length of an arbitrary chosen large box. In order to
recover Eq. (2), the correlations among the coefficients of the expan-
sion must be

E cðkÞc�ðk0Þ
� �

¼ dk;k0‘
4=3
P k�5=3 if jkj � 2p=kc;

0 if jkj > 2p=kc;

(
(4)

where kc is a cutoff whose originally suggested value was kc ¼ 10�15

m. The corresponding expression for the correlation among the per-
turbations cðx; tÞ was computed in Ref. 12 for kc ¼ 0; the expression
valid for any kc is

Cðx � x0; t � t0Þ
:¼ E cðx; tÞcðx0; tÞ

� �
¼ 3

r
‘4P

32p2k4c

 !1
3

ðr þ csÞ 1F2
2
3

;
3
2
;
5
3

;� p2ðr þ csÞ2

k2c

 !"

þðr � csÞ 1F2
2
3

;
3
2
;
5
3

;�p2ðr � csÞ2

k2c

 !#
; (5)

where r ¼ jx � x0j; s ¼ t � t0, and qFpða; b; c; zÞ are the generalized
hypergeometric function Gamma.

The stochastic perturbation of the metric appears in the
Schr€odinger equation as a stochastic potential of the form12 Vðx; tÞ
¼ ð1=2Þmc2cðx; tÞ (see also the discussion in Sec. VI). One can then
perturbatively compute the corresponding master equation, which is,
to the lowest order in G,

dq̂ðtÞ
dt
¼ � i

�h
Ĥ ; q̂ðtÞ
� �

� c2

2�h

� �2 ð
dx
ð
dx0
ðt
0
dt0Cðx � x0; t � t0Þ

� .ðx � q̂Þ; eði=�hÞĤ ðt
0�tÞ.ðx0 � q̂Þe�ði=�hÞĤ ðt0�tÞ; q̂ðtÞ

h ih i
; (6)

where .ðxÞ is the mass density of the particle. In contrast to other
models introduced below, this master equation is non-Markovian.

The uncertainty in the space–time metric implies decoherence in
position, as it should be clear from Eq. (6). Karolyhazy shows that for
a uniform sphere of radius R, the randomness in space–time makes a
quantum state decohere in position with a decay time sK correspond-
ing to

sK 	
ma2K

�h
with aK ¼

�h2=Gm3 if R
 �h2=Gm3;

�h2R2=Gm3
	 
1=3

if R� �h2=Gm3:

(

To show some significant examples of the model’s predictions, one
finds that for a proton, aK ¼ 1023 m, corresponding to sK ¼ 1053 s,
while for a macroscopic sphere with radius R¼ 1 cm, aK ¼ 10�18 m,
corresponding to sK ¼ 10�4 s.

Stochastic modifications of the Schr€odinger equation of the kind
considered here are well known to lead to emission of x-rays from
charged particles,13–16 as a consequence of the fluctuations in the par-
ticle’s motion. Di�osi and Luck�as computed this effect for Karolyhazy’s
model, showing that the emitted radiation is unreasonably large and,
hence, ruling out the model.17 In their analysis, Di�osi and Luck�as

considered a large range of values for the cutoff kc, upon which the
emission depends, and showed, using several arguments, that any
value kc � 10�15 m is excluded. On the other hand, smaller values for
the cutoff were considered as meaningless by Karolyhazy himself9

(likely because taking smaller cutoff implies that the model resolves
distances smaller than the proton radius, which might be not compati-
ble with the assumption of working in the non-relativistic regime,
although a clear statement from the author in this respect is lacking).
Further work is needed to assess whether Karolyhazy’s idea can still
survive or is really incompatible with experimental evidence.

III. THE DI �OSI MODEL

What is known in the literature under the name of
“Di�osi–Penrose” (DP) model actually consists of two related but inde-
pendent proposals. Therefore, we introduced them separately, starting
from the earlier model by Di�osi.

A master equation describing gravitational decoherence was first
given in Ref. 18. The starting point is similar to that of Karolyhazy, and it
was presented in a previous paper by Di�osi and Luck�as.19 First, it is
pointed out that in any realistic measurement, one never measures the
gravitational field gðr; tÞ at the precise space–time point ðr; tÞ with infi-
nite precision, rather one measures ~g ðr; tÞ ¼ ð1=VTÞ

Ð
Tdt
0Ð
Vdr0gðx0; t0Þ

averaged over a space–time volume VT around that point, where V is a
space volume and T is a time interval. Then, they showed that if the mea-
surement is performed using a quantum probe, the Heisenberg uncer-
tainty principle implies that the minimum precision for determining ~g is
given by d~g 	 G�h=VT . This result can be modeled by assuming
that gðr; tÞ ¼ gcðr; tÞ þ g sðr; tÞ, where gc is the classical field and gs
is a stochastic vector fluctuation where the components gjs have zero aver-
age and correlation E½gisðr; tÞg

j
sðr0; tÞ� ¼ dijG�hdðt � t0Þdðr � r0Þ. Since

g ¼ �r/, one gets

E /ðr; tÞ/ðr0; tÞ
� �

¼ dðt � t0Þ G
�hjr � r0j : (7)

It is interesting to compare this expression with that of Karolyazy in
Eq. (5). By introducing / as a stochastic potential in the Schr€odinger
equation, similarly to what suggested by Karolyhazy, Di�osi finds that
the corresponding master equation is

dq̂ðtÞ
dt
¼ � i

�h
Ĥ ; q̂ðtÞ
� �

� G
2�h

ð
dr
ð
dr0

1
jr � r0j .̂ðrÞ; .̂ðr0Þ; q̂t

� �� �
;

(8)

where .̂ðyÞ ¼
PN

j¼1 .jðy � x̂ jÞ with .jðyÞ is the mass density of the
jth nucleon of the system.63

Given this master equation, later Di�osi built a non-linear equa-
tion that describes the collapse of the wave function,20

djwðtÞi ¼ � i
�h
Ĥdt þ

ð
dx .̂ðrÞ � h.̂ðrÞit
	 


dWtðrÞ
�

� G
2�h

ð
dr
ð
dr0

.̂ðrÞ � h.̂ðrÞit
	 


.̂ðr0Þ � h.̂ðr0Þit
	 


jr � r0j

�
jwðtÞi:

(9)

The master Eq. (8) implies decoherence in the position basis. The
decoherence time can be estimated by neglecting the free evolution
and solving Eq. (8) in the position basis; the result is

AVS Quantum Science ARTICLE scitation.org/journal/aqs

AVS Quantum Sci. 4, 025601 (2022); doi: 10.1116/5.0089318 4, 025601-2

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/avs/aqs/article-pdf/doi/10.1116/5.0089318/16493740/025601_1_online.pdf

https://scitation.org/journal/aqs


hxjq̂ðtÞjyi ¼ hxjq̂ð0Þjyie�t=sD ; (10)

where

s�1D ¼
G
2�h

ð
dr
ð
dr0

.ðr � xÞ � .ðr � yÞ½ � .ðr0 � xÞ � .ðr0 � yÞ
� �

jr � r0j :

(11)

If one takes a point-like mass density, the term on the RHS diverges,
due to the functional form of the Newtonian potential. For this reason,
one should consider mass distributions, which are finite, extended
over a region of radius R0. For nucleons, a natural choice would be
R0 ¼ 10�15 m, as originally suggested in Ref. 18. However, Eq. (8) pre-
dicts that the kinetic energy of a system increases linearly in time, due
to the noise, and it was shown that such a small value for R0 leads to
an unacceptable energy increase.21

A possible solution to this problem is to introduce dissipative
terms, which bound the energy; this was considered in Ref. 22, and the
resulting model depends on two parameters: R0 and the temperature T
at which systems thermalize; the standard DP model is recovered in
the limit of infinite temperature. However, for R0 ¼ 10�15 m and tak-
ing a temperature T 	 1K for the noise (comparable to that of the
cosmic microwave background radiation), the model is not consistent
for systems with mass smaller than m ¼ 1011 amu, since it predicts
too strong dissipative effects, which are experimentally excluded. To
summarize, contrary to other collapse models,23 the dissipative gener-
alization of Di�osi’s model is not straightforward. For this reason, to
date, the model still depends only on the parameter R0, which is taken
as a free parameter larger than 10�15 m.

Several bounds on R0 have been computed, by considering different
experimental data. In all of them, the key element is that the noise under-
lying the model generates a diffusion of the (center of mass of) the sys-
tem, which can be detected, or bounded, by experiments. The model
dictates that the smaller the R0, the larger the effect;

21 therefore, experi-
mental data place a lower bound on the parameter. Gravitational wave
detectors give R0 � 4� 10�14 m,24 the analysis of the power radiated by
neutron stars gives R0 � 10�13 m (Ref. 25), and searches for spontaneous
photon emission from Germanium detectors give R0 � 0:54� 10�10

m.26 Moreover, the recent analysis performed in Ref. 27 shows that from
the power radiated by Neptune, one can derive R0 � 3:7� 10�12 m,
while data about the residual heat leak experiments performed in ultra-
low temperature cryostats give R0 � 4:6� 10�12 m.

IV. PENROSE’S PROPOSAL

The proposal by Penrose is based on the general idea that, instead
of working on quantizing gravity, we should try to “gravitaze” QM.3,28

This means that QM needs to be modified when gravitational effects
are large enough. Penrose proposed a way to compute what is meant
by “large:” he did so by providing two different arguments: one based
on an uncertainty in the definition of the time-translation operator28

and the other based on possible violations of the equivalence
principle.3

In both cases, the idea (expressed in a non-relativistic language)
is that a mass in a spatial superposition around two different locations
a and b of space (at some fixed time) generates a superposition of
space–time metrics, such that a test mass used to probe the gravita-
tional field at a point r would experience a superposition of two differ-
ent accelerations, gaðrÞ and gbðrÞ, corresponding to the two different

branches of superposition. The square of the difference between these
two accelerations divided by G is taken as a measure of the energy
uncertainty due to the space–time superpositions at the point r, and
then this uncertainty is integrated over space. This implies

DE ¼ 1
G

ð
dr gaðrÞ � gbðrÞ
	 
2

¼ 4pG
ð
dr
ð
dr0

.aðr0Þ � .bðr0Þ
	 


.aðrÞ � .bðrÞ
	 


jr � r0j ; (12)

where to find the final expression, one uses the standard relations
gðrÞ ¼ �r/ðrÞ together with the Poisson equation r2/ðrÞ
¼ 4pG.ðrÞ and its solution.

Given DE, Penrose suggests that, similarly to what happens in
nuclear decay, one can apply the Heisenberg time-energy uncertainty
principle to derive the decay time of the superposition: s ¼ �h=DE.
One can immediately see by comparing Eq. (12) with Eq. (11) that,
apart for an unimportant factor 8p, this decay time is the same as that
predicted by Di�osi; this is the reason why the two proposals are
referred together as Di�osi–Penrose.

Contrary to the approaches of Karolyhazy and D�ıosi, Penrose
does not provide a dynamical equation for the state vector. The beauty
and strength of his argument are to rely solely on basic and general
principles of QM and GR and from this to show how they lead to a
conflict. Remarkably, contrary to what one might have originally
expected, Penrose’s argument shows that the friction between QM and
GR might be seen at scales much less extreme than the Planck scale
(the Planck time is �10�44 s and the Planck length is �10�35 m).
For example, if one considers an homogeneous sphere with mass
m ¼ 10�12 kg and radius R ¼ 5 lm placed in a spatial superposition
at a distance d � R, one gets s ¼ 10�6 s. A more precise calculation
accounts for the fact that matter is not uniformly distributed but it
is concentrated around atomic nuclei.3 Then, for the same mass
m ¼ 10�12 kg, the gravity induced collapse results to be stronger, lead-
ing to s ’ 10�2–10�3 s.

As direct approaches to test Penrose’s idea, it has been proposed
to study the motion of a crystal with a mass �10�12 kg inside an
optical cavity29 or to perform interference experiments with a
Bose–Einstein condensate made of 109 atoms.30 Other indirect (non-
interferometric) approaches were discussed in Secs. III, VI, and VII.

V. ADLER’S PROPOSAL

The model of Karolyhazy and the first model proposed by D�ıosi
are both based on the idea that the space–time metric has random
fluctuations. These fluctuations in Karolyhazy’s model9 as well as in
the first version of the model proposed by D�ıosi18 are supposed to be
real. Real fluctuations keep the dynamics linear though random and
induce decoherence, not the collapse of the wave function; an anti-
Hermitian coupling leading to a non-linear (and stochastic) dynamics,
by imposing state-vector normalization, is necessary to achieve objec-
tive collapse.31

Starting from these premises, Adler32 provides specific arguments
as to why it is reasonable to assume the existence of a small fluctuating
complex part in the classical metric (for example, complex-valued
effective metrics appear in theories of modified gravity33). These fluc-
tuations are coupled to the quantum mass density operator, and, in
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the weak field and non-relativistic limit, one obtains the following
approximate Hamiltonian:

Ĥ ¼ Ĥ 0 þ nc2
ð
dx.̂ðxÞwðx; tÞ; (13)

here w is a complex valued noise with zero average and correlation
E½wðx; tÞ;wðy; t0Þ� ¼ Dðx � y; t � t0Þ, where D is a generic complex
function of order 1, and the only assumption, which is made, is the
correlation to be space and time translational invariant. The positive
parameter n controls the strength of the noise. .̂ðxÞ is the non-
relativistic mass density operator.

Since the fluctuations are complex, the Hamiltonian is not
Hermitian, the norm of the vector is not conserved, and by forcing
norm conservation, appropriate non-linear terms have to added. The
corresponding master equation was computed in Ref. 34 to the lowest
perturbation order in n,

dq̂t

dt
¼ � i

�h
Ĥ 0; q̂t

� �
� n2c4

�h2

ð
dx
ð
dy
ðt
0
dsDRðx � y; t � sÞ

� .̂ðxÞ; .̂ðy; s� tÞ; q̂t½ �½ � � in2c4

�h2

ð
dx
ð
dy

�
ðt
0
dsDIðx � y; t � sÞ .̂ðxÞ; .̂ðy; s� tÞ; q̂t

 �� �
; (14)

where DR and DI are, respectively, the real and imaginary parts of
the correlation function D and .̂ðy; s� tÞ is the mass density oper-
ator evolved in the interaction picture to the time s� t. Since the
noise correlator is arbitrary, apart from the symmetries specified
before, Eq. (14) represents a general class of models, which
includes and generalizes also those of Karolyhazy and D�ıosi; more-
over, it is suitable for describing dissipative as well as non-
Markovian effects.

It was shown34 that Eq. (14) fulfills the two most important prop-
erties required for a consistent collapse models: the non-unitary terms
induce the collapse of the wave function in space, and, when compos-
ite systems are considered, their center of mass collapses with an
amplified rate, roughly proportional to the total mass of the system. If
one restricts the model to a noise correlator, which is purely real,
Gaussian in space and delta-correlated in time, Eq. (14) formally
reduces to the master equation of the Continuous Spontaneous
Localization (CSL) model,35 and hence, all the bounds set for CSL
can be mapped to this model34,36 (see Ref. 37 for a recent review on
the subject).

VI. THE SCHR €ODINGER–NEWTON EQUATION

The Schr€odinger–Newton (SN) equation was first introduced in
Ref. 38, and it is strongly related to semiclassical gravity. In semiclassi-
cal gravity,39,40 the Einstein equations (1) of GR are modified by quan-
tizing matter, therefore promoting the energy–momentum tensor to
an operator, and then by taking its expectation value,

Gl� ¼
8pG
c4
hwjT̂ l� jwi; (15)

where jwi describes the state of the quantum matter. Gravity remains
classical.

In the weak field limit, one can expand the metric around flat
space–time: gl� ¼ gl� þ hl� with jhl� j 
 jgl� j; in the non-

relativistic limit, the only relevant component of the metric is g00.
Then, Eq. (15) becomes41

r2h00 ¼ �
8pG
c4
hwjT̂ 00jwi: (16)

In linearized gravity, the interaction between gravity and matter is

described by the Hamiltonian Ĥ I ¼ �ð1=2Þ
Ð
dxhl�T̂

l�
, considering

only the relevant “00” component, and given that T̂
00 ¼ .̂c2 with

.̂ ¼
P

j mjŵ
†

j ŵj (the sum runs over the different kinds of particles

composing the system, and ŵ
†

j ŵj is the number density operator for

the particles of type j) and for the solution of the Poisson equation
(16), one gets

Ĥ I ¼ �G
ð
dx
ð
dx0
hwj.̂ðx0Þjwi
jx � x0j .̂ðxÞ: (17)

When this potential is added into the Schr€odinger equation, one
obtains the SN equation, which, for one particle, is

i�h
d
dt

wtðx; tÞ ¼ � �h2

2m
r2 � Gm2

ð
dy
jwtðy; tÞj

2

jx � yj

 !
wtðx; tÞ: (18)

The second term on the right hand side describes a Newtonian
gravitational self-attraction among the different parts of the wave
function; for a free particle, this term prevents the spread of the
wave packet to increase indefinitely, as the kinetic term dictates;
eventually, the two effects compensate, and the wave function
reaches asymptotically a final width. The effect is negligible for
microscopic systems over typical timescales and becomes more rel-
evant for large masses. For a Gaussian wave packet, a simple way to
estimate the size of the equilibrium width r is given by
r � �h2=Gm3,42 which is �1022 m for a proton, while it is �10�40 m
for a particle with a mass of 1mg.

The SN equation is non-linear and deterministic. This poses a
serious problem because it was shown that this kind of dynamics
allows for faster than light signaling.43 In the case of the SN equation,
this has been explicitly shown in Ref. 41, and the argument is the fol-
lowing: one considers the typical EPR setup involving an entangled
state of pairs of massive spin 1/2 particles: one sent to Alice and the
other one to Bob, who are arbitrary far away from each other.
Depending on which measurement Alice decides to perform, Bob will
either have 50% times j"i and 50% times j#i along a given z direction,
or 50% times ðj"i þ j#iÞ=

ffiffiffi
2
p

and 50% times ðj"i � j#iÞ=
ffiffiffi
2
p

. Bob
then sends his particles through a Stern–Gerlach device, with the
inhomogeneous component of the magnetic field aligned along the
z direction. When exiting the device, in the first case, particles’ tra-
jectories will simply be deviated upward or downward by the mag-
netic field. In the second case, their trajectories will turn in a
superposition of moving upward and downward; then, assuming
that the masses are large enough, so that the self-attraction of the
SN equation is not negligible, the two parts of the wave function
will attract each other. When hitting the screen producing two
spots, in the first case, the distance between the spots will be larger
than in the second case. In this way, Bob can understand which
type of measurement Alice performed, thus establishing a protocol
for superluminal communication.
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This poses serious issues in considering the Schr€odinger–Newton
equation as fundamental dynamics. Since the equation is a special case
of semiclassical gravity, this implies that also Eq. (15) cannot be taken
as fundamental dynamics. A possible approach to solve this problem
is discussed in Sec. VIII.

Compared to the effects in the DP model, those of the SN equa-
tion are typically weaker, which is why the model has not yet been
tested. However, possibilities for future tests have been analyzed, in
particular considering optomechanical devices, and it was shown that
by using the best current technologies in the fields of cavity enhanced
optical position readout, levitation of ions in Paul traps, and supercon-
ducting materials, one should be able to measure the shift in the
energy levels of an harmonic oscillator due to the presence of the SN
self-interaction.44 Another proposal, based on the study of the effects
of SN equation on the motion of the center of mass of a Si crystal
cooled down to 10K, was considered in Ref. 45, where it was also
found that the SN effects are small but, in principle, detectable with
current technology.

VII. THE KTM MODEL

The model proposed by Kafri, Taylor, and Milburn (KTM)46 is
based on the idea of implementing Newtonian gravity through a
hybrid classical-quantum dynamics based on a continuous measure-
ment and feedback protocol.

The model considers two masses m1 and m2, each trapped by
harmonic potentials with, respectively, frequencies x1 and x2, and
interacting through the Newtonian potential. The distance d between
the masses is supposed to be much larger than the position spread of
each particle, so that the Newtonian potential can be approximated by
a linear potential, leading to the effective one dimensional
Hamiltonian,

Ĥ ¼ Ĥ 0 þ Kx̂1x̂2; Ĥ 0 ¼
X2
j¼1

p̂j
2mj
þ 1
2
mjX

2
j x̂

2
j ; (19)

whereX2
j ¼ x2

j � K=mj and K ¼ 2Gm1m2=d3.
The first input of the KTM model is that each particle is subject

to a continuous measurement of their position;47 the measurement
records rjðtÞ are random variables with average hx̂ jðtÞi and fluctua-
tions proportional to white noises wjðtÞ,

rjðtÞ ¼ hx̂ jðtÞi þ
�hffiffiffifficjp wjðtÞ; (20)

where the parameters cj, which, at this stage, are arbitrary, control the
information associated with the outcome of the continuous measure-
ment. Next, the measurement records are used as a feedback to gener-
ate an hybrid classical-quantum (linearized) Newtonian interaction in
place of the standard quantum interaction,

Kx̂1x̂2 ! Kðr1ðtÞx̂2 þ r2ðtÞx̂1Þ; (21)

this is why one speaks of a continuous measurement and feedback
protocol.

The continuous measurement introduces a disturbance on the
evolution of the two particles, which eventually leads to decoher-
ence. KTM shows that in order to minimize the decoherence
effects, one needs to set cj ¼ 2�hK , thus linking these constants to
gravity.

The evolution for the state vector is given by48

djwðtÞi ¼ � i
�h
Ĥ 0dt�

X2
j;k¼ 1
j 6¼ k

i
�h
Kx̂jrkðtÞ þ

Kx̂2j
4�h

" #
dt

8><
>:
þ
X2
j¼1
� K
4�h
ðx̂ j � hx̂ jðtÞiÞ2dtþ

ffiffiffiffiffiffi
K
2�h

r
ðx̂ j� hx̂ jðtÞiÞdWjðtÞ

" #

�
X2
j;k¼ 1
j 6¼ k

i
2�h

Kx̂jðx̂k � hx̂kðtÞiÞdt

9>>=
>>;jwðtÞi; (22)

where the first term on the right hand side is the standard
Hamiltonian term Ĥ 0 of Eq. (19) (without the gravitational part), the
second term corresponds to the feedback contribution, the third and
fourth terms to the continuous measurement, while the last term is the
Itô term arising from their combined effect. As one can see, this is a
stochastic and highly non-linear equation, where the gravitational
interaction can be barely recognized. Yet, the corresponding master
equation (when an average over the noise is taken) is

dq̂ðtÞ
dt
¼ � i

�h
Ĥ 0 þ Kx̂1x̂2; q̂ðtÞ
� �

� K
2�h

X2
j¼1

x̂ j x̂ j; q̂ðtÞ
� �� �

: (23)

This is a Lindblad equation, where now (linearized) gravity reappears
in the unitary part of the dynamics as a standard quantum interaction.
Therefore, while at the wave function level, the system evolves through
hybrid classical-quantum dynamics; at the level of the master equa-
tion, the dynamics are fully quantum, as the classical and non-linear
terms are averaged out. The price to pay is the appearance of a
Lindblad term, describing decoherence in position.

The KTM model can be generalized to more than two particles
in different ways, and a priori, it is not obvious which one is more
appropriate. One generalization, introduced in Ref. 49, assumes a pair-
wise interaction: given a system of N particles interacting gravitation-
ally, the position of each particle is measured by all the others
separately; therefore, the KTM protocol previously outlined is repeated
for each pair. In the same paper, however, it is shown that such a gen-
eralization is ruled out by interferometric experiments with atomic
fountains. Another natural generalization, introduced in Ref. 48,
assumes that the position of each particle is measured only once, and
then the recorded information is shared to all the other particles of the
system through the KTM feedback Hamiltonian. However, in the
same paper, this generalization is proved to be inconsistent because,
given two composite systems and assuming the internal degrees of
freedom of each system are negligible, by integrating them out one
does not recover the KTM model for the center of mass of the two
subsystems.

As a last remark, the KTM model was recently generalized by
introducing dissipative terms.50

VIII. THE TILLOY–DI �OSI MODEL

The Tilloy–Di�osi (TD) model51 has several connections to the
models introduced in previous sections: it was proposed as a solution
of the faster-than-light signaling problem in semiclassical gravity dis-
cussed in Sec. VI; it introduces a feedback mechanism similar to the
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one used in the KTM model presented in Sec. VII; in an appropriate
limit, its master equation reduces to that of the DP model of Sec. III.

The problem with the non-linear SN equation (18) is that it is
deterministic. To solve this problem, in a clever way, Tilloy and
Di�osi introduce random terms in the dynamics, by assuming that
the source of gravity hwj.̂ðrÞjwi is replaced by hwj.̂ðrÞjwi
þ �h

Ð
dsc�1ðr � sÞd.tðsÞ, where c�1 in the inverse kernel of c in the

sense that it satisfies
Ð
dscðr �sÞc�1ðs� rÞ ¼ dðr � r0Þ and d.tðsÞ is

a stochastic fluctuation resulting from the continuous measurement
of the mass density at the space–time point ðt; sÞ, having zero average
and correlation E½d.tðsÞd.t0 ðs0Þ� ¼ cðs� s0Þdðt � t0Þ.

By resorting to the same continuous measurement and feedback
mechanism employed in the KTMmodel, now generalized to continu-
ous measurements at each space–time point, they arrive at a non-
trivial stochastic non-linear evolution for the state vector jwti that
generalizes in Eq. (22) to the full Newtonian potential.48 The average
over the noise gives the Lindblad-type master equation,

dq̂ðtÞ
dt
¼ � i

�h
Ĥ þ V̂NEW; q̂ðtÞ
� �

�
ð
ds
ð
drDðr � sÞ .̂ðsÞ .̂ðrÞ; q̂ðtÞ½ �½ �; (24)

where V̂NEW is the standard Newtonian potential and

Dðr � sÞ ¼ cðr � sÞ
8�h2

þ G2

2

ð
dr0
ð
ds0

c�1ðr0 � s0Þ
jr � r0jjs� s0j (25)

is the decoherence kernel. Similarly to what done by KTM, one
can ask for this kernel to be minimal, which fixes cðr � sÞ
¼ ð2�hG=jr � sjÞ. With this choice, the Lindblad term in Eq. (24)
reduces to that of Eq. (8) of the DP model. In spite of having the same
decoherence term as that of the DP model, the TD model has the
important merit of naturally accounting for the Newtonian interac-
tion, which is not accounted for in the DP model (it is introduced by
hand in the Hamiltonian).

Another approach that modifies the SN equation by adding sto-
chastic elements was put forward in Ref. 52. As for the TD model,
the stochastic terms are built in such a way to guarantee no faster-
than-light signaling; one difference with respect to the TD model is
that using this approach, one does not recover the Newtonian
potential.

As a final note, it is important to point out that, contrary to what
one would expect, the TD model does not reduce to the KTM in the
limit where gravity is linearized, as it was shown in Ref. 48. This is a
consequence of the fact that the noises responsible for the measure-
ments are structurally different in the two models: while in the KTM
model, the noises are attached to the particles, in the TD, there is a
noise at each point of space–time, independently from where the par-
ticles are located. This change of perspective is necessary in order to
deal with the full gravitational potential, as discussed in Ref. 48.

IX. CONCLUSIONS

We reviewed some of the most relevant proposals which attempt
to combine quantum mechanics and gravity by keeping gravity classi-
cal to some extent and modifying quantum mechanics where neces-
sary. In most of these approaches, the idea is that the gravitational
interaction coupling quantum matter is modified by adding a

stochastic perturbation. Clearly, these models share the limitation of
being valid only in the non-relativistic Newtonian regime.

Here, we did not review gravitational decoherence,53–58 i.e., stan-
dard quantum mechanical models describing how gravitational per-
turbations can spoil the properties of quantum systems, since the
discussion covered only those proposals which modify the quantum-
gravitational interaction at the fundamental level. For a recent review
of this field, we refer the reader to Ref. 59; a general master equation
comprising most of these models has recently been presented.60

As a final note, the question whether gravity is fundamentally
quantum or classical has recently received a boost by a proposal, which
show how to use optomechanical platforms to perform future dedi-
cated experiments assessing the nature of gravity.61,62
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