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Abstract
Reaction systems are discrete dynamical systems that simulate biological processes within living cells through finite sets of

reactants, inhibitors, and products. In this paper, we study the computational complexity of deciding on the existence of

fixed points and attractors in the restricted class of additive reaction systems, in which each reaction involves at most one

reactant and no inhibitors. We prove that all the considered problems, that are known to be hard for other classes of

reaction systems, are polynomially solvable in additive systems. To arrive at these results, we provide several non-trivial

reductions to problems on a polynomially computable graph representation of reaction systems that might prove useful for

addressing other related problems in the future.

Keywords Reaction system � Computational complexity � Finite dynamical system � Complexity of the dynamic �
Resource-bounded reaction system

1 Introduction

Reaction systems have been introduced by Ehrenfeucht and

Rozenberg (2004, 2007) as an abstract computation model

inspired by the biochemical reactions happening inside

living cells. The model consists of a finite set of entities,

modelling the different chemical substances that might be

present inside a cell, and a finite set of rules, modelling the

reactions that might happen. A reaction is expressed as a

subset of entities called reactants, another subset of entities

called inhibitors, and a third subset of entities called

products. Any subset of entities defines a state of a reaction

system.

The model of computation provides that all reactions

whose set of reactants is fully included in the current state

and whose set of inhibitors has an empty intersection with

it happen at the same time and the union of the products of

such reactions define the next state of the system.

This formulation is particularly simple, as it assumes

that reactions sharing some reactants can always happen

simultaneously; and yet, it is known that this model can be

used to simulate several biological processes, including

heat shock response, gene regulatory networks and onco-

genic signalling: see Corolli et al. (2012); Azimi et al.

(2014); Barbuti et al. (2021); Ivanov and Petre (2020).

The sequence of reactions happening inside a reaction

system defines a dynamical process; the computational

complexity of several aspects of such process has been the

object of several studies, including Formenti et al. (2015);

Azimi et al. (2016); Barbuti et al. (2016); Nobile et al.

(2017); Dennunzio et al. (2019). While the standard for-

mulation of reaction systems does not constraint the size of

the set of reactants and inhibitors that define the reactions,

a different line of research investigates resource-bounded

reaction systems, in which either the number of reactants or

the number of inhibitors in each reaction is bounded:

Ehrenfeucht et al. (2011) studied how limiting the number

of reactants and inhibitors can affect the kinds of functions

that a reaction system can define; Dennunzio et al. (2016)

studied the complexity of the reachability problem when

limiting the maximum number of reactants and inhibitors

involved in each reaction; Azimi (2017) proposed an

algorithm to list all steady states of reactant systems whose

reactions have a small number of reactants and inhibitors;

Ascone et al. (2024) investigated the computational
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complexity of deciding on the occurrence of behaviors

related to fixed points and attractors in the special classes

of reactantless and inhibitorless reaction systems, in which

the set of reactants (respectively, the set of inhibitors) is

empty.

Constraining the resources that each reaction can use

also allows characterizing better the complexity of the

dynamics that real systems—modelled as reaction sys-

tems—can exhibit. In fact, elementary chemical reactions

are often unimolecular or bimolecular, i.e., they involve

only one or two molecules; trimolecular reactions are

already considered non-elementary and reactions involving

four or more molecules are not observed due to the very

low probability of the simultaneous interaction of four or

more molecules (Steinfeld et al. 1999). Hence, any reac-

tion system involving reactions with a large number of

reactants is not a realistic representation of real-world

reactions.

It is, therefore, useful to understand the complexity of

deciding if a certain dynamical behaviour occurs in reac-

tion systems with reactions using a small number of reac-

tants and, in particular, in systems where each reaction has

at most one reactant and no inhibitors, that are the most

constrained systems in which interesting dynamical

behaviors can still be observed. Questions related to fixed

points and attractors for this class of reaction systems,

which we call additive reaction systems, were left open in

Ascone et al. (2024). The main results presented in this

paper are summarized in Table 1.

All the considered problems, which are almost always

hard for reactantless and inhibitorless reaction systems,

become polynomial in the class of additive reaction sys-

tems. Although this might be not entirely unexpected due

to the relative simplicity of the dynamics of these severely

constrained systems, it is worth noticing that, e.g., the

problem of deciding whether a given state is a fixed point

attractor was proved to remain NP-hard even for the class

of inhibitorless reaction systems whose reactions involve

up to two reactants each.

The key tool our results rely on a variation of the so-

called influence graph, a graph representation of the reac-

tions of a system that was first introduced by Brijder et al.

(2011). In particular, we determine the computational

complexity of the considered problems by designing highly

non-trivial polynomial-time reductions to various problems

on the influence graph and by then providing polynomial-

time solutions to these problems.

The rest of this paper is organized as follows. In Sect. 2,

we provide basic notions on reaction systems and introduce

the notation and tools we use throughout. In Sect. 3, we

study problems related to the existence of fixed points. In

Sect. 4, we study problems related to the existence of fixed

points that are either attractors or not attractors. Finally, in

Sect. 5 we discuss the obtained results and the problems

left open.

2 Basics notions

This section introduces the basic notions about reaction

systems and the notation used in this paper. Given a finite

set S of entities, a reaction a over S is defined by a triple

Table 1 Computational complexity of the problems studied in this work for different classes of reaction systems. NP-c, coNP-c, RP
2 -c and PP

2 -c

are shorthands for NP-complete, coNP-complete, RP
2 -complete and PP

2 -complete, respectively; RSð1;1Þ, RSð0;1Þ, RSð1; 0Þ, and

RSð1; 0Þ denote unconstrained, reactantless, inhibitorless and additive reaction systems, respectively (see Sect. 2). Light-blue cells contain the

results proved in this paper

Problem RSð1;1Þ RSð0;1Þ RSð1; 0Þ RSð1; 0Þ

A given state is a fixed point attractor NP� c½1� NP� c½2� NP� c½2� P(Cor. 9)

9 fixed point NP� c½1� NP� c½2� P½3� P½3�

9 common fixed point NP� c½1� NP� c½2� NP� c½2� P (Cor. 6)

sharing all fixed points coNP� c½1� coNP� c½2� coNP� c½2� P (Cor. 4)

9 fixed point attractor NP� c½1� NP� c½2� Unknown P (Cor. 21)

9 common fixed point attractor NP� c½1� NP� c½2� NP� c½2� P (Cor. 22)

sharing all fixed points attractor PP
2 � c½1� PP

2 � c½2� PP
2 � c½2� P (Cor. 23)

9 fixed point not attractor RP
2 � c½2� RP

2 � c½2� RP
2 � c½2� P (Cor. 14)

9 common fixed point not attractor RP
2 � c½2� RP

2 � c½2� RP
2 � c½2� P (Prop. 19)

sharing all fixed points not attractor coNP� c½2� coNP� c½2� coNP� c½2� P (Cor. 18)

½1� Formenti et al. (2014)

½2� Ascone et al. (2024)

½3� Granas and Dugundji (2003)
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ðRa; Ia;PaÞ of subsets of S: Ra is the set of reactants, Ia is

the set of inhibitors, and Pa is the set of products (note that

the set of reactants and the set of inhibitors are allowed to

be empty as in the original definition by Ehrenfeucht and

Rozenberg (2004)). The set of all reactions over S is

denoted by racðSÞ.
A reaction system (RS) is a pair A ¼ ðS;AÞ consisting

of a finite set of entities S, called the background set, and a

set A � racðSÞ of reactions over S.
Given a state T � S (i.e., a set of entities present in the

system at a certain moment), a reaction a is said to be

enabled in T when Ra � T and Ia \ T ¼ £. The result

function resa : 2
S ! 2S of a, where 2S denotes the power

set of S, is defined as

resaðTÞ :¼
Pa if a is enabled in T

£ otherwise:

�

The definition of resa naturally extends to sets of reactions:

given any state T � S and any set of reactions B � racðSÞ,
we define resBðTÞ :¼

S
b2B resbðTÞ. The result function

resA of a reaction system A ¼ ðS;AÞ is resA, i.e., the result
function on the whole set of reactions. Any reaction system

A ¼ ðS;AÞ thus induces a discrete dynamical system where

the state space is 2S and the next state function is resA.

Such a dynamical system can be represented with a

directed graph with vertex set 2S and with edges

ðT; resAðTÞÞ for all T 2 2S. See Fig. 1 for an example. The

subsequent states of a reaction system A under the action

of the result function resA starting from some initial state

constitute the dynamics of the system. The orbit or state

sequence of a given state T of a system A is defined as the

sequence of states obtained by iterating resA starting from

T, namely, the sequence ðT; resAðTÞ; res2AðTÞ; . . .Þ. Note

that since S is finite, for any state T the sequence

ðresnAðTÞÞn2N is ultimately periodic. A fixed point T � S is

a state such that resAðTÞ ¼ T . A fixed point attractor is a

fixed point T for which there exists a state U 6¼ T such that

resAðUÞ ¼ T . A fixed point not attractor is a fixed point

that is not an attractor, i.e., it is not reachable from any

state other than T itself. Note that fixed points of A cor-

respond to self-loops in the graph representation of its

dynamical system.

Remark 1 It is important to clarify that the results obtained

in this work are limited to reaction systems where there is

no interaction with an external environment (i.e., they are

closed). Formally, we deal only with context-independent

reaction systems, where the next state of the system is

entirely determined by the current state. This is different

from reaction systems with context, where additional

entities could be added at each time step according to a

given sequence C0;C1; . . . � S of contexts.

Given i; r 2 N, the class RSðr; iÞ consists of all RS

having at most r reactants and at most i inhibitors for each

reaction; we also define the (partially) unbounded classes

RSð1; iÞ ¼
S1

r¼0 RSðr; iÞ, RSðr;1Þ ¼
S1

i¼0 RSðr; iÞ,
and RSð1;1Þ ¼

S1
r¼0

S1
i¼0 RSðr; iÞ. We remark that

these classes do not have the number of products as a

parameter. This is because a RS can always be assumed to

be in singleton product normal form (Brijder et al. 2011):

any reaction ðR; I; fp1; . . .; pmgÞ can be replaced by the set

of reactions ðR; I; fp1gÞ; . . .; ðR; I; fpmgÞ, since they pro-

duce the same result.

In this work, we will consider problems over the class

RSð1; 0Þ. Given S a finite set, a function f : 2S ! 2S is

additive (or an upper-semilattice endomorphism) if f ðX [
YÞ ¼ f ðXÞ [ f ðYÞ for all X; Y 2 2S. In particular, a function

f : 2S ! 2S is additive if and only if f ¼ resA for some

A 2 RSð1; 0Þ (Manzoni et al. 2014, Proposition 23). We

will thus refer to systems in class RSð1; 0Þ as the additive

reaction systems.

We also remark that if a function f : 2S ! 2S is additive

then it is also monotone, i.e., X � Y � S implies

f ðXÞ � f ðYÞ. Therefore, since £ � T holds for every state

T � S, it always holds f ð£Þ � f ðTÞ. In the example of

Fig. 1, the fact that resAð£Þ ¼ fag implies that the end-

point of every edge in the graph must be a state containing

the entity a and therefore the states £; fbg; fcg; fb; cg
have in-degree zero.

Definition 1 Let A ¼ ðS;AÞ 2 RSð1; 0Þ. The influence

graph of A is the directed graph GA ¼ ðVA;EAÞ such that

VA :¼ S [ f£Gg, where £G 62 S is a vertex representing

Fig. 1 Graph representation of the dynamical system of A ¼ ðS;AÞ
with background set S ¼ fa; b; cg and set of reactions

A ¼ fð£;£; fagÞ; ðfag;£; fb; cgÞ; ðfcg;£; fcgÞg Fig. 2 Influence graph GA of the RS A from Fig. 1
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the empty state, and there is a directed edge ðx; yÞ 2 EA if

and only if one of the following holds: (i) x; y 2 S and

y 2 resAðfxgÞ; or (ii) x 2 S with resAðfxgÞ ¼ £ and

y ¼ £G; or (iii) x ¼ £G and y 2 resAð£Þ.

Remark 2 Constructing GA requires a time polynomial in

the number of entities and reactions. In contrast, computing

the graph representation of the dynamical system associ-

ated with A requires evaluating the result function resA
over all possible states, i.e., all the subsets of S, thus

requiring exponential time.

Note that Definition 1 is a slight variation of the defi-

nition of influence graph given in (Brijder et al. 2011). The

difference is that, in this paper, reactions may have an

empty set of reactants, thus GA has the extra vertex £G.

We denote by Vu � VA the set of vertices that are

reachable from u in the influence graph GA: clearly, Vu can

be computed in linear time with a breadth-first search

starting from u. In the following sections, we will some-

times treat Vu as a state of the RS given by the union of the

entities represented by its vertices; since £G represents the

empty set, whenever £G 2 Vu, when interpreting Vu as a

subset of S we can simply ignore this vertex.

Remark 3 Additive reaction systems, while conceptually

simple, do not only exhibit trivial dynamics. For example,

the construction in (Dennunzio et al. 2016, Theorem 4)

that proves that sup-reachability is NP-complete even for

additive reaction systems includes a way of iterating over

all possible assignments of a Boolean formula and verify-

ing its satisfiability, constructing an additive system whose

dynamics can arguably be considered non-trivial.

3 Fixed points of additive reaction systems

In this section, we study the complexity of deciding on the

existence of fixed points of different kinds in an additive

system A. To this aim, we make use of the influence graph

GA: recall that any subset of vertices of GA represents a

single state of the reaction system. Let C � VA be the set of

vertices that are in some cycle of GA: since u is in a cycle if

and only if it is reachable from itself, we formally define

C :¼ fu 2 VA j u 2 Vug. We begin noticing the following.

Lemma 1 Let A 2 RSð1; 0Þ and let GA ¼ ðVA;EAÞ be

the influence graph of A. For any vertex u 2 VA, if u 2 C

then Vu is a fixed point of A.

Proof Let u ¼ £G. If £G 2 C, then it must be

resAð£Þ ¼ £, as otherwise, if it was resAð£Þ ¼ X 6¼ £,

X would be produced from any state and £G would have

no incoming edges by Definition 1. Thus if £G 2 C it

must be V£G
¼ f£Gg. Let us now suppose u 6¼ £G. We

need to show that resAðVuÞ ¼ Vu. Consider v 2 Vu, thus v

is reachable from u: let n be the length of a path from u to

v. This implies that there is a path of length at most nþ 1

from u to any vertex w 2 resAðfvgÞ, and thus resAðfvgÞ �
Vu for all v 2 Vu. By additivity, we obtain

resAðVuÞ ¼
S

v2Vu
resAðfvgÞ � Vu.

To show the other inclusion, let v 2 Vu, v 6¼ u. Since

there exists a path from u to v, there exists a vertex w 2 Vu

such that ðw; vÞ 2 EA, and thus v 2 resAðfwgÞ. Therefore
Vunfug � resAðVuÞ. Since u 2 C, there also exists a vertex

z 2 Vu such that ðz; uÞ 2 EA, thus u 2 resAðVuÞ. Collecting
all together, Vu � resAðVuÞ. h

In other words, Lemma 1 states that when a vertex

u belongs to a cycle, the vertices that are reachable by

u give rise to a fixed point in the dynamic of the reaction

system.

In particular, since resA is additive, the union of mul-

tiple Vu’s that are fixed points is a fixed point. In the next

proposition, we show that the converse is also true. To do

so, for any fixed point T 6¼ £ of a RS A we define the set

CT :¼ T \ C. In other words, CT is the subset of elements

of T that are part of some cycle in the influence graph,

although they are not necessarily all part of the same cycle.

For instance, inspect Fig. 3 and let T ¼ fu1; u2; u3g. Then
CT ¼ fu1; u2; u3g, u1 is in a distinct cycle from u2 and u3
and their union does not induce a cycle in GA.

Proposition 2 Given A ¼ ðS;AÞ 2 RSð1; 0Þ and £(T �
S a fixed point, then

T ¼
[
u2CT

Vu:

Fig. 3 The influence graph of the RS A with background set S ¼
fu1; u2; . . .; u8g and set of reactions A ¼ fðfu1g;£; fu1; u2gÞ,
ðfu2g;£;fu3gÞ, ðfu3g;£;fu2gÞ,ðfu4g;£;fu3gÞ,ðfu5g;£;fu6;u7gÞ,
ðfu6g;£;fu7gÞ,ðfu7g;£;fu8gÞ,ðfu8g;£;fu5gÞg. In this case

FA¼fVu1 ;Vu2 ;Vu5 ;£Gg; note that Vu2¼Vu3 and Vu5¼Vu6¼Vu7¼Vu8 ;

u4 62Vu4 thus Vu4 62FA
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Proof Given any u 2 T we have, by monotonicity and by

the definition of fixed point, resnAðfugÞ � T for all n 2 N.

Note that since resnAðfugÞ corresponds to all the vertices of

the influence graph GA that are reachable from u in n steps,

we have Vu � T . In particular, we also have[
u2CT

Vu � T:

Now, suppose for a contradiction that

W :¼
[
u2CT

Vu(T :

Let x 2 T nW . Since x 2 T , there exists y 2 T such that

x 2 resAðfygÞ. If y 2 W then y 2 Vu for some u 2 CT , so y

is reachable from u and x too, which implies x 2 Vu � W , a

contradiction. Then y 62 W . Furthermore, if y ¼ x then

x 2 CT , and so x 2 W , a contradiction. Putting all together,

for all x 2 T nW there exists an edge ðy; xÞ 2 EA for some

y 6¼ x and y 2 T nW . It follows that every vertex in the

subgraph T nW has a positive indegree, therefore it must

contain a cycle (Farbey 1966, Corollary 3.8c); in turn, this

means that there exists a vertex z 2 T nW such that z 2 Vz,

so z 2 W , a contradiction. The statement follows. h

Given A 2 RSð1; 0Þ, let us define

FA :¼ fVu j u 2 C; u 6¼ £Gg if resAð£Þ 6¼ £

fVu j u 2 C; u 6¼ £Gg [ f£g otherwise

An example of set FA is in Fig. 3. Proposition 2 and

Lemma 1 imply the following theorem.

Theorem 3 Let A ¼ ðS;AÞ 2 RSð1; 0Þ and T � S, then T

is a fixed point of A if and only if T ¼ [Vu2WVu for some

non-empty subset W of FA. In particular, A has a fixed

point if and only if FA 6¼ £.

Since computing sets Vu requires polynomial time, it

immediately follows that computing FA and thus deciding

on the existence of a fixed point is in P. Note that the last

statement also follows directly from the Knaster-Tarski

Theorem (Granas and Dugundji 2003), since resA is addi-

tive (and therefore monotonic) for A 2 RSð1; 0Þ.

Remark 4 If Vu 2 FA then Vu cannot be obtained as a

union of other elements of FA. Indeed, suppose for a

contradiction that Vu ¼
Sn

i¼1 Vui with Vui 2 FA, Vui 6¼ Vu

for all i ¼ 1; . . .; n. If u 2 Vui � Vu for some i, then there

exists a path from ui to u, implying that for every v 2 Vu

there exists a path from ui to v, i.e., v 2 Vui , therefore

Vui ¼ Vu, a contradiction. Thus u 2 Vu (because u 2 C) but

u 62 [n
i¼1Vui , hence the thesis.

Corollary 4 Given A;B 2 RSð1; 0Þ with a common

background set S, it is in P to decide whether A and B

share all fixed points.

Proof It suffices to construct the influence graphs GA and

GB in polynomial time and to compute FA and FB with a

breadth-first visit of the graphs. To decide if A and B share

all the fixed points it is then enough to check whether

FA ¼ FB, as by Theorem 3 they generate all fixed points of

A and B, respectively. h

By Theorem 3, deciding on the existence of a common

fixed point for A and B reduces to the problem of deciding

whether there exists a nonempty subset of elements of FA

and a nonempty subset of elements of FB such that their

respective unions give the same set of entities. Formally,

we introduce the following problem, that we coin MAXIMUM

COMMON SUBSET UNION (MCSU):

Input: a finite set H and two collections of subsets of H:

fAigi2I and fBjgj2J
Output: subsets of indices I0 � I and J0 � J such thatS

i2I0 Ai ¼
S

j2J0 Bj � H is of maximum size

MCSU can be solved in polynomial time using the

simple Algorithm 1, in which we denote AI0 :¼
S

i2I0 Ai. In

the beginning, Algorithm 1 computes the union of all the

subsets in the respective collections and takes the inter-

section of the two unions. Clearly, any subset Ai containing

an element which is not in this intersection cannot be part

of a solution, and likewise for subsets Bj: this condition is

checked at lines 5 and 7, where subsets containing ele-

ments outside the intersection are removed from the

respective collections.

This process is then iterated by taking the union of the

survived subsets in each collection and again the inter-

section of these unions (line 8). The algorithm terminates

when there are no longer elements outside the intersection

of the unions, i.e., the two unions are the same (line 3).

Theorem 5 proves the correctness of this procedure.

Fixed points and attractors of additive reaction systems 209
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Theorem 5 Algorithm 1 is correct.

Proof Keeping track of the set of indices at each iteration,

we obtain two sequences

I ¼ I1 � I2 � I3 � � � � � In

J ¼ J1 � J2 � J3 � � � � � Jn

with n the number of iterations made by the algorithm. We

remark that at each iteration �A [ �B ¼ AI0
MBJ0 , therefore the

algorithm stops at iteration n if and only if AInMBJn ¼ £,

i.e., AIn ¼ BJn . Since at each iteration either jInj or jJnj
decreases, the sequences will eventually stop when

In ¼ Jn ¼ £. To prove correctness, we first verify that if

the algorithm stops when I0 ¼ J0 ¼ £ then there does not

exist a nonempty solution to MCSU. Suppose for a con-

tradiction that In ¼ Jn ¼ £, and yet there exist I � eI 6¼ £

and J � eJ 6¼ £ such that A
eI ¼ B

eJ . Let then k be the last

iteration such that Ik � eI and h the last iteration such that

Jh � eJ .
Without loss of generality, suppose k� h. We note that

going from Ik to Ikþ1 we lose at least an index that was in eI ,
i.e. Ik � eI+Ikþ1, otherwise k would not be the last iteration

such that Ik � eI . So there exists i 2 eI � Ik such that i 62
Ikþ1 and thus, by line 5, there exists x 2 Ai � A

eI that is not
in the current intersection, thus, in particular, x 62 BJk . Thus

x 62 BJh , since k� h ) Jk � Jh. On the other hand, Jh � eJ
then BJh � B

eJ ¼ A
eI so x 2 A

eI � BJh , which is a

contradiction.

Similarly, we can prove that the size of the unions of the

two output collections is maximum. Suppose there exists

eI � I and eJ � J such that A
eI ¼ B

eJ and

jBeJ j ¼ jAeI j[ jBJn j ¼ jAIn j. As above, let k the maximum

such that Ik � eI and h the maximum such that Jh � eJ . If
k ¼ n, then In � eI , thus A

eI � AIn , a contradiction since

jAeI j[ jAIn j. In a similar manner, if h ¼ n we get a

contradiction. Therefore k\n and h\n, and we can

conclude as in the first part of this proof. h

A naive implementation of Algorithm 1 applied to S, FA

and FB requires time OðjSj3Þ, as FA and FB each consist of

at most jSj subsets, each containing at most jSj entities, and
the algorithm performs at most jIj þ jJj � 2jSj iterations.
This implies the following result.

Corollary 6 Given A;B 2 RSð1; 0Þ with a common

background set S, it is in P to decide whetherA and B have

a common fixed point.

4 Fixed points attractors and not attractors

In this section, we focus on the problem of deciding on the

existence of (common) fixed points that are either attractors

or not attractors. We start by giving a characterization of

the fixed points attractors of an additive function from the

power set of a finite set into itself.

Lemma 7 Let f : 2H ! 2H be an additive function, H a

finite set, and T a fixed point for f. If T is an attractor then

there exists T 0 � H such that either T 0 � T or T 0 � T and

f ðT 0Þ ¼ T.

Proof Let T 00 � H such that f ðT 00Þ ¼ T . If T 00 � T , we

have the statement, so consider T 00 * T . Define T 0 :¼
T [ T 00)T and by additivity of f we get

f ðT 0Þ ¼ f ðT 00Þ [ f ðTÞ ¼ T . h

Definition 2 If a fixed point T is reachable from a state

T 0(T (resp. from T 0)T), we say that T is reachable from

below (resp. reachable from above).

The following lemma applies the characterization of

Lemma 7 to additive reaction systems in each of the two

possible cases.
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Lemma 8 Let T be a fixed point for resA, where

A ¼ ðA; SÞ 2 RSð1; 0Þ. If T is reachable from below (resp.

from above) then there exists x 2 T (resp. x 62 T) such that

T is reachable from T n fxg (resp. from T [ fxg).

Proof If there exists T 0(T such that resAðT 0Þ ¼ T , then

for all x 2 T n T 0

T ¼ resAðT 0Þ � resAðT n fxgÞ � resAðTÞ ¼ T;

i.e., T is reachable from T n fxg. The proof for when T is

reachable from above can be obtained entirely analogously.

h

Corollary 9 Given A 2 RSð1; 0Þ, it is in P to decide

whether a given state T is a fixed point attractor.

Proof Deciding whether a given state T is a fixed point

requires polynomial time (see Ascone et al. (2024)). By

Lemmas 7 and 8 it then just suffices to check if the states

T n fxg for any x 2 T or T [ fyg for any y 62 T are

attracted by T. h

Lemma 10 Given a fixed point T of an additive function

f : 2H ! 2H , for all X � T we have that Tnf ðXÞ � f ðTnXÞ.

Proof Since T ¼ f ðTÞ ¼ f ðX [ ðTnXÞÞ ¼ f ðXÞ [ f ðTnXÞ
we have the thesis. h

The following lemma provides a sufficient condition for

the union of two fixed points to be an attractor: an example

is given in Fig. 4.

Lemma 11 Let f : 2H ! 2H be an additive function, H a

finite set, and T1 6¼ T2 two fixed points for f. If there exists

x 2 T1, x 62 T2 such that

f ðT2 [ fxgÞ ¼ T2

then T1 [ T2 is a fixed point attractor reachable from

below.

Proof Consider T2 [ ðT1 n fxgÞ(T1 [ T2. Using

Lemma 10 and the additivity of f, we obtain

T1 [ T2 ¼ f ðT1 [ T2Þ � f ðT2 [ ðT1 n fxgÞÞ
¼ T2 [ f ðT1 n fxgÞ
� T2 [ ðT1 n f ðfxgÞ|fflfflffl{zfflfflffl}

�T2

Þ ¼ T1 [ T2 :

We conclude that T1 [ T2 is reachable from ðT2 [ T1Þnfxg.
h

The next proposition gives another sufficient condition

for a fixed point to be an attractor.

Proposition 12 Let f : 2H ! 2H be an additive function, H

a finite set, and T 0 a fixed point. If there exists a fixed point

attractor T � T 0 then T 0 is also an attractor.

Proof We consider two cases.

Case (i). T is reachable from below, i.e., there exists

x 2 T such that f ðT n fxgÞ ¼ T . Then we can write

T 0 n fxg ¼ T 0 n fxg [ T n fxg

and then, using the additivity of f and Lemma 10,

T 0 � f ðT 0 n fxgÞ ¼ f ðT 0 n fxgÞ [ T � ðT 0 n f ðfxgÞ|fflfflffl{zfflfflffl}
�T

Þ [ T ¼ T 0;

therefore f ðT 0 n fxgÞ ¼ T 0.
Case (ii). T is reachable from above, i.e., there exists

x 62 T such that f ðT [ fxgÞ ¼ T . If x 2 T 0 then T 0 [ T ¼ T 0

is an attractor by Lemma 11. If instead x 62 T 0, then

f ðfxgÞ � T � T 0 and we obtain

f ðT 0 [ fxgÞ ¼ T 0 [ f ðfxgÞ ¼ T 0;

i.e., T 0 is reachable from T 0 [ fxg. h

Inspect Fig. 3 for an example: Vu2 is an attractor from

above, as well as Vu1 � Vu2 , since it contains a fixed point

attractor (Proposition 12); Vu5 is an attractor from below;

and £ is the only fixed point which is not an attractor. The

next lemma provides a simple sufficient condition for all

fixed points to be attractors.

Fig. 4 Example for Lemma 11 with T1 ¼ fe; fg, T2 ¼ fa; b; c; dg and

x ¼ e. In this case, we can also switch the role of T1, T2 and choose

x ¼ d since T1 [ fdg reaches T1. Note that T1 corresponds to Vf ¼
fe; f ;£Gg and T2 corresponds to Va ¼ fa; b; c; d;£Gg

Fig. 5 Example of union of elements in FNA
A ¼ fVu2 ;Vu5 ;£g that

gives a fixed point attractor Vu1 ¼ Vu2 [ Vu5 ¼ fu2; u3; u4; u5; u6g
reachable from fu1g [ Vu1
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Lemma 13 Let H be a finite set and f : 2H ! 2H an

additive function. If £ is not a fixed point, then every fixed

point is an attractor.

Proof Let T be a fixed point. By monotonicity, f nð£Þ � T

for all n 2 N. If T ¼ f kð£Þ for some k (k	 1 by hypoth-

esis), then T is reachable from f k�1ð£Þ. Otherwise, if

f nð£Þ(T for all n 2 N, let m 2 N be the minimum index

for which the following sequence stabilizes:

£(f ð£Þ(. . .(f m�1ð£Þ(f mð£Þ ¼ f mþ1ð£Þ:

Let T 0 :¼ Tnf mð£Þ [ f m�1ð£Þ(T , then f ðT 0Þ � T and by

additivity and Lemma 10 we obtain

f ðT 0Þ¼ f ðT n f mð£ÞÞ[ f mð£Þ�T n f mþ1ð£Þ[ f mð£Þ¼T:

Therefore T is reachable from T 0. h

Given any A ¼ ðS;AÞ 2 RSð1; 0Þ, we can draw the

following observations on the existence of a fixed point

T � S which is not an attractor. First, a direct implication

of Proposition 12 is that T cannot contain any fixed point

attractor and in particular, in the decomposition T ¼S
u2CT

Vu given by Proposition 2 each Vu must be not an

attractor; moreover, by Lemma 13,£ must be a fixed point

and, by Proposition 12, it must not be an attractor as well.

If we now define FNA
A :¼ fVu 2 FA j Vu not attractorg,

we have obtained a way to decide in polynomial time on

the existence of fixed points that are not attractors, sum-

marized by the following result.

Corollary 14 Given A ¼ ðS;AÞ 2 RSð1; 0Þ, it is in P to

decide if there exists a fixed point which is not an attractor.

Proof We just need to check whether FNA
A 6¼ £. h

The next result provides a sufficient condition to rule out

the existence of fixed points which are not attractors.

Proposition 15 Let H be a finite set and f : 2H ! 2H an

additive, non-injective function. If H is a fixed point for f,

then it is also an attractor.

Proof Since f is not injective, there exist X1;X2 � H such

that f ðX1Þ ¼ f ðX2Þ and X1 6¼ X2. We can suppose X2 6¼ £.

Let H0 :¼ HnðX1 [ X2Þ, then H0 [ X1 ¼ HnX2(H. Fur-

thermore, by Lemma 10 we have that

f ðH0 [ X1Þ ¼ f ðTnX2Þ � Hnf ðX2Þ, and f ðX1Þ � f ðH0 [ X1Þ
since X1 � H0 [ X1. Collecting all together, we obtain

f ðH0 [ X1Þ � H n f ðX2Þ [ f ðX1Þ ¼ H n f ðX2Þ [ f ðX2Þ ¼ H;

thus f ðH0 [ X1Þ ¼ H, i.e., H is reachable from

H0 [ X1 ¼ HnX2. h

Proposition 16 Given H a finite set and f : 2H ! 2H

additive and bijective, then jf ðfxgÞj ¼ 1 for all x 2 H.

Proof Suppose for a contradiction that there exists x 2 H

such that k :¼ jf ðfxgÞj[ 1. Given any subset T)fxg,
since f is injective then f ðfxgÞ(f ðTÞ � H. Therefore we

obtain a bijection between the subsets of H containing fxg
and the ones containing f ðfxgÞ. This is a contradiction

because there are 2jHj�1 subsets of the first type and only

2jHj�k\2jHj�1 of the second type. h

We remark that given an additive function f : 2H ! 2H

and T � H a fixed point for f, if the restriction of f to T

f jT : 2T ! 2T is not injective then T is an attractor by

Proposition 15. Therefore, given any additive reaction

system A, for every Vu 2 FNA
A , Vu 6¼ £, the restriction

resAjVu
must be injective, which means that jresAðfxgÞj ¼

1 for all x 2 Vu by Proposition 16. Since Vu is weakly

connected by definition, we obtain the following.

Lemma 17 Given any Vu 2 FNA
A , the vertices of Vu form a

cycle in GA. Furthermore, for any Vu1 ;Vu2 2 FNA
A , it holds

Vu1 \ Vu2 ¼ £.

We further remark that, although the single elements of

FNA
A are not attractors by definition, unions of its elements

might be. To find out which unions of elements of FNA
A are

fixed points attractors it suffices to check, for each entity

x 62
S

Vu2FNA
A

Vu, whether

resAðfxgÞ �
[

Vu2FNA
A

Vu;

and if so, consider the smallest subset W � FNA
A such that

resAðfxgÞ �
S

Vu2W Vu. Since the elements of FNA
A are

disjoint by Lemma 17, W simply consists of the Vu 2 FNA
A

that can be reached with an edge outgoing from x and can

thus clearly be computed in polynomial time.

Then Vx :¼
S

Vu2W Vu is a fixed point attractor reachable

from Vx [ fxg. It follows that deciding whether two reac-

tion systems share all fixed points that are not attractors

requires polynomial time, as stated by the following

corollary.

Corollary 18 Given A;B 2 RSð1; 0Þ with a common

background set S, it is in P to decide whether A and B

share all fixed points which are not attractors.

Proof It suffices to check whether FNA
A ¼ FNA

B and whe-

ther the fixed points attractors given by unions of elements

of FNA
A (resp. of FNA

B ) are the same. h

We next consider the problem of deciding whether two

additive reaction systems have a common fixed point

which is not an attractor.
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Proposition 19 Given A;B 2 RSð1; 0Þ with a common

background set S, it is in P to decide whetherA and B have

a common fixed point which is not an attractor.

Proof The first step of a polynomial-time procedure to

solve the problem is to verify the following necessary

condition: there exist a nonempty set of fixed points that

are not attractors of A and a set of fixed points that are not

attractors of B such that the respective union gives the

same set of entities. This condition gives rise to an instance

of the MCSU problem and can thus be verified in poly-

nomial time using Algorithm 1 with input S, FNA
A and FNA

B .

Then, either the output is the empty set (in which case the

two reaction systems do not have any common fixed points

which are not attractors) or we obtain two subsets

fVA
i gi2I � FNA

A and fVB
j gj2J � FNA

B such that

V :¼
[
i2I

VA
i ¼

[
j2J

VB
j

and V is the maximal common state given by the union of

fixed points that are not attractors.

The next step is to check whether V contains a common

fixed point which is not an attractor. Any common fixed

point that is potentially not an attractor is given by a subset

of the elements of fVA
i gi2I whose union is the same as the

union of a subset of the elements of fVB
j gj2J . Computing

these sets naively would require time exponential in the

number of elements in fVA
i gi2I and fVB

j gj2J ; however, we
can compute them in polynomial time by making use of an

auxiliary graph constructed as follows (recall that the

elements of fVA
i gi2I and fVB

j gj2J are disjoint cycles by

Lemma 17).

Let us denote by uA and uB the vertices corresponding to

entity u in GA and in GB, respectively; and let VA :¼
fuA j u 2

S
i2I V

A
i g and VB :¼ fuB j u 2

S
j2J V

B
j g. We

construct an auxiliary undirected graph GC ¼ ðVA [
VB;EÞ whose vertices are connected as follows: for each

element u 2 V there is an edge connecting the correspond-

ing element in uA 2 VA and uB 2 VB. Furthermore,

connect the elements of VA (resp. VB) replacing the

directed edges of the cycles in fVA
i gi2I (resp. in fVB

j gj2J)
with undirected edges. An example is in Fig. 6.

Consider then the connected components of GC. We

observe that any union of cycles T 0
A of the A-side of GC

which is in a bijection with a union of cycles of the B-side

T 0
B is such that T 0

A [ T 0
B is a union of connected compo-

nents of GC; and conversely, by construction, given any

connected component T, there is a bijection between the

vertices in the A-side of T and those in its B-side, and both

the A-side TA and the B-side TB of T are unions of cycles.

It follows that the connected components of GC corre-

spond to minimal subsets of elements of fVA
i gi2I and

fVB
j gj2J whose unions are in a bijection; and thus to

determine whether there is a common fixed point which is

not an attractor it suffices first to compute the connected

components of GC, which can be done in linear time; and

then to check whether there exists a connected component

TA [ TB of GC such that TA (resp. TB) does not contain any

fixed point attractor of the form Vx. h

Proposition 20 Given A ¼ ðS;AÞ 2 RSð1; 0Þ and T a

fixed point attractor then either (i) there exists Vu � T

attractor or (ii) there exists x 62
S

Vu2FNA
A

Vu such that

Vx � T.

Proof Consider the decomposition T ¼
S

u2CT
Vu of T

given by Proposition 2. By Proposition 12, if any of the

Vu’s in this decomposition is an attractor, then we are in

case (i) of the statement. Suppose then that for all u 2 CT ,

it holds Vu 2 FNA
A . Then T cannot be reached from below

since for every x 2 T , there exists exactly one V ~u such that

x 2 V ~u, as the Vu’s are disjoint by Lemma 17, and thus,

since V ~u is not an attractor, implying that

resAðV ~unfxgÞ(V ~u, it holds

resAðT n fxgÞ ¼
[
u2CT

resAðVu n fxgÞ(
[
u2CT

Vu ¼ T :

By Lemma 7 it follows that T must be reachable from

above. Let thus x 62 T be such that resAðfxgÞ � T . We need

to show that we are in case (ii), i.e., x 62
S

Vu2FNA
A

Vu and

Vx � T . To prove that x 62
S

Vu2FNA
A

Vu, suppose for a con-

tradiction that there exists a V ~u 2 FNA
A such that x 2 V ~u, and

thus resAðfxgÞ � V ~u. There are two possible cases. If V ~u �
T then x 2 T , which is a contradiction. Otherwise, if

Fig. 6 The graph Gc in the construction of the proof of Proposi-

tion 19. The solid edges are those corresponding to the edges in the

cycles of fVA
i gi2I and fVB

j gj2J ; the dashed edges connect the pairs of

corresponding entities
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V ~u * T , it must be V ~u \ T ¼ £, because by Lemma 17 the

elements of FNA
A are disjoint; it thus follows that

resAðf~xgÞ \ T ¼ £, which is again a contradiction. Thus

x 62
S

Vu2FNA
A

Vu and resAðf~xgÞ �
S

u2CT
Vu �

S
V2FNA

A
V ; by

the minimality of Vx, we finally obtain

V ~x �
S

u2CT
Vu ¼ T . h

Given any additive reaction system A, let

FA
A :¼ fVu 2 FA j Vu attractorg [ fVx j x 62 [V2FNA

A
Vg:

By Proposition 20, any fixed point attractor of A contains

at least an element from FA
A. Since the latter can be com-

puted in polynomial time, we obtain the following

corollaries.

Corollary 21 Given A 2 RSð1; 0Þ, it is in P to decide if

there exists a fixed point which is not an attractor.

Proof We just need to check whether FA
A 6¼ £. h

Corollary 22 Given A;B 2 RSð1; 0Þ with a common

background set S, it is in P to decide whetherA and B have

a common fixed point attractor.

Proof For every pair V 2 FA
A andW 2 FA

B we can check in

polynomial time, using Algorithm 1, if there exists a

common fixed point attractor containing V and W. h

Corollary 23 Given A;B 2 RSð1; 0Þ with a common

background set S, it is in P to decide whether A and B

share all fixed points attractors.

Proof For all fixed points attractors to be shared, it must

hold FA
A ¼ FA

B ; and furthermore, since adding any fixed

point (be it attractor or not) to a fixed point attractor results

in a fixed point attractor, it must also hold FNA
A ¼ FNA

B .

Both these conditions can be checked in polynomial time.

h

From the proof of Corollary 23 and Corollario 4, we

finally obtain the following result.

Corollary 24 Given A;B 2 RSð1; 0Þ with a common

background set S, if they share all fixed point attractors

then they share all fixed points.

5 Conclusions

We have considered all the problems related to fixed points

and attractors that were studied by Formenti et al. (2014)

and Ascone et al. (2024) for unconstrained, reactantless

and inhibitorless reaction systems, and we have fully

determined their computational complexity in the context

of additive reaction systems. In doing so, we have provided

several reductions from these problems to problems on a

polynomially computable graph representation of reaction

systems that might be useful in the future for investigating

other problems related to reaction systems.

With this work, the picture of the computational com-

plexity of fixed-points and attractors problems in the

classes RSð1; 0Þ;RSð0;1Þ and RSð1; 0Þ is almost

complete: only the complexity of deciding on the existence

of a fixed point attractor in inhibitorless reaction systems is

still to be unveiled. Other open problems include studying

fixed-points and attractors problems in other constrained

classes of reaction systems (e.g., in RSð2; 0Þ) and studying

other objects related to the dynamics of resource-bounded

reaction systems like cycles and global attractors.
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