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Abstract
We consider a SIR-like reaction-diffusion epidemic model which embeds opinion-
driven human behavioural changes. We assume that the contagion rate is theoretically
saturated with respect to the density of the disease prevalence. The model extends the
general reaction-diffusion epidemicmodel proposed in 1993 byCapasso andDi Liddo.
We study the nonlinear attractivity of the endemic steady state solution by employing
a special Lyapunov function introduced in 2006 by S. Rionero. Sufficient conditions
for the conditional nonlinear stability of the endemic equilibrium are derived.

Keywords Epidemic model · diffusion · Human behaviour · Information · Lyapunov
function

Mathematics Subject Classification 92D30 · 34C60

1 Introduction

The stability analysis of equilibria of dynamical systems modelling biological phe-
nomena is always mapped in a major issue: the assessment of the robustness of the
biological equilibrium. The semantic of such stability sometime is positive (e.g., Is
the pest eradication stable w.r.t. possible pest importation?) other times it is nega-

This paper is dedicated to the memory of professor Salvatore Rionero, Scientist and Master of great
passion and humanity.

B Bruno Buonomo
buonomo@unina.it

Alberto d’Onofrio
alberto.donofrio@units.it

1 Department of Mathematics and Applications, University of Naples Federico II, via Cintia,
80126 Naples, Italy

2 Department of Mathematics and Geosciences, University of Trieste, Via Alfonso Valerio 12/1, 34127
Trieste, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11587-023-00807-8&domain=pdf
http://orcid.org/0000-0003-4998-3725
http://orcid.org/0000-0002-2190-272X


S52 B. Buonomo, A. d’Onofrio

tive (e.g., Is the invasion equilibrium robust?). An important biological application of
dynamical systems is the area of modelling the spread and the control of infectious
diseases, i.e. theMathematical Epidemiology (ME) [7, 15]. Although the vast major-
ity of mathematical studies in the area of ME focuses on purely temporal models, a
number of significant studies have been devoted to spatio-temporal models [1–3, 7,
14, 15, 20, 23, 30]. A relevant example is the general reaction–diffusion epidemic
model proposed in 1993 by Capasso and Di Liddo to study the role of cross–diffusion
[8]. They primarily focused on global attractivity of the uniform steady state solutions
and indicated several specific diseases whose transmission may be described in such
general settings, including host–vector diseases (as malaria and schistosomiasis) and
carrier-borne diseases (as typhoid fever). The work [8] is of interest because later
studies showed that in other important contexts in theoretical population dynamics the
presence of cross-diffusion induces instability and patterning [16, 19]. This makes the
results of [8] even more important, since the global stability of the endemic equilib-
rium was shown there. Moreover, and more closely related to the present work, the
study by Capasso and Di Liddo stimulated some interesting works on the application
of nonlinear Lyapunov Stability to Mathematical Biology [17, 22].

However, classical models of ME suffer of a major drawback: they are based on
the analogy between contagion and chemical reactions, thus modelling the infections
by means of the mass action law and the recovery as chemical degradation. In other
words, classicalmodels ofMEessentially see humanbeings asmolecules and therefore
neglect the human behavioural changes. This approximation is not always adequate
to represent real scenarios since the two major determinants of the epidemic spread,
i.e. the degree of enacted social distancing and the degree of adherence to vaccination
programs, fully depend on human decisions. The same could be said for the adoption
of antiviral drugs, when available. This consideration has led to the birth of a new field,
the Behavioural Epidemiology of Infectious Diseases (BEID) [21, 29]. Remarkably,
the first pioneering example of BEID has probably been the paper on modelling social
distancing published in 1978 by Capasso and Serio [9]. In such a paper, the contact
rate was considered as a dynamical parameter that ‘adapts’ to the current state of the
disease spread during an epidemic outbreak. Inexplicably, the paper [9] had a limited
impact for more than a quarter of century but the basic concepts contained therein are
nowadays fundamental in contemporary BEID and are at the basis ofmanyworks [21].
For example, in the paper [13] the adaptation depends on the state of the present and
past information on the spread of epidemic and endemic diseases. As far as spatio–
temporal effects in the framework of BEID are concerned, the body of research on
this important aspect remained limited so far [4, 12, 18].

Our aim in this paper is twofold. From one hand, starting from the Capasso and
Di Liddo general setting, we aim at providing a further relevant case, i.e. we propose
a SIR-like reaction-diffusion epidemic model which embeds opinion-driven human
behavioural changes. The model extends along the line of d’Onofrio et al. [12] the
above-mentioned model by Capasso and Serio. On the other hand, we intend to give
a new application of a special Lyapunov function introduced in 2006 by S. Rionero
to study the nonlinear stability of equilibria of both spatially homogeneous and spa-
tially non-homogeneous systems of differential equations [24–27]. Such a function has
been successfully employed in a number of problems in theoretical population biol-
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ogy. For example, it has been applied to diffusive populationmodels like predator–prey
interactions [10], pioneer and climax species [5], Lotka–Volterra with special func-
tional response [11]. It has been also used to study ODE systems like SIR and SEIR
classical epidemic models [6, 27]. In our case, we aim at using this approach to inves-
tigate the degree of the robustness of the endemic equilibrium induced by the human
behaviour. At the best of our knowledge, this is its first application of the approach
due to S.Rionero to models of BEID.

The rest of the paper is organized as follows: in Sect. 2 we introduce the general
family of epidemic models and we discuss the existence of equilibria; in Sect. 3, we
derive the perturbation system and rewrite it in an sort of ‘optimized form’ amenable
to its analysis by means of the Rionero’s function. The problem of the nonlinear L2-
stability of the endemic equilibrium is discussed in Sect. 4. Some conclusions end this
work.

2 Themodel

Capasso and Di Liddo [8] considered the following general system of reaction–
diffusion equations:

∂w/∂t = DΔw + f (w) in Ω × R+, (1)

with boundary conditions

βD∂w/∂ν = α (w∗ − w) in ∂Ω × R+, (2)

where ∂w/∂ν is the outward normal derivative and w∗ is a constant vector in Rm .
The following assumptions are also considered:

(i) The function f : G ⊆ Rm → Rm , m ∈ N\ {0}, is a locally Lipschitz function;
(ii) The constant vector w∗ is a spatially uniform steady state of (1–2), i.e. f (w∗) =

0;
(iii) The domain Ω is a bounded open connected set of Rn , n ∈ N\ {0}. If n > 1,

then Ω is assumed to be uniformly of class C1+α , with boundary ∂Ω uniformly
of class C2+α , for some α > 0;

(iv) The constants α and β in (2) are nonnegative and such that α + β > 0;

(v) The term D is a linear operator on Rm such that:

〈z, Dz〉 =
m∑

i, j=1

di j zi z j > 0,

where di j are the coefficients of the matrix D. In other words, the matrix D is positive
definite.
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d’Onofrio et al. [12] consider the following spatially structured SIR model with
opinion-driven human behavioural changes in Ω × (0, T ):

∂t S = DSΔS + μ̂ (1 − S) − Ψ (S, I )
∂t I = DIΔI + Ψ (S, I ) − (ν̂ + μ̂)I

(3)

where S is the spatial density of Susceptible subjects and I is the spatial density of
infectious subjects; DS and DI are the diffusion rates of, respectively, susceptible
and Infectious subjects; μ̂ is the death rate due to natural causes (for the sake of the
simplicity, the recruitment rate is assumed to be equal to the death rate).

The functionΨ (S, I )models the contagion rate. The dependence by S and I mimics
the opinion-driven human behavioural changes in contact rate (in other words, the
opinion-driven adoption of social distancing). In particular, it is assumed that Ψ (S, I )
can be decomposed as follows

Ψ (S, I ) = Φ(I )C(S, I ),

where C(S, I ) is the contagion rate in absence of human behavioural response and
Φ(I )models the impact of social distancing on the contagion rate. These assumptions
implies that:
(i) 0 ≤ Φ(I ) ≤ 1, Φ(0) = 1, Φ ′(I ) < 0;
(ii) C(S, 0) = C(0, I ) = 0, ∂I C(S, I ) > 0, ∂SC(S, I ) > 0.

According to the general setting proposed by Capasso and Di Liddo [8] we append
boundary conditions (2). Note that α = 0 means Neumann homogeneous boundary
conditions and β = 0 means Dirichlet boundary conditions. However, in order to
apply the Lyapunov function proposed by S. Rionero, we will assume that both α and
β are strictly positive constants.

Model (3) admits the Disease–Free equilibrium DFE = (1, 0). Denote by E =
(S̃, Ĩ ) a spatially homogeneous equilibrium with , Ĩ > 0 (Endemic equilibrium).
Then:

μ̂
(
1 − S̃

)
= Ψ (S̃, Ĩ ) = (ν̂ + μ̂) Ĩ

and

μ̂ − (ν̂ + μ̂) Ĩ = μ̂S̃.

Therefore,

S̃ = 1 − (μ̂ + ν̂)

μ̂
Ĩ = 1 − (1 + ρ) Ĩ , (4)

where

ρ = ν̂

μ̂
>> 1,
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and

Ψ
[
1 − (1 + ρ) Ĩ , Ĩ

]
= (ν̂ + μ̂) Ĩ .

Now,we first assume that the behavioural reaction of individuals influences the contact
rate by making it no more constant. Namely, we assume that the effective contact rate
is a decreasing function of the information on the disease prevalence: βe f f (I ), with
β ′
e f f (I ) < 0. Second, we also assume that the contagion rate βe f f (I )I S remains an

increasing function of the disease prevalence. This biologically realistic constraint can
be fulfilled by many functions. However, following [9, 13], we choose:

βe f f (I ) = β̂

1 + α̂ I
. (5)

In other words, the contagion rate is theoretically saturated with respect to the density
of the disease prevalence:

Ψ (S̃, Ĩ ) = β̂
SI

1 + α̂ I
. (6)

Under such assumption, there exists an unique endemic equilibrium

E = (S̃, Ĩ ), (7)

where S̃ is given by (4) and:

Ĩ = μ̂ (R0 − 1)

α̂μ̂ + β̂
,

where

R0 = β̂

μ̂ + ν̂
.

3 Perturbation system

3.1 Preliminaries

Using (6), model (3) reads:

{
∂t S = DSΔS + μ̂ (1 − S) − β̂ SI

1+α̂ I
∂t I = DIΔI + β̂ SI

1+α̂ I − (ν̂ + μ̂)I .
(8)

Consider the perturbations u, v such that:

S = S̃ + k1u, I = Ĩ + k2v.
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where k1 and k2 are two positive quantities. We get:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t (k1u) = DSΔ(k1u) + μ
(
1 − k1u − S̃

)
− β̂

(S̃ + k1u)( Ĩ + k2v)

1 + α̂( Ĩ + k2v)

∂t (k2v) = DIΔ(k2v) + β̂
(S̃ + k1u)( Ĩ + k2v)

1 + α̂( Ĩ + k2v)
− (ν̂ + μ̂)( Ĩ + k2v)

(9)

In the next subsection we will manipulate the kinetics terms of this system to write
them a form that can be convenient for the application of the Rionero’s approach to
stability.

3.2 Reformulation of the first equation

From the first equation, set:

F(u, v) = μ̂
(
1 − k1u − S̃

)
− β̂

(S̃ + k1u)( Ĩ + k2v)

1 + α̂( Ĩ + k2v)
.

We have:

F(u, v) = μ̂(1−S̃)α̂k2v−μ̂k1u
(
1+α̂ Ĩ+α̂k2v

)
−β̂ S̃k2v−β̂ Ĩ k1u−β̂k1k2uv

1+α̂ Ĩ+α̂k2v

=
[
μ̂(1−S̃)α̂k2−β̂ S̃k2

]
v+
[
−μ̂k1(1+α̂ Ĩ )−β̂ Ĩ k1

]
u+
[
−μ̂k1α̂k2−β̂k1k2

]
uv

1+α̂ Ĩ+α̂k2v
.

Introduce some unknown quantities, a11, a12, A, and impose that F(u, v) takes the
form:

F(u, v) =
a11k1 u

[
1 + α̂( Ĩ + k2v)

]
+ a12k2 v

[
1 + α̂( Ĩ + k2v)

]
+ Auv

1 + α̂( Ĩ + k2v)
.

One has:

a11 = −
[
μ̂(1 + α̂ Ĩ ) + β̂ Ĩ

]

1 + α̂ Ĩ
, (10)

a12 = μ̂(1 − S̃)α̂ − β̂ S̃

1 + α̂ Ĩ
, (11)

and

A = −(μ̂α̂ + β̂)k1k2 − α̂k2a11k1.
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The first equation of (9) becomes

∂t u = DSΔu + a11u + a12
k2
k1

v + k−1
1 A uv + k−1

1 a12α̂k22 v2[
1 + α̂( Ĩ + k2v)

] .

3.3 Reformulation of the second equation

Set

G(u, v) = β̂
(S̃ + k1u)( Ĩ + k2v)

1 + α̂( Ĩ + k2v)
− (ν̂ + μ̂)( Ĩ + k2v),

that is

G(u, v) = β̂ S̃ Ĩ + β̂ S̃k2v + β̂ Ĩ k1u + β̂k1k2uv − (μ̂ + ν̂)( Ĩ + k2v)(1 + α̂ Ĩ + α̂k2v)

1 + α̂ Ĩ + α̂k2v
.

=
[
−(μ̂ + ν̂) Ĩ α̂k2

]
v + β̂ Ĩ k1u + β̂k1k2uv − (μ̂ + ν̂)α̂k22v

2

1 + α̂ Ĩ + α̂k2v

Introduce the quantities a21, a22, B, C , and impose that G(u, v) takes the form:

G(u, v) =
a21k1 u

(
1 + α̂ Ĩ + α̂k2v

)
+ a22k2 v

(
1 + α̂ Ĩ + α̂k2v

)
+ B uv + C v2

1 + α̂ Ĩ + α̂k2v
.

It follows:

a21 = β̂ Ĩ

1 + α̂ Ĩ
, (12)

and

a22 = − (μ̂ + ν̂)α̂ Ĩ

1 + α̂ Ĩ
=
⎡

⎢⎣
β̂ S̃

(
1 + α̂ Ĩ

)2 − (μ̂ + ν̂)

⎤

⎥⎦ = − α̂β S̃ Ĩ
(
1 + α̂ Ĩ

)2 , (13)

where we have used the equilibrium condition (μ̂+ ν̂)
(
1 + α̂ Ĩ

)
= β̂ S̃. Furthermore,

B =
(
β̂ − a21α̂

)
k1k2

C = − [(μ̂ + ν̂) − a22
]
α̂k22

The second equation of (9) becomes

∂tv = DIΔv + k1
k2

a21u + a22v + k−1
2 B uv + k−1

2 C v2[
1 + α̂( Ĩ + k2v)

] .

123



S58 B. Buonomo, A. d’Onofrio

In conclusion, the perturbation system is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂t u = DSΔu + a11u + a12
k2
k1

v + k−1
1 A uv + k−1

1 a12α̂k22 v2[
1 + α̂( Ĩ + k2v)

]

∂tv = DIΔv + k1
k2
a21u + a22v + k−1

2 B uv + k−1
2 C v2[

1 + α̂( Ĩ + k2v)
] .

(14)

which must be studied with the following boundary conditions in ∂Ω × R+:
{

βDS∂u/∂ν = −αu
βDI ∂v/∂ν = −αv.

(15)

4 Nonlinear L2-stability

In this section, we will apply the method developed in a series of papers by Rionero
[24–26] to get the nonlinear L2 stability of the equilibrium E given in (7). The method
is based on the analysis of a suitable linear planar system of ordinary differential equa-
tions. The stability will be studied with respect to the perturbations (u, v) belonging,
for all t ∈ R+, to [W 1,2(Ω, α, β, D)], where W 1,2(Ω) is the functional space such
that

ϕ ∈ W 1,2(Ω, α, β, D) →
{
ϕ ∈ W 1,2(Ω) : the b. condit. (2) hold with w∗ = 0

}
.

(16)
In the space W 1,2(Ω, α, β, D) the following inequality holds1

||∇ϕ||2 + α

Dβ
||ϕ||2∂Ω ≥ λ̂||ϕ||2, (17)

where || · || denotes the L2-norm, || · ||∂Ω denotes the L2(∂Ω)-norm and the positive
constant λ̂(Ω, α, β, D) is the lowest eigenvalue of the problem

Δϕ + λϕ = 0, (18)

in W 1,2(Ω, α, β, D), that is the principal eigenvalue of −Δ.
Now, take

μ = k1
k2

,

1 To obtain the inequality (17) starts from (18) to get ϕΔϕ + λϕ2 = 0. Then integrating over Ω and
applying the divergence theorem one gets

∫
∂Ω ϕ∇ϕ · ndσ − ∫Ω(∇ϕ)2dΩ + λ

∫
Ω ϕ2dΩ = 0. Taking into

account of (15) one has − α
Dβ

∫
∂Ω ϕ2dσ − ∫Ω(∇ϕ)2dΩ + λ

∫
Ω ϕ2dΩ = 0, and therefore (17), where

λ̂ ≤ λ.
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add and subtract the quantities

(DS − ε) λ̂u; (DI − ε) λ̂v, (19)

where ε is a constant to be chosen later, in the first and the second equation of (14),
respectively. Take also into account of (18). System (14) now reads

⎧
⎪⎨

⎪⎩

∂t u = b11u + a12
μ

v + F̂ + F∗

∂tv = μa21u + b22v + Ĝ + G∗,
(20)

where,
b11 = a11 − (DS − ε) λ̂; b22 = a22 − (DI − ε) λ̂, (21)

and
F̂ = (DS + ε) Δu + DS λ̂u; Ĝ = (DI + ε)Δv + DI λ̂v, (22)

and

F∗ = k−1
1 A uv + k−1

1 a12α̂k22 v2[
1 + α̂( Ĩ + k2v)

] ; G∗ = k−1
2 B uv + k−1

2 C v2[
1 + α̂( Ĩ + k2v)

] . (23)

Now take the constant ε in (19) such that:

0 < ε < inf

⎧
⎨

⎩DS, DI ,
|a11 − DS λ̂|

λ̂
,

(
a11 − DS λ̂

) (
a22 − DI λ̂

)
− a12a21

λ̂
(
a11 − DS λ̂ + a22 − DI λ̂

) ,

|a11 − DS λ̂ + a22 − DI λ̂|
2λ̂

}
.

(24)
In this way, it follows that b22 < 0 (since a22 < 0) and I < 0, Â > 0 where

I = tr J = b11 + b22; Â = det J = b11b22 − a12a21, (25)

are the principal invariants of the matrix J associated to the linear terms in (20).
Now, consider the Rionero’s special type of Lyapunov functions [24–26]:

W = 1

2

[
Â
(
||u||2 + ||v||2

)
+ ‖b11 v − μ a21 u‖2 +

∥∥∥∥
a12
μ

v − b22 u

∥∥∥∥
2

.

]
(26)

It immediately follows that the time derivative along the solution of (20) is given by

Ẇ = Â I
(
‖u‖2 + ‖v‖2

)
+ Ψ̂ + Ψ ∗, (27)

where
Ψ̂ =

〈
α1 u − α3 v , F̂

〉
+
〈
α2 v − α3 u , Ĝ

〉
, (28)
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and
Ψ ∗ = 〈α1 u − α3 v , F∗〉+ 〈α2 v − α3 u ,G∗〉 , (29)

where 〈·〉 denotes the scalar product in L2(Ω), and

α1 = Â + μ2a221 + b222; α2 = Â + b211 + a212
μ2 ; α3 = μb11a21 + a12b22

μ
. (30)

Our aim now is to estimate the terms Ψ̂ and Ψ ∗ in (27). Let us begin by observing
that from (10), (11), (12), (13), (21) it follows that a12b22 > 0 and a21b11 < 0.
Therefore it can be taken

μ =
√∣∣∣∣

a12b22
a21b11

∣∣∣∣,

to get: α3 = 0. As a consequence, taking into account the estimate (17) we obtain

Ψ̂ =
〈
α1 u , F̂

〉
+
〈
α2 v , Ĝ

〉
. (31)

From (22) first term may be written

〈
α1 u, F̂

〉
= α1

∫

Ω

[
(Ds + ε) uΔu + Ds λ̂u

2
]
dΩ.

Rearranging and using the divergence theorem we have

〈
α1 u, F̂

〉
= α1

[
(Ds + ε)

(∫

∂Ω

u
∂u

∂ν
dσ −

∫

Ω

(∇u)2 dΩ

)
+ Ds λ̂

∫

Ω

u2dΩ

]
.

Therefore, taking into account the boundary conditions (15), we can write

〈
α1 u, F̂

〉
= α1DS

(
− α

βDS
‖u‖2∂Ω − ‖∇u‖2 + λ̂ ‖u‖2

)
− α1ε

(
‖u‖2∂Ω + ‖∇u‖2

)
.

Using the inequality (17) and −α1ε ‖u‖2∂Ω < 0, it follows

〈
α1 u, F̂

〉
< −α1ε ‖∇u‖2 .

Reasoning in the same way when managing the term 〈α2 v ,G∗〉 in (31), one gets:

Ψ̂ < −α ε
(
‖∇u‖2 + ‖∇v‖2

)
, (32)

where α = min {α1, α2} > 0.
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Now we need to estimate the term Ψ ∗ in (27) where α3 = 0,i.e.:

Ψ ∗ = 〈α1 u , F∗〉+ 〈α2 v,G∗〉 . (33)

By considering perturbations such that k2 v > − Ĩ , from (23) one gets:

∣∣F∗∣∣ ≤ 1

k1

[
c1 |uv| + c2 |v|2

]
,

and

∣∣G∗∣∣ ≤ 1

k2

[
c3 |uv| + c4 |v|2

]
,

where ci , i = 1, . . . , 4 are suitable positive constants. Therefore we get:

∣∣Ψ ∗∣∣ ≤ 1

k1
|α1|

[
c1
〈
|u|2 |v|

〉
+ c2

〈
|u| |v|2

〉]
+ 1

k2
|α2|

[
c3
〈
|u| |v|2

〉
+ c4

〈
|v|3
〉]

.

(34)
Using the Hölder inequality it follows

∣∣Ψ ∗∣∣ ≤ ĥ
(
‖u‖2 + ‖v‖2

)1/2 [
c1 ‖u‖24 + (c2 + c3 + c4) ‖v‖24 ,

]
(35)

where ĥ = min
{
k−1
1 |α1| , k−1

2 |α2|
}
. Using the inequality [28]:

‖ f ‖24 ≤ κ
(
‖∇ f ‖2 + ‖ f ‖2

)
,

where κ = κ(Ω) is a positive constant, we have

∣∣Ψ ∗∣∣ ≤ κ ĥM
(
‖u‖2 + ‖v‖2

)1/2 (‖u‖2 + ‖v‖2 + ‖∇u‖2 + ‖∇v‖2
)

, (36)

where M = max {c1, c2 + c3 + c4}. Now, from the (26), being Â > 0, it follows that
W is positive definite and equivalent to the L2(Ω)-norm. In particular, there exist two
constants κ̃1 and κ̃2, such that

κ1

2

(
‖u‖2 + ‖v‖2

)
≤ W ≤ κ2

2

(
‖u‖2 + ‖v‖2

)
. (37)

Recalling that I < 0, from (27), (31) and (36), (37) one gets

Ẇ = ÂI
(
‖u‖2 + ‖v‖2

)
+ Ψ̂ + Ψ ∗

≤ −2 Â|I |
κ2

W − α ε
(
‖∇u‖2 + ‖∇v‖2

)
+ 2

√
2κ ĥM√
κ3
1

W 3/2

123



S62 B. Buonomo, A. d’Onofrio

+
√
2κ ĥM√

κ1
W 1/2

(
‖∇u‖2 + ‖∇v‖2

)

= −
⎛

⎝2 Â|I |
κ2

− 2
√
2κ ĥM√
κ3
1

W 1/2

⎞

⎠W −
(

α ε

−
√
2κ ĥM√

κ1
W 1/2

)(
‖∇u‖2 + ‖∇v‖2

)

= −
⎛

⎝2 Â|I |
κ2

− 2
√
2κ ĥM√
κ3
1

W 1/2

⎞

⎠W − k1
2

⎛

⎝2α ε

k1

−2
√
2κ ĥM√
κ3
1

W 1/2

⎞

⎠
(
‖∇u‖2 + ‖∇v‖2

)
.

Now take the initial value of W , say W0, such that:

2
√
2κ ĥM√
κ3
1

W 1/2
0 < ŵ = inf

{
2 Â|I |

κ2
,
2α ε

k1

}
. (38)

Then, Ẇ (0) < 0, and Ẇ (t̃) < 0 when

2
√
2κ ĥM√
κ3
1

(W (t))1/2 = ŵ, for some t = t̃ .

Therefore

2
√
2κ ĥM√
κ3
1

(W (t))1/2 < ŵ, for all t > 0.

We conclude that:

Ẇ ≤ −
(
2 Â|I |

κ2
− ŵ

)
W ,

so that:

W (t) ≤ W0 e
−
(
2 Â|I |
κ2

−ŵ
)
t
.

This estimates indicates that the endemic equilibrium is nonlinearly stable in the W-
norm, and therefore in the L2-norm, although the restriction (38) on the initial data
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makes the stability not verified for all initial data, i.e. it is only conditional stability
[28].

5 Conclusions

In this work, we focus on the problem of nonlinear stability of an uniform endemic
equilibrium induced by human behaviour in a spatio-temporal SIR epidemic model.
The impact of human behaviour on the contact rate is assumed to be of inverse linear
affine type, which means that as result of opinion-driven adoption of social distancing
the contagion rate is theoretically saturated with respect to the density of the dis-
ease prevalence. We use the Rionero’s special type of Lyapunov function, which has
been previously fruitfully employed in a number of problems in theoretical population
biology. The task has been non-trivial despite of the simple form that we use to rep-
resent the human behavioural response. For the proposed model, we obtain a stability
result which is subject to a restriction on the initial perturbation. Assessing the global
stability of the endemic equilibrium remains an open problem.
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