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ABSTRACT

Aims. In astronomy, machine learning has been successful in various tasks such as source localisation, classification, anomaly detec-
tion, and segmentation. However, feature regression remains an area with room for improvement. We aim to design a network that can
accurately estimate sources’ features and their uncertainties from single-band image cutouts, given the approximated locations of the
sources provided by the previously developed code AutoSourceID-Light (ASID-L) or other external catalogues. This work serves as a
proof of concept, showing the potential of machine learning in estimating astronomical features when trained on meticulously crafted
synthetic images and subsequently applied to real astronomical data.
Methods. The algorithm presented here, AutoSourceID-FeatureExtractor (ASID-FE), uses single-band cutouts of 32x32 pixels around
the localised sources to estimate flux, sub-pixel centre coordinates, and their uncertainties. ASID-FE employs a two-step mean variance
estimation (TS-MVE) approach to first estimate the features and then their uncertainties without the need for additional information,
for example the point spread function (PSF). For this proof of concept, we generated a synthetic dataset comprising only point sources
directly derived from real images, ensuring a controlled yet authentic testing environment.
Results. We show that ASID-FE, trained on synthetic images derived from the MeerLICHT telescope, can predict more accurate
features with respect to similar codes such as SourceExtractor and that the two-step method can estimate well-calibrated uncertainties
that are better behaved compared to similar methods that use deep ensembles of simple MVE networks. Finally, we evaluate the model
on real images from the MeerLICHT telescope and the Zwicky Transient Facility (ZTF) to test its transfer learning abilities.
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1. Introduction

Optical sky surveys have a significant impact on various scien-
tific fields, such as astrophysics, cosmology, and planetary sci-
ence. These surveys collect data on the positions, luminosities,
and additional attributes of celestial objects, such as stars, galax-
ies, and quasars, and have contributed greatly to the scientific
community’s knowledge and understanding of the universe.

Shortly, the development of multiple large-scale optical
survey telescopes will substantially enhance our capacity to
investigate the cosmos and expand our understanding of its prop-
erties and evolution. A prime example is the Vera C. Rubin
Observatory (Ivezić et al. 2019), which is presently under con-
struction in Chile. Equipped with an 8.4-m telescope engineered

for conducting an extensive sky survey spanning over 20 000
square degrees, it will deliver crucial data on billions of celestial
objects. Furthermore, the adoption of large-format complemen-
tary metal-oxide semiconductor (CMOS) detectors in astronomy
is expected to increase data acquisition speeds by two orders of
magnitude, leading to a substantial increase in data volume.

Due to the imminent surge of data, traditional image pro-
cessing methods will face escalating challenges. Consequently,
recent years have witnessed a transition towards using machine
learning techniques for data analysis, with the ultimate objective
of real-time processing. Specifically, within the specialised field
of astronomical image processing, convolutional neural networks
(CNNs, Lecun et al. 1998) have proven remarkably effective,
excelling in a variety of applications such as galaxy classification
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based on morphological characteristics (Vavilova et al. 2022),
exoplanet detection (Cuéllar et al. 2022), image reconstruction
from noise-corrupted or incomplete data (Flamary 2016), detec-
tion and classification of point sources from gamma-ray data
(Panes et al. 2021), and photometric redshift estimation (Mu
et al. 2020; Schuldt et al. 2021).

Nevertheless, while there have been some applications of
CNNs for photometric redshift estimation in astronomy (Hoyle
2016; D’Isanto & Polsterer 2018; Pasquet et al. 2019), their
employment for feature regression tasks, such as estimating
flux and other source properties, remains largely unexplored.
In this context, feature regression involves predicting continu-
ous numerical output values based on features extracted from
images, requiring the network to manage the complexity of
image data as input while simultaneously performing a regres-
sion task. Several factors may account for this underutilisation.
First, the complexity of astronomical tasks could be a signif-
icant barrier. Second, the lack of adequately labelled data for
training these networks may limit their use. Lastly, the nov-
elty of applying CNNs in this context might lead to hesitance
within the astronomical community. Despite these challenges,
they represent unique opportunities for groundbreaking work in
this promising intersection of deep learning and astronomy.

A shared concern in both domains is the reliable estimation
of uncertainties, which is essential for ensuring the robustness of
astronomical findings. While deep neural networks (DNNs) have
achieved remarkable performance across various applications
(LeCun et al. 2015; Schmidhuber 2015; Goodfellow et al. 2016),
their black-box nature often hinders their ability to quantify pre-
dictive uncertainties effectively. Beyond merely predicting an
expected value, it is crucial to gauge and understand the asso-
ciated uncertainty. Such an approach, as highlighted by many
others (Rasmussen & Williams 2004; Kiureghian & Ditlevsen
2009; Ghahramani 2015; Kendall & Gal 2017; Smith & Gal
2018; Wilson & Izmailov 2020), not only enhances the reliability
and confidence of predictions but also facilitates more informed
decision-making. This reliable estimation of uncertainties will
also be a central theme of this paper.

Another pivotal aspect in the realm of astronomical data pro-
cessing is the use of synthetic astronomical image generators.
As the intersection of machine learning and astronomy contin-
ues to evolve, it is essential to recognise the burgeoning role
of these sophisticated tools. Tools such as Pyxel (Arko et al.
2022) and ScopeSim (Leschinski et al. 2020) are leading this
advancement, striving to produce images with an unparalleled
level of detail that encapsulate everything from subtle celestial
features to a broad spectrum of observational artefacts. While
the astronomical landscape may not be dominated by these syn-
thetic images, their increasing fidelity makes them invaluable
assets for machine learning training. By utilising these high-
quality synthetic images, we can ensure that machine learning
models are trained on true features and are adeptly prepared to
handle the nuances of real-world astronomical data. This paper
is a testament to our commitment to this progressive approach.
It introduces one of the core data processing techniques that we
intend to integrate into our envisioned comprehensive pipeline.
This pipeline is designed to harness the full potential of machine
learning tools, from source detection and feature regression to
transient identification, with the ultimate goal of establishing the
first fully automated machine learning-driven telescope pipeline.

Building on this vision and recognising the need for practical
tools and methodologies, for this study, we tackled two objec-
tives. First, we constructed a network capable of predicting, from
image cutouts of sources detected with AutoSourceID-Light

(ASID-L, Stoppa et al. 2022a) or through other tools, their flux,
sub-pixel centre coordinates, and corresponding uncertainties.
Second, we aimed to enhance the field of uncertainty estimation
in machine learning by implementing what we call a two-step
mean variance estimation (TS-MVE) network. In Sect. 3, we
demonstrate the concept on a synthetic dataset and highlight its
improvements from an astronomical perspective and an uncer-
tainty characterisation standpoint. Subsequently, we compare its
outcomes with SourceExtractor (Bertin & Arnouts 1996) and
another DNN for regression that adopts an ensemble method-
ology (Lakshminarayanan et al. 2017). Lastly, as explained in
Sect. 4.2, we applied the trained model to a real set of images
from the MeerLICHT (Bloemen et al. 2016) and the Zwicky
Transient Facility (ZTF, Bellm et al. 2019) telescopes to evaluate
its transfer learning capabilities.

The code presented here1 is the third deep learning algo-
rithm developed within the context of MeerLICHT/BlackGEM
(Bloemen et al. 2016; Groot et al. 2022), following MeerCRAB
(Hosenie et al. 2021), an algorithm employed to classify real and
bogus transients in optical images, and ASID-L (Stoppa et al.
2022b), an algorithm designed for rapid source localisation in
optical images.

2. Data

An appropriate experimental protocol must be established to
assess the efficacy of the proposed two-step network for feature
regression and validate the core concept of the proposed method.
One vital component of this protocol is employing both synthetic
and real MeerLICHT telescope image datasets to train and eval-
uate the network performance. While the real dataset provides
real-world scenarios and helps assess the network’s performance
in practical applications, the synthetic dataset is necessary to
train the network on true, exact features.

2.1. MeerLICHT telescope

The 65 cm optical MeerLICHT telescope has a 2.7 square
degrees field of view and a 10.5k × 10.5k pixel CCD. Its
primary objective is to track the pointings of the MeerKAT
radio telescope (Jonas & MeerKAT Team 2016), facilitating the
concurrent detection of transients in both radio and optical wave-
lengths. The telescope employs the Sloan Digital Sky Survey
(SDSS) ugriz filter set and an extra wide g + r filter called
q (440–720 nm bandpass). Images captured are promptly sent
to the IDIA/ilifu facility, where BlackBOX image processing
software2 (Vreeswijk et al., in prep.) handles the images using
standard methods. This includes source detection (currently with
SourceExtractor, Bertin & Arnouts 1996), astrometric and pho-
tometric calibration, determination of position-dependent image
point spread function (PSF), image subtraction, and transient
detection.

2.2. Synthetic dataset

Using synthetic datasets for model training and evaluation before
testing on real-world data is a prevalent practice in deep learning
and computer vision; it offers greater control over the prob-
lem, diminishes the impact of unforeseen variations in real-world
data, and enables more efficient use of computational resources.
Real data quality, in fact, can be impacted by various factors,

1 https://github.com/FiorenSt/AutoSourceID-
FeatureExtractor
2 https://github.com/pmvreeswijk/BlackBOX
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such as atmospheric conditions, telescope optics, and camera
noise. To address these constraints and to have exact labelled
features, researchers have investigated using synthetic data for
training machine learning models (Tremblay et al. 2018).

The synthetic dataset built for this paper is designed to com-
prise a substantial number of image samples, approximately
500 full-field MeerLICHT images, each associated with a set
of target feature values. The synthetic images are built using
the astrometric calibration, the characterisation of the PSF and
the photometric calibration of actual MeerLICHT images. These
products are kept for each image following the original image
processing. The astrometric calibration is accurate to about 0.03”
and is inferred using Astrometry.net (Lang et al. 2010) with
Gaia DR2 (Gaia Collaboration 2018) index files. The position-
dependent PSF for each image is determined using PSFEx
(Bertin 2013), which uses hundreds of selected stars across the
image to fit their profile, where the PSF is allowed to vary as a
function of X- and Y-position with a 2nd-order polynomial. From
the PSFEx products, a pixel map of the PSF at each position in
the image can be created, with a radius of 5 times the average
image full-width at half maximum (FWHM) inferred from the
stellar profiles (the PSF image is actually square, but the pixels
at distances larger than a radius of 5 times the FWHM are set
to zero). The photometric calibration is based on the photom-
etry of stars down to ∼17th magnitude from a combination of
surveys (Gaia DR2, SDSS, Pan-STARRS, SkyMapper, GALEX
and 2MASS) for which stellar templates are fit. The Meer-
LICHT magnitudes are inferred from the best-fit template, taking
into account the typical atmospheric conditions at Sutherland
and the wavelength-dependent transmission of the telescope,
including the mirror reflectivity, filter transmission and CCD
sensitivity. This provides an all-sky calibration catalogue that
is used to calibrate each MeerLICHT image, which typically
contains hundreds of calibration stars, to an accuracy of ∼ 0.02
mag in the q-band. When inferring the instrumental flux of the
sources to be compared to the calibrated fluxes, the source flux
is weighted with the PSF at the source position; this optimal flux
determination closely follows the method described in Horne
(1986).

Using these three components from an actual MeerLICHT
image, we project all relevant sources from the Gaia catalogue
onto a blank image with the same size as a reduced MeerLICHT
image (10 560 × 10 560 pixels). In this projection, the Gaia G-
band magnitude is converted to flux (unit: electrons s−1) using
the image q-band zero-point, taking into account the actual air-
mass of the image and the typical q-band extinction coefficient.
This flux determines the amplitude of the PSF pixel map inferred
at each particular location so that the total flux (now in units of
electrons with the image exposure time taken into account) is the
volume below the PSF surface. Although the Gaia G-band filter
is very different from the MeerLICHT q-band (despite having
similar central wavelengths), this is not important as the result-
ing flux is simply adopted as the true flux of the object. Besides
the Gaia sources, we also added the sky background image and
its standard deviation image (inferred on sub-images of size 60×
60 pixels, with the detected sources masked out) of the origi-
nal image; similar to the PSF characterisation, these are pipeline
products that are kept for all MeerLICHT images. In this way, a
sample of 500 synthetic images has been built from actual Meer-
LICHT images, reflecting the actual observing conditions under
which the images were taken, with a wide range of image quality
and limiting magnitudes.

In each synthetic image, sources are identified using both
ASID-L and SourceExtractor. The mutually identified sources
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Fig. 1. Number of sources as a function of S/N. This plot showcases
the range of S/N present in our synthetic dataset, emphasising the vari-
ety of conditions under which the network will need to be trained and
evaluated. A significant portion of the sources exhibit low S/N, under-
scoring the challenges the network will face in accurately detecting and
analysing these sources.

S/N: ~3 S/N: ~10 S/N: ~30 S/N: ~100 S/N: ~300

Fig. 2. Random selection of cutouts from the synthetic exposures
showcasing the variety and quality of the simulated data. This visual
representation aids in understanding the conditions and challenges the
network is designed to handle.

are then matched with their true positions in the synthetic images
to generate single-band cutouts. This process results in approx-
imately 3.5 million cutouts, each measuring 34 × 34 pixels. To
further elucidate the characteristics of our synthetic dataset, we
have plotted the number of sources as a function of the signal-
to-noise ratio (S/N). Training a network to accurately detect and
analyse such low S/N sources presents a considerable challenge,
given the inherent difficulty in distinguishing these faint sources
from the background. Figure 1 provides insights into the distri-
bution of sources across different S/N values, highlighting the
diversity and richness of our dataset.

To provide a clearer visual understanding of the cutouts and
a glimpse into the conditions under which the regressor operates,
in Fig. 2, we show a random selection of cutouts at different S/N.

The dataset is then split into 60% training, 20% test, and 20%
validation. The true centre in pixel coordinates and flux were
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stored and incorporated into the final training set for each source.
Even though the stored cutouts have dimensions of 34 × 34 pix-
els, the training process is carried out on 32 × 32 pixel images.
Having additional pixels at the edges of the cutouts allows us to
shift the location of the sources within the image dynamically
during training, serving a dual purpose: providing a more var-
ied dataset and simulating suboptimal source localisation by a
prior tool. This approach enhances the training dataset and pre-
pares the model to handle situations where source localisation
is less than ideal, thereby improving its overall performance and
adaptability in various scenarios.

This controlled environment is ideal for training our network
and assessing its performance with alternative architectures,
such as deep ensemble methods and widely used algorithms like
SourceExtractor.

2.3. Real dataset

While synthetic datasets have advantages, they inevitably lack
the full range of real-world complexities. Therefore, it is cru-
cial to validate the performance of the trained models on a real
dataset as well. The real dataset used for this study comprises the
same set of 500 full-field images captured by the MeerLICHT
telescope, identical to those used to create the synthetic dataset.
Each image in the real dataset matches the dimensions of those
in the synthetic dataset, being 10.5k × 10.5k pixels. Moreover,
the creation of cutouts from the real dataset follows the same
methodology employed for the synthetic images, as detailed in
the previous section.

The processing of this dataset, however, is quite different.
Source extraction is performed using SourceExtractor (Bertin
& Arnouts 1996), a widely used astronomical source detection
tool that identifies and measures the properties of sources in the
given images. In contrast to the synthetic dataset, where true
feature values are known precisely, this software provides esti-
mated values for various features such as flux, position, and
shape parameters based on the real image data. Consequently,
these values can be impacted by various factors such as the back-
ground noise level, the complexity of the object itself, and even
the subtle intricacies of the software’s algorithms. As a result,
unlike the synthetic data, the features obtained from this real data
do not have associated true values. However, the real dataset is
invaluable for assessing the network’s performance in real-world
scenarios, and it provides an essential test of the generalisation
ability of the trained models.

3. Method

In astronomy, various methods exist to infer a star’s flux in an
optical image. The most prevalent techniques include aperture
photometry, which entails positioning a circular aperture around
the star and measuring the flux within that aperture (Golay 1974),
and profile-fitting photometry, which involves fitting a model of
the PSF of the telescope to the star’s image (Heasley 1999).
However, these methods exhibit limitations, particularly when
handling crowded fields or images with a low S/N.

This paper proposes a machine learning approach to estimate
the flux and sub-pixel centre position, x and y, of the optical
sources, along with associated uncertainties, without using PSF
information. The quantities of interest in the problem, flux, x,
and y, can be collectively represented as β = {x, y, f lux}. These
true quantities are related to the estimated values, β̂, through a
model of the form:

β = β̂ + ϵ,

where ϵ denotes the residuals or errors in the estimate, which
are assumed to follow a Gaussian distribution with a mean of
zero and a covariance matrix Σ, that is, ϵ ∼ N(0,Σ). Assum-
ing Gaussian distributed residuals allows us to estimate not only
the quantities of interest, β̂, but also the uncertainties in these
estimates, namely the covariance matrix Σ̂ of ϵ.

This Gaussian residual assumption is particularly valid when
our synthetic images closely emulate real images in every
nuance, including the presence of artefacts. In such cases, the
neural network is trained to account for these intricacies, leading
to residuals that predominantly follow a Gaussian distribution.
This is because the network would have learned to adjust for
these artefacts during the training process, and any deviations
from the predictions would be due to random noise, which is
often Gaussian in nature. However, the efficacy of our model
heavily hinges on the fidelity of the synthetic images to real-
world images. If the synthetic images fall short of capturing
the intricate complexities inherent in real images, it can lead to
residuals that stray from a Gaussian distribution. Specifically,
issues such as contamination from image artefacts and con-
fusion noise at low source density can introduce pronounced
non-Gaussian noise contributions, undermining the effective-
ness of our proposed model. Beyond the fidelity of synthetic
images, intrinsic data complexities can lead to non-Gaussian
residuals. For instance, in spectroscopic multiple-star systems,
photometric parameters may not be directly inferred from the
data and instead need to be constrained by prior knowledge, such
as previous observational data, theoretical models, or known
astrophysical constraints. Similarly, for complex sources such as
galaxies or areas with saturation, the interpretation of features
can introduce non-Gaussian uncertainties. For example, distin-
guishing whether a spot is part of a galaxy or a foreground object
adds further variance to the residuals. Thus, while our model
is effective in estimating Gaussian-distributed residuals, extend-
ing it to handle these more intricate scenarios is an avenue for
future work.

In machine learning, to estimate the quantity of interest
following the setting above, we can employ a mean variance esti-
mation (MVE) network (Nix & Weigend 1994). These models
use a negative Gaussian loglikelihood as a loss function and pre-
dict an estimate of the quantity and their uncertainties. Despite
its fame, several authors have observed that training an MVE net-
work can be challenging (see, e.g. Detlefsen et al. 2019; Seitzer
et al. 2022; Sluijterman et al. 2023). The primary argument
is that the network tends to focus on areas where it performs
well, consequently neglecting initially poorly fitted regions. One
of the most common solutions for this problem is the applica-
tion of an ensemble methodology; the main architecture using
this procedure is the widely used deep ensembles regression
(Lakshminarayanan et al. 2017) that uses an ensemble of MVE
to mitigate this effect.

In the following section, we first present how the state-of-the-
art methodology, deep ensembles, would function in predicting
the features of interest and their uncertainties. Subsequently, we
demonstrate how our two-step network better predicts the fea-
tures of interest and addresses the controversial problem of the
challenging training of MVE networks. In addition, we com-
pare our results with the ones of SourceExtractor applied to the
synthetic images.

3.1. Deep ensemble regression on synthetic images

Deep neural networks (DNNs) are prevalent black box pre-
dictors demonstrating robust performance across various tasks.
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However, determining the uncertainty of predictions made by
DNNs remains a challenging problem yet to be fully resolved.
Uncertainties are an inherent aspect of many real-world prob-
lems, and it is essential to understand the different types of uncer-
tainty that can arise when building models. In machine learning,
uncertainties are usually divided into epistemic and aleatoric
uncertainty (Kendall & Gal 2017; Kiureghian & Ditlevsen 2009).
Epistemic uncertainty refers to the uncertainty that arises from
a lack of knowledge, while aleatoric uncertainty refers to uncer-
tainty that arises from stochastic processes and that cannot be
reduced no matter how good our model is. Epistemic uncertain-
ties can be mitigated and, if a model has enough information and
is well-calibrated, can become negligible (Smith & Gal 2018;
Wilson & Izmailov 2020).

One of the standard solutions to mitigate epistemic uncer-
tainties is employing Bayesian DNNs, which estimate uncer-
tainty by modelling a distribution over the network’s weights
(Kendall & Gal 2017; Blundell et al. 2015); this approach
necessitates significant modifications to the training process and
is computationally expensive. Another often-used method to
address this issue, deep ensemble regression, offers an alter-
native, user-friendly approach requiring no modification to the
model or loss function: an ensemble of MVE networks. Train-
ing multiple MVE networks on identical data, predicting their
β̂ and Σ̂, and then combining their predictions is a straight-
forward strategy for enhancing the MVE network’s predictive
uncertainty estimation and also partially mitigating the MVE
training problems introduced in Sect. 1.

We trained three MVE networks, a small deep ensemble set-
ting, on the problem at hand. Each network outputs six values:
the predicted values for flux, x, and y, and their uncertainties. It
is worth noting that while we do not estimate the full covariance
matrix due to the primary quantities (flux, x, and y) being mostly
uncorrelated within a cutout, our model can be easily extended
to account for the full covariance matrix. This would involve
increasing the output to nine values: three for the quantities and
six for the covariance matrix components.

The training process is straightforward and employs the neg-
ative loglikelihood as a loss (Lakshminarayanan et al. 2017):

NLL =
1
2

log |Σ| +
1
2

(β − β̂)TΣ−1(β − β̂). (1)

The architecture comprises two branches: one for the means
and another for the uncertainties. Each branch contains three
CNN blocks for feature extraction from the images and three
dense layers independently trained for each feature. The CNN
blocks in each branch consist of 4× 4 kernel-sized convolutional
layers with 32 channels, followed by max-pooling. No dropout
layers are used in the CNN blocks. After the feature extraction,
the multilayer perceptron (MLP) consists of three hidden layers
with 128, 64, and 32 neurons, respectively. We trained the net-
works using the Adam optimiser with a learning rate of 0.001
and a learning rate decay of 0.1. The training process used early
stopping with patience of 8 epochs to prevent overfitting. As
introduced in Sect. 2.2, we also applied data augmentation tech-
niques to improve the model’s generalisation capabilities. This
design allows for more efficient learning of both the mean pre-
dictions and their associated uncertainties, contributing to the
overall performance and accuracy of the proposed method. The
entire architecture is shown in Fig. 3.

The deep ensemble MVE method is based on replicating the
training process multiple times; this can provide a more accurate
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Fig. 3. MVE architecture used for the deep ensemble. Two branches of
three convolution layers followed by three independent groups of dense
layers, one for each variable of interest. Inputs are single-band optical
images; outputs are β̂ and Σ̂.
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Fig. 4. Training negative Gaussian loglikelihood loss for the three mod-
els with different initialisations: MVE I, MVE II, and MVE III. The plot
shows the loss values computed over multiple training iterations on the
dataset. Results suggest that MVE III outperforms the other models in
minimising the loss function. However, all three models are used being
an ensemble setting.

distribution of estimated parameters and uncertainties. However,
as illustrated in Fig. 4, the outcomes vary and converge to dis-
tinct loss values depending on the initialisation of the model’s
weights.

This sensitivity of MVE networks to the random initialisa-
tion values of the weights can lead to suboptimal solutions. An
ensemble of the MVE networks, averaging the predictions from
the three MVEs, results in a more robust estimation of the target
being less dependent on a single random initialisation. Never-
theless, it is essential to note that the deep ensemble methods
require increased computational resources due to the need to
train multiple models.

In this paper, we propose to solve the problem at its core,
improving the trainability of MVEs, and ensuring better perfor-
mances and more consistent results.
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3.2. Two-step network on synthetic images

In this section, we introduce the two-step mean variance estima-
tion (TS-MVE) approach, an expansion of the method presented
in Sluijterman et al. (2023) for more effective training of MVE
networks in regression tasks. This novel TS-MVE approach
has been specially adapted for image feature regression, con-
fronting the complex challenge of estimating uncertainties while
simultaneously delivering enhanced accuracy.

The solution for an improved training approach such as TS-
MVE stems from recent insights shared by Sluijterman et al.
(2023). Their study underscores a crucial flaw in MVE net-
works when the parameters β and Σ are trained concurrently. The
highlighted challenges encompass instability in training MVE
networks and a tendency for the network to falter in learn-
ing the mean function, particularly in regions where it initially
has a large error. This predicament can trigger an escalation in
the variance estimate, driving the network to disproportionately
concentrate on well-performing regions and neglect areas of
poor fit.

Our novel TS-MVE method strives to overcome these iden-
tified limitations. Our key objectives with this two-step network
are twofold. Firstly, we aim to achieve lower mean squared error
(MSE), mean absolute error (MAE), and negative loglikelihood
(NLL) values than those yielded by conventional MVE net-
works. Secondly, we intend to demonstrate that, regardless of
the initial parameter settings, our TS-MVE model exhibits con-
sistent stability, converging reliably towards a more optimised
loss value.

The proposed TS-MVE method maintains the same num-
ber of parameters as a single iteration of the MVE architecture
shown in Fig. 3, ensuring the model’s complexity remains com-
parable. However, the key differentiating factor of our approach
is the implementation of two distinct training stages, which leads
to a more robust and effective training process. In the first stage,
the model focuses on learning the mean function of the target
variable. This stage primarily emphasises capturing the overall
structure and trends present in the data, establishing a solid foun-
dation for subsequent variance estimation. The primary objective
of this stage is to minimise the Huber loss (Huber 1964; Hastie
et al. 2009), a widely used and reliable metric for regression tasks
as shown in Eq. (2). Following the completion of the first stage,
the second stage begins, which involves learning the variance
function of the target variable. By incorporating the information
gathered during the initial stage, the model can now concen-
trate on estimating the uncertainties of its predictions. This is
achieved through a negative Gaussian loglikelihood loss func-
tion, which allows the model to effectively capture and represent
the complex relationships between features and uncertainties in
the target variable.

The separation of mean and variance estimation allows for a
more focused learning process, enabling the model to accurately
capture the underlying structure of the data while accounting for
uncertainties.

3.2.1. Part I: estimating β

In the first stage of the TS-MVE approach, we train a network
that estimates the target variables’ mean values, β. This network
is primarily concerned with learning the underlying relationships
between the input features and the target variables, x, y, and flux,
without considering uncertainties. The architecture of the Part I
network, as depicted in Fig. 5, follows the same structure as a
single branch of the MVE, shown in Fig. 3.
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µ

Fig. 5. Architecture used for Part I network. Same as a single branch of
Fig. 3: three convolution layers followed by three independent groups
of dense layers, one for each variable of interest. Inputs are single-band
optical images; output is µ of flux, x and y.

The Part I network is trained to minimise the Huber loss:

Lδ(y, f (x)) =
{ 1

2 (y − f (x))2 for |y − f (x)| ≤ δ
δ(|y − f (x)| − 1

2δ) otherwise
. (2)

The Huber loss represents a hybrid of the MSE and MAE loss
functions, rendering it less sensitive to outliers than a simple
MSE loss function. By adjusting the value of the parameter δ, the
user can modify the balance between the two types of loss func-
tions, optimising performance according to the specific demands
of the dataset. For our application, we use the standard value of
δ = 1. While the Huber loss is not directly comparable to the loss
of the ensemble network, we observe that the MSE and MAE
values for the TS-MVE Part I network are lower than those of
any of the MVEs of the ensemble. A comprehensive compari-
son of the performance metrics of each network is provided in
Sect. 3.2.3.

3.2.2. Part II: estimating Σ

In the second stage of the TS-MVE approach, we leverage the
optimised parameters obtained from the Part I network to predict
the uncertainties, Σ, using a second network. The architecture of
the Part II network, as illustrated in Fig. 6, uses the same struc-
ture of the complete MVE architecture presented in Fig. 3. The
key distinction lies in that the weights for the mean branch are
already set to the optimised values derived from the Part I net-
work. The objective of the Part II network is to predict the most
suitable σ values while concurrently enhancing the mean pre-
diction. In the present study, we assume no correlation exists
between the variables x, y, and flux. Nevertheless, the complete
covariance matrix Σ prediction is feasible and straightforward,
presenting no significant complications.

During the Part II network training, we employ the nega-
tive Gaussian loglikelihood loss as the loss function. This loss
function is particularly suited for uncertainty estimation, as it
accounts for both the difference between the predicted mean and
the true target value and the predicted uncertainty.

By dividing the training process into two stages, TS-MVE
can effectively learn the target parameters and their associated
uncertainties more stably. This separation of concerns allows
each network to focus on a specific aspect of the problem,
resulting in improved overall performance.
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Fig. 6. Architecture used for Part II network. Same as shown in Fig. 3:
two branches of three convolution layers followed by three independent
groups of dense layers, one for each variable of interest. The grey branch
is not trained from scratch but is initialised with the results of the Part I
network. Inputs are single band optical images; outputs are improved µ
and predicted σ of flux, x and y.
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Fig. 7. Comparison of the loss for the TS-MVE Part II and all the MVEs
models part of the ensemble. The TS-MVE converges to a lower loss
value than any of the MVEs.

3.2.3. Metrics comparison

In this section, we evaluate and compare the performance of
the TS-MVE network with the MVEs of the ensemble using
two widely adopted metrics, mean squared error (MSE) and
mean absolute error (MAE). These metrics offer a quantitative
assessment of the accuracy and precision of the models.

Our analysis highlights several advantages of the TS-MVE
approach over the ensemble models. As shown in Figs. 7–9, the
TS-MVE network achieves lower MSE, MAE, and NLL val-
ues, indicating superior overall accuracy. This improvement in
both MSE and MAE metrics demonstrates the effectiveness of
the TS-MVE method in reducing prediction errors and enhanc-
ing precision. Our analysis also revealed that the TS-MVE
network exhibits less dependence towards random weight ini-
tialisation, demonstrating no significant differences between
models with varying initialisations. To illustrate, when training
the Part I network multiple times with different initialisations
while maintaining the same architecture, we noticed a uniformity
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Fig. 8. Comparison of the MSE metric for all models. TS-MVE Part I
and Part II network predictions for µ have significantly lower MSE than
any of the MVEs composing the ensemble network.
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Fig. 9. Comparison of the MAE metric for all models. TS-MVE Part I
and Part II network predictions for µ have significantly lower MAE than
any of the MVEs composing the ensemble network. TS-MVE Part II,
built on the results of Part I, converges to an even lower MAE value.

in the models converging towards a consistently small Huber
loss value. Similarly, the corresponding Part II networks trained
under different initial conditions also converged towards nearly
identical negative loglikelihood values. This remarkable con-
sistency underscores the robustness of the TS-MVE network
against variability in initial weight settings.

Our findings suggest that, for feature regression from images,
the TS-MVE network indeed outperforms a standard MVE net-
work. Interestingly, an ensemble composed of the three MVE
networks also did not offer any performance improvement,
despite being more computationally expensive. However, this
does not signify an overarching redundancy of deep ensem-
ble techniques. Quite to the contrary, in certain situations,
these techniques remain crucial. Notably, even when the model
demonstrates stability, some epistemic uncertainty may persist,
such as when comprehensive knowledge about the underlying
system is lacking (Rasmussen & Williams 2004). Nevertheless,
it is evident that a TS-MVE network tends to yield superior
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performance and offers a stronger buffer against epistemic uncer-
tainties compared to its conventional counterparts. Furthermore,
it is important to note that the TS-MVE approach is not mutu-
ally exclusive with ensemble techniques. Despite the strength of
a single TS-MVE model, we can further enhance performance
and robustness by employing an ensemble of TS-MVE net-
works. This combination could potentially offer a powerful tool
for addressing complex regression tasks, combining the specific
advantages of the TS-MVE approach with the general benefits
of ensemble methods.

3.2.4. Saliency maps

Prediction models in machine learning can be highly reliable
when developed and deployed appropriately. However, the relia-
bility of a model depends on various factors, such as the quality
and quantity of data used to train the model, the choice of algo-
rithms and parameters, and the complexity of the problem. Thus,
it is essential to evaluate the reliability of a prediction model
before using it in real-world applications.

One way to assess the reliability of a machine learning
model is by studying its output. The output of a model can
be examined on the performance of the test dataset as in the
previous sections, but it can also be examined based on the rela-
tionship between input and output. Deep taylor decomposition
(DTD) and axiomatic attribution are methods used to explain
decisions made by nonlinear classification models such as deep
neural networks. DTD decomposes the decision-making pro-
cess into simpler components, enabling a better interpretation
of the model’s predictions (Montavon et al. 2017). Axiomatic
attribution provides a mathematical framework to understand the
contribution of individual input features to the final prediction
(Sundararajan et al. 2017).

For image classification and regression, some specific meth-
ods have been developed to evaluate the reliability of networks,
Saliency Maps (Simonyan et al. 2013). They are commonly used
to visualise and understand the behaviour of machine learning
models, particularly CNNs. A saliency map visualises which
parts of the input image are most important for a given prediction
by the model. There are several different methods for creating
saliency maps. One common approach is applying a gradient-
based optimisation method to the input to find the pixels that
significantly impact the model’s output.

In particular, we used SMOOTHGRAD (Smilkov et al.
2017), a method for creating saliency maps that aim to reduce
noise and improve the interpretability of the resulting maps.
Saliency maps can sometimes be noisy, with little and unimpor-
tant features highlighted as important due to random fluctuations
in the model’s output. SMOOTHGRAD addresses this problem
by creating an ensemble of saliency maps, each slightly per-
turbed with Gaussian noise from the original input. The resulting
maps are then averaged together, which helps to smooth out the
noise and highlight more robust and reliable features.

In Fig. 10, we show the saliency map for predicting a single
source of ASID-FE. The network seems to be able to discern the
source from the background, focusing primarily on the source
to predict its x, y, and flux properties. Interestingly, the network
pays less attention to the edges of the image, which suggests that
it has learned to differentiate between relevant and less relevant
information for the task at hand.

This observation highlights the network’s capability to
recognise and prioritise the relevant features of the input image
for accurate prediction, thereby demonstrating its effectiveness
in handling the task. The dipole-like structure observed in the

Fig. 10. Saliency map of ASID-FE’s features prediction for a single
source. The images are from left to right: original image, saliency for x,
saliency for y, and saliency for flux. The colour map indicates the degree
of importance assigned to each pixel in the image. The brighter the
colour, the more important the pixel is for the prediction. As expected,
the network mainly focuses on the source to determine its centre and
flux while paying less attention to the edges of the image.

Fig. 11. Saliency map of ASID-FE’s uncertainties prediction for a single
source. The images are from left to right: original image, saliency for
σx, saliency for σy, and saliency for σflux. The colour map indicates the
degree of importance assigned to each pixel in the image. The brighter
the colour, the more important the pixel is for the prediction. Results
suggest that the network focuses mostly on the central pixels to estimate
σx and σy, while it pays more attention to a wide area around the source
to estimate σflux.

saliency maps for x and y could be attributed to the network
learning the gradient direction in the source’s position, which
is an important factor in determining the source’s centre. Fur-
ther investigation is needed to understand better this structure’s
significance and implications on the network’s predictions.

In Fig. 11, we present the saliency map for the uncertain-
ties of the three quantities of interest: σx, σy, and σflux. The
visualisation shows that the network adopts a different approach
when estimating uncertainties compared to predicting the main
features. Notably, the network appears to place more impor-
tance on the background pixels than before, which suggests that
the background may contain valuable information for estimat-
ing uncertainties. For σx and σy, the network seems to focus
primarily on the central pixels of the source. This could imply
that the model is leveraging the central region’s intensity dis-
tribution to estimate the positional uncertainties. In the case of
σflux, the network pays more attention to a wider area around the
source, which may indicate that the network highly considers the
source’s background when estimating the uncertainty in flux.

These observations provide valuable insights into the neural
network’s decision-making process when estimating uncertain-
ties. By understanding how the network focuses on different
regions and features of the input image, we can identify poten-
tial areas of improvement and develop strategies to enhance the
network’s accuracy and robustness.

4. Results

This section offers a comprehensive evaluation of ASID-FE’s
performance in predicting the flux and location of sources within
astronomical images, alongside a comparison with SourceEx-
tractor (Bertin & Arnouts 1996). As a widely used software
package in the field of astronomy, SourceExtractor has become a
standard tool for detecting and analysing celestial objects such as
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stars and galaxies. Our analysis is divided into two main subsec-
tions: the first focuses on a detailed examination of ASID-FE and
SourceExtractor using synthetic test sets (comprising approxi-
mately 600k sources), and the second extends the evaluation to
real-world data, specifically MeerLICHT images.

The synthetic test set analysis explores the accuracy, uncer-
tainties, and behaviour of the two methods across different
signal-to-noise levels, employing both quantitative metrics and
visualisations. The real-world data analysis assesses the models’
generalisation, adaptability, and alignment with established soft-
ware. Together, these evaluations provide a robust understanding
of ASID-FE’s strengths and limitations and its comparative per-
formance with SourceExtractor in the context of astronomical
image analysis.

4.1. Results of ASID-FE and SourceExtractor on synthetic
images

In this subsection, we assess the performance of ASID-FE and
SourceExtractor in predicting the flux and location of sources
within our synthetic test set of astronomical images. Each source
in the test set is accompanied by the predicted flux and cen-
tre coordinate as determined by SourceExtractor, applied to
full-field simulated images.

Our analysis begins with a comparison of the methods’ pre-
dictions for the x and y coordinates. We only present results
for the x coordinate as the y coordinate showed no significant
difference in performance. SourceExtractor’s inherent flexibil-
ity offers a variety of estimators for parameter determination,
and we selected the windowed positions to estimate source
locations. For the estimation process, SourceExtractor deter-
mines the source position through an iterative Gaussian fitting
approach that refines the source profile until a definitive loca-
tion is identified. Following this, uncertainties in these positions
are calculated using a windowed centroiding method. Based on
the assumption of uncorrelated pixel noise, standard error prop-
agation is applied to derive variances and covariance for the
windowed x and y coordinates. These are obtained by taking
weighted sums of the squared deviations between each pixel’s
position and the overall windowed centroid, and then normalis-
ing by the square of the weighted intensity sum. This approach
yields a robust quantification of positional uncertainties.

The results of this comparison are presented in Fig. 12,
where we examine the mean absolute relative error (MARE)
with respect to the true synthetic values as a function
of S/N:

MARE =
1
n

∑∣∣∣∣∣∣β − β̂β
∣∣∣∣∣∣ . (3)

Here, β represents the true value, β̂ represents the estimated value
by the algorithms, and the sum is over the sources within an
S/N bin.

Our evaluations reveal an astonishing level of accuracy in
predicting sources’ x and y positions across all three methods.
While ASID-FE and the ensemble slightly outperform Source-
Extractor, the differences are subtle. What sets ASID-FE apart
is its efficiency: achieving comparable results as a single net-
work, it stands as a more computationally streamlined solution
compared to the ensemble, which is composed of three MVE
networks of the same size. This efficiency does not compro-
mise performance, making ASID-FE a compelling choice in
this context.

Fig. 12. Mean absolute relative error for the x coordinate by Source-
Extractor (blue), the MVEs ensemble (green) and ASID-FE (red).
ASID-FE and the ensemble have overall better results than SourceEx-
tractor at any S/N level.

Fig. 13. Standard deviation of the standardised residuals for the x
coordinate by SourceExtractor (blue), the MVEs ensemble (green) and
ASID-FE (red). ASID-FE has overall better results than SourceExtrac-
tor at any S/N level.

Next, we delve into the uncertainties associated with these
predictions. We utilise the standard deviation of the standard-
ised residuals as a robust metric for evaluating the performance
of both estimator and uncertainties. Ideally, this metric should
be close to 1, indicating that the residuals are approximately
normally distributed and that the estimator’s uncertainty is well-
calibrated. Deviations from 1 suggest that the estimator is either
overconfident or underconfident in its predictions. In Fig. 13,
we present the standard deviation of the standardised residuals
for the x coordinate as estimated by SourceExtractor, the MVEs
ensemble, and ASID-FE across various S/N levels.

Some nuances in the calibration of uncertainties are observed
across the different methods. SourceExtractor shows decently
calibrated uncertainties at low S/N levels but tends to increas-
ingly underestimate the uncertainties as the S/N rises. In
particular, SourceExtractor’s sigma values at high S/N can
reach extremely small values, equivalent to approximately
0.0011 arcsec. These values are significantly smaller than the
telescope’s resolution of 0.56 arcsec per pixel, highlighting its
tendency to underestimate uncertainties. The ensemble method
performs better across the S/N spectrum but still tends to slightly
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Fig. 14. Mean absolute relative error for the flux by SourceExtractor
(blue), the MVEs ensemble (green) and ASID-FE (red). ASID-FE and
the MVEs ensemble have overall better results than SourceExtractor at
any S/N level.

underestimate σ. In contrast, ASID-FE exhibits excellent cali-
bration, almost perfectly aligning at 1 for the standard deviation
of the standardised residuals across most S/N levels. The only
exception is an overestimation of uncertainties in the highest S/N
bin, which is likely attributable to the scarcity of training samples
at these levels. However, it is worth noting that these discrepan-
cies are not highly consequential for any of the three algorithms,
given the already high accuracy of the predictions themselves.

Having assessed the accuracy and uncertainties in predicting
the spatial coordinates of the sources, we now shift our focus to
another vital aspect of astronomical image analysis: the estima-
tion of flux. Flux measurement is central to understanding the
intensity and distribution of light from astronomical objects, and
it requires a different set of considerations and methodologies
compared to spatial localisation. For this purpose, we compare
our results with the FLUX_AUTO output of SourceExtractor.
This method estimates the flux by integrating pixel values within
an adaptively scaled aperture, following Kron’s first-moment
algorithm. Initially, it calculates the flux within an elliptical
aperture, automatically defined to encompass most of the light
from the source. The aperture’s size and shape are dynamically
adjusted based on the source’s properties, such as brightness
and spatial extent. This adaptability makes FLUX_AUTO a
robust and flexible method for measuring fluxes across various
astronomical objects, expected to capture at least 90% of the
source flux.

The flux produced by SourceExtractor is directly compara-
ble to the flux estimate from ASID-FE. In Fig. 14, we rigorously
assess the flux estimates derived from SourceExtractor, ASID-
FE, and the ensemble method, employing the mean absolute
relative error as our evaluation metric across a spectrum of S/N.
All three methods exhibit a decreasing MARE as the S/N
increases. However, ASID-FE and the ensemble method consis-
tently outperform SourceExtractor across the entire S/N range.
The most pronounced difference is observed at medium S/N
levels, where ASID-FE and the ensemble method demonstrate
approximately 5–10% less error compared to SourceExtractor. It
is worth noting that the performance of ASID-FE at the extremes
of the S/N spectrum is likely influenced by the scarcity of train-
ing samples at these levels, which could be an avenue for future
improvement.

While the comparison of flux estimation yields promising
results, a key difference arises in how uncertainty is quanti-
fied between SourceExtractor’s FLUXERR_AUTO and ASID-
FE’s uncertainty measure. This divergence is rooted not just in
the mathematical equations used but also in the fundamental
statistical interpretation of what uncertainty actually signifies.
Although commonly referred to as an error in astronomical
jargon, SourceExtractor’s FLUXERR_AUTO, from a statistical
standpoint, is an estimate of the standard deviation of the true,
unobservable flux F rather than an error in the flux estimator F̂.
To further elucidate this distinction, we shall consider the statis-
tical problem at hand, which consists of three main components:

F → F∗ → F̂.

In this framework, F is the true, constant flux of the source.
The telescope measures F∗, which is a realisation of F subject
to Poisson noise due to the photon-counting process, as well as
additional complexities introduced by the instrument, for exam-
ple the PSF. SourceExtractor, the ensemble, and ASID-FE aim
to estimate F∗ through an estimator F̂. However, SourceExtrac-
tor overlooks the inaccuracies in the estimated F̂ and uses it as
a perfect proxy of F∗. SourceExtractor then proceeds to calcu-
late FLUXERR_AUTO, an estimate of the standard deviation of the
true, unobservable flux F, as:

σ̂(F) =

√(√
F̂
)2
+ σ̂2

bkg

where σ̂bkg and
√

F̂ are an estimate of the standard deviation of
flux in the background and of the source, respectively. In con-
trast, ASID-FE adopts a more nuanced methodology, explicitly
accounting for the estimator imperfections. This approach yields
what ASID-FE refers to as its sigma values, which serve as a
measure of the divergence between F̂ and F∗. By incorporat-
ing this sigma term into the equation, ASID-FE provides a more
comprehensive and realistic estimate for the standard deviation
of the true flux F. This estimate not only captures the inherent
uncertainties in F∗ but also includes the uncertainties associated
with the estimator F̂ itself:

σ̂(F) =

√(√
F̂
)2
+ σ̂2

F̂
.

Here,
√

F̂ represents the standard deviation of the measured
source, and σ̂F̂ represents the uncertainty on the estimator F̂.
Importantly, it should be noted that the uncertainty term σ̂F̂
in ASID-FE’s formulation inherently includes the background
noise, σ̂bkg. By including an additional component, ASID-
FE offers a more detailed and accurate reflection of the true
uncertainties. The lack of this additional component in Source-
Extractor’s formulation might explain why its uncertainties are
often underestimated for high S/N sources, as noted in studies
such as Becker et al. (2007) and Sonnett et al. (2013).

In Fig. 15, we present the standard deviation of the standard-
ised residuals for the flux as estimated by SourceExtractor, the
MVEs ensemble, and ASID-FE across various S/N levels.

The plot reveals nuanced differences in the performance of
the three methods. Specifically, at high S/N levels, SourceExtrac-
tor, despite having a MARE of approximately 4% as shown in
Fig. 14, tends to underestimate its FLUXERR_AUTO. This results in
a pronounced deviation from the ideal standard deviation value
of 1 for the standardised residuals. In addition to previously
discussed factors, the underperformance of SourceExtractor’s
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Fig. 15. Standard deviation of the standardised residuals for the flux
and σ̂(F) by SourceExtractor (blue), the MVEs ensemble (green)
and ASID-FE (red). ASID-FE’s results more closely adhere to the
ideal value of 1, showing overall better-calibrated uncertainties at any
S/N level.

FLUXERR_AUTO in Fig. 15 could also be attributed to its neglect
of uncertainties associated with aperture scaling and centroid
positioning.

The ensemble method slightly underestimates the uncertain-
ties across all S/N levels, albeit to a lesser extent than Source-
Extractor. In contrast, ASID-FE’s results more closely adhere
to the ideal value, particularly at low and medium S/N levels,
underscoring its superior calibration of uncertainties. It is worth
noting that ASID-FE slightly overestimates the uncertainties at
high S/N levels; however, its reliance on training with synthetic
datasets offers an opportunity for refinement. A correction fac-
tor could be introduced to ensure that the estimated uncertainties
and, consequentially, the standardised residuals align with a stan-
dard Gaussian distribution across all S/N levels. This potential
for fine-tuning, coupled with the observed performance, under-
scores the robustness of the methods, with ASID-FE standing
out for its efficiency and adaptability.

In summary, the comparison between SourceExtractor and
ASID-FE uncovers significant differences in error estimation.
While SourceExtractor emphasises the variability induced by
noise, ASID-FE incorporates potential errors in flux estimation.
This comprehensive approach in ASID-FE enhances the under-
standing of the flux’s true uncertainty and contributes to its
superior performance in predicting astronomical sources.

In addition to the quantitative metrics, in Fig. 16, we show
the results obtained using both SourceExtractor and ASID-FE
on three examples of crowded images. In all figures, the detected
sources are indicated by the white circles, and the Percentage
Error (PE) of the predicted fluxes for that source is written on
top of each source. Only the sources detected by SourceExtractor
are shown for comparison.

The three images show that ASID-FE produces more accu-
rate predictions than SourceExtractor, with fewer sources show-
ing significant under- or over-predictions. The PE values for
ASID-FE are generally smaller than those for SourceExtrac-
tor, indicating better overall performance in crowded regions.
Overall, these visualisations provide a qualitative assessment of
the performance of the two methods and highlight the supe-
rior performance of ASID-FE in predicting the properties of
astronomical sources in crowded images.

Table 1. Comparison of Pearson correlation coefficients and ConTEST
results for ASID-FE models applied to real MeerLICHT images.

Method x y Flux Consistency

Direct 0.896 0.913 0.998 Rejected
Scratch 0.956 0.952 0.999 Not rejected

Notes. The Direct model was trained on synthetic images, while the
Scratch model was retrained using SourceExtractor’s predictions. Cor-
relation coefficients assess the alignment of predicted x and y source
positions and flux values between ASID-FE and SourceExtractor. The
ConTEST analysis evaluates the consistency between the two methods’
predictions.

4.2. Real images application

While synthetic datasets are needed for training models under
controlled conditions, they cannot yet fully mimic the complex-
ities of real-world data. Despite our best efforts to make them
resemble real images, they lack the varied and intricate details
found in actual MeerLICHT images. These details encompass
factors such as atmospheric conditions, the telescope optics’
unique characteristics, and the camera system’s inherent noise.
Hence, it becomes imperative to evaluate our model’s perfor-
mance within the context of real data, where these complexities
are inherent.

For this study, we used the real dataset of MeerLICHT
images described in Sect. 2.3. This dataset does not have ground
truth labels, but we can still evaluate our model’s performance
by comparing its predictions to those made by established soft-
ware such as SourceExtractor. This is a crucial step, as it helps
us understand how well our model can generalise and how useful
it might be in practical situations. Without real source prop-
erties in our dataset, we used two different approaches to test
how well ASID-FE performs with real images. First, we applied
the model, originally trained on synthetic images, directly to the
real images. This helped us see how well ASID-FE could han-
dle real data right off the bat. Then, we retrained the network
from scratch, using predictions from SourceExtractor as training
features. This allowed us to see how well ASID-FE could learn
from and adapt to the complex features of real images.

To measure the similarity between predictions from our
methods and those from SourceExtractor, we employed the
Pearson correlation coefficient (Pearson 1895), a statistical tool
that quantifies the linear correlation between two data sets. More
specifically, we compared the predictions made by ASID-FE
from both the Direct and Scratch methodologies to those made
by SourceExtractor. The results, as shown in Table 1, reveal that
the Pearson correlation coefficients for both the directly applied
and the retrained ASID-FE models with respect to SourceExtrac-
tor are close to one. This implies a strong correlation, signifying
that our models’ predictions align closely with SourceExtractor’s
predictions.

Alongside correlation coefficients, we employed ConTEST
(Stoppa et al. 2023), a robust nonparametric hypothesis test-
ing method, to evaluate the consistency between the predic-
tions yielded by SourceExtractor and ASID-FE. This statistical
method allowed us to evaluate if the variations between the pre-
dictions, taking into account uncertainties, predominantly hover
around zero. A non-rejection of the consistency hypothesis sug-
gests a notable alignment between the predictions of the two
methods. However, applying ConTEST to the ASID-FE model
trained on synthetic images and directly applied to real images
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Fig. 16. Comparison of predicted flux percentage error for ASID-FE and SourceExtractor, highlighting their performance differences for different
levels of image crowdedness.

led to the rejection of the consistency hypothesis for all three
predicted quantities – x, y, and flux. This result points to dis-
crepancies between this model’s outputs and those generated by
SourceExtractor. On the other hand, when we applied ConTEST
to the ASID-FE model that was retrained from scratch on real
images using SourceExtractor’s results, the consistency hypoth-
esis was not rejected. This finding highlights the capacity of
ASID-FE to adapt to real image data and produce results that
align with established software such as SourceExtractor.

The ConTEST analysis revealed a significant divergence
between the predictions of the ASID-FE model trained on syn-
thetic images and then applied to real ones and the results
from SourceExtractor. This difference underscores the inherent
variation between synthetic and real images. While ASID-FE
demonstrates a strong capability in predicting features when
trained on them, the results suggest that the main determinant
is the nature of the training images themselves. In future stud-
ies, we aim to address this discrepancy between synthetic and
real images more effectively. By integrating software such as
Pyxel (Arko et al. 2022), we hope to train on images that more
closely resemble real-world scenarios, minimising the potential
performance drop when a model trained on synthetic images
is used for prediction on real-world data. Ultimately, these
advancements will serve to close the reality gap, enhancing the
model’s applicability and reliability in real-world applications
(Caron et al. 2023).

4.3. Transfer learning on ZTF images

There are multiple approaches to transferring the knowledge of a
network to a similar application. In their study, Yosinski et al.
(2014) found that deep neural networks tend to learn a hier-
archy of features, where the first layers capture more general,
low-level features (e.g. edges and textures), while the last layers
capture more task-specific, high-level features (e.g. object parts
and shapes). This finding gives excellent insight into the use of
transfer learning in fine-tuning models for specific tasks. Addi-
tional studies have also tried quantifying this behaviour (Orhand
et al. 2021).

In this section, we discuss the application of transfer learn-
ing on our regression model trained on MeerLICHT synthetic
data and its application to real images from the Zwicky Tran-
sient Facility (ZTF, Bellm et al. 2019). ZTF is a large-scale
astronomical survey designed to study the dynamic sky in the
optical regime. However, there are notable differences between

Table 2. Pearson correlation coefficient and consistency test between
ASID-FE and DAOPHOT for the four different transfer learning meth-
ods.

Method x y Flux Consistency

Direct 0.723 0.707 0.982 Rejected
Frozen 0.833 0.803 0.998 Rejected
Retrained 0.938 0.930 0.999 Not Rejected
Scratch 0.958 0.954 0.999 Not rejected

the MeerLICHT and ZTF images, most prominently concern-
ing spatial resolution and sky coverage. ZTF provides a larger
field of view with lower resolution images than MeerLICHT,
impacting the detectability of faint sources and the precision of
extracted features. Further, variations may arise from different
filters used by the two surveys, affecting the observed fluxes of
astronomical sources.

As for Sect. 4.2, due to the lack of exact features in real
images, we use DAOPHOT (Stetson 1987) catalogues, which
are paired with ZTF images, as a benchmark. DAOPHOT is
a renowned software in the astronomical community, offering
tools for detecting, measuring, and analysing the properties of
point sources in astronomical images. Comparing our transfer
learning model’s results with the DAOPHOT catalogues will
shed light on our methodology’s real-world effectiveness and
highlight areas requiring improvement.

We adopt three distinct strategies to evaluate the model, ini-
tially trained on synthetic MeerLICHT images on ZTF data.
First, we directly apply the MeerLICHT-trained model. Next,
considering the significant differences between the telescopes,
we fine-tune the model in two unique ways. In the first approach,
we retain the weights of the early layers and retrain the final lay-
ers using real ZTF data and Daophot’s results. In the second, we
use the full pre-trained model on synthetic images as a baseline,
retraining it entirely with real ZTF data. Additionally, we also
explore a ground-up approach, where we train a new network
from scratch using DAOPHOT’s predictions as training data.
We name the four applications Direct, Frozen, Retrained and
Scratch; the Pearson coefficient for all the methods is calculated
and presented in Table 2.

Our investigation revealed that both the Direct application
and the Frozen approach, where the early layers were kept con-
stant, and the rest were allowed to learn, failed to produce
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optimal outcomes. The suboptimal performance can be largely
attributed to the differences in the PSF size – a crucial low-
level feature that varies between MeerLICHT and ZTF images.
As such, preserving the early layers of the architecture, which
are fundamental for learning this feature, turned out to be
counterproductive.

The Retrained approach, rooted in the synthetic MeerLICHT
images, yielded promising results. It showed performance on
par with the Scratch model trained from real ZTF data. Both
these methods showcased outcomes that aligned well with the
benchmarks set by the official DAOPHOT catalogues, provid-
ing an encouraging indication of our methodology’s potential
effectiveness. To further validate these findings, we deployed the
ConTEST statistical test, introduced in the previous section, to
assess the consistency against DAOPHOT predictions. As antic-
ipated, the null hypothesis of consistency is not rejected only for
the Retrained and Scratch methods, which further endorses their
superior performance.

Through this investigation, it becomes clear that while a
model trained on synthetic data from one telescope can tech-
nically be applied to data from a different telescope, the pro-
cess often necessitates significant adjustments or comprehensive
retraining to cater to the unique characteristics of real data
derived from different telescopes. This is especially the case
when there is a substantial difference in the angular resolution
between telescopes. Given these findings, we recommend against
the practice of transfer learning in such scenarios. If a synthetic
dataset tailored specifically to the target telescope (such as ZTF)
is available, training a model directly on this synthetic dataset
is the superior approach. This highlights the critical impor-
tance of generating and employing synthetic datasets designed
to match the specific characteristics of the telescopes used in
the study.

5. Discussion on PSF

For many years, the point spread function has been an essential
tool for astronomers to estimate the flux of sources in astronomi-
cal images accurately. The PSF describes the spread of light from
a point source in the image, and its knowledge helps to separate
sources that are close together and deconvolve the PSF effects
from the measured flux.

However, traditional methods for flux estimation relying on
knowledge of the PSF have several limitations. In crowded
regions with closely spaced sources, it can be challenging to
accurately separate the sources and estimate their fluxes, even
with knowledge of the PSF. Furthermore, for observations with
varying PSFs across the image, PSF information may not be
readily available or accurate, leading to inaccuracies in flux esti-
mation. This paper explores the possibility of estimating the flux
of astronomical sources without explicit knowledge of the PSF.
We leverage regression algorithms, a subset of machine learn-
ing techniques, to model the inherent distribution of sources in
an image to predict their fluxes. These algorithms offer a com-
plementary approach to traditional methods, demonstrating the
ability to adapt and provide precise flux estimates across various
astronomical datasets.

It is essential to consider, however, that while machine
learning offers considerable benefits and possibilities, its effec-
tiveness depends on the training data’s quality and the chosen
model’s appropriateness. Despite these advancements, the value
of PSF information in flux estimation should not be undermined,
as it still serves a critical role in numerous scenarios.

6. Conclusions

By implementing a two-step mean variance estimation network,
we have created a novel method for estimating features of astro-
nomical sources in images, known as ASID-FE. This technique
involves a two-fold process: initially, the network estimates the
source’s centre coordinates and flux through a convolutional
neural network trained on synthetic images. The second stage
harnesses the insights gained from the first phase to fine-tune the
predictions of x, y, and flux while simultaneously characterising
the uncertainties tied to these predictions.

Through rigorous testing on both synthetic and real images,
we have verified the robustness and precision of our method in
estimating the properties of astronomical sources. The unique
two-step process of our methodology allows it to outperform
simple MVE networks. Our evaluation showed that when deal-
ing with synthetic images with known true values, ASID-FE
results show less bias than those yielded by SourceExtractor.
Furthermore, our technique demonstrates superior proficiency in
characterising uncertainties. Unlike traditional methods, ASID-
FE estimates a more detailed and nuanced uncertainty that
often goes overlooked, providing a richer understanding of the
underlying statistical properties.

In summary, ASID-FE presents an efficient, versatile tool for
the estimation of properties of astronomical sources. Our method
holds distinct advantages over traditional methodologies, pri-
marily its capacity to learn from large synthetic datasets with
known ground truth and effectively apply these insights to real
images. Looking forward, we aim to explore methods to min-
imise further the disparity between synthetic and real images,
including the potential integration of software such as Pyxel and
ScopeSim. By doing so, we hope to ensure a minimal loss in
performance when making predictions using models trained on
synthetic images. As we continue refining our methodology, we
are optimistic about improving the accuracy and versatility of
ASID-FE across various astronomical contexts.

The straightforward nature of our introduced TS-MVE
method lends itself to the substantial potential for broader
applications, particularly concerning feature regression tasks in
images. Future avenues of exploration could include assess-
ing our method’s generalisability across diverse astronomical
datasets and exploring its potential for multi-wavelength analysis
of astronomical sources.
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