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We consider a model of elastodynamics with fracture evolution, based on energy-
dissipation balance and a maximal dissipation condition. We prove an existence 
result in the case of planar elasticity with a free crack path, where the maximal 
dissipation condition is satisfied among suitably regular competitor cracks.

r é s u m é

Nous considérons un modèle élastodynamique de l’évolution d’une fracture, basé 
sur un bilan énergie-dissipation et sur une condition de dissipation maximale. Nous 
obtenons un résultat d’existence dans le cas de l’élasticité plane avec un chemin de 
fissure libre, lorsque on considère seulement des fissures suffisamment régulières.

1. Introduction

Existence proofs for dynamic fracture models that predict crack paths remain a major challenge. In [1]
we proposed a model for dynamic fracture, based on the following ideas:

(a) the displacement solves elastodynamics out of the crack, with traction-free boundary conditions on the 
crack;

(b) the dynamic energy-dissipation balance is satisfied: the sum of the kinetic energy and of the elastic 
energy at time t , plus the energy dissipated by the crack between time 0 and time t , is equal to the 
initial energy plus the total work done by external forces between time 0 and time t ;
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(c) a maximal dissipation condition is satisfied, which forces the crack to run as fast as possible, consistent 
with the energy-dissipation balance.

These general ideas were applied to the case of antiplane displacement with linear elasticity, and a prescribed 
crack path. We refer to [2,1] for a discussion on the mechanical motivation of conditions (a)–(c) and for the 
literature on this subject.

The purpose of this paper is to extend these ideas to both predict the crack path and consider linear 
elasticity (not restricted to antiplane displacements). In particular, we give the first existence proof for a 
model of dynamic fracture that predicts the crack path.

Our reference configuration is a bounded open set Ω ⊂ R
2 with Lipschitz boundary and the problem is

studied in a bounded time interval [0, T ] . Cracks, as functions of time, will be described as follows. For a 
prescribed a0 < 0, a sufficiently regular curve parameterized by arc-length γ : [a0, bγ ] → R

2 , and a function
s : [0, T ] → [0, bγ ] , the crack at time t is

Γs(t) := γ([a0, s(t)]).

Here we also assume s(0) = 0, and for every t ∈ [0, T ] , s(t) provides the length of the crack produced along 
the curve γ between time 0 and time T . The goal is then to determine both the curve γ and the length 
as a function of time, t �→ s(t). We assume that

(1) the initial part of the crack is prescribed: γ(s) = γ0(s) for every s ∈ [a0, 0], where γ0 : [a0, 0] → Ω is a
given curve with γ0(a0) ∈ ∂Ω and γ0(s) ∈ Ω for s > a0 ;

(2) the unknown function γ , which describes the geometry of the crack, satisfies some prescribed regularity 
estimates (see Definition 2.1), in particular a bound on the curvature and an estimate, for every s ≥ 0, 
of the distance of γ(s) from the complement of Ω;

(3) the unknown function t �→ s(t), whose derivative ṡ(t) is the speed of the crack tip, satisfies some 
prescribed regularity estimates (see Definition 2.7), in particular 0 ≤ ṡ(t) ≤ μ for a suitable constant 
μ > 0.

The results of [3] imply that, for any pair (γ, s) satisfying the properties considered above, there exists 
one and only one solution u(t, x) of the system of elastodynamics in the time-dependent cracking domains 
t �→ Ω \ Γs(t) . The aim of this paper is to prove the following result: among all pairs (γ, s) that, together
with the corresponding solution u , satisfy the dynamic energy-dissipation balance, there exists one which 
satisfies a maximal dissipation condition, whose formulation will be made precise below. For the mechanical 
interpretation of this result we refer to [1].

We consider the collection Cpiec of all pairs (γ, s) satisfying (1)–(3), with s continuous and piecewise 
regular, such that the triple (γ, s, u) satisfies the dynamic energy-dissipation balance for every time t (see 
Definition 4.1). It is easy to see that Cpiec �= Ø. Indeed, if s is constant then the solution of the system 
of elastodynamics in a time-independent cracked domain satisfies the energy balance (see Remark 4.2). 
It remains to prove that the collection Cpiec contains an element that satisfies the maximal dissipation 
condition, which we now describe.

Since in our model we neglect the effects of heat production and transfer, the only dissipative mechanism 
is the process of crack formation and, assuming homogeneity and isotropy, the only dissipated energy 
is proportional to the crack length s(t). For simplicity we suppose that the proportionality constant is 1. 
Therefore, a natural formulation of the maximal dissipation condition is as follows: (γ, s) ∈ Cpiec satisfies the 
maximal dissipation condition on [0, T ] if there exists no (γ̂, ̂s) ∈ Cpiec such that, for some 0 ≤ τ0 < τ1 ≤ T ,
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(MD1) sing(ŝ) ⊂ sing(s) (see Definition 2.7),
(MD2) ŝ(t) = s(t) and γ̂(ŝ(t)) = γ(s(t)) for every t ∈ [0, τ0] ,
(MD3) ŝ(t) > s(t) for every t ∈ (τ0, τ1] .

Conditions (MD1)–(MD3) say that there is no sufficiently regular crack which satisfies the dynamic energy-
dissipation balance, coincides with the crack described by (γ, s) up to time τ0 , and is longer at every time
between τ0 and τ1 . In other words, a crack satisfying this maximal dissipation condition cannot be overcome
by longer cracks, still satisfying the dynamic energy-dissipation balance.

As in [1] we can prove the existence of a pair (γ, s) ∈ Cpiec satisfying the previous condition only in 
a quantitative way, depending on a prescribed threshold η > 0. This leads to the following definition: 
(γ, s) ∈ Cpiec satisfies the η -maximal dissipation condition on [0, T ] if there exists no (γ̂, ̂s) ∈ Cpiec such 
that (MD1)–(MD3) hold for some 0 ≤ τ0 < τ1 ≤ T and, in addition,

(MD4) ŝ(τ1) > s(τ1) + η .

Our main result (see Theorem 5.2) is that, if the upper bound on crack speed μ that appears in (3) is 
smaller than a suitable constant related to the speed of elastic waves, then there exists a pair (γ, s) ∈ Cpiec

which satisfies the η -maximal dissipation condition on [0, T ] . To be precise, the condition on μ reads 
0 < μ <

√
λ/2, where λ > 0 is the ellipticity constant of the elasticity tensor (see Definition 3.1). The same 

quantitative condition was considered in [4].
Following the scheme introduced in [1], the proof is based on a continuous dependence result: the solutions 

u of the system of elastodynamics in cracking domains depend continuously on the pair (γ, s) (see [3, 
Theorem 4.1]). It is easy to see that this theorem can be applied if μ is sufficiently small, but to apply it 
when 0 < μ <

√
λ/2 we must localize the problem, both in space and time, so that all diffeomorphisms used 

in [3, Theorem 4.1] are very close to the identity. This property is crucial in order to apply this theorem 
without requiring possibly very small values of μ .

To justify the localization argument we have to use a result on the finite speed of propagation for the 
system of elastodynamics. We need this result in an irregular domain, due to the presence of the crack. 
Usually the proof of the finite speed of propagation is given assuming some regularity of the solution u , 
which is not available here. Therefore, in the Appendix we give a complete proof of this property under 
minimal assumptions and in arbitrary space dimension (see Theorem A.1).

2. Admissible cracks

In this paper we deal with two dimensional problems whose reference configuration is a fixed bounded open
set Ω ⊂ R

2 with Lipschitz boundary ∂Ω. In this section we describe the admissible cracks of our model. We 
first introduce the geometric constraints on the curves along which the crack may grow (see Subsection 2.1). 
Then we consider the admissible time evolutions of the cracks along their paths (see Subsection 2.2).

2.1. Geometry of the admissible cracks

In the following the curves are always parametrized using the arc-length parameter s and for a given 
curve γ : [aγ , bγ ] → R

2 we set

Γ := γ([aγ , bγ ]) and Γs := γ([aγ , s]) for s ∈ [aγ , bγ ] .

We fix an initial curve γ0 : [a0, 0] → Ω of class C3,1 such that γ0(a0) ∈ ∂Ω, γ0(s) ∈ Ω for every s ∈ (a0, 0]
and we set
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Γ0 = γ0([a0, 0]) . (2.1)

We assume that γ0 is transversal to ∂Ω at γ0(a0), i.e., there exists an isosceles triangle contained in Ω
with vertex in γ0(a0) and axis parallel to γ′

0(a0).
Throughout the paper r > 0 and L > 0 are fixed constants.

Definition 2.1 (Geometric constraints). Let Gr,L be the set of simple curves γ : [a0, bγ ] → Ω of class C3,1 ,
with a0 < 0 ≤ bγ , such that

(a) fixed initial crack: γ(s) = γ0(s) for every s ∈ [a0, 0];
(b) velocity one: |γ′(s)| = 1 for every s ∈ [a0, bγ ] ;
(c) uniform tangent balls condition: the two open disks of radius r tangent to Γ at γ(s) do not intersect Γ,
(d) uniform distance: dist(γ([0, bγ ]), ∂Ω) ≥ 2r ,
(e) uniform bounds: |γ(3)(s)| ≤ L , |γ(3)(s2) − γ(3)(s1)| ≤ L|s2 − s1| , for every s, s1, s2 ∈ [a0, bγ ] ,

where γ(i) denotes the i-th derivative of γ .

We assume that γ0 , r , and L are fixed in such a way that Gr,L �= Ø. In particular, by (a) and (d) we
must have

|a0| ≥ 2r . (2.2)

Remark 2.2 (Estimate on the second derivatives). Condition (c) of Definition 2.1 implies that |γ(2)(s)| ≤ 1/r
for every s ∈ [a0, bγ ] .

Definition 2.3 (Convergence in Gr,L ). Let γk be a sequence of curves in Gr,L and let γ ∈ Gr,L . We say that
γk converges to γ uniformly if bγk

→ bγ and for every b ∈ (0, bγ) we have γk|[a0,b] → γ|[a0,b] uniformly in
[a0, b] .

Lemma 2.4 (Extension). There exist two constants r̂ and L̂ , with 0 < r̂ < r and L̂ > L , depending only on
r and L , such that for every γ : [a0, bγ ] → Ω with γ ∈ Gr,L there exists an extension γ̂ : [a0, bγ + r̂] → Ω of
γ with γ̂ ∈ Gr̂,L̂ , whose image will be indicated by Γ̂ . Moreover, the extension can be chosen in such a way
that the uniform convergence of γk implies the uniform convergence of the corresponding extensions γ̂k .

Proof. For s > bγ let γ̂(s) be the arc-length parametrization of the curve σ �→ γ(bγ) + γ′(bγ)(σ − bγ) +
1
2γ

(2)(bγ)(σ− bγ)2 + 1
6γ

(3)(bγ)(σ− bγ)3 . It is easy to check that the uniform tangent balls condition and the
estimate dist(γ̂([0, bγ + r̂]), ∂Ω) ≥ 2r̂ are satisfied if r̂ is small enough. Using Arzelà-Ascoli Theorem we
see that conditions (b) and (e) of Definition 2.1 and Remark 2.2, together with the uniform convergence of 
γk , imply the convergence of the derivatives up to the third order evaluated at bγk

. This gives the uniform
convergence of the extensions γ̂k . �
Lemma 2.5 (Compactness of Gr,L ). Let γk be a sequence of curves in Gr,L . Then there exist a subsequence,
not relabeled, and a curve γ ∈ Gr,L such that γk converges to γ uniformly.

Proof. Since Ω is bounded, it is easy to deduce from the uniform tangent balls condition that the length 
of the curves γk is uniformly bounded. Let bγ be the limit of a subsequence of bγk

. The uniform estimates
on the derivatives imply that there exists a subsequence, still denoted γk , and a curve γ : [a0, bγ ] → Ω of
class C3,1 such that γk converges to γ uniformly. The geometric constraints (c) and (d) pass to the limit
as shown, e.g., in [5], allowing us to conclude that γ ∈ Gr,L . �
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To apply [3, Theorems 3.2 and 4.1] we have to construct some time-dependent diffeomorphisms Φ(t, ·)
and Ψ(t, ·) satisfying conditions (H1)–(H12) of [3]. They will be of the form Φ(t, ·) = Φ̂(s(t), ·) and Ψ(t, ·) =
Ψ̂(s(t), ·), where, for every σ , Φ̂(σ, ·) and Ψ̂(σ, ·) depend only on Γ, and t �→ s(t) is the function describing
the length of the crack along Γ (see Subsection 2.2). We want to apply the results of [3] under our hypotheses 
on s(t) (see Definition 2.7 below) and on the elasticity tensor (see Definition 3.1 below), assuming that the 
relevant constants satisfy the natural assumption (3.19).

To this aim we have to prove that Φ̂(σ, ·) and Ψ̂(σ, ·) are close to the identity and that the norm of the
partial derivative ∂σΦ̂(σ, ·) is bounded by a constant close to 1. This can be obtained only when σ ∈ [s0, s1]
with s1−s0 sufficiently small. Moreover, to apply [3, Theorem 4.1] we also need a continuous dependence of
the diffeomorphisms on the curve γ . A technical difficulty is due to the fact that we need uniform estimates 
depending on the smallness of s1 − s0 , but not on the values of s0 and s1 , nor on the specific curve γ . The
following lemma provides all properties we need.

Lemma 2.6 (Diffeomorphisms depending on the curves). Let ε > 0 and let 0 < ρ < r̂/2 (see Lemma 2.4). 
Then there exist two constants δ̂ ∈ (0, ρ) and Ĉ > 0 , depending only on r̂, L̂, ε , and ρ , such that for every
γ ∈ Gr,L and 0 ≤ s0 < s1 ≤ bγ , with s1 − s0 ≤ δ̂ , we can construct two functions Φ̂, Ψ̂ : [s0, s1] × Ω → Ω
of class C2,1 with the following properties:

(a) for every σ ∈ [s0, s1] we have Φ̂(σ, Ω) = Ω , Φ̂(σ, ̂Γ) = Γ̂ (see Lemma 2.4), Φ̂(σ, Γs0) = Γσ , and
Φ̂(σ, y) = y on Ω \B(γ(s0), 2ρ) ;

(b) Φ̂(s0, y) = y for every y ∈ Ω ;
(c) for every σ ∈ [s0, s1] , Ψ̂(σ, ·) is the inverse of Φ̂(σ, ·) on Ω ;
(d) for every σ ∈ [s0, s1] we have 1 − ε ≤ det∇Φ̂(σ, y) ≤ 1 + ε and 1 − ε ≤ det∇Ψ̂(σ, x) ≤ 1 + ε for every

x, y ∈ Ω , where ∇ denotes the spatial gradient;
(e) for every σ ∈ [s0, s1] we have |∂σΦ̂(σ, y)| ≤ 1 + ε for every y ∈ Ω ;
(f) the absolute values of all partial derivatives of Φ̂ and of Ψ̂ of order less than or equal to two, as well

as the Lipschitz constants of all second derivatives, are bounded by Ĉ ;
(g) if γk is a sequence in Gr,L converging to γ uniformly and such that s1 ≤ bγk

for every k , then the
corresponding diffeomorphisms Φ̂k(σ, ·) satisfy Φ̂k(σ, x) → Φ̂(σ, x) for every σ ∈ [s0, s1] and every
x ∈ Ω .

Proof. Let us fix γ and s0 as in the statement of the lemma and let γ̂ : [a0, bγ + r̂] → Ω be the extension
provided by Lemma 2.4. The construction of Φ̂ and Ψ̂ requires several steps.

Step 1. Construction of diffeomorphisms from [s0 − 3
2ρ, s0 + 3

2ρ] into itself.
Let us fix a C∞ function χ : R → [0, 1] such that χ(s0) = 1, suppχ ⊂ (s0− 3

2ρ, s0+ 3
2ρ), and |χ′(s)| ≤ 3

4ρ
for every s ∈ R .

Let us fix δ̂ ∈ (0, ρ) and let ζ : [s0, s0 + δ̂] × [s0 − 3
2ρ, s0 + 3

2ρ] → R be the C∞ function defined by

ζ(σ, s) = s + (σ − s0)χ(s) . (2.3)

We first observe that since 0 ≤ σ − s0 ≤ δ̂ , from the estimate on χ′ we obtain

1
4 < 1 − 3

4
δ̂
ρ ≤ ∂sζ ≤ 1 + 3

4
δ̂
ρ < 7

4 . (2.4)

Moreover, ζ(σ, s) = s for s = s0 ± 3
2ρ . Together with (2.4) this shows that ζ(σ, ·) is a diffeomorphism from

[s0 − 3
2ρ, s0 + 3

2ρ] into itself for every σ ∈ [s0, s0 + δ̂] .
We observe also that

∂σζ(σ, s) = χ(s) ∈ [0, 1] for every σ ∈ [s0, s0 + δ̂] and every s ∈ [s0 − 3ρ, s0 + 3ρ] . (2.5)
2 2
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Step 2. Construction of diffeomorphisms in a neighborhood of γ̂((s0 − 3
2ρ, s0 + 3

2ρ)) .
We begin by observing that a0 < s0 − 3

2ρ , since ρ < 1
4 |a0| by (2.2), and that s0 + 3

2ρ < bγ + r̂ . Therefore
γ̂ is well-defined in the interval [s0 − 3

2ρ, s0 + 3
2ρ] . For every s ∈ [s0 − 3

2ρ, s0 + 3
2ρ] let ν̂(s) be the unit

normal to γ̂ at γ̂(s). Let us fix 0 < �0 < 1
2ρ . Since �0 < r̂ , the map

(s, �) �→ γ̂(s) + �ν̂(s) (2.6)

is a diffeomorphism of class C2,1 between [s0 − 3
2ρ, s0 + 3

2ρ]×[−�0, �0] and its image, indicated by A .
Let us note that A ⊂ B(γ(s0), 2ρ) ⊂⊂ Ω, where the second inclusion follows from the uniform distance
condition (d) of Definition 2.1.

For every σ ∈ [s0, s0 + δ̂] the diffeomorphism ζ(σ, ·) induces a diffeomorphism from γ̂([s0 − 3
2ρ, s0 + 3

2ρ])
into itself, which coincides with the identity near γ̂(s0± 3

2ρ). We now want to extend it to a diffeomorphism
Φ̂ between A and itself such that Φ̂(σ, y) = y for every y in a neighborhood of ∂A .

To this aim we fix an even C∞ function ϕ : [−1, 1] → [0, 1] equal to 1 in a neighborhood of ±1 and 
equal to 0 in 0. For every σ ∈ [s0, s0 + δ̂] , � ∈ [−�0, �0] , and y ∈ A we set

σ̂(σ, �) = (1 − ϕ( �
�0

))σ + ϕ( �
�0

)s0 , (2.7)

Φ̂(σ, y) = γ̂(ζ(σ̂(σ, �), s)) + �ν̂(ζ(σ̂(σ, �), s)) , (2.8)

where (s, �) ∈ [s0 − 3
2ρ, s0 + 3

2ρ]×[−�0, �0] is related to y by the equality y = γ̂(s) + �ν̂(s).
For every σ ∈ [s0, s0 + δ̂] and y ∈ A , we have Φ̂(σ, y) ∈ A . Moreover, Φ̂(σ, y) = y for every y in a

neighborhood of ∂A . Using the fact that both Φ̂(σ, y) and y are at the same (signed) distance � from
γ̂([s0 − 3

2ρ, s0 + 3
2ρ]) , it is easy to see that Φ̂(σ, ·) : A → A is bijective. As for the regularity of Φ̂ , the

regularity properties of ϕ , ζ , and γ̂ imply that Φ̂ is of class C2,1 and that the estimates in (f) hold for Φ̂
on A .

Step 3. Extension of the diffeomorphisms and proof of (a)–(f).
To obtain a diffeomorphism from Ω into Ω it is enough to set Φ̂(σ, y) = y if y ∈ Ω \ A . For every

σ ∈ [s0, s0 + δ̂] let Ψ̂(σ, ·) be the inverse of Φ̂(σ, ·).
Since A ⊂ B(γ(s0), 2ρ), we have Φ̂(σ, y) = y for every y ∈ Ω \ B(γ(s0), 2ρ). It follows from the

construction that for every σ ∈ [s0, s0 + δ̂] we have Φ(σ, γ([s0 − 3
2ρ, s0])) = γ̂([s0 − 3

2ρ, σ]) and Φ̂(σ, ̂γ([s0 −
3
2ρ, s0 + 3

2ρ])) = γ̂([s0 − 3
2ρ, s0 + 3

2ρ]) . Hence Φ̂(σ, Γs0) = Γ̂σ and Φ̂(σ, ̂Γ) = Γ̂. As Γ̂σ = Γσ for σ ∈ [0, bγ ] ,
this concludes the proof of (a).

Note that for every σ ∈ [s0, s0 + δ̂] and � ∈ [−�0, �0] we have

|σ̂(σ, �) − s0| ≤ (1 − ϕ( �
�0

))(σ − s0) ≤ δ̂ ,

and that by (2.3), (2.7), and (2.8) we have Φ̂(s0, y) = y for every y ∈ A , which proves (b).
Since (2.6) is a diffeomorphism, it follows from these remarks that Φ̂(σ, ·) is C1 -close to the identity for

δ̂ small enough, so that estimates (d) hold for x, y ∈ A for a suitable choice of δ̂ ∈ (0, ρ).
Finally, for every σ ∈ [s0, s0 + δ̂] we have

∂σΦ̂(σ, y) = γ̂′(ζ(σ̂(σ, �), s))∂σ̂ζ(σ̂(σ, �), s)(1 − ϕ( �
�0

))

+ �ν̂′(ζ(σ̂(σ, �), s))∂σ̂ζ(σ̂(σ, �), s)(1 − ϕ( �
�0

)) . (2.9)

Recalling that Γ̂ is parametrized by arc-length and satisfies the uniform tangent balls condition, we obtain
that |γ̂′(σ)| = 1 and the curvature is bounded by 1/r̂ , hence |ν̂′(σ)| ≤ 1/r̂ . Therefore, (2.5) and (2.9) give

|∂σΦ̂(σ, y)| ≤ 1 + �0
.

r̂
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Taking 0 < �0 ≤ εr̂ we obtain |∂σΦ̂(σ, y)| ≤ 1 + ε for every σ ∈ [s0, s0 + δ̂] and for every y ∈ A . This
proves (e).

Since, by construction, Φ̂(σ, ·) coincides with the identity in a neighborhood of ∂A , it follows from the
estimates in A that Φ̂(σ, ·) is of class C2,1 in Ω and that the estimates in (f) hold for Φ̂ as well as
for its inverse function Ψ̂ . Finally, the last statement concerning the convergence follows easily from the
construction. �
2.2. The class of admissible time evolutions of the crack length

In order to use the results of [3], throughout the paper we fix a constant μ > 0, which will bound the 
speed of the crack tip, and a constant M > 0, which will bound some higher order derivatives of the crack 
length with respect to time. The regularity assumptions and the constraints on the time evolution of the 
crack length in our model are prescribed by the following definition.

Definition 2.7 (Time-dependence of the crack length). Let T0 < T1 . The class Sreg
μ,M (T0, T1) is composed of

all nonnegative functions satisfying the following conditions:

s ∈ C3,1([T0, T1]) , (2.10)

0 ≤ ṡ(t) ≤ μ , (2.11)

|s̈(t)| ≤ M, |...s (t)| ≤ M , |...s (t1) −
...
s (t2)| ≤ M |t1 − t2| , (2.12)

for every t, t1, t2 ∈ [T0, T1] , where dots denote derivatives with respect to time.
We also consider the class Spiec

μ,M (T0, T1) of all functions s ∈ C0([T0, T1]) such that there exists a finite
subdivision T0 = τ0 < τ1 < · · · < τk = T1 for which

s|[τj−1,τj ] ∈ Sreg
μ,M (τj−1, τj) .

The set of these intermediate times, where s may be discontinuous, is denoted by sing(s).

In our model an admissible crack at time t is given by

Γs(t) := γ([a0, s(t)])

where γ ∈ Gr,L and s ∈ Spiec
μ,M (0, T ) for some T > 0 with s(T ) ≤ bγ . Since γ is an arc-length parametriza-

tion, s(t) represents the length of the crack produced along the curve γ between time 0 and time t .
For technical reasons, we assume an upper bound on the speed of the crack tip, related to the speed of 

the elastic waves. We note that the existence of such a bound might follow from more basic hypotheses, 
such as energy-dissipation balance, but for now, this is open. Briefly, the reason for the specific bound (3.19)
on the constant μ that appears in (2.11) is that it will guarantee condition (3.1) in [3] is satisfied, which is 
crucial to our results.

On the other hand, the other constraints on s , as well as those on γ (see Definition 2.1), have no mechan-
ical motivation; they are needed in order to apply the existence, uniqueness, and continuous dependence 
results of [3]. It is possible that at some point this (piecewise) regularity will be established, but this is 
completely open, and we make no claim about it.

In order to prove our existence result, we construct some time-dependent diffeomorphisms Φ(t, ·) and 
Ψ(t, ·) satisfying conditions (H1)–(H12) and (3.1) of [3]. To obtain (3.1) it is convenient to prove that Φ(t, ·)
and Ψ(t, ·) are close to the identity and that the norm of the partial derivative ∂tΦ(t, ·) is bounded by a
constant close to μ . This can be done only locally in space and time. Moreover, to apply [3, Theorem 4.1]
7



we also need a continuous dependence of the diffeomorphisms on the curve γ and on the function s . For 
this application we need uniform estimates depending on the smallness of the time interval, but not on the 
specific choice of γ and s . The following lemma provides all technical properties we need.

Lemma 2.8 (Time-dependent diffeomorphisms). Let ε > 0 and let 0 < ρ < r̂/2 (see Lemma 2.4). Then 
there exist two constants δ ∈ (0, ρ/μ) and C > 0 , depending only on r, L, μ, M, ε , and ρ , with the following 
property: for every γ ∈ Gr,L , for every t0 < t1 , and for every s ∈ Sreg

μ,M (t0, t1) , with t1− t0 ≤ δ , s(t1) ≤ bγ ,
we can construct two functions Φ, Ψ: [t0, t1] × Ω → Ω of class C2,1 with the following properties:

(a) for every t ∈ [t0, t1] we have Φ(t, Ω) = Ω , Φ(t, ̂Γ) = Γ̂ (see Lemma 2.4), Φ(t, Γs(t0)) = Γs(t) , and
Φ(t, y) = y on Ω \B(γ(s(t0)), 2ρ) ;

(b) Φ(t0, y) = y for every y ∈ Ω ;
(c) for every t ∈ [t0, t1] , Ψ(t, ·) is the inverse of Φ(t, ·) on Ω ;
(d) for every t ∈ [t0, t1] we have 1 − ε ≤ det∇Φ(t, y) ≤ 1 + ε and 1 − ε ≤ det∇Ψ(t, x) ≤ 1 + ε for every

x, y ∈ Ω , where ∇ denotes the spatial gradient;
(e) for every t ∈ [t0, t1] we have |∂tΦ(t, y)| ≤ μ(1 + ε) for every y ∈ Ω ;
(f) the absolute values of all partial derivatives of Φ and of Ψ of order less than or equal to two, as well 

as the Lipschitz constants of all second derivatives, are bounded by C ;
(g) if γk ∈ Gr,L converges to γ uniformly, sk ∈ Sreg

μ,M (t0, t1) converges to s uniformly, with sk(t1) ≤ bγk

for every k , then the corresponding diffeomorphisms satisfy Φk(t, x) → Φ(t, x) for every t ∈ [t0, t1] and
every x ∈ Ω .

Proof. Let δ := δ̂/μ , where δ̂ is given by Lemma 2.6. Let us fix γ , s , t0 , and t1 as in the statement, let
s0 = s(t0) and let s1 = s(t1). If s0 = s1 we take Φ(t, y) = y for every t ∈ [t0, t1] and every y ∈ Ω. If
s0 < s1 let Φ̂ and Ψ̂ be the diffeomorphisms provided by Lemma 2.6. For every t ∈ [t0, t1] , by (2.11) we
have s(t) ∈ [s0, s1] , and so we can define Φ(t, y) := Φ̂(s(t), y) and Ψ(t, x) := Ψ̂(s(t), x), for every x, y ∈ Ω.
Properties (a)–(g) of the functions Φ and Ψ follow now from Lemma 2.6. �
3. The wave equation

In our model the displacement satisfies the system of linear elastodynamics out of the crack. In this
section we specify the notion of solution to the wave equation in domains with a prescribed time-dependent 
crack and prove an existence and uniqueness result as well as the continuous dependence of the solutions 
on the cracks.

Throughout the rest of the paper T > 0 is a fixed constant, which determines the time interval [0, T ] for 
the evolution problem, and ∂DΩ is a fixed (possibly empty) Borel subset of ∂Ω, where we will prescribe
a time-dependent Dirichlet boundary condition. On the complement ∂NΩ := ∂Ω \ ∂DΩ we will prescribe
the traction-free boundary condition. Γ0 is the initial crack introduced in (2.1) and Ω0 is defined by
Ω0 := Ω \ Γ0 .

Let M2×2 be the space of 2×2 real matrices and let M2×2
sym be the space of 2×2 real symmetric matrices.

For every F ∈ M
2×2 the symmetric part F sym of F is defined by F sym := 1

2 (F + FT ), where FT is
the transpose of F . The space of linear maps from a vector space X into a vector space Y is denoted by 
Lin(X, Y ).

Throughout the paper λ and Λ are two constants with 0 < λ < Λ. The following definition introduces 
the class of elasticity tensors we are going to consider.

Definition 3.1 (Elasticity tensors). E(λ, Λ) is the collection of all functions C : Ω → Lin(M2×2, M2×2) of
class C2 such that for every x ∈ Ω we have
8



C(x)F = C(x)F sym ∈ M
2×2
sym for every F ∈ M

2×2 , (3.1)

C(x)F ·G = C(x)G · F for every F,G ∈ M
2×2 , (3.2)

λ|F sym|2 ≤ C(x)F · F ≤ Λ|F sym|2 for every F ∈ M
2×2 . (3.3)

Let us fix C ∈ E(λ, Λ) and T > 0. We assume that the body forces f satisfy

f ∈ L2((0, T );L2(Ω;R2)) . (3.4)

Given γ ∈ Gr,L and s ∈ Spiec
μ,M (0, T ), with s(T ) ≤ bγ , we now consider the wave equation on the time-

dependent cracking domains t �→ Ω \ Γs(t)

ü(t, x) − div(C(x)∇u(t, x)) = f(t, x) for t ∈ (0, T ) and x ∈ Ω \ Γs(t) , (3.5)

where ü denotes the second partial derivative of u with respect to time, ∇ denotes the spatial gradient, 
and div denotes the divergence with respect to the space variable, acting here on the rows of the matrix 
C∇u . The equation is complemented with Dirichlet boundary condition on ∂DΩ

u(t, x) = w(t, x) for t ∈ (0, T ) and x ∈ ∂DΩ , (3.6)

and homogeneous Neumann boundary condition on ∂NΩ ∪ Γs(t)

(C(x)∇u(t, x))ν(x) = 0 for t ∈ (0, T ) and x ∈ ∂NΩ ∪ Γs(t) . (3.7)

It is convenient to express the function w used in the Dirichlet boundary condition as the trace on ∂DΩ
of a function, denoted by the same symbol, satisfying

w ∈ L2((0, T );H2(Ω0;R2)) ∩H1((0, T );H1(Ω0;R2)) ∩H2((0, T );L2(Ω0;R2)) . (3.8)

We also assume that for every t ∈ [0, T ]

w(t) = 0 a.e. on {x ∈ Ω : dist(x, ∂Ω) ≥ r)} (3.9)

and that the following integration by parts formula holds

−〈C∇w(t),∇ϕ〉 = 〈div(C∇w(t)), ϕ〉 for every ϕ ∈ H1
D(Ω;R

2), (3.10)

with H1
D(Ω0; R2) = {ϕ ∈ H1(Ω0; R2) : ϕ = 0 H1-a.e. on ∂DΩ} , where the values of ϕ on ∂DΩ are defined

using the trace operator from H1(Ω0; R2) to L2(∂Ω; R2) and H1 is the one-dimensional Hausdorff measure
(see, e.g., [6, Definition 2.46]). Under suitable regularity assumptions, condition (3.10) holds if w(t) satisfies 
the homogeneous Neumann boundary condition

(C∇w(t))ν = 0 on ∂NΩ ∪ Γ0 .

To give a precise meaning to the notion of weak solution of the wave equation (3.5) with boundary 
conditions (3.6) and (3.7) we introduce some additional notation. Given γ ∈ Gr,L and s ∈ [0, bγ ] , we set
Ωγ

s := Ω \ Γs and H1
D(Ωγ

s ; R2) = {ϕ ∈ H1(Ωγ
s ; R2) : ϕ = 0 H1-a.e. on ∂DΩ} , where the values of ϕ on

∂DΩ are defined using the trace operator from H1(Ωγ
s ; R2) to L2(∂Ω; R2). Note that by property (a) of

Definition 2.1 we have Ω0 = Ωγ
0 and that (3.9) and (3.10) imply, for every t ∈ [0, T ] , the integration by

parts formula
9



−〈C∇w(t),∇ϕ〉 = 〈div(C∇w(t)), ϕ〉 for every ϕ ∈ H1
D(Ωγ

s(t);R
2). (3.11)

Given a function u ∈ H1(Ωγ
s ; R2) for some s ∈ [0, bγ ] , it is convenient to regard its gradient ∇u as an

element of L2(Ω; M2×2), by extending it to 0 on Γs . To underline the fact that this extension does not
coincide with the distributional gradient of any extension of u , we shall use the notation ∇̂u .

We now recall the notion of weak solution to this problem.

Definition 3.2 (Wave equation in cracking domains). Given C ∈ E(λ, Λ), γ ∈ Gr,L , 0 ≤ T0 < T1 ≤ T ,
and s ∈ Spiec

μ,M (T0, T1) with s(T1) ≤ bγ , assume that f and w satisfy (3.4), (3.8), (3.9), and (3.10). We
say that u is a weak solution of the wave equation (3.5) with boundary conditions (3.6) and (3.7) on the 
time-dependent cracking domains t �→ Ωγ

s(t) , T0 ≤ t ≤ T1 , if

u ∈ C1([T0, T1];L2(Ω;R2)), (3.12)

u(t) − w(t) ∈ H1
D(Ωγ

s(t);R
2) for every t ∈ [T0, T1], (3.13)

∇̂u ∈ C0([T0, T1];L2(Ω;M2×2)), (3.14)

u̇ ∈ AC([t, T1];H−1
D (Ωγ

s(t);R
2)) for every t ∈ [T0, T1), (3.15)

1
h

(u̇(t + h) − u̇(t)) h→0
⇀ ü(t) weakly in H−1

D (Ωγ
s(t);R

2) for a.e. t ∈ (T0, T1), (3.16)

t �→ ‖ü(t)‖H−1
D (Ωγ

s(t);R2) is integrable on (T0, T1) , (3.17)

and for a.e. t ∈ (T0, T1) satisfies

〈ü(t), ϕ〉 + 〈C∇u(t),∇ϕ〉 = 〈f(t), ϕ〉 for every ϕ ∈ H1
D(Ωγ

s(t);R
2) , (3.18)

where ü(t) is the element of H−1
D (Ωγ

s(t);R
2) defined for a.e. t ∈ (T0, T1) by (3.16). Here and in the rest of

the paper 〈·, ·〉 denotes the duality product between spaces that are clear from the context. For instance, 
its first occurrence in (3.18) refers to the duality between H−1

D (Ωγ
s(t); R

2) and H1
D(Ωγ

s(t); R
2), the second

one to the duality between L2(Ω; M2×2) and L2(Ω; M2×2), while the third one regards the duality between
L2(Ω; R2) and L2(Ω; R2).

In this paper we consider only the traction-free boundary condition (3.7); the case of a nonhomogeneous 
Neumann boundary condition on ∂NΩ can be obtained under suitable regularity assumptions on the data
as in [3].

To obtain an existence and uniqueness result we assume that the constant μ which appears in the 
Definition 2.7 satisfies

0 < μ <
√
λ/2 . (3.19)

We shall see that the constant 
√
λ is related to an estimate on the speed of propagation for the solutions 

to the wave equation corresponding to C (see Theorem A.1).

Theorem 3.3 (Existence and uniqueness). Under the assumptions of Definition 3.2, let u0 ∈ H1(Ωγ
s(T0); R

2)
and u1 ∈ L2(Ω; R2) . Suppose that (3.19) holds and that the compatibility condition

u0 − w(T0) ∈ H1
D(Ωγ

s(T0);R
2)

is satisfied. Then there exists a unique weak solution of problem (3.5)–(3.7) on the time-dependent cracking 
domains t �→ Ωγ , T0 ≤ t ≤ T1 , satisfying the initial conditions
s(t)

10



u(T0) = u0 and u̇(T0) = u1 in L2(Ω;R2).

The proof is based on an existence and uniqueness result proved in [3, Theorems 3.2 and 3.6]. Unfortu-
nately, these theorems can be applied directly only if μ is very small. In the general case 0 < μ <

√
λ/2 we 

apply them to a localized version of our problem, and show that this is sufficient.
Among the hypotheses of these theorems there is an estimate of the tensor B(t, y) defined by

B(t, y)F := [C(x)(F∇Ψ(t, x))]∇Ψ(t, x)T − F Ψ̇(t, x)⊗Ψ̇(t, x) (3.20)

with x = Φ(t, y), where Φ(t, ·) : Ω0 → Ωγ
s(t) and Ψ(t, ·) : Ωγ

s(t) → Ω0 are suitable diffeomorphisms (see
(3.1) in [3]). To obtain this estimate under the assumption 0 < μ <

√
λ/2 we consider a small time 

interval [t0, t1] and use the diffeomorphisms Φ(t, ·) : Ωγ
s(t0) → Ωγ

s(t) and Ψ(t, ·) : Ωγ
s(t) → Ωγ

s(t0) introduced
in Lemma 2.8. The following lemma shows that B(t, y) satisfies estimate (3.1) in [3] on a suitable ball B2 for
every t ∈ [t0, t1] ; namely there exist two constants α > 0 and β > 0, independent of the diffeomorphisms,
such that

〈B(t)∇v,∇v〉L2(B2\Γs0 ;M2×2) ≥ α‖∇v‖2
L2(B2\Γs0 ;M2×2) − β‖v‖2

L2(B2;R2) (3.21)

for every v ∈ H1(B2 \ Γs0 ; R2), where s0 = s(t0). The proof is based on the results of Lemma 2.8 and on
a careful estimate of the constants in the second Korn inequality. In view of the application to the proof 
of the continuous dependence of the solutions on the cracks, we need an estimate independent of the pair 
(γ, s) which describes the crack.

Lemma 3.4 (Estimate for B). Assume that

0 < μ <
√
λ/2 . (3.22)

Let r̂ be the constant introduced in Lemma 2.4, let B1 and B2 be two open balls of radii R1, R2 ∈ (0, ̂r/4) ,
with B1 ⊂⊂ B2 ⊂⊂ Ω , and let

0 < ρ < R1/2. (3.23)

Then there exist α > 0 , β > 0 , and δ > 0 with the following property: for every γ ∈ Gr,L , for every
t0 < t1 , with t1 − t0 ≤ δ , and for every s ∈ Sreg

μ,M (t0, t1) , with s(t1) ≤ bγ and B(γ(s(t0)), 2ρ) ⊂⊂ B1 ,
we can construct two functions Φ, Ψ: [t0, t1] × Ω → Ω of class C2,1 which satisfy properties (a)–(g) of
Lemma 2.8 and such that for every C ∈ E(λ, Λ) the corresponding B(t) , defined by (3.20), satisfies (3.21)
in B2 \ Γs0 , where s0 = s(t0) . In addition, we may assume

Φ(t, y) = y for every y /∈ B1 and every t ∈ [t0, t1] . (3.24)

Proof. Since μ2 < λ/4, we can fix ε > 0 such that

μ2(1 + ε)3 < λ(1 − ε)
(1
4 − ε

)
. (3.25)

Let δ > 0 be the constant, depending on r, L, μ, M, ε , and ρ , provided by Lemma 2.8. Let us fix γ, s, t0, t1
as required in the statement of the lemma.

Since 0 ≤ ṡ(t) ≤ μ and δ < ρ/μ , we have s(t0) ≤ s(t) ≤ s(t0) + ρ for every t ∈ [t0, t1] , which implies
that |γ(s(t)) − γ(s(t0))| ≤ ρ by property (b) of Definition 2.1. Since B(γ(s(t0)), 2ρ) ⊂⊂ B1 , we conclude
that γ(s(t)) ∈ B1 for every t ∈ [t0, t1] .
11



Let us consider the extension γ̂ ∈ Gr̂,L̂ of γ given in Lemma 2.4. Since |γ̂′(s0)| = 1, from the estimate
on the second derivatives (see Remark 2.2), which holds for γ̂ with constant 1/r̂ , we obtain |γ̂(s0 + r̂) −
γ̂(s0)| ≥ 1

2 r̂ > 2R2 . Since γ̂(s0) = γ(s0) ∈ B2 , we have γ̂(s0 + r̂) /∈ B2 . On the other hand, we also
have γ̂(a0) = γ(a0) /∈ B2 . Therefore Γ̂ meets ∂B2 in at least two points. Using the uniform tangent balls
condition and the bound on R2 , it follows that Γ̂ cannot meet ∂B2 in more than two points, so that B2 \ Γ̂
has two connected components, B+

2 and B−
2 .

It is then possible to find two connected C2 -domains A+ and A− such that B±
2 ∩ B1 ⊂ A± ⊂ B±

2 .
Therefore, setting A = A+ ∪ A− , for every t ∈ [t0, t1] we have A+, A− ⊂ B2 \ Γ̂ ⊂ B2 \ Γs(t) and
B1 \ Γs(t) ⊂ A ∪ Γ̂ . Moreover, the C2 -norms of ∂A+ and ∂A− can be bounded uniformly with respect to
γ, s , and t0 .

For every v ∈ H1(A; R2) let Ev := (∇v + ∇vT )/2 be the symmetric part of ∇v . By the second Korn 
inequality in C2 -domains with optimal constants (see, e.g., [7, Theorem 5.1]), applied separately to A+

and A− , we can find a constant β1 > 0, independent of γ, s, t0 , such that∫
A

|Ev|2dx ≥ (1
4 − ε)

∫
A

|∇v|2dx− β1

∫
A

|v|2dx (3.26)

for every v ∈ H1(A; R2).
We fix t ∈ [t0, t1] and define z(x) = v(Ψ(t, x)). By (a) of Lemma 2.8 we have Φ(t, A) = Ψ(t, A) = A .

Since 1 − ε ≤ det∇Ψ(t, x) ≤ 1 + ε , and ∂tΨ(t, x) = −∇Ψ(t, x)∂tΦ(t, Ψ(t, x)), by a change of variables, for
every C ∈ E(λ, Λ), we obtain from (3.20) that∫

A

B(t, y)∇v(y)·∇v(y)dy ≥ (1 − ε)
∫
A

C(x)∇z(x)·∇z(x)dx

− (1 + ε)
∫
A

|∇z(x)∂tΦ(t,Ψ(t, x)))|2dx.

Using the ellipticity of C in (3.3) and the estimate on ∂tΦ given in (e) of Lemma 2.8, from (3.26) we get∫
A

B(t, y)∇v(y)·∇v(y)dy ≥ α1

∫
A

|∇z(x)|2dx− β1λ

∫
A

|z(x)|2dx ,

where α1 = (1
4 − ε)λ(1 − ε) − (1 + ε)3μ2 > 0. By another change of variables we obtain that∫

A

B(t, y)∇v(y)·∇v(y)dy ≥ α2

∫
A

|∇v(y)|2dy − β2

∫
A

|v(y)|2dy , (3.27)

with α2 = (1 − ε)α1/C
2 > 0 and β2 = β1λ(1 + ε) > 0, where C is the constant in (f) of Lemma 2.8.

On the other hand, we have Φ(t, y) = y on B2 \B1 by (a) of Lemma 2.8, hence (3.3) and (3.20) give∫
(B2\B1)\Γs0

B(t, y)∇v(y)·∇v(y)dy =
∫

(B2\B1)\Γs0

C(y)∇v(y)·∇v(y)dy ≥ λ

∫
(B2\B1)\Γs0

|Ev(y)|2dy .

Therefore, by the second Korn inequality in domains with piecewise smooth boundary (see, e.g., [8]), there 
exist constants α3 > 0 and β3 > 0, independent of γ , s , t0 , and t1 , such that∫

B(t, y)∇v(y)·∇v(y)dy ≥ α3

∫
|∇v(y)|2dy − β3

∫
|v(y)|2dy . (3.28)
(B2\B1)\Γs0 (B2\B1)\Γs0 (B2\B1)\Γs0
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Let α = 1
2 min{α2, α3} and β = max{β2, β3} . Then

2α
∫

B2\Γs0

|∇v(y)|2dy ≤ α2

∫
A

|∇v(y)|2dy + α3

∫
(B2\B1)\Γs0

|∇v(y)|2dy

≤
∫
A

B(t, y)∇v(y)·∇v(y)dy +
∫

(B2\B1)\Γs0

B(t, y)∇v(y)·∇v(y)dy

+ β2

∫
A

|v(y)|2dy + β3

∫
(B2\B1)\Γs0

|v(y)|2dy

≤ 2
∫

B2\Γs0

B(t, y)∇v(y)·∇v(y)dy + 2β
∫

B2\Γs0

|v(y)|2dy .

This proves (3.21). �
We now present the main ideas of the proof of Theorem 3.3. We consider a small constant ρ > 0, 

two small concentric open balls B1 ⊂⊂ B2 ⊂⊂ Ω, and a small time interval [t0, t1] ⊂ [T0, T1] such that
B(γ(s(t)), 2ρ) ⊂ B1 for every t ∈ [t0, t1] . Supposing that the solution exists and is unique in [T0, t0] , to
extend the solution to [t0, t1] we localize the problem to B2 , i.e., we consider the solution of the wave
equation in the cracking domains t �→ B2 \ Γs(t) and in the time interval [t0, t1] . Thanks to Lemma 3.4, if
t1 − t0 is sufficiently small we can apply the results of [3] and we find a unique weak solution uint which
satisfies the homogeneous Neumann condition on ∂(B2 \ Γs(t)) and the initial conditions uint(t0) = u(t0)
and u̇int(t0) = u̇(t0) in B2 \ Γs(t0) .

Similarly, noticing that Ω \ (B1 ∪ Γs(t)) = Ω \ (B1 ∪ Γs(t0)) for every t ∈ [t0, t1] , we consider the wave
equation in the time-independent cracked domain Ω \(B1∪Γs(t0)) and in the time interval [t0, t1] . We find a
unique weak solution uext which satisfies the Dirichlet boundary condition (3.6) on ∂DΩ, the homogeneous
Neumann condition on the rest of the boundary of Ω \ (B1∪Γs(t0)), and the initial conditions uext(t0) = u0

and u̇ext(t0) = u1 in Ω \ (B1 ∪ Γs(t0)).
Thanks to the finite speed of propagation (see Theorem A.1) we find two balls B̂1 and B̂2 , with B1 ⊂⊂

B̂1 ⊂⊂ B̂2 ⊂⊂ B2 , such that uint(t) = uext(t) in B̂2 \ B̂1 for every t ∈ [t0, t1] . This shows that the function

u(t) =
{
uext(t) in Ω \ B̂1,

uint(t) in B̂2,

is well defined and provides a weak solution of the wave equation in the cracking domain t �→ Ω \ Γs(t)
for t ∈ [t0, t1] . Moreover, the uniqueness of uint and uext leads to the uniqueness of the solution u for
t ∈ [t0, t1] .

Since Lemma 3.4 ensures that the same argument can be repeated when t1 − t0 is less than a constant
depending only on ρ , B1 , and B2 , existence and uniqueness hold for all times t such that B(γ(s(t)), 2ρ) ⊂
B1 . To complete the proof in the global time interval [T0, T1] it is enough to consider a finite number of
carefully chosen triples (ρ, B1, B2).

Proof of Theorem 3.3. Since s ∈ Spiec
μ,M (T0, T1), there exists a finite subdivision T0 = τ0 < τ1 < · · · < τk =

T1 for which s|[τj−1,τj ] ∈ Sreg
μ,M (τj−1, τj) . It is enough to prove the result in each subinterval [τj−1, τj ] ,

therefore it is not restrictive to assume that s ∈ Sreg
μ,M (T0, T1).

Let us fix 0 < ρ < r̂/64 and η ∈ (4ρ/μ, 5ρ/μ). Without loss of generality we assume that T1 ≤ T0 + η .
Indeed, the result in the general case can be obtained by repeating the same arguments on [T0 +η, T0 +2η] ,
[T0 + 2η, T0 + 3η] , and so on.
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We set B1 := B(γ(s(T0)), 8ρ) and B2 := B(γ(s(T0)), 16ρ). We note that B2 ⊂⊂ Ω by property (d) in
Definition 2.1. Moreover, since |γ′(s(t))| = 1, 0 ≤ ṡ(t) ≤ μ , T1 ≤ T0 + η , and μη < 5ρ , we have also

B(γ(s(t)), 3ρ) ⊂ B1 for every t ∈ [T0, T1] . (3.29)

Let γ̂ be the extension of γ given by Lemma 2.4. Arguing as in the proof of Lemma 3.4 we obtain that 
γ̂(s(T0) + r̂) /∈ B2 . Since γ̂(a0) = γ(a0) /∈ B2 , the manifold Γ̂ = γ̂([a0, bγ + r̂]) meets ∂B1 and ∂B2 . Since
the radii of B1 and B2 are sufficiently small, the tangent balls condition implies that Γ̂ is transversal to
∂B1 and ∂B2 . Hence conditions (H3) and (H4) of [3] are satisfied with Ω and Γ replaced by B2 and Γ̂ .

Let α, β, δ > 0 be the constants given by Lemma 3.4 corresponding to our choice of B1 , B2 , and ρ , and
let

δ∗ = min
{
δ, 4ρ/

√
Λ
}
. (3.30)

We apply Lemma 3.4 with t0 = T0 and t1 = min{t0 + δ∗, T1} and we obtain that there exist functions
Φ, Ψ: [t0, t1] × Ω → Ω of class C2,1 which satisfy properties (a)–(f) of Lemma 2.8 and such that the
corresponding B(t) satisfies (3.21) in B2 \ Γs(t0) . In addition, we can suppose that

Φ(t, y) = y for every y /∈ B1 and t ∈ [t0, t1] . (3.31)

It is easy to check that the diffeomorphisms Φ(t, ·) and Ψ(t, ·) satisfy all hypotheses of the existence and 
uniqueness results [3, Theorems 3.2 and 3.6] in the cracking domains t �→ B2 \Γs(t) and in the time interval
[t0, t1] . Therefore, the boundary value problem for the wave equation (3.5)–(3.7), with Ω replaced by B2 ,
∂DΩ replaced by Ø, and ∂NΩ replaced by ∂B2 , has a unique weak solution uint which satisfies the initial
conditions uint(t0) = u0 and u̇int(t0) = u1 in L2(B2; R2).

Applying the same results of [3] to the set Ω \ B1 we find that the same problem, with Ω replaced by
Ω \B1 and ∂NΩ replaced by ∂NΩ ∪∂B1 , has a unique weak solution uext which satisfies the initial conditions
uext(t0) = u0 and u̇ext(t0) = u1 in L2(Ω \ B1; R2) and the Dirichlet boundary condition uext(t) = w(t) on
∂DΩ.

Note that by (3.29) we have (B2 \ B1) \ Γs(t) = (B2 \ B1) \ Γs(t0) for every t ∈ [t0, t1] . We now
apply the result on the finite speed of propagation (see Theorem A.1) to the function uext − uint , with 
U = (B2 \ B1) \ Γs(t0) , S0 = Ø, and S1 = (∂B2 ∪ ∂B1) \ Γs(t0) . We obtain that for every t ∈ [t0, t1] we
have uext(t) − uint(t) = 0 a.e. in (B̂2 \ B̂1) \ Γs(t) = (B̂2 \ B̂1) \ Γs(t0) , where B̂1 and B̂2 are the balls
concentric to B1 and B2 with radius 8ρ + δ∗

√
Λ and 16ρ − δ∗

√
Λ respectively. Since B̂1 ⊂⊂ B̂2 by (3.30),

the function

u(t) =
{
uext(t) in Ω \ B̂1,

uint(t) in B̂2,
(3.32)

is well defined and provides a weak solution of the boundary value problem (3.5)–(3.7) for the wave equation 
on the cracking domains t �→ Ωγ

s(t) for t ∈ [t0, t1] , according to Definition 3.2, with initial conditions
u(t0) = u0 and u̇(t0) = u1 in L2(Ω; R2).

To prove the uniqueness of this solution on this time interval, by difference we can consider the case 
when u0 , u1 , and w(t) are identically zero, and we call v(t) a solution of the corresponding problem.
We apply the result on the finite speed of propagation (Theorem A.1) with U = Ω \ B1 , S0 = ∂DΩ, and
S1 = ∂B1∪∂DΩ and we obtain that v(t) = 0 a.e. in Ω \B̂1 , for every t ∈ [t0, t1] . In particular v(t) vanishes
in a neighborhood of ∂B2 .

Now we apply the uniqueness results [3, Theorems 3.2 and 3.6] to the cracking domains t �→ B2 \ Γs(t)
with the Dirichlet boundary condition v(t) = 0 on ∂B2 , and we obtain that v(t) = 0 a.e. in B2 \ Γs(t) for
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every t ∈ [t0, t1] . Since (Ω \ B̂1) ∪ B2 = Ω we obtain that v(t) = 0 a.e. in Ω for every t ∈ [t0, t1] , which
proves uniqueness in this time interval.

If t1 = T1 , the proof of existence and uniqueness in [T0, T1] is concluded. Otherwise we can repeat
the same arguments with the same B1 , B2 , and ρ , with t0 replaced by t1 , with t1 replaced by t2 :=
min{t1 + δ∗, T1} , and with initial data u(t1) and u̇(t1). Lemma 3.4 can be applied again because of (3.29).
To prove existence and uniqueness in the time interval [t1, t2] we have to check that u(t1) and u̇(t1)
are well defined, which is given by (3.12) in [t0, t1] , and that u(t1) satisfies the compatibility condition
u(t1) − w(t1) ∈ H1

D(Ωγ
s(t1); R

2), which is a consequence of (3.13) in [t0, t1] . Therefore we obtain existence
and uniqueness in [t1, t2] . Since in this argument we always apply Lemma 3.4 with the same B1 , B2 , and
ρ , the constant δ∗ does not change. Hence, iterating this process, after a finite number of steps we obtain 
existence and uniqueness in [T0, T1] . �

We are now ready to prove the continuous dependence of the solutions on the cracks.

Theorem 3.5 (Continuous dependence). Suppose that 0 < μ <
√
λ/2 . Let C ∈ E(λ, Λ) , γk, γ ∈ Gr,L , 0 ≤

T0 < T1 ≤ T , sk, s ∈ Sreg
μ,M (T0, T1) , u0

k ∈ H1(Ωγk

sk(T0); R
2) , u0 ∈ H1(Ωγ

s(T0); R
2) , and u1

k, u
1 ∈ L2(Ω; R2) .

Assume that

sk → s uniformly, (3.33)

γk → γ uniformly, (3.34)

sk(T1) ≤ bγk
for every k, (3.35)

u0
k → u0 strongly in L2(Ω;R2) , (3.36)

∇̂u0
k → ∇̂u0 strongly in L2(Ω;M2×2) , (3.37)

u1
k → u1 strongly in L2(Ω;R2) . (3.38)

For T0 ≤ t ≤ T1 let t �→ uk(t) and t �→ u(t) be the weak solutions of problems (3.5)-(3.7) on the time-
dependent cracking domains t �→ Ωγk

sk(t) and t �→ Ωγ
s(t) respectively, satisfying the initial conditions

uk(T0) = u0
k , u̇k(T0) = u1

k and u(T0) = u0, u̇(T0) = u1 respectively .

Then

uk(t, ·) → u(t, ·) strongly in L2(Ω;R2) , (3.39)

∇̂uk(t, ·) → ∇̂u(t, ·) strongly in L2(Ω;M2×2) , (3.40)

u̇k(t, ·) → u̇(t, ·) strongly in L2(Ω;R2) , (3.41)

for every t ∈ [T0, T1] .

As in the proof of Theorem 3.3, on a small time interval [t0, t1] we consider local problems in the
time-dependent cracking domains t �→ B2 \ Γk

sk(t) , where B2 is a suitable small ball. The continuous
dependence results of [3] cannot be applied directly, since one of the hypotheses of [3, Theorem 4.1] is that 
all cracks have a common initial part. This condition is satisfied for the global problem in Ω, but not for the 
problems localized to B2 . To overcome this difficulty we have to consider a sequence of diffeomorphisms ωk

which map Ω onto Ω, B2 onto B2 , and the image of (an extension of) γ onto the image of (an extension of)
γk . Then we consider the problem satisfied by vintk (t, x) := uint

k (t, ωk(x)) and vextk (t, x) := uext
k (t, ωk(x)),

where uint
k and uext

k are defined as in the proof of Theorem 3.3. The crucial point in the proof of Theorem 3.5
15



is the convergence of vintk to uint and of vextk to uext , which are obtained by using a slight modification of 
[3, Theorem 4.1].

Proof of Theorem 3.5. Let us fix ρ and η as at the beginning of the proof of Theorem 3.3. Without loss of 
generality we assume that T1 ≤ T0 + η . Let B1 and B2 be as in the proof of Theorem 3.3, let γ̂k and γ̂ be
the extensions of γk and γ provided by Lemma 2.4, and let Γ̂k and Γ̂ be the corresponding images.

Since γk(sk(t)) → γ(s(t)) uniformly in [T0, T1] , it is not restrictive to assume that |γk(sk(t)) −γ(s(t))| <
ρ , hence (3.29) implies that

B(γk(sk(t)), 2ρ) ⊂⊂ B1 for every k and for every t ∈ [T0, T1] . (3.42)

As in the proof of Lemma 3.4 we obtain that γ̂k(s(T0) +r̂) /∈ B2 . Since we have also γ̂k(a0) = γk(a0) /∈ B2 ,
there exist s0

k , s1
k , with a0 < s0

k < sk(T0) < s1
k < sk(T0) + r̂ such that γ̂k(sik) ∈ ∂B2 for i = 0, 1.

By the uniform tangent balls condition it is easy to see that s0
k and s1

k are uniquely determined, hence
γ̂k(s) ∈ B2 for every s ∈ (s0

k, s
1
k) and Γ̂k ∩ B2 = γ̂k([s0

k, s
1
k]) . Similarly, there exist s0 and s1 , with

a0 < s0 < s(T0) < s1 < s(T0) + r̂ , such that γ̂(si) ∈ ∂B2 for i = 0, 1, γ̂(s) ∈ B2 for every s ∈ (s0, s1), and
Γ̂ ∩B2 = γ̂([s0, s1]) .

Since the radii of the balls B1 and B2 are sufficiently small with respect to r̂ , the uniform tangent balls
condition implies that Γ̂k meets ∂B1 and ∂B2 transversally. Hence for every t0 ∈ [T0, T1] and for every k
we can construct a diffeomorphism ωk : Ω → Ω of class C3,1 such that

ωk(x) = x for x in a neighborhood of ∂Ω , (3.43)

ωk(Γ̂) = Γ̂k, ωk(B1) = B1 , ωk(B2) = B2 , (3.44)

ωk(Γs(T0)) = Γk
sk(T0) and ωk(γ(s(T0)) = γk(sk(T0)) . (3.45)

By (3.42) for every t ∈ [T0, T1] we have γk(sk(t)) ∈ Γ̂k∩B2 , hence ω−1
k (γk(sk(t))) ∈ Γ̂∩B2 . This implies

that there exists a unique s̃k(t) ∈ [s0, s1] such that γ(s̃k(t)) = ω−1
k (γk(sk(t))). The regularity assumptions

on γ , γk , sk , and ωk imply that s̃k is of class C3,1 . Note that (3.44) implies that s̃k(T0) = s(T0).
Moreover, since γk → γ and sk → s uniformly, taking into account the bounds on the derivatives

contained in Definitions 2.1 and 2.7, we may assume that

ωk → id and ω−1
k → id in C3(Ω;R2) , (3.46)

s̃k → s in C3([s0, s1]), (3.47)

and that there exists a constant L̃ , independent of T0 and k , such that the third derivatives of the
components of ωk are Lipschitz continuous with Lipschitz constant less than L̃ .

We now choose ε ∈ (0, λ) and μ0 > 0 such that

μ < μ0 < min
{5ρ

η
,

√
λ− ε

2

}
. (3.48)

Using (3.46), (3.47), and the bounds on the derivatives of γk , sk , and ωk (see Definitions 2.1 and 2.7, and
the remark after (3.47)) we can prove that there exists a constant M0 > M such that s̃k ∈ Sreg

μ0,M0
(T0, T1)

for k large enough.
Let α, β, δ > 0 be the constants given by Lemma 3.4 applied with our choice of ρ , B1 , and B2 , and

with μ , M , λ , and Λ replaced by μ0 , M0 , λ − ε , and Λ + ε , respectively. Furthermore, let

δ∗ = min
{
δ,

4ρ√
}
. (3.49)
Λ + ε
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We now choose t0 = T0 and t1 = min{t0 + δ∗, T1} .
Let uint and uext be defined as in the proof of Theorem 3.3. We also consider the boundary value 

problem for the wave equation (3.5)–(3.7), with Ω replaced by B2 , ∂DΩ replaced by Ø, ∂NΩ replaced by
∂B2 , and γ replaced by γk . Let uint

k be the unique solution of this problem (see Theorem 3.3) with initial 
conditions uint

k (t0) = u0
k and u̇int

k (t0) = u1
k in L2(B2; R2). Moreover, we consider the same problem with Ω

replaced by Ω \B1 and ∂NΩ replaced by ∂NΩ ∪ ∂B1 , and with γ replaced by γk . Let uext
k be its unique 

weak solution satisfying the initial conditions uext
k (t0) = u0

k and u̇ext
k (t0) = u1

k in L2(Ω \ B1; R2) and the
Dirichlet boundary condition uext

k (t) = w(t) on ∂DΩ.
Note that, since δ∗ ≤ δ ≤ ρ/μ and 0 ≤ ṡk(t) ≤ μ , we have γk(sk(t)) ∈ B(γk(sk(t0)), 2ρ) ⊂ B1 for every

t ∈ [t0, t1] , hence (B2 \B1) \ Γk
sk(t) = (B2 \B1) \ Γk

sk(t0) .
We now apply the result on the finite speed of propagation (see Theorem A.1) to the function uext

k −uint
k , 

with Uk = (B2 \B1) \ Γk
sk(t0) , S0 = Ø, and S1 = ∂B2 ∪ ∂B1 . We obtain that for every t ∈ [t0, t1] we have

uext
k (t) −uint

k (t) = 0 a.e. in (B̂2 \ B̂1) \Γk
sk(t) where B̂1 and B̂2 are the balls concentric to B1 and B2 with

radii 8ρ + δ∗
√

Λ and 16ρ − δ∗
√

Λ respectively. Since B̂1 ⊂⊂ B̂2 by (3.49), the function

u∗
k(t) =

{
uext
k (t) in Ω \ B̂1,

uint
k (t) in B̂2,

is well defined and provides a weak solution of the boundary value problem (3.5)–(3.7) for the wave equation 
on the cracking domains t �→ Ωγk

sk(t) for t ∈ [t0, t1] , with initial conditions u∗
k(t0) = u0

k and u̇∗
k(t0) =

u1
k in L2(Ω; R2). By uniqueness (see Theorem 3.3) we have

uk(t) =
{
uext
k (t) in Ω \ B̂1,

uint
k (t) in B̂2.

(3.50)

We now want to prove that uint
k (t) → uint(t) and uext

k (t) → uext(t) for every t ∈ [t0, t1] . To this aim we
introduce the function vintk (t, x) := uint

k (t, ωk(x)). To write the equation satisfied by vintk , for every x ∈ Ω
we define Ck(x) ∈ Lin(M2×2, M2×2), ak(x) ∈ Lin(M2×2, R2), and fk(x) ∈ R

2 and imposing, for y = ωk(x),
the equalities

Ck(x)F ·G = C(y)[F∇ω−1
k (y)] · [G∇ω−1

k (y)] , (3.51)

ak(x)F · ζ = C(y)[F∇ω−1
k (y)] · [ζ ⊗∇(log(det∇ω−1

k ))(y)] , (3.52)

fk(x) = f(y) , (3.53)

for every F, G ∈ M
2×2 and every ζ ∈ R

2 . By a change of variables we see that

〈v̈intk (t), ϕ〉 + 〈Ck∇vintk (t),∇ϕ〉 + 〈ak∇vintk (t), ϕ〉 = 〈fk, ϕ〉 (3.54)

for every ϕ ∈ H1(B2 \ Γs̃k(t); R2). By (3.46) we have

Ck → C in C2(Ω; Lin(M2×2,M2×2)), (3.55)

ak → 0 in C1(Ω; Lin(M2×2,R2)), (3.56)

fk → f in L2(Ω;R2) . (3.57)

This implies that for every ε > 0 there exists kε such that for k ≥ kε and every x ∈ Ω

(λ− ε)|F sym|2 ≤ Ck(x)F · F ≤ (Λ + ε)|F sym|2 for every F ∈ M
2×2 . (3.58)
17



We now apply Lemma 3.4 with our choice of ρ , B1 , and B2 , and with μ , M , λ , and Λ replaced by μ0 ,
M0 , λ −ε , Λ +ε , respectively. Therefore, we can associate to γ and s̃k two functions Φk, Ψk : [t0, t1] ×B2 →
B2 of class C2,1 which satisfy properties (a)–(g) of Lemma 2.8 and such that the tensors Bk(t) corresponding
to these functions and to Ck satisfy (3.21) in B2\Γs(t0) , with constants α and β independent of k . Moreover,

Φk(t, y) = y for every y /∈ B1 and t ∈ [t0, t1] . (3.59)

A slight modification of [3, Theorem 4.1], due to the presence of the term ak , yields

vintk (t, ·) → uint(t, ·) strongly in L2(B2;R2) ,

∇̂vintk (t, ·) → ∇̂uint(t, ·) strongly in L2(B2;M2×2) ,

v̇intk (t, ·) → u̇int(t, ·) strongly in L2(B2;R2) ,

for every t ∈ [t0, t1] . Since uint
k (t, x) := vintk (t, ω−1

k (x)), by (3.46) we have

uint
k (t, ·) → uint(t, ·) strongly in L2(B2;R2) , (3.60)

∇̂uint
k (t, ·) → ∇̂uint(t, ·) strongly in L2(B2;M2×2) , (3.61)

u̇int
k (t, ·) → u̇int(t, ·) strongly in L2(B2;R2) , (3.62)

for every t ∈ [t0, t1] .
We now set vextk (t, x) := uext

k (t, ωk(x)) for every t ∈ [t0, t1] . By (3.44) and (3.45) we have vextk (t) ∈
H1((Ω \B1) \ Γs(t0); R2). By the same change of variables considered for vintk we see that

〈v̈extk (t), ϕ〉 + 〈Ck∇vextk (t),∇ϕ〉 + 〈ak∇vextk (t), ϕ〉 = 〈fk, ϕ〉 (3.63)

for every ϕ ∈ H1((Ω \B1) \Γs(t0); R2) with ϕ = 0 on ∂DΩ, where Ck , ak , and fk are given by (3.51)–(3.53).
We can now apply [3, Theorem 4.1] with a sequence of elasticity tensors and with a time-independent 

crack, so that all diffeomorphisms considered there are the identity maps. A slight modification of this 
theorem, due to the presence of the term ak , implies that

vextk (t, ·) → uext(t, ·) strongly in H1((Ω \B1) \ Γs(t0);R
2) ,

v̇extk (t, ·) → u̇ext(t, ·) strongly in L2(Ω \B1;R2) ,

for every t ∈ [t0, t1] . Since uext
k (t, x) := vextk (t, ω−1

k (x)), by (3.46) we have

uext
k (t, ·) → uext(t, ·) strongly in L2(B2;R2) , (3.64)

∇̂uext
k (t, ·) → ∇̂uext(t, ·) strongly in L2(B2;M2×2) , (3.65)

u̇ext
k (t, ·) → u̇ext(t, ·) strongly in L2(B2;R2) , (3.66)

for every t ∈ [t0, t1] . By (3.32), (3.50), (3.60)–(3.62), and (3.64)–(3.66) we conclude that (3.39)–(3.41) hold
for every t ∈ [t0, t1] . To obtain the result for every t ∈ [T0, T1] we argue as in the final part of the proof of
Theorem 3.3. �
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4. Energy balance

In this section we consider the issue of the dynamic energy-dissipation balance on [T0, T1] , which plays
an important role in our model: the sum of the kinetic energy and of the elastic energy at time T1 , plus the
energy dissipated by the crack between time T0 and time T1 , is equal to the initial energy at time T0 plus
the total work done between time T0 and time T1 . We are here in a situation similar to that considered in
[1, Section 3].

The sum of the elastic and kinetic energies of a solution u at time t is given by

E(∇̂u(t), u̇(t)) := 1
2 〈C∇̂u(t), ∇̂u(t)〉 + 1

2‖u̇(t)‖2 . (4.1)

The work of the external forces on the solution u over a time interval [t1, t2] ⊂ [T0, T1] is given by

Wload(u; t1, t2) :=
t2∫

t1

〈f(t), u̇(t)〉dt , (4.2)

which is well defined by (3.4) and (3.12).
As explained in [1, Proposition 3.1] it is convenient to express the work Wbdry(u; t1, t2) due to the

time-dependent boundary conditions w in the form

Wbdry(u; t1, t2) := 〈u̇(t2), ẇ(t2)〉 − 〈u̇(t1), ẇ(t1)〉

−
t2∫

t1

〈ẅ(t), u̇(t)〉dt−
t2∫

t1

〈f(t), ẇ(t)〉dt +
t2∫

t1

〈C∇̂u(t),∇ẇ(t)〉dt ,

(4.3)

which has good continuity properties with respect to u .
The total work on the solution u over a time interval [t1, t2] ⊂ [T0, T1] is defined by

W(u; t1, t2) := Wload(u; t1, t2) + Wbdry(u; t1, t2) .

According to Griffith’s theory (see [9]), the energy dissipated by the crack in the interval [t1, t2] is
proportional to the length of the crack produced in the same interval, since we are assuming that the 
toughness of the material is homogeneous and isotropic. For simplicity it is assumed that the proportionality 
constant is one, hence the energy dissipated is given by s(t2) − s(t1).

Definition 4.1 (Cracks satisfying the energy-dissipation balance). Assume that 0 < μ <
√
λ/2. Let C ∈

E(λ, Λ), 0 ≤ T0 < T1 ≤ T , s0 ≥ 0, and γ̄ ∈ Gr,L , with bγ̄ = s0 . Assume that f and w satisfy (3.4), (3.8),
(3.9), and (3.11). Let u0 ∈ H1(Ωγ̄

s0 ; R
2), with u0 − w(T0) ∈ H1

D(Ω0; R2), and let u1 ∈ L2(Ω; R2).
The class Creg(T0, T1) = Creg(T0, T1, s0, ̄γ, C, f, w, u0, u1) is composed of all pairs (γ, s), with γ ∈ Gr,L ,

γ|[a0,s0] = γ̄|[a0,s0] , s ∈ Sreg
μ,M ([T0, T1]) , s(T0) = s0 , and s(T1) ≤ bγ , such that the unique weak solution u of

(3.5)–(3.7) on the time-dependent cracking domains t �→ Ωγ
s(t) for T0 ≤ t ≤ T1 , with the initial conditions

u(T0) = u0, u̇(T0) = u1 , satisfies the dynamic energy-dissipation balance

E(∇̂u(t2), u̇(t2)) − E(∇̂u(t1)), u̇(t1)) + s(t2) − s(t1) = W(u; t1, t2) (4.4)

for every interval [t1, t2] ⊂ [T0, T1] .
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Similarly, the class Cpiec(T0, T1) = Cpiec(T0, T1, s0, ̄γ, C, f, w, u0, u1) is defined in the same way replacing
s ∈ Sreg

μ,M ([T0, T1]) by s ∈ Spiec
μ,M ([T0, T1]) .

As remarked in [1], equality (4.4) expresses conservation of energy: The work W done on the system 
is balanced by the change in mechanical energy E(∇̂u(t2), u̇(t2)) − E(∇̂u(t1)), u̇(t1)) and by the energy
dissipated in the process of crack growth in the same time interval [t1, t2] .

Remark 4.2 (Nonempty class). The class Creg(T0, T1) is nonempty. Indeed, it is well known that the wave
equation in a time-independent domain satisfies the energy balance. In the case w = 0, we refer to [10, 
Chapter 3, Lemma 8.3]. The general case can be obtained by considering the equation satisfied by u − w , 
taking into account the integration by parts formula (3.11) and using the identity

t∫
0

〈C∇u(τ),∇ẇ(τ)〉dτ = 〈C∇u(t),∇w(t)〉 − 〈C∇u(0),∇w(0)〉 − 1
2 〈C∇w(t),∇w(t)〉

+ 1
2 〈C∇w(0), E∇w(0)〉 +

t∫
0

〈div(C∇w(τ)), u̇(τ) − ẇ(τ)〉dτ ,

which can be easily proved by regularizing u with respect to time and using (3.11) again. The energy 
balance for the wave equation in a time-independent domain implies that the pair (γ̄, s), with s(t) = s0 for
every t ∈ [T0, T1] , belongs to Creg(T0, T1).

Remark 4.3 (Concatenation). Under the assumptions of Definition 4.1, let

(γ1, s1) ∈ Cpiec(T0, T1, s0, γ̄,C, f, w, u
0, u1) .

Let T1 < T2 ≤ T and let

(γ2, s2) ∈ Cpiec(T1, T2, s1(T1), γ1,C, f, w, u(T1), u̇(T1)) ,

where u is as in Definition 4.1. Let s : [T0, T2] → R be defined by

s(s) :=
{
s1(t) if t ∈ [T0, T1] ,
s2(t) if t ∈ [T1, T2] .

Then (γ2, s) ∈ Cpiec(T0, T2, s0, ̄γ, C, f, w, u0, u1).

Theorem 4.4 (Compactness). Under the assumptions of Definition 4.1, let (γk, sk) ∈ Creg(T0, T1) . Then
there exist (γ, s) ∈ Creg(T0, T1) and a subsequence (not relabeled) such that γk → γ uniformly (in the sense
of Definition 2.3) and sk → s in C3([T0, T1]) .

Proof. By the compactness of Gr,L (see Lemma 2.5) there exist γ ∈ Gr,L and a subsequence γk such that
γk → γ uniformly. By the Arzelà-Ascoli Theorem there exist s ∈ C3([T0, T1]) and a further subsequence
such sk → s in C3([T0, T1]) . It is easy to see that the estimates on the third derivatives also hold for s ,
so that s ∈ Sreg

μ,M ([T0, T1]) . It remains to prove (4.4) for the solution corresponding to (γ, s). For every k
let uk be the unique weak solution of (3.5)–(3.7) on the time-dependent cracking domains t �→ Ωγk

sk(t) for
T0 ≤ t ≤ T1 , with the initial conditions uk(T0) = u0, u̇k(T0) = u1 . Since (γk, sk) ∈ Creg(T0, T1) we have
20



E(∇̂uk(t2), u̇k(t2)) − E(∇̂uk(t1)), u̇k(t1)) + sk(t2) − sk(t1) = W(uk; t1, t2) (4.5)

for every interval [t1, t2] ⊂ [T0, T1] . By (3.40) and (3.41) proved in Theorem 3.5 we can pass to the limit in
(4.5) and obtain (4.4). �
5. Existence of an η -maximal dissipation evolution

In our model the crack satisfies a maximality condition, which forces the crack tip to move, when possible,
and to choose a path which allows for a maximal speed. In this section we introduce this maximality condition 
(see Definition 5.1), which depends on a threshold parameter η > 0, as explained in the Introduction. Then 
we prove the main result of the paper: the existence of a crack satisfying this η -maximality condition (see 
Theorem 5.2).

Given s ∈ Spiec
μ,M (0, T ), we consider its singular set sing(s) introduced in Definition 2.7.

Definition 5.1 (η -maximal dissipation). Assume that 0 < μ <
√
λ/2 and that f and w satisfy (3.4), (3.8), 

(3.9), and (3.10). Let C ∈ E(λ, Λ), u0 ∈ H1(Ω0; R2), with u0 − w(0) ∈ H1
D(Ω0; R2), and u1 ∈ L2(Ω; R2).

Given η > 0 we say that (γ, s) ∈ Cpiec(0, T ) satisfies the η -maximal dissipation condition on [0, T ] if 
there exists no (γ̂, ̂s) ∈ Cpiec(0, τ1), for some 0 < τ1 ≤ T , such that

(a) sing(ŝ) ⊂ sing(s),
(b) ŝ(t) = s(t) and γ̂(ŝ(t)) = γ(s(t)) for every t ∈ [0, τ0] , for some 0 ≤ τ0 < τ1 ,
(c) ŝ(t) > s(t) for every t ∈ (τ0, τ1] and ŝ(τ1) > s(τ1) + η .

Theorem 5.2 (Existence of an η -maximally dissipative crack). Under the assumptions of Definition 5.1, for 
every η > 0 there exists a pair (γ, s) ∈ Cpiec(0, T ) satisfying the η -maximal dissipation condition on [0, T ] .

Proof. We proceed as in [1]. Let us fix η > 0 and a finite subdivision 0 = T0 < T1 < · · · < Tk = T of the
time interval [0, T ] such that Tj − Tj−1 < η

μ for every j .
The solution will be constructed recursively in the intervals [Tj−1, Tj ] . Fix j ∈ {1, . . . , k} and assume

the pair (γj−1, sj−1) ∈ Cpiec(0, Tj−1) = Cpiec(0, Tj−1, 0, γ0, C, f, w, u0, u1) has already been defined, where
γ0 is the function that appears in condition (a) of Definition 2.1.

To define the next pair (γj, sj) we consider the class Aj of pairs (γ, s) ∈ Cpiec(0, Tj) = Cpiec(0, Tj , 0, γ0,

C, f, w, u0, u1) such that s|[Tj−1,Tj ] ∈ Sreg
μ,M (Tj−1, Tj), s(t) = sj−1(t), and γ(s(t)) = γj−1(sj−1(t))

for every t ∈ [0, Tj−1] . For j = 1 we define A1 as the set of all pairs (γ, s) ∈ Cpiec(0, T1) =
Cpiec(0, T1, 0, γ0, C, f, w, u0, u1) such that s ∈ Sreg

μ,M (0, T1) and s(0) = 0.
Note that Aj �= Ø. Indeed, (γj−1, ̄sj−1) ∈ Aj if s̄j−1 is defined by s̄j−1(t) = sj−1(t) for 0 ≤ t ≤ Tj−1

and s̄j−1(t) = sj−1(Tj−1) for Tj−1 ≤ t ≤ Tj (see Remarks 4.2 and 4.3). In the case of A1 we consider the
pair (γ0, 0).

We choose (γj , sj) ∈ Aj such that

Tj∫
Tj−1

sj(t) dt = max
(γ,s)∈Aj

Tj∫
Tj−1

s(t) dt . (5.1)

The existence of (γj , sj) is guaranteed by Lemma 5.3 below.
We now define (γ, s) := (γk, sk), where (γk, sk) is the pair obtained in the final step j = k of our

construction. Let us prove that (γ, s) satisfies the η -maximal dissipation condition on [0, T ] . Assume, by 
contradiction, that there exist 0 ≤ τ0 < τ1 ≤ T , and (γ̂, ̂s) ∈ Cpiec(0, τ1) such that:
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(a) sing(ŝ) ⊂ sing(s) ⊂ {T1, . . . , Tk−1} ,
(b) s(t) = ŝ(t) and γ(s(t)) = γ̂(ŝ(t)) for every t ∈ [0, τ0] ,
(c) s(t) < ŝ(t) for every t ∈ (τ0, τ1] and ŝ(τ1) − s(τ1) > η .

Let j ∈ {1, . . . , k} be the index such that Tj−1 ≤ τ0 < Tj . Let us prove that τ1 > Tj . The monotonicity of s ,
together with (b) and (c), gives ŝ(τ1) > s(τ1) +η ≥ s(τ0) +η = ŝ(τ0) +η , which implies that ŝ(τ1) −ŝ(τ0) > η .
On the other hand, by the definition of the class Spiec

μ,M (0, τ1) we have ŝ(τ1) − ŝ(τ0) ≤ μ(τ1 − τ0), hence
τ1 − τ0 > η/μ > Tj − Tj−1 . This implies τ1 > Tj .

By (a) we have ŝ|[Tj−1,Tj ] ∈ Sreg
μ,M (Tj−1, Tj). Taking (b) into account it follows that (γ̂, ̂s) ∈ Aj . By

construction s = sj on [Tj−1, Tj ] and, by (c), ŝ(t) > s(t) = sj(t) for every t ∈ (τ0, Tj ] . This contradicts
(5.1) and concludes the proof. �
Lemma 5.3 (Solution of a maximum problem). For every j = 1, . . . , k there exists (γj , sj) ∈ Aj such that

Tj∫
Tj−1

sj(t) dt = max
(γ,s)∈Aj

Tj∫
Tj−1

s(t) dt . (5.2)

Proof. Fix j = 1, . . . , k and set Imax := sup
(γ,s)∈Aj

Tj∫
Tj−1

s(t)dt and, for every n ∈ N , let (γn, sn) ∈ Aj be such

that

Tj∫
Tj−1

sn(t)dt ≥ Imax − 1
n
. (5.3)

Let uj−1 be the unique weak solution of (3.5)–(3.7) on the time-dependent cracking domains t �→ Ωγj−1
sj−1(t)

for 0 ≤ t ≤ Tj−1 , with initial conditions uj−1(0) = u0 and u̇j−1(0) = u1 . We now define the new initial
conditions at time Tj−1 , by setting s0

j−1 := sj−1(Tj−1), u0
j−1 = uj−1(Tj−1), and u1

j−1 = u̇j−1(Tj−1). By
the compactness of Creg(Tj−1, Tj) = Creg(Tj−1, Tj , s0

j−1, γj−1, C, f, w, u0
j−1, u

1
j−1) (see Theorem 4.4) there

exists a subsequence of (γn, sn|[Tj−1,Tj ]), not relabeled, and a pair (γj, ̂s) ∈ Creg(Tj−1, Tj) such that γn → γj
and sn → ŝ uniformly. Let us define sj(t) = sj−1(t) for t ∈ [0, Tj−1] and sj(t) = ŝ(t) for t ∈ [Tj−1, Tj ] .
Since (γn, sn) ∈ Aj we have γn(sj−1(t)) = γn(sn(t)) = γj−1(sj−1(t)) for all t ∈ [0, Tj−1] . Passing to the
limit as n → ∞ and using the definition of sj on [0, Tj−1] we obtain that γj(sj(t)) = γj−1(sj−1(t)) for all
t ∈ [0, Tj−1] . From Lemma 4.3 we obtain that (γj , sj) ∈ Cpiec(0, Tj). Hence (γj , sj) ∈ Aj . Passing to the

limit in n , from (5.3) we get 
Tj∫

Tj−1

sj(t)dt = Imax , which immediately gives (5.2). �
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Appendix

In this section we prove the finite speed of propagation for the system of elastodynamics under very weak 
assumptions. Since the proof does not depend on the dimension, we will state the result in any dimension 
n ≥ 1.

Let U be a bounded open subset of Rn and let ∂LU be the Lipschitz part of the boundary ∂U , defined
as the set of points x ∈ ∂U with the following property: there exist an orthogonal coordinate system 
y1, . . . , yn , a neighborhood V of x of the form A×I , with A open in Rn−1 and I open interval in R , and
a Lipschitz function g : A → I , such that V ∩ U = {(y1, . . . , yn) ∈ V : yn < g(y1, . . . , yn−1)} .

Let Mn×n be the space of n×n real matrices and let Mn×n
sym be the space of n×n real symmetric matrices. 

The elasticity tensor A : U → Lin(Mn×n, Mn×n) is a measurable function with the following properties: for 
a.e. x ∈ U we have

A(x)F = A(x)F sym ∈ M
n×n
sym for every F ∈ M

n×n , (A.1)

A(x)F ·G = A(x)G · F , for every F,G ∈ M
n×n , (A.2)

λ|F sym|2 ≤ A(x)F · F ≤ Λ|F sym|2 , for every F ∈ M
n×n . (A.3)

Let us fix T > 0, f ∈ L2(0, T ; L2(U ; Rn)), u0 ∈ H1(U ; Rn), u1 ∈ L2(U ; Rn), and two Borel sets S0 and
S1 , with S0 ⊂ S1 ⊂ ∂LU . We consider a weak solution u of the system of elastodynamics

ü− div(A∇u) = f in (0, T ) × U (A.4)

with boundary conditions

u = 0 on (0, T ) × S0 , (A.5)

(A∇u)ν = 0 on (0, T ) × (∂U \ S1) , (A.6)

and initial conditions

u(0) = u0 and u̇(0) = u1 in U . (A.7)

To give a precise meaning to (A.4)–(A.6) for every Borel set S ⊂ ∂LU we introduce the space

H1
S(U ;Rn) := {u ∈ H1(U ;Rn) : u = 0 Hn−1-a.e. on S} ,

where Hn−1 is the (n − 1)-dimensional Hausdorff measure (see, e.g., [6, Definition 2.46]) and the equality
on S refers to the trace of u . It is clear that H1

S(U ; Rn), endowed with the norm of H1(U ; Rn), is a Hilbert
space. Its dual is denoted by H−1

S (U, Rn).
By a weak solution of (A.4)–(A.6) we mean a function u such that

u ∈ L2(0, T ;H1
S0

(U ;Rn)) , (A.8)

u̇ ∈ L2(0, T ;L2(U ;Rn)) , (A.9)

ü ∈ L2(0, T ;H−1
S1

(U ;Rn)) , (A.10)

and for a.e. t ∈ (0, T ) satisfies

〈ü(t), ϕ〉 + 〈A∇u(t),∇ϕ〉 = 0 for every ϕ ∈ H1
S (U ;Rn) . (A.11)
1
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By (A.8)–(A.10), a weak solution u satisfies

u ∈ C0([0, T ];L2(U ;Rn)) , (A.12)

u̇ ∈ C0([0, T ];H−1
S1

(U ;Rn)) , (A.13)

therefore the initial conditions (A.7) have to be interpreted as equalities in L2(U ; Rn) and H−1
S1

(U ; Rn), 
respectively.

We are now in a position to state the main result of this section.

Theorem A.1 (Finite speed of propagation). Let T > 0 , let U ⊂ R
n be a bounded open set, let A : U →

Lin(Mn×n, Mn×n) be a measurable function satisfying (A.1)–(A.3), let S0 and S1 be Borel sets with S0 ⊂
S1 ⊂ ∂LU , and for every t ∈ [0, T ] let

Ut := {x ∈ U : dist(x, S1 \ S0) > t
√

Λ } . (A.14)

If u is a weak solution of (A.4)–(A.7) in the sense of (A.8)–(A.11), with f = 0 , u0 = 0 , and u1 = 0 , then

u(t) = 0 a.e. in Ut (A.15)

for every t ∈ [0, T ] .

To prove the theorem we need the following lemma.

Lemma A.2 (Auxiliary estimates). Let E be a bounded set in Rn and let a ≥ 0 , b > 0 , and T > 0 . For 
every t ∈ [−a/b, T ] let

Et := {x ∈ R
n : dist(x,E) ≤ a + bt } and ψ(t) := 1Et

∗ ρ ,

where 1Et
is the characteristic function of Et , ρ ∈ C∞

c (B1(0)) is a nonnegative function with 
∫
Rn ρ dx = 1 ,

and ∗ denotes the convolution with respect to the spatial variable. Let B be an open ball in Rn containing 
ET + B1(0) . Then ψ : [−a/b, T ] → L∞(B) is absolutely continuous and for a.e. t ∈ [−a/b, T ] there exists
ψ̇(t) ∈ L∞(B) such that

(ψ(t + h) − ψ(t))/h → ψ̇(t) (A.16)

weakly∗ in L∞(B) and strongly in Lp(B) for every 1 ≤ p < +∞ . Moreover, for a.e. t ∈ [−a/b, T ] we have

|∇ψ(t)| ≤ |ψ̇(t)|/b a.e. in B . (A.17)

Proof. We begin by proving that t �→ Ln(Et) is absolutely continuous on [−a/b, T ] . For every x ∈ B let
g(x) := dist(x, E) and let P denote the perimeter of a set in Rn (see [6, Definition 3.35]). Since |∇g(x)| = 1
for a.e. x ∈ B\E , by the co-area formula [6, Theorem 3.40], the function s �→ P ({g ≤ s}) is integrable and 
for every t ∈ [−a/b, T ]

Ln(Et) − Ln(E) =
∫
B

|∇(g ∧ (a + bt))|dx =
a+bt∫
0

P ({g ≤ s})ds ,

where α ∧ β := min{α, β} . This shows that t �→ Ln(Et) is absolutely continuous on [−a/b, T ] .
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Since for s < t we have

‖1Et
− 1Es

‖L1(B) ≤ Ln(Et) − Ln(Es) ,

the function t �→ 1Et
is absolutely continuous from [−a/b, T ] into L1(B).

Let us prove that

1
h

(1Et+h
− 1Et

)⇀bHn−1 ∂∗Et weakly∗ in Mb(B), (A.18)

where the space Mb(B) of bounded Radon measures on B is regarded as the dual of the Banach space
C0

0 (B) of continuous functions on B vanishing on ∂B . Here and in the rest of the paper, ∂∗ denotes the
reduced boundary (see [6, Definition 3.54]) and, for every Borel set F , Hn−1 F denotes the measure
defined by (Hn−1 F )(A) = Hn−1(F ∩A) for every Borel set A .

Let ϕ ∈ C0
0 (B). Using again the co-area formula, together with De Giorgi’s characterization of the deriva-

tive of a characteristic function (see [6, Theorem 3.59]), we obtain that the function s �→
∫
∂∗{g≤s} ϕ dHn−1

is integrable and that for every t ∈ [−a/b, T ] we have

∫
Et

ϕdx =
∫
B

|∇(g ∧ (a + bt))|ϕdx =
a+bt∫
0

∫
∂∗{g≤s}

ϕdHn−1ds ,

therefore

lim
h→0

1
h

( ∫
Et+h

ϕdx−
∫
Et

ϕdx
)

= b

∫
∂∗Et

ϕdHn−1

for a.e. t ∈ [−a/b, T ] . This proves (A.18).
Since the convolution by ρ is a continuous linear operator mapping L1(B) into L∞(B), the absolute 

continuity of t �→ 1Et
implies that ψ is absolutely continuous from [−a/b, T ] into L∞(B). Moreover,

since the convolution by ρ maps weakly∗ convergent sequences in Mb(B), supported by ET , into weakly∗

convergent sequences in L∞(B), from (A.18) we obtain (A.16) weakly∗ in L∞(B), with

ψ̇(t) = b(Hn−1 ∂∗Et) ∗ ρ. (A.19)

As for the strong convergence in Lp(B) for 1 < p < +∞ , we observe that the absolute continuity of 
ψ : [−a/b, T ] → L∞(B) implies the absolute continuity of ψ : [−a/b, T ] → Lp(B). Since Lp(B) is reflexive 
we can apply [11, Corollaire A.2] and we obtain (A.16) strongly in Lp(B) for 1 < p < +∞ . The result for 
p = 1 is now obvious.

To prove (A.17) we observe that for every t ∈ [−a/b, T ] we have

∇ψ(t) = D1Et
∗ ρ ,

where D denotes the distributional gradient. By the co-area formula for a.e. t ∈ [−a/b, T ] the set Et has
finite perimeter and therefore

D1Et
= νtHn−1 ∂∗Et ,

where νt is the inner unit normal of Et . It follows that
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|∇ψ(t)| ≤ (Hn−1 ∂∗Et) ∗ ρ

which, together with (A.19), gives (A.17). �
Proof of Theorem A.1. Let u be as in the statement of the theorem. We extend u by setting

u(t) = 0 for every t ∈ (−T, 0] . (A.20)

Since u(0+) = 0 in L2(U ; Rn) and u̇(0+) = 0 in H−1
S1

(U ; Rn), we have that

u ∈ L2(−T, T ;H1
S0

(U ;Rn)) , (A.21)

u̇ ∈ L2(−T, T ;L2(U ;Rn)) , (A.22)

ü ∈ L2(−T, T ;H−1
S1

(U ;Rn)) , (A.23)

〈ü(t), ϕ〉 + 〈A∇u(t),∇ϕ〉 = 0 for a.e. t ∈ (−T, T ) and for every ϕ ∈ H1
S1

(U ;Rn) . (A.24)

For a.e. t ∈ (0, T ) we define

e(t) := 1
2

∫
Ut

|u̇(t)|2dx + 1
2

∫
Ut

A∇u(t) ·∇u(t) dx . (A.25)

We want to prove that

e(t) = 0 for a.e. t ∈ (0, T ). (A.26)

Before doing this, let us show that (A.26) implies that for every t ∈ [0, T ] we have u(t) = 0 a.e. in Ut . Let
us fix t ∈ (0, T ] . Since Ut ⊂ Us for 0 < s < t , (A.25) and (A.26) give u̇(s) = 0 a.e. in Ut for a.e. s ∈ (0, t).
Since u ∈ H1(0, t; L2(Ut, Rn)) and u(0) = 0, we conclude that u(t) = 0 a.e. in Ut . Therefore, to prove the
theorem it is enough to show that (A.26) holds.

To obtain an estimate for (A.25) we consider the set

Vt := {x ∈ R
n : dist(x, S1 \ S0) > t

√
Λ }, (A.27)

so that Ut = Vt ∩ U . To regularize the characteristic function 1Vt
of Vt we fix a nonnegative ρ ∈ C∞

c (Rn)
with ρ(x) = 0 for |x| ≥ 1 and 

∫
Rn ρ dx = 1. For every ε ∈ (0, T

√
Λ) let ρε(x) = 1/εnρ(x/ε) and, for every

t ∈ (−ε/
√

Λ, T ) let ψε(t) = 1Vt+αε
∗ ρε , where α = 2/

√
Λ. We remark that by (A.27) we have

ψε(t) = 0 in a neighborhood of S1 \ S0 (A.28)

for every ε ∈ (0, T
√

Λ) and for every t ∈ (−ε/
√

Λ, T ).
Let eε(t) be the approximation of e(t) defined by

eε(t) := 1
2

∫
U

|u̇(t)|2ψε(t)dx + 1
2

∫
U

A∇u(t) · ∇u(t)ψε(t)dx

= 1
2 〈u̇(t), u̇(t)ψε(t)〉 + 1

2 〈A∇u(t),∇u(t)ψε(t)〉 (A.29)

for every ε ∈ (0, T
√

Λ) and for a.e. t ∈ (−ε/
√

Λ, T ). By (A.21) and (A.22) we have that eε ∈ L1(−ε/
√

Λ, T ).
Moreover, by standard properties of convolutions and by the integrability properties of |u̇(t)|2 and 
A∇u(t) ·∇u(t), we obtain
26



eε(t) → e(t) for a.e. t ∈ (0, T ) . (A.30)

To obtain an estimate for eε(t) we first consider the differences eε(t +h) −eε(t) for a given h ∈ (0, ε/
√

Λ). 
We have

2(eε(t + h) − eε(t)) = 〈u̇(t + h) + u̇(t), (u̇(t + h) − u̇(t))ψε(t + h)〉
+ 〈u̇(t), u̇(t)(ψε(t + h) − ψε(t))〉
+ 〈A∇u(t + h) + A∇u(t), (∇u(t + h) −∇u(t))ψε(t + h)〉
+ 〈A∇u(t),∇u(t)(ψε(t + h) − ψε(t))〉 = I1 + I2 + I3 + I4 . (A.31)

It is convenient to write I1 and I3 as

I1 = 〈u̇(t + h) + u̇(t)), d
dt (u(t + h) − u(t))ψε(t + h))〉

− 〈u̇(t + h) + u̇(t), (u(t + h) − u(t))ψ̇ε(t + h)〉 , (A.32)

I3 = 〈A∇u(t + h) + A∇u(t),∇((u(t + h) − u(t))ψε(t + h))〉
− 〈A∇u(t + h) + A∇u(t), (u(t + h) − u(t)) ⊗∇ψε(t + h)〉 . (A.33)

We now integrate by parts we respect to t .
Since u satisfies (A.22) and (A.23), if

ζ ∈ L2(−ε/
√

Λ, T ;H1
S1

(U ;Rn)) and ζ̇ ∈ L2(−ε/
√

Λ, T ;L2(U ;Rn)),

it is easy to prove by approximation that the function t �→ 〈u̇(t), ζ(t)〉 is absolutely continuous in [−ε/
√

Λ, T ]
and

d

dt
〈u̇(t), ζ(t)〉 = 〈ü(t), ζ(t)〉 + 〈u̇(t), ζ̇(t)〉 . (A.34)

By Lemma A.2 and by (A.21), (A.22), and (A.28), we can apply this formula with

ζ(t) := (u(t + h) − u(t))ψε(t + h) (A.35)

and we obtain that

I1 = d

dt
〈u̇(t + h) + u̇(t), (u(t + h) − u(t))ψε(t + h)〉

− 〈ü(t + h) + ü(t), (u(t + h) − u(t))ψε(t + h)〉
− 〈u̇(t + h) + u̇(t), (u(t + h) − u(t))ψ̇ε(t + h)〉 (A.36)

for a.e. t ∈ (−ε/
√

Λ, T ).
Let us now fix t ∈ [0, T ] . By integrating (A.31) between −h and t − h , and using (A.20), (A.33), and 

(A.36) we obtain

2
t−h∫
−h

(eε(s + h) − eε(s))ds = 〈u̇(t) + u̇(t− h)), (u(t) − u(t− h))ψε(t))〉

−
t−h∫

〈ü(s + h) + ü(s), (u(s + h) − u(s))ψε(s + h)〉ds

−h
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−
t−h∫
−h

〈u̇(s + h) + u̇(s), (u(s + h) − u(s))ψ̇ε(s + h)〉ds

+
t−h∫
−h

〈u̇(s), u̇(s)(ψε(s + h) − ψε(s))〉ds

+
t−h∫
−h

〈A∇u(s + h) + A∇u(s),∇((u(s + h) − u(s))ψε(s + h))〉ds

−
t−h∫
−h

〈A∇u(s + h) + A∇u(s), (u(s + h) − u(s)) ⊗∇ψε(s + h)〉ds

+
t−h∫
−h

〈A∇u(s),∇u(s)(ψε(s + h) − ψε(s))〉ds . (A.37)

Note that by (A.24) for a.e. s ∈ (−h, t − h) we have

〈ü(s) + ü(s + h), ϕ〉 + 〈A(∇u(s) + ∇u(s + h)),∇ϕ〉 = 0 for every ϕ ∈ H1
S1

(U ;Rn) . (A.38)

By (A.28), for a.e. s ∈ (−h, t − h) we may take ϕε(s) = (u(s + h) − u(s))ψε(s + h) as a test function in
(A.38) obtaining

〈ü(s + h) + ü(s), u(s + h) − u(s))ψε(s + h)〉
+ 〈A(∇u(s + h) + ∇u(s)),∇((u(s + h) − u(s))ψε(s + h))〉 = 0 . (A.39)

Substituting in (A.37) we get

2
t−h∫
−h

(eε(s + h) − eε(s))ds = 〈u̇(t) + u̇(t− h)), (u(t) − u(t− h))ψε(t))〉

− 2
t−h∫
−h

〈ü(s + h) + ü(s), (u(s + h) − u(s))ψε(s + h))〉ds

−
t−h∫
−h

〈u̇(s + h) + u̇(s), (u(s + h) − u(s))ψ̇ε(s + h)〉ds

+
t−h∫
−h

〈u̇(s), u̇(s)(ψε(s + h) − ψε(s))〉ds

−
t−h∫
−h

〈A∇u(s + h) + A∇u(s), (u(s + h) − u(s)) ⊗∇ψε(s + h)〉ds

+
t−h∫

〈A∇u(s),∇u(s)(ψε(s + h) − ψε(s))〉ds . (A.40)

−h
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Integrating by parts, thanks to (A.20) and (A.34) we obtain

−2
t−h∫
−h

〈ü(s + h) + ü(s), (u(s + h) − u(s))ψε(s + h))〉ds

= −2〈u̇(t) + u̇(t− h), (u(t) − u(t− h))ψε(t))〉

+ 2
t−h∫
−h

〈u̇(s + h) + u̇(s), (u̇(s + h) − u̇(s))ψε(s + h))〉ds

+ 2
t−h∫
−h

〈u̇(s + h) + u̇(s), (u(s + h) − u(s))ψ̇ε(s + h))〉ds . (A.41)

Hence, substituting in (A.40) and using again (A.20) we obtain

2
t∫

t−h

eε(s) ds = 2
t∫

t−h

eε(s) ds− 2
0∫

−h

eε(s) ds = −〈u̇(t) + u̇(t− h), (u(t) − u(t− h))ψε(t)〉

+ 2
t−h∫
−h

〈u̇(s + h) + u̇(s), (u̇(s + h) − u̇(s))ψε(s + h)〉ds

+
t−h∫
−h

〈u̇(s + h) + u̇(s), (u(s + h) − u(s))ψ̇ε(s + h)〉ds

+
t−h∫
−h

〈u̇(s), u̇(s)(ψε(s + h) − ψε(s))〉ds

−
t−h∫
−h

〈A∇u(s + h) + A∇u(s), (u(s + h) − u(s)) ⊗∇ψε(s + h)〉ds

+
t−h∫
−h

〈A∇u(s),∇u(s)(ψε(s + h) − ψε(s))〉ds . (A.42)

Note that

2
t−h∫
−h

〈u̇(s + h) + u̇(s), (u̇(s + h) − u̇(s))ψε(s + h)〉ds

+
t−h∫
−h

〈u̇(s), u̇(s)(ψε(s + h) − ψε(s))〉ds

= 2
t−h∫

〈u̇(s + h), u̇(s + h)ψε(s + h)〉ds− 2
t−h∫

〈u̇(s), u̇(s)ψε(s)〉ds

−h −h
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−
t−h∫
−h

〈u̇(s), u̇(s)ψε(s + h)〉ds +
t−h∫
−h

〈u̇(s), u̇(s)ψε(s)〉ds

= 2
t∫

t−h

〈u̇(s), u̇(s)ψε(s)〉ds−
t−h∫
−h

〈u̇(s), u̇(s)(ψε(s + h) − ψε(s))〉ds , (A.43)

where in the last equality we used again (A.20). Therefore substituting in (A.42) we obtain

2
t∫

t−h

eε(s) ds = −〈u̇(t) + u̇(t− h), (u(t) − u(t− h))ψε(t)〉

+
t−h∫
−h

〈u̇(s + h) + u̇(s), (u(s + h) − u(s))ψ̇ε(s + h)〉ds

+ 2
t∫

t−h

〈u̇(s), u̇(s)ψε(s)〉ds−
t−h∫
−h

〈u̇(s), u̇(s)(ψε(s + h) − ψε(s))〉ds

−
t−h∫
−h

〈A∇u(s + h) + A∇u(s), (u(s + h) − u(s)) ⊗∇ψε(s + h)〉ds

+
t−h∫
−h

〈A∇u(s),∇u(s)(ψε(s + h) − ψε(s))〉ds . (A.44)

We divide by h the terms in the right-hand side of (A.44). Thanks to (A.21) and (A.22) we can pass to the 
limit in L1(0, T ) as h → 0+ and we obtain

− 1
h
〈u̇(t) + u̇(t− h), (u(t) − u(t− h))ψε(t)〉 → −2〈u̇(t), u̇(t)ψε(t)〉 , (A.45)

1
h

t−h∫
−h

〈A∇u(s),∇u(s)(ψε(s + h) − ψε(s))〉ds →
t∫

0

〈A∇u(s),∇u(s)ψ̇ε(s)〉ds , (A.46)

1
h

t−h∫
−h

〈A∇u(s + h) + A∇u(s), (u(s + h) − u(s)) ⊗∇ψε(s + h)〉ds

→ 2
t∫

0

〈A∇u(s), u̇(s) ⊗∇ψε(s)〉ds , (A.47)

1
h

t−h∫
−h

〈u̇(s + h) + u̇(s), (u(s + h) − u(s))ψ̇ε(s + h))〉ds

− 1
h

t−h∫
−h

〈u̇(s), u̇(s)(ψε(s + h) − ψε(s))〉ds →
t∫

0

〈u̇(s), u̇(s)ψ̇ε(s)〉ds . (A.48)

Since
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2
h

t∫
t−h

eε(s) ds → 2eε(t)

in L1(0, T ) as h → 0+, from (A.44)–(A.48) we get

2eε(t) =
t∫

0

〈u̇(s), u̇(s)ψ̇ε(s)〉ds +
t∫

0

〈A∇u(s),∇u(s)ψ̇ε(s)〉ds

+ 2
t∫

0

〈A∇u(s), u̇(s) ⊗∇ψε(s)〉ds (A.49)

for a.e. t ∈ (0, T ).
Let ξε(s) be the function on U defined by ξε(s) = ∇ψε(s)/|∇ψε(s)| on {∇ψε(s) �= 0} ∩U and ξε(s) = 0

on {∇ψε(s) = 0} ∩U . By the Cauchy inequality for the quadratic form on L2(U ; Rn×n) determined by A ,
for every α > 0 we have

2〈A∇u(s), u̇(s)⊗∇ψε(s)〉

≤ 2〈A∇u(s),∇u(s)|∇ψε(s)|〉1/2 〈Au̇(s)⊗ξε(s), u̇(s)⊗ξε(s)|∇ψε(s)|〉1/2

≤ α〈A∇u(s),∇u(s)|∇ψε(s)|〉 + 1
α
〈Au̇(s)⊗ξε(s), u̇(s)⊗ξε(s)|∇ψε(s)|〉

for a.e. s ∈ (0, T ). Therefore, by (A.3) and (A.17) we obtain

2〈A∇u(s), u̇(s)⊗∇ψε(s)〉

≤ α√
Λ
〈A∇u(s),∇u(s)|ψ̇ε(s)|〉 +

√
Λ
α

〈u̇(s), u̇(s)|ψ̇ε(s)|〉 .

Taking α =
√

Λ and recalling that ψ̇ε(s) ≤ 0 we obtain

2〈A∇u(s), u̇(s)⊗∇ψε(s)〉 + 〈A∇u(s),∇u(s)ψ̇ε(s)〉 + 〈u̇(s), u̇(s)ψ̇ε(s)〉 ≤ 0

for a.e. s ∈ (0, T ). This inequality together with (A.49) gives eε(t) ≤ 0 for a.e. t ∈ (0, T ), hence e(t) ≤ 0
for a.e. t ∈ (0, T ), by (A.30). Since e(t) ≥ 0, this concludes the proof. �
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