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Abstract. Analyzing event logs generated during the execution of digi-
tal processes, organizations can monitor the behavior of dysfunctional or
unspecified processes. For achieving the most refined results, high-quality
and up-to-date process models are required. However, the selection of the
proper process discovery algorithm is often addressed by human experts
that can relate quality criteria, event logs behavior, and discovery tech-
niques. Exploiting a meta-learning approach, we created a procedure
that identifies the optimal discovery technique based on a user-defined
balance of quality metrics. Our experiments exploited 1091 event logs
representing extensive possible business process behaviors. Given a set
of available algorithms, we obtained an F-score of 0.76 for recommending
the discovery algorithm that maximizes quality criteria. Moreover, our
method supports a more in-depth investigation of the process discovery
problem by mapping log behavior and discovery techniques.

Keywords: Process discovery · Meta-learning · Model quality ·
Recommendation · Process mining

1 Introduction

Extracting information from event data can enhance management capabilities,
revealing process deviations and improvement opportunities using techniques
referred to as Process Mining (PM) [1]. One of the most active research topics
in PM is Process Discovery (PD) [26]. The result of PD is a process model,
which is representative of the underlying processes executions, based on the
event logs recorded in organizations’ information systems. PD reduces the devi-
ations between the documented target process and the actual executed process.
These deviations lead to incorrect process analyses, which, in turn, lead to lit-
tle or no effective optimization measures. Nonetheless, eliciting an appropriate
and up-to-date process model may require significant effort [2]. One of the key
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design choices is selecting the proper discovery algorithm among several differ-
ent options [14–16,28,32]. Depending on the dimension to be optimized, the
algorithms that offer the best performance, in terms of model quality, are dif-
ferent [3]. Besides, the event log characteristics also impact the model quality
[3,5]. Experiments with several different discovery algorithms showed a sub-
stantial performance complementarity since different algorithms perform best in
different scenarios [5,12]. Among the multiple quality dimensions identified, the
literature has largely discussed recall (a.k.a. fitness), precision, generalization
and simplicity [4]. PD algorithms are often suggested to balance these dimen-
sions [3]. Although the analytical goal to be addressed can determine the most
prominent one. For example, audit questions are best answered using a model
with high recall, optimization is best performed on a model with high precision,
implementation is simplified by models with high generalization, and human
interpretation is eased by simple models [10]. Less attention has been devoted in
the literature to studying the relationships between event log profiles, i.e., the
features characterizing an event log, PD algorithms, and quality criteria.

To overcome these issues, we studied a method to automate the selection
of the optimal process discovery algorithm given an event log. In particular, we
are interested in two research questions. RQ1: To which extent can process dis-
covery algorithm selection be automated? RQ2: Which event log features are
significant in selecting the best discovery algorithm? To answer these questions,
we investigate the process discovery task from an algorithm selection perspec-
tive using a Meta-learning (MtL) approach [13]. Leveraging the MtL potential,
we developed a data-driven solution to recommend a suitable process discovery
algorithm given an event log. Our MtL approach provides a novel tool for iden-
tifying a discovery technique that balances model quality metrics based on user
preference and given a specific event log profile. Moreover, it provides a method
to exhaustively compare discovery algorithms in terms of the quality metrics
they optimize and to study the relationship between quality results and event
log features. Our method does not prevent the use of domain-specific knowledge
an expert can apply in handling the PD procedure. For example, filtering the
event log or applying conformance checking results in light of organizational
constraints. However, we believe connecting the event log profile to the suitable
PD algorithms, is an essential pre-flight instrument our approach can provide
to guide an expert. The number of source event logs and characterizing features
exploited in the training of the MtL model offers a solution unparalleled in the
literature and shines a light on the algorithm selection for PD.

The paper is organized as follows. Section 2 introduces concepts that support
our work. Section 3 delves into the details of the proposed MtL framework, intro-
duces the theoretical foundations required, and exposes the feature extraction
step, and the materials used for experimentation. Section 4 reports the results
of the experiments and presents a discussion of the relationship between the
features of the event log, the discovery techniques, and the quality of the model.
Section 5 discusses the related work, while Sect. 6 summarizes and concludes the
paper.
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2 Basic Notions

This section defines crucial concepts from PM and MtL that substantiate the
development of our approach.

Definition 1 (Event, Attribute, Case, Event log). Let Σ be the event uni-
verse, i.e., the set of all possible event identifiers. Σ∗ denotes the set of all
sequences over Σ. Events may have various attributes, such as timestamp, activ-
ity, resource, cost, and others. Let AN be the set of attribute names. For any
event e ∈ Σ and an attribute a ∈ AN , then #a(e) is the value of attribute a for
event e. Let C be the case universe, that is, the set of all possible identifiers of a
business case execution. C is the domain of an attribute case ∈ AN . An event
log L can be viewed as a set of cases L ⊆ Σ∗, where each event appears only
once in the log, i.e., for any two different cases, the intersection of their events
is empty.

A model can be discovered given an event log as input. Therefore, considering
the relationship between events, a process discovery technique produces a model
representing the event log behavior.

Definition 2 (Process discovery [11]). An event log L can be viewed as the
multiset of traces induced by the cases in L. Formally, L := {t|∃ci ∈ L, ci(i →
n) = t(i → n)}. The behavior of L can be viewed as the set of the distinct
elements of L, formally B(L) = support(L). Given a process model M , we refer
to its behavior BM as the multiset of traces that can be generated by its execution.
A process discovery algorithm constructs a process model from an event log and
can thus be seen as a function δ : L → M |B(L) ∼= BM.

Therefore, the quality of the models produced can be associated with char-
acteristics of the event log, which can potentially be mined.

Definition 3 (Event log features[22]). Let SF be a set of statistical functions
(e.g., mean length) and RL be the set of process representational levels of L (e.g.,
event, case, and event log). PF = SF × RL is the set of process features, i.e.,
the cartesian product of functions and representational levels.

Considering that different event logs demonstrate different behaviors, the
features extracted from the logs should depict their distinctive nature. Following,
discovery algorithms may produce models with varying quality depending on
data characteristics. In this way, some algorithms might be favored depending
on the underlying process behavior.

Definition 4 (Algorithm Selection Problem [25]). Let x ∈ P be a problem
in a problem space, let f(x) ∈ F be a function that extracts features from the
problem x, let S(f(x)) be a function that selects the mapping between the problem
space to the algorithm space A ∈ A, and let p(A, x) be a function that maps the
performance of an algorithm to the performance measure space, i.e., p ∈ Rn

where Rn is a n-dimensional real vector space. Then, a norm mapping is applied
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on p to reduce Rn to a one-dimensional value that indicates the final performance
of the algorithm. The goal is to determine S(f(x)) (the mapping of problems to
algorithms) that maximizes the performance of the algorithm.

Figure 1 shows functions and their respective domains within the Algorithm
Selection Problem (ASP). Given the ASP, MtL is a strategy to solve such a
problem.

x ∈ P
Problem space

f(x) ∈
Feature space

A ∈ A
Algorithm space

p ∈ Rn

Performance
measure space

||p|| = Algorithm
performance

Feature
extraction

S(f(x))

Selection
mapping

p(A(x))
Performance
mapping

Norm
mapping

Fig. 1. Model for the Algorithm Selection Problem with features (extracted from [25]).

Definition 5 (Meta-learning [29]). In traditional learning, the hypothesis
space HA of a learning algorithm A is fixed. Applying A to a data set described by
F produces a hypothesis that depends on the fixed bias embedded by the learner.
Let S be the space of all possible learning tasks, algorithm A can learn effi-
ciently over a limited region RA in S that favors the bias embedded in A. The
meta-learning strategy is to learn what causes A to dominate over RA. Therefore,
meta-learning aims at mapping the relationship between the problem features and
the algorithm performance.

Moreover, the MtL problem is further divided into two parts [29]: (i) discover
the properties of the task in RA that make A suitable for such region, and (ii)
discover the properties of A that contribute to dominate RA. Hence, a solution
to the MtL problem can suggest how to match algorithms and task properties,
producing a guided approach to the dynamic selection of algorithms. Therefore,
by applying meta-learning to the process discovery problem, we shine light on
ASP for process discovery in PM.

3 Methodology

In this section, we present the procedure executed to study the applicability of
MtL to the selection of process discovery algorithms. The material used in the
experiments, along with the event logs and implementation, is publicly avail-
able.1 We note that detailed instructions are given to ensure scientific repro-
ducibility.
1 https://github.com/gbrltv/process discovery meta learning.
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3.1 The Proposed MtL Approach

We created an MtL procedure grounded on rich PM-specific event log features
(that is, mapping f(x) ∈ F) for suggesting the best discovery algorithm (that
is, the algorithm that maximizes p(A(x))). The workflow implementing our MtL
approach is made up of five steps. Figure 2 presents them as follows. Meta-Feature
Extraction is a step devoted to gathering the event log features PF , a.k.a. meta-
features according to the MtL terminology. The Meta-Target Definition step
identifies each discovery algorithm A and ranks their dominance over RA using
quality metrics. Note that given an event log, the chosen meta-target is the
technique that maximizes p(A(x)).

Ranking Metrics

Meta-Target Definition

Meta-Feature Extraction Meta-Database Meta-Learner

Trace Information TheoryActivities Statistical

Inductive Miner (IM)

Inductive Miner directly-follows (IMd)

Inductive Miner infrequent

Precision

Generalization

Simplicity

Fitness

Discovery Time

Meta-Features

M
eta-Instances

Machine
Learning

Meta-Model

RecommendationHeuristic Miner Alpha Miner

Event Logs

Fig. 2. Overview of the proposed MtL approach.

The Meta-Database step combines meta-features and meta-targets, forming
the meta-instances required to train the meta-model. In the next step, a Meta-
Learner uses machine learning to induce the meta-model based on the meta-
instances. The Meta-Model is the outcome model able to recommend process
discovery algorithms. When recommending a process discovery method for a new
event log, meta-features of this new resource are extracted and forwarded to the
created meta-model. The recommended discovery algorithm can be executed on
the event log, generating a process model, as in Fig. 3.

3.2 Event Logs as the Problem Space

Event logs contain information about the start and completion of activities, their
ordering, the resources that executed them, and the process execution to which
they belong. Event logs play a significant role in our approach because they are
the search space representation for creating our meta-database. Thus, we aim
to build a highly heterogeneous set of logs capable of representing a wide range
of possible business process behaviors. Hence, the relationship between business
process characteristics and quality metrics can be better represented.
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New

Meta-Feature Extraction Meta-Model

RecommendationDiscovery

Process Model

1 2

34

5

6

Fig. 3. Application of our MtL approach: (1) raw event log has its features extracted,
(2) features are processed using the meta-model, (3) the recommendation is outputted,
(4) using the suggested algorithm, the event log is processed (5) to discover a process
model (6).

The data selected contains both real and synthetic event logs. Regarding
synthetic event logs, the first set comes from the Process Discovery Contest
(PDC) 2020.2 The PDC 2020 dataset explores a wide range of characteristics
distributed in 192 logs. The main behaviors are dependent tasks, loops, invis-
ible and duplicate tasks, and noise. Moreover, we extracted 750 event streams
from [11]. These logs were built in the context of online PM with the goal of
depicting drifting scenarios, i.e., where a change in the behavior occurs while the
process is acting. The last group of synthetic logs was presented in the context
of evaluating encoding capabilities in event logs [6]. The set of real-life event logs
contains six logs from the Business Process Intelligence Challenges (BPIC), the
environmental permit, helpdesk, and sepsis logs. The final dataset contains 1091
event logs. Their main characteristics are exposed in Table 1. As demonstrated
in the table, the event logs contain a wide range of behaviors, with a diverse
number of cases, events, and activities that cover a variety of patterns.

Table 1. Statistics describing our data set of event logs.

Name #Logs #Cases #Events #Activities Trace length #Variants

PDC 2020 192 1k 6.7k–66k 14–36 3–300 503–1k

Streams 750 100–1k 900–13.5k 15–16 2–83 22–204

Encoding 140 1k 10k–44k 22–406 1–50 383–1k

BPIC12 4 5k–13k 31k–262k 7–24 2–175 17–4.3k

BPIC13 2 1k–7k 6k-65k 4 1–123 183–1.5k

Env. permit 1 1.4k 8.5k 27 1–25 116

Helpdesk 1 4.5k 21k 14 2–15 226

Sepsis 1 1k 15k 16 3–185 841

2 https://www.tf-pm.org/competitions-awards/discovery-contest.
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3.3 Meta-feature Extraction

According to the Definition 4, this step maps the problem space to the feature
space by extracting features from each instance of the problem, i.e., applying
the function f(x) ∈ F . A challenge in our approach is to correctly capture the
process behavior using a representative set of descriptors. For that, we propose
a large set of features that capture complementary aspects of the event log
behavior. The proposed features have an extensive range of complexity, meaning
that some are very simple (e.g., number of traces) while others are more complex
(e.g., entropy measures). The idea of a broad set of features is to provide the
meta-learner with the most information possible. The task of selecting proper
meta-features to infer a model is then the following step performed by the meta-
learner.

For trace level descriptors, trace lengths and variants were used as indicators
of process complexity. Regarding the trace lengths, we extracted 29 descriptors:
minimum, maximum, mean, median, mode, standard deviation, variance, the
25th and 75th percentile of data, interquartile range, geometric mean and stan-
dard variation, harmonic mean, coefficient of variation, entropy, and a histogram
of 10 bins along with its skewness and kurtosis coefficients. Based on trace vari-
ants, we extracted additional 11 features: mean number of traces per variant,
standard variation, skewness coefficient, kurtosis coefficient, the ratio of the most
common variant to the number of traces, and ratios of the top 1%, 5%, 10%,
20%, 50% and 75% variants to the total number of traces. To capture the fea-
tures at the activity level, we selected three groups: all activities, start activities,
and end activities. For each group, we extracted a set of 12 descriptors: number
of activities, minimum, maximum, mean, median, standard deviation, variance,
the 25th and 75th percentile of data, interquartile range, skewness, and kurtosis
coefficients.

For log level descriptors, we obtained the number of traces, unique traces,
and their ratio, along with the number of events. Recently, entropy measures
were proposed in the context of business processes to capture log variability
and to identify whether the log is better suited to declarative or imperative
mining [5]. Consequently, these metrics measure log structuredness, a very rele-
vant descriptor of log complexity. This way, we extracted 14 entropy measures:
trace, prefix, k -block difference and ratio (k ∈ {1, 3, 5}), global block, k -nearest
neighbor (k ∈ {3, 5, 7}), Lempel-Ziv, and Kozachenko-Leonenko. In total, the 93
extracted features cover several complementary perspectives, such as central ten-
dency, statistical dispersion, probability distribution shape, log structuredness,
and variability, among others.

3.4 Meta-targets to be Recommended

To define the possible meta-targets, we first need to select a set of algorithms
to represent the algorithm space. Considering their wide historical use in PM
and the availability of reliable source code, we selected five algorithms as meta-
target candidates: α-Miner (AM), Heuristic Miner (HM), Inductive Miner (IM),
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Inductive Miner–infrequent (IMf), and Inductive Miner–directly-follows (IMd).
All selected algorithms are suitable meta-targets in our experiment as they share
the same input and output objects. They require an event log as input and
express the discovered process model using the Petri net notation [20].

AM is one of the first approaches in PM that deals with concurrency. It is
considered a baseline process discovery algorithm [28] as many subsequent ideas
have been developed from it. Albeit AM’s historical relevance, there are many
known limitations such as the lack of support for loops, weakness against noise,
and no consideration of frequencies [1].

To include frequencies into account, HM was introduced, applying the idea
that infrequent transitions should not be represented in the model [32]. HM
uses causal nets, a modeling notation that can incorporate activities and causal
dependencies. A dependence measure is calculated using frequencies, and it is
further used to create a dependency graph. Arcs not conforming to a threshold
frequency are removed from the dependency graph. In the final step, splits and
joins are introduced to represent concurrency.

The IM family of algorithms approaches the discovery problem from a divide-
and-conquer perspective, recursively splitting the event log into sub-logs [14].
A crucial point of IM is that it produces a sound process model capable of
replaying the entire event log. That is, perfect recall of the traces in the event
log is guaranteed by the discovered model. However, due to the lack of support for
duplicate or silent activities when building the process tree, IM may produce low-
precision models [1]. Finally, IM is incapable of handling fixed-length repetitions
and cannot handle infrequent behavior.

The basic IM algorithm is highly extendable. Thus, many variants have been
proposed [15,16]. IMf incorporates the eventually-follows relation to better deal
with incompleteness in event logs [15]. Moreover, IMf introduces activity and arc
filters to remove infrequent behavior and produces a more precise model. As a
consequence, perfect recall is not a guarantee. A drawback of both IM and IMf
is the scalability due to the recursive split, which requires multi-pass analysis.
IMd was proposed to overcome this problem [16]. For that, IMd performs the
recursive step only on the directly-follows graph, without partitioning sub-logs.
However, the non-partitioning adaptation hurts the rediscoverability property.
Hence, perfect recall is not preserved. Similar to IM, IMd also cannot handle
duplicate and silent activities.

3.5 Ranking Quality Criteria

The meta-database regards a suitable matching of meta-instances and meta-
targets. The definition of the best choice of meta-target for a given event log
is based on a ranking strategy considering several complementary perspectives,
i.e., there is no unique dimension that captures the overall model quality. In this
work, together with discovery time, we adopt the four traditional model quality
metrics used in PM: fitness, precision, generalization and simplicity.

8



Automating Process Discovery Through Meta-learning 213

The fitness metric aims to measure how much behavior in the log is allowed
by the model, that is, to which extent traces in the log compare to valid execution
paths derived from the model [9]. It is measured by applying replay techniques
that aim to compare log and model. Therefore, perfect fitness is achieved when
the model can replay all the traces in the log. In this work, we adopt the fitness
proposed in [7] due to its improvements in scalability and avoidance of known
problems such as token flooding. Another quality dimension, precision, measures
the extent of the behavior allowed by the model that is not observed in the log
[9]. A poor precision indicates an underfitted model, i.e., it allows too many pat-
terns not present in the event log. As the precision measures negative examples,
i.e., the behavior allowed by the model but not seen in the log, and a model
can potentially generate infinite behavior, the calculation is complex and often
depends on approximation. In our experiment, we adopt the precision proposed
in [19] because it is more efficient and granular than previous measures.

Generalization goes in the opposite direction by measuring model overfitting.
Event logs present a sample of possible behavior allowed by the system, implying
that there may be valid execution traces not present in the log because they were
not executed yet. Process models should then describe the log behavior but also
generalize it to some extent [1,9]. We adopt the computation proposed in [9] as
it covers the generalization based on the usefulness of the model. Simplicity is
the last quality dimension used in this work. The idea behind simplicity is to
indicate how complex a model is [1,9]. That is, the simpler the model structure
that reflects the log behavior, the better its intelligibility. We adopt the simplicity
measure proposed in [30], which is based on the weighted average degree of a
place/transition in the Petri net, ultimately defined by the sum of input and
output arcs.

Recognizing the importance of balancing perspectives to achieve an adequate
model, we propose a ranking mechanism that aggregates all dimensions. Table 2
provides an example of the ranking to identify the best discovery technique
for a single event log. The log L is submitted to three discovery algorithms
(A1, A2, A3), then three quality metrics (Q1, Q2, Q3) are extracted using the
discovered model. Following, a positional rank is built for each metric considering
the performance of the algorithms (RQ1 , RQ2 , RQ3), that is, algorithms are
assigned to a position based on the comparison within them. A final rank (R)
is produced by averaging the metrics ranks, i.e., the mean of {RQ1 , RQ2 , RQ3}.
The lowest R is selected as the best discovery algorithm because it minimizes
the average rank position, thus maximizing the quality criteria. In our example,
R(A1) is 1.75, R(A2) is 1.5, and R(A3) is 2.75. Thus, we can conclude that A1

is the discovery algorithm that produces the best model for log L. Therefore,
when building the meta-database, A1 is the meta-target associated with log L.
Depending on the analytical goal, alternative quality metrics could be included
or alternative weights could be assigned to the obtained ranks. To exemplify this
possibility, in our work we consider discovery time as a quality dimension.
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Table 2. Example of ranking algorithms. The final rank (R) is generated from the
average rank of each quality dimension. In this example, A1 is the recommended dis-
covery technique for log L as it maximizes the quality metrics, i.e., produces the lowest
R value.

Log Algorithm Q1 Q2 Q3 RQ1 RQ2 RQ3 R

L A1 1 0.27 0.93 1 2 1 1.33

L A2 0.98 0.38 0.91 3 1 2 2

L A3 0.99 0.2 0.9 2 3 3 2.67

3.6 Meta-model

In the final step of our experiment, a machine learning algorithm, the meta-
learner, is employed to induce a meta-model using the meta-database. Once the
meta-model has been created, any event log can be linked to the recommended
PD algorithm by extracting its meta-features and consulting the meta-model.
For this experiment, we used a Random Forest [8] classifier due to its well-
known stability. A holdout strategy was applied to divide the meta-database
into train and test sets, using a 75%/25% split. In generating the meta-model,
we performed a 30-fold cross-validation to reduce the influence of outliers. We
note that the meta-database, as tabular data, represents a classification problem
modeled using traditional machine learning techniques. The use of deep learn-
ing is not feasible as (i) it requires a huge amount of instances (hundreds of
thousands) and (ii) the data are not sequential.

4 Results and Discussion

Figure 4a reports the discovery algorithm’s average position across all event logs
considering the five quality criteria. These results already confirm theoretical
findings. For instance, IM’s fitness takes the three first positions. Both IMd and
IMf do not guarantee perfect fitness; still, they perform better than AM and
HM. Considering that IMd does not partition sub-logs, such an important char-
acteristic of its predecessor, the fitness result is good. Although IMf incorporates
the eventually-follows relation, it performs worse than IMd from a fitness per-
spective. HM and AM follow with 3.1 and 4.9 average positions. AM is by far the
worst-performing algorithm for fitness purposes, a problem recognized since its
inception. The inability to deal with incompleteness and weakness in handling
noise has a high toll on fitness performance. Another explanation for the IM
family overcoming HM and AM is that IM algorithms produce a sound model,
while HM and AM do not have this guarantee.

Positions change considerably when evaluating precision. AM becomes the
algorithm with the best performance (1.4), followed by HM (1.8). IMf, IM, and
IMd come next, averaging 3, 3.9, and 4.7, respectively. The IM family performs
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poorly in precision due to its extensive use of hidden transitions, which con-
tributes to creating underfitting models. On the contrary, AM and HM hold
superior control of the escaping edges, strengthening the precision values.

From the generalization perspective, IMf is the best algorithm (1.7), closely
followed by AM (1.9). These algorithms excel in generating balanced models
where different regions are similarly visited during trace replaying. Particularly,
IMf’s ability to remove infrequent behavior reflects in good generalization val-
ues. Indeed, including low-frequency traces in the model hurts the generalization
capabilities. IM, IMd, and HM averaging 3, 3.6, and 4.6 are the worst-performing
discovery algorithms in this dimension. Simplicity is an index that uniquely
depends on the model and it rewards conciseness. Again, IMf is the best per-
forming method (1.4) thanks to its cleaning procedures that remove infrequent
behavior. IM and HM follow averaging 2.5 and 2.8, and IMd and AM produce
the most complex models, averaging 4 and 4.2, respectively.

(a) Metrics ranking. (b) Recommendation performance.

Fig. 4. a) Discovery algorithms ranked across all event logs considering each dimen-
sion. b) Our approach obtained an average accuracy of 0.76 and an F-score of 0.76.
Given event log features, the method indicate the discovery algorithm that maximizes
model quality. This experiment compares five discovery algorithms using five quality
dimensions (fitness, precision, generalization, simplicity and time).

Time analysis tends to benefit simpler algorithms as they require fewer steps
to generate a model. This explains why AM has the best time performance,
averaging 1.6. IMd comes after (2) since its primary design purpose is focused
on time improvement. HM, a more robust algorithm, comes third with 2.9 as the
average. Lastly, IM and IMf average at 3.6 and 4.9. These two algorithms are
the slowest as they demand a multi-pass recursive analysis of the log. Especially,
IMf spends more time due to additional steps to remove infrequent behavior.

Following, we evaluate the meta-model’s efficiency to recommend the best
discovery method for a given event log. Not having other literature references, we
used majority voting and random selection as baseline approaches, employed for
comparison reasons. Majority voting works by indicating the class that appears
most frequently in the meta-database, i.e., the algorithm that appears most fre-
quently in the first position of the rank function (R) considering the complete
meta-database. Random selection is a method that randomly chooses one of
the five process discovery techniques. That is, given a meta-instance, the ran-
dom selection approach arbitrarily associates it to one of the five meta-targets.

11
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Both baselines are useful comparisons. From the machine learning perspective,
majority voting is valid as it sets the minimum performance threshold. Compli-
mentarily, the random selection approach simulates a practitioner that makes a
non-guided choice of a PD algorithm.

Performance metrics are computed by comparing the ground-truth label,
i.e., the best discovery algorithm and the recommended algorithm. Figure 4b
presents the results for all methods, which were measured using the accuracy
and F-score metrics. Our approach demonstrates a viable solution for recom-
mending discovery algorithms with an average accuracy of 0.76 and an F-score
of 0.76. The majority method has the next best accuracy (0.34), followed by the
random method (0.2). Regarding F-score, random selection reaches 0.22 while
majority voting stays at 0.18. The advantage of applying MtL in comparison
to unintelligent approaches is clear. More importantly, the experiment confirms
the relationship between event log characteristics and model quality depending
on the discovery technique. Instead of simply applying the algorithm that ranks
better according to the majority criterion, we can provide a guided decision
based on the process behavior.

After meta-model learning, the Random Forest provides an importance mea-
sure to quantify the contribution of each meta-feature provided to the classifi-
cation output. Figures 5a and 5b show that among the most influential features
(Fig. 5a), there is a high predominance of the entropy family, namely, k -block
difference, Lempel-Ziv, trace, and k -nearest neighbor. The entropy features were
designed to capture log complexity and, more specifically, structuredness. Activi-
ties appear as the second most important group, with the 25th percentile ranking
as the most informative feature. The activity and entropy groups are correlated
as both rely on activity information. Trace variants are the last group among the
top 10 most influential features with the number of unique traces. These results
highlight that high-level descriptors for event logs can aid in determining the
best discovery algorithm. Regarding the least influential features (Fig. 5), trace
length-based features have the most appearances. These results indicate that
both the number of traces and trace lengths are the worst features to describe
business process behavior for the discovery problem.

(a) Top 10 features (b) Bottom 10 features

Fig. 5. Features relevance to induce a meta-model recommending a discovery
algorithm.
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4.1 Relating Problem, Feature and Algorithm Spaces

In the next experiment, we employed a leave-one-out cross-validation (LOOCV)
strategy for testing the meta-model. The LOOCV approach consists of infer-
ring a model using all instances except one, then testing the prediction in the
instance excluded from training. The process is repeated for all instances. This
way, a model is learned and tested #MI times, with #MI being the number of
meta-instances. This analysis produced 0.78 in both accuracy and F-score. These
results go in line with the previous experiment (see Fig. 4b), again confirming
the method’s robustness. Here we also evaluated more closely the performances
related to specific meta-targets. For example, IMd was the most challenging
class to identify, reaching an F-score of 0.09. This extreme performance is due to
the low number of appearances as a meta-target (only 13 meta-instances were
matched to IMd). Obviously, the meta-model was unable to learn the event
log profiles associated with IMd, given the small set of examples to general-
ize. Performance changes considerably for HM and IM with 0.71 and 0.73 as
F-score, respectively. HM is not an easy meta-target to recognize since it usually
produces models that balance well the analyzed quality criteria. However, very
rarely it maximizes the performance in one of the criteria. IM can potentially
be misidentified due to its proximity to other methods from the same family.
The best individual performances were reached by IMf and AM with F-scores
of 0.79 and 0.86. The meta-model can more easily associate meta-instances with
these methods, meaning that event log behaviors that match such algorithms
were better captured by the framework.

Furthermore, we applied a dimensionality reduction technique to better visu-
alize the meta-instances in the feature space. For that, we employed the Principal
Component Analysis (PCA) algorithm [27]. Figure 6 shows the resulting feature
space reduced to two dimensions. First, we note that one Principal Component
(PC) explains 55.11% of data variance while the second PC explains 30.53%
variance. These results indicate that most data correlations were preserved after
the dimensions were reduced. Regarding class separation, we can observe that
AM, IM, and IMf are the most identifiable meta-targets. This explains why in
the LOOCV experiment, these three meta-targets obtained the best F-scores.
AM is spread across PC1 with an evident distance from other classes. When
combining PC1 and PC2, we observe that IM and IMf are also recognizable.
In a particular region, several instances of different classes overlap. This behav-
ior is due to (i) information that supports the mapping of this region was lost
during the dimensionality reduction and (ii) lack of meta-features that capture
additional behavior in the problem space. Figure 6 also depicts the correct and
incorrect predictions in the LOOCV experiment. As the feature space shows,
recommendation errors occur across the whole space, and no particular pattern
was identified. Overall, the PCA analysis shows that meta-features were able
to differentiate the processes’ behaviors. Considering the limited dimension of
the problem space, increasing the number of meta-instances and meta-features
will probably lead to better class separation, hence, better recommendation
performances.
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Finally, we also applied a complexity analysis to complement the evaluation
of class separation based on the work of Lorena et al. [17]. The Directional-
vector Maximum Fisher’s Discriminant Ratio (F1v) metric searches for a vector
that can separate classes after instances are projected in the hyperplane. F1v
is bounded by (0, 1] interval with lower values indicating simpler classification
problems. When applied to our meta-database, we obtain an F1v of 0.12, indicat-
ing that the classification problem (modeled using the meta-learner) is simple.
The classification problem can only be simple because the f(x) ∈ F function
preserves most of the behavior in the problem space when mapping instances into
the feature space. In other words, our set of meta-features has a comprehensible
quality. We also assessed the Ratio of Intra/Extra Class Nearest Neighbor Dis-
tance (N2) metric, which aims at capturing the shape of the decision boundary
and class overlap. N2 relates the intra- and extra-class distances by comparing
each instance to its closest sample from the same class and closest sample from
another class. Ideally, instances from the same class should be closer between
them than from instances from other classes. The N2 for our meta-database is
0.35 (optimal value is 0), indicating a simpler problem where the overall dis-
tance for different classes is higher than the overall distance to the same class.
Although pointing to a simpler problem, N2 indicates that there is indeed some
overlap between classes, which is corroborated by the PCA analysis (Fig. 6).

Fig. 6. Reduced feature space after applying PCA. Meta-targets have different coloring,
while shapes indicate if the model correctly predicted the meta-target.

4.2 Threats to Validity

A crucial aspect of an experimental design is internal validity. Mendling et al.
[18] stated that a research design is internally valid when its manipulation is
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causally responsible for an observed effect. Therefore, randomization is often
adopted to avoid the injection of confounding factors through data selection.
In our experiment, one could argue that the training dataset, although wide,
may contain unidentified bias due to the unbalanced representation of some log
profiles. To confute this conjecture we compared the results obtained in our
first experiment, illustrated in Fig. 4b, to the results that can be obtained by
resampling the dataset. In practical terms, we divided the meta-database into
10 bins considering the activities q1 meta-feature since it showed a considerable
representational capability as the best-ranked descriptor (see Fig. 5a). Then, by
randomly selecting a fixed number of samples per bin, we created a resampled
meta-database, which was submitted to the same testing pipeline. Table 3 shows
the accuracy and F-score performances considering the increasing size of sampled
instances from each bin. As the number of selected meta-instances increases,
accuracy and F-score also increase, converging to the performance obtained using
the complete meta-database. This confirms the validity of our approach that,
using cross-validation, was able to generalize well.

Table 3. Resampling experiment performance.

#Samples per bin 5 10 20 30 40 50

Meta-database size 42 82 148 198 246 286

Accuracy 0.54 0.6 0.67 0.7 0.72 0.72

F-score 0.49 0.56 0.64 0.68 0.71 0.71

5 Related Work

Most literature regarding the evaluation of process discovery algorithms aims
to compare these techniques rather than selecting the most suitable for a given
event log. In general, these frameworks create a knowledge base to support the
comparison of different discovery techniques using real and synthetic event logs.
An approach to recommend process discovery techniques for event logs is pre-
sented in Ribeiro et al. [24]. The authors propose a solution using a portfolio-
based algorithm selection strategy to feed a recommender system. The portfolio
is built using 12 log features and tested in 13 event logs. A subsequent problem
was studied by Ribeiro et al. in [23] where the authors proposed a methodology
based on a sensitivity analysis technique to evaluate the impact of parameter
setting on process discovery algorithms. With the goal of computing model sim-
ilarity among different techniques, Wang et al. [31] presented an approach based
on behavioral and structural measures of process models. The information gen-
erated in the evaluation step supported the recommendation of PM algorithms.
However, the need for high-quality reference models poses an important con-
straint to this technique. Alfonso et al. [21] constructed a knowledge base using
standard model features such as control-flow patterns, invisible tasks, and infre-
quent behavior. The goal is to propose a group of classifiers that could associate
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features with predefined quality metrics the extracted models have to satisfy.
However, the recommendation approach is based on model features, which are
not available in scenarios where there is no gold model. On the other hand, our
approach is suitable in more general scenarios since it is unsupervised, meaning
it does not rely on model features (our meta-features are extracted directly from
event logs).

Research developed in [24] is the most closely related to this article. The
authors framed the problem from a portfolio-based selection perspective while
we use MtL. We build upon this original contribution by scaling the set of log
features and instances. Moreover, we rely on a single model for recommendation
while the reference work builds several models, with a negative impact on com-
puting resource consumption. Finally, we leverage the problem formalization,
enabling the application of a different set of experiments to study the discov-
ery algorithms and the discovery problem. This construction paves the way for
analyzing the relationship between process behavior, discovery algorithms, and
quality criteria (as seen in Sect. 4.1).

6 Conclusion

Discovering a model for an event log is a difficult task due to the many available
algorithms and characteristics of business processes. This work proposes an MtL
approach to map event log profiles, discovery algorithms, and quality criteria.
We propose a set of 93 meta-features extracted from the event logs to capture
the behavior of the process at different levels, such as activity, trace, and log.
Using MtL, we show that it is possible to take advantage of the quality of the
process model by automatically recommending the appropriate discovery algo-
rithms, answering RQ1. The best-fitting discovery method is one that maximizes
output quality based on a set of metrics. Our approach correctly assigns the best
technique with 76% of accuracy in scenarios of five discovery algorithms. Overall,
the method confirms the results previously discussed in the literature, but our
research design provides a more rigorous evaluation of them and reveals more
details on feature importance. Due to space limitations, we did not demonstrate
the ability of our framework to provide information for each specific event log.
However, the framework can identify the recommended algorithm for each event
log and which features triggered the suggestion. Furthermore, the proposed MtL
approach is highly extensible, allowing the possibility of adding more features,
discovery algorithms, and quality metrics. This way, our approach paves the way
for a set of experimental analyses that can further verify how generalizable is the
relationship between PM tasks and event log features. For instance, we showed
that entropy and activity-related features are the most important in describing
log behavior for the process discovery problem, answering RQ2. As future work,
we plan to increase problem, feature, algorithm and performance spaces to com-
prehend how more complex scenarios can impact MtL performance. Further, we
also aim at investigating optimization techniques to increase the quality of the
recommendations.
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