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Preface

The development of large-scale data analysis and statistical learning methods for
data science is gaining more and more interest, not only among statisticians, but also
among computer scientists, mathematicians, computational physicists, economists,
and, in general, all experts in different fields of knowledge who are interested in
extracting insight from data.
Cross-fertilization between the different scientific communities is becoming crucial
for progressing and developing new methods and tools in data science.
In this respect, the Statistics & Data Science group of the Italian Statistical Society
has organized an international conference held in Pavia on the 27 and 28 of April
2023, attended by over 70 researchers from different scientific fields.
A collection of the presented papers is available in the present Proceedings showing
a huge variety of approaches, methods, and data-driven problems, always tackled
according to a rigorous and robust scientific paradigm.

The Statistics & Data Science group
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Innovation patterns within a regional economy
through consensus community detection on
labour market network

Fabio Morea and Domenico De Stefano

Abstract Universities and research centres play a major role in the generation and
diffusion of innovation through education, research, spin-offs and technology trans-
fer. This paper examines a further pattern for the spread of innovation within a re-
gional economy, namely the transfer of workers from one employer to another. Our
approach is based on the ”labour market” dataset, from which we derive a network
by applying an ad-hoc edge weighting strategy. We propose a novel approach to
explore the network structure, using a consensus community detection approach
that assigns a probability of membership and isolates trivially small communities.
Applying the methodology to the Friuli Venezia Giulia region shows that research
institutions play a prominent role in innovation patterns, being the leading elements
of large communities and often outperforming large industrial groups.

Key words: Unsupervised Clustering Algorithms, Network Analysis, Community
Detection, Labour Market data, ISCO-08

1 Introduction

Connections between companies have been studied extensively through the concept
of clusters using different definitions that include the concepts of spatial proximity,
similarity or competition [8]. The use of labour market data to study inter-links be-
tween companies is based on the observation that when employees change jobs, they
move to another employer geographically close, requiring similar skills and offering
better conditions [1] . Increased availability of data and analytical techniques such as

Fabio Morea
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Domenico De Stefano
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community detection have improved accuracy of these studies. The analysis can be
global, such as [7], which uses labour market data from the social network LinkedIn,
or regional, such as [4], which use data from Italy’s regional labour market observa-
tories. Modularity based methods [5], and specifically the Louvain algorithm [3] are
generally used as the community detection algorithm for exploring labour market
networks.

2 Data and methodology

Labour market data encodes the information as events that can be either the be-
ginning of a new employment contract, or its termination. Each event is associated
with a date, an employee, an employer, a professional profile and a location. The
full dataset includes 1155342 events involving 74317 local units of companies of all
sectors and sizes, as well as universities and research centres, that have either started
or terminated an employment contract in the Friuli Venezia Giulia region between
2014 and 2021.

The raw data needs to be cleaned, completed (e.g. adding implicit contract ter-
minations) and processed (e.g. identifying the actual workplace in the case of em-
ployment agencies). Moreover, the data is filtered to a subset of interest based on
occupations, which for this paper is limited to professional groups ISCO-21 (sci-
ence and engineering occupations) and ISCO-25 (information and communication
technology occupations) as defined by the International Standard Classification of
Occupations 2008 [2]. The resulting data set includes about 60164 events, which
involve 1890 employers and 16474 employees.

Further analysis is based on a network in which vertices encode employers and
edges encode the transition of an employee P from employer A to employer B.
Transitions are assigned a weight which represents the relevance of the connection
between A and B. The basic option is to assign a weight W = 1.0 to each transition;
although this leads to valid results, we argue that it does not exploit the potential of
the data. In this study, the weights are assigned under the assumption that the expe-
rience gained by P while working for A is transferred to B. Our data cannot capture
the intrinsic economic value of each transfer, so we have chosen to approximate it
with a non-linear parameter W . Let DA

P be the duration of the contracts of P with A,
DB

P be the duration of the contracts of P with B (both expressed in years), and maxW
be a threshold that model the fact that experience gained in previous workplaces
is no longer relevant. Our analysis assumes that W = min(DA

P,D
B
P,maxW ) where

maxW = 5.0.
The resulting network, after simplification (removal of loops and multiple edges)

and pruning of isolated vertices, has a main component of 734 vertices (i.e. em-
ployers), two components of size 6 and 4, and 145 other components of size 3 or 2.
The subsequent analysis is performed only on the main component. The strength of
vertices (i.e. the sum of edge weights of the adjacent edges for each vertex) spans
several orders of magnitude, from 0.008 to 309. We assessed the centrality of ver-
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Fig. 1 Universities of Udine and Trieste (blue diamonds), SISSA - Scuola Internazionale Supe-
riore di Studi Avanzati (brown diamond) and Elettra Sincrotrone (pink square) are among the top
ranking nodes of the network. Other research centers play a mayor role in terms of coreness and
strength.

tices by calculating their coreness. The coreness of a vertex is k if it belongs to
the k-core but not to the (k + 1)-core, where the k-core of a graph is a maximal
sub-graph in which each vertex has at least k edges. A scatter plot of strength and
coreness is shown in Figure 1, providing some insight into the general structure of
the network.

We aim to partition our network in a number of communities, in which ver-
tices are strongly connected amongst each other, but weakly connected with ver-
tices belonging to other communities. We require our algorithm to identify only
relevant communities and to group all sort of trivially small communities in a meta-
community labeled as community 0. Examples of trivially small communities are
those composed of a single vertex or a couple of vertices joined by a single edges;
or communities composed by several vertices with extremely weak edges. Finally,
we need our algorithm to deliver robust results, that depend as little as possible from
random initialisation parameters.

Modularity-based methods are often used for community detection because they
meet most of the above requirements. Given a network G partitioned into a number
of communities Gi, modularity Q(G,Gi) is a function measuring the extent to which
edge density is higher within than between communities [5]. A partition of G that
maximises Q results in communities that have strong internal connections and weak
connections with other communities. A commonly used method to identify the op-
timal community structure in labour market networks is the ”Louvain” algorithm,
as introduced by [3] and implemented in the iGraph library in the R programming
language. It initiates by partitioning the network so that each vertex is assigned to
a single community. Then, starting with a random vertex Vi, it computes the poten-
tial variation in modularity ∆Qi j that would occur by aggregating Vi to each of its
neighbours Vj. If max(∆Qik) > 0 then, Vi is removed from its original community
and aggregated to the neighbour Vk that maximises the gain. The number of com-
munities is thus reduced, and process is repeated sequentially for all other vertices
until max(∆Qik)≤ 0 . This approach has two known drawbacks. First, the algorithm
is greedy and identifies local maxima. Second, the number of communities and the
assignment may vary each time the algorithm is run, since the results depend on the
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random choice of the initial node Vi and the arbitrarily chosen sequence of vertices.
A further source of variability is the parameter γ (resolution), which sets an arbitrary
trade-off between intra-community edges and inter-community edges, and allows to
influence the distribution of community sizes to some extent, as explained by [6].
A typical approach to deal with results depending on random initialization is to run
the community detection algorithm for Ni iteration (which leads to Ni different local
maxima) and selecting the iteration that produced the highest modularity.

We suggest a further improvement that exploits the intrinsic variability of Lou-
vain algorithm, using an approach similar to the well known random forest algo-
rithm. The Louvain community detection algorithm is repeated Ni times, and at each
iteration a randomly chosen fraction α of edges is assigned a weight W0 (small, but
non-zero) and γ is randomly assigned to a range of values around 1.0 . The result-
ing network is not loosing connectivity (but edges associated with reduced weight
are more likely to be assigned to different community at each run) and the size of
communities varies at each run.

Fig. 2 Variability of results:
assignation of a node to a
community and total number
of communities identified de-
pend on random initialisation
and resolution paramter.

For a network G composed of Nv vertices, results are in the form of a matrix A
of size Nv×Ni recording the community assignation for each iteration. The con-
sensus algorithm counts how many times a pair of vertices Vi and Vj are assigned to
the same community. The final result of consensus algorithm is a matrix C of size
Nv × 2 in which each vertex (employer) is assigned to a community and a propor-
tion of membership PVi ∈ [0,1]. Vertices that are strongly connected to one another
are always assigned to the same community and have PVi = 1; lower values of PVi

indicate that the vertex is not strongly connected to its neighbours, and it may be
assigned to two or more communities with some degree of confidence.

Trivially small communities of size Scommunity < Scmin , and single vertices with
PVi < 0.5 are all assigned to a meta-community labelled as ”community 0”. In pres-
ence of more than one component, components of size Scomponent < Skmin are also
assigned to ”community 0”.

3 Results and discussion

Communities consist of vertices (i.e. employers) with stronger links to each other
than to other communities. In terms of innovation patterns, this can be interpreted
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as knowledge transfer being more relevant among members of the same community
than from one community to another. The fact that research centres are at the heart of
their respective communities shows that the transfer of staff is an effective means of
transferring knowledge, experience and innovation between academia and industry.
Applying the above methodology to in Friuli Venezia Giulia region, we observed
that communities are generally characterized by a central vertex (a large company,
university or research center), a few prominent elements with a high proportion
of membership and a large number of smaller companies. Figure 3 highlights the
structure of selected communities in the strength-coreness scatterplot.

Fig. 3 Some examples of communities. The size of vertices is proportional to their degree, and
color scale reflects the proportion of membership (green vertices have a proportion of membership
Pi > 0.9). Meta-community 0 is composed of several unconnected small communities and individ-
ual vertices with Pi < 0.5. Most communities have one or two central node of high coreness and
strength.

As highlighted in Figure 4 research institutions play a prominent role in the re-
gional labour market, as expressed by the high coreness values and their role within
their community. Specifically, the two universities operating in the region (Uni-
versity of Trieste and University of Udine) belong to the largest community (la-
belled as Community 1, size 89), have comparable values of coreness and largely
surpass other large enterprises. Other major research institutions (namely Elettra
Sincrotrone Trieste and the National Institute of Oceanography and Applied Geo-
physics - OGS) belong to the same community as the universities, with comparable
strength and significantly lower values of coreness, possibly due to their sectoral
specialization. The second largest community (labeled 2, of size 78) is led by two
large industrial companies (Danieli Officine Meccaniche and Cimolai), followed by
76 other companies that have remarkably lower values of strength and coreness,
thus being much less active in receiving or transmitting knowledge and experience
within the regional economy. Similarly, the third community is led by Fincantieri, a
major player in shipbuilding, strongly connected by other companies stat are located
in the same area, or operate in similar sectors (mechanics, yacht and ship building).
Future developments of this research should focus on analysing the temporal evo-
lution of centrality indices and community structure, as well as analysing different
groups of professions.
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Fig. 4 Leading organizations within selected communities in Friuli Venezia Giulia region. Com-
munity 1: University of Trieste, University of Udine, SISSA and OGS. Community 2: Danieli
Officine Meccaniche and Cimolai. Community 3: Fincantieri and other companies in the maritime
sector.

Code Availability: Code for data analysis associated with the current submission
is available at https://doi.org/10.5281/zenodo.7609224. Any updates will also be
published on Zenodo.
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