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Background Several risk factors have been identified to

predict worse outcomes in patients affected by SARS-CoV-

2 infection. Machine learning algorithms represent a novel

approach to identifying a prediction model with a good

discriminatory capacity to be easily used in clinical practice.

The aim of this study was to obtain a risk score for in-

hospital mortality in patients with coronavirus disease

infection (COVID-19) based on a limited number of features

collected at hospital admission.

Methods and results We studied an Italian cohort of

consecutive adult Caucasian patients with laboratory-

confirmed COVID-19 who were hospitalized in 13

cardiology units during Spring 2020. The Lasso procedure

was used to select themost relevant covariates. The dataset

was randomly divided into a training set containing 80% of

the data, used for estimating the model, and a test set with

the remaining 20%. A Random Forest modeled in-hospital

mortality with the selected set of covariates: its accuracy

was measured by means of the ROC curve, obtaining AUC,

sensitivity, specificity and related 95% confidence interval

(CI). This model was then compared with the one obtained

by the Gradient Boosting Machine (GBM) and with logistic

regression. Finally, to understand if each model has the

same performance in the training and test set, the two AUCs

were compared using the DeLong’s test. Among 701

patients enrolled (mean age 67.2W13.2 years, 69.5% male

individuals), 165 (23.5%) died during a median

hospitalization of 15 (IQR, 9–24) days. Variables selected by
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the Lasso procedure were: age, oxygen saturation, PaO2/

FiO2, creatinine clearance and elevated troponin. Compared

with those who survived, deceased patients were older, had

a lower blood oxygenation, lower creatinine clearance levels

and higher prevalence of elevated troponin (all P<0.001).

The best performance out of the samples was provided by

Random Forest with an AUC of 0.78 (95%CI: 0.68–0.88) and

a sensitivity of 0.88 (95% CI: 0.58–1.00). Moreover, Random

Forest was the unique model that provided similar

performance in sample and out of sample (DeLong test

PU0.78).

Conclusion In a large COVID-19 population, we showed

that a customizable machine learning-based score derived

from clinical variables is feasible and effective for the

prediction of in-hospital mortality.

Keywords: coronavirus disease 2019, inflammation, machine learning
methods, mortality score
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Introduction
Regardless of the measures put in place to contain the

spread of coronavirus disease 2019 (COVID-19), Severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

has affectedmore than190millionpeople, resulting inover

4milliondeaths as of July 2021,with a significant impact on

the healthcare system worldwide, overwhelming the local

medical resources. SARS-CoV-2 infection ranges from

mild or asymptomatic status to severe viral pneumonia

with respiratory insufficiency. Insomecases, there isa rapid

and often unpredictable clinical deterioration with the

appearance of multiorgan failure and even death. As pre-

viously reported, patients with risk factors including con-

comitant cardiovascular disease on admission, history of

heart failure, older age, and immunosuppression have an

extremely poor prognosis, with higher mortality and ele-

vated risk of ARDS (acute respiratory distress syndrome),

thrombo-embolic events, and septic shock.1–3 Identifying

patients at a higher risk of events or those that already have

severity markers of infection enables the adoption ofmore

targeted therapeutic strategies, potentially improving the

prognosis and allowing a better use of available resources.

To date, clinical models have been developed to predict

worse outcomes among COVID-19 patients. Neverthe-

less, despite the predominant prognostic role of cardiovas-

culardisease, fewdataderive fromaCOVID-19population

with a relevant burden of cardiovascular comorbidities.

By the application of machine learning algorithms, the

aim of our study is to identify the most important vari-

ables collected at hospital admission in COVID-19

patients that have a strong impact on the death predic-

tion. Moreover, a risk score was developed to predict the

in-hospital mortality of COVID-19 patients when they

arrive in the cardiology units (independently from the

time to death) based on a limited number of features.

Methods
Population and outcome
This multicenter observational study involved a cohort of

consecutive adult Caucasian patients with laboratory-

confirmed COVID-19 who were hospitalized in 13 Italian

cardiology units from 1 March to 9 April 2020.4–6 Diag-

nosis of COVID-19 was made by real-time reverse tran-

scriptase-PCR (RT-PCR) assay of nasal and pharyngeal

swabs. RT-PCR of lower respiratory tract aspirates was

also performed when clinically indicated. Acute cardio-

vascular diagnosis (i.e. acute heart failure, acute coronary
syndrome and new-onset arrhythmias) upon admission

were exclusion criteria. Patients were followed up after

the COVID-19 diagnosis and all causes of in-hospital

mortality or dischargewere ascertained until 23April 2020.

This study complied with the Declaration of Helsinki

and was approved by the ethical committee of Spedali

Civili di Brescia, Brescia, Italy (no. NP 4105), and each

recruiting center.

Data collection
Patients’ data at admission were extracted from the

electronic medical records of each designated hospital.

Detailed demographics information, medical history

(particularly cardiovascular diseases), and in-hospital

clinical course including treatments were recorded. Lab-

oratory examinations including routine blood tests;

lymphocyte subsets; inflammatory or infection-related

biomarkers; and cardiac, renal, liver, and coagulation

function tests were obtained at initial diagnosis. Renal

function was measured as estimated glomerular filtration

rate (eGFR) and was calculated by the chronic kidney

disease epidemiology collaboration equation7; chronic

kidney disease was defined when eGFR was less than

60ml/kg/1.73m2. Cardiac injury was defined by plasma

levels of high-sensitivity troponin, either troponin T or

troponin I, greater than the 99th percentile of normal

values, as per manufacturer’s indications.

Statistical analysis
Variables with more than 20% of missing values were

excluded from the analyses.

To obtain a risk score of in-hospital mortality for COVID-

19 based on a limited number of covariates, a variable

selection method was used, namely the Lasso procedure,

where the l parameter was set to retain only ffi12% of

covariates. For estimating Lasso, missing values must be

imputed, and to do this the MissForest algorithm8 was

chosen; it is able to deal with multivariate data consisting

of continuous and categorical variables simultaneously.

This imputation method, well suited when data are then

modeled by means of ensemble tree procedures, con-

siders complex interactions and nonlinear relationships

and is robust to noisy data and multicollinearity.

For the variables selected by Lasso, data were presented

stratified by death status. Continuous variables were

shown as means and standard deviations, skewed vari-

ables as medians and interquartile ranges (IQR),

mailto:carlo.lombardi@unibs.it


Table 1 Distribution of the selected variables in the study sample
stratified by death status

Variables

Alive (N¼536) Dead (N¼165)

N N P-value

Age (years) 536 65.0�13.2 165 74.6�10.2 <0.001a

Oxygen saturation
(ambient air,%)

524 93 (89-96) 163 89 (82–94) <0.001b

PaO2/FiO2 (mmHg/%) 469 257 (147–329) 139 158 (101–249) <0.001b

Creatinine clearance
(ml/min)

525 80 (59–93) 160 57 (33–81) <0.001b

Troponin (elevated, %) 466 174 (37.3) 148 104 (70.3) <0.001c

Data shown as mean� standard deviation, median (IQR), or count (%). a t-test.
bWilcoxon test. cChi-squared test.
dichotomous variables as counts and percentages. Com-

parisons were made, respectively, using t test for means,

Wilcoxon test for medians and chi-squared test

for proportions.

Spearman correlations (rS) between couples of variables

were visualized by means of a correlation plot where blue

and red circles correspond to positive and negative cor-

relations, respectively.9–11 The circle diameters and color

intensity are proportional to the magnitude of the Spear-

man indexes (bigger circles with more intense colors

correspond to higher correlations) and black crosses on

them identify correlation not significantly different from

zero (P-values >0.05). The correlation matrix was reor-

dered according to the hierarchical cluster analysis on

the quantitative variables. To overcome potential multi-

collinearity problems and modeling nonlinear relation-

ships,12–15 in-hospital mortality of COVID-19 (outcome)

was estimated by means of a Random Forest,16 an en-

semble tree method17,18 belonging to the machine learn-

ing approach,19 where the covariates were the variables

selected by Lasso. The dataset was randomly divided in

two subsamples with the same percentage of dead/alive

people of the entire sample: the training set contained

80% of the data and the test set the remaining 20%. The

training set was used for estimating Random Forest,

which modeled in-hospital mortality with the covariates

selected by Lasso. Its accuracy was measured bymeans of

the ROC curve, extracting AUC, the optimal threshold

obtained with the Youden index, accuracy, sensitivity,

specificity, negative predictive values (NPV), positive

predictive values (PPV) and related 95% CI computed

with 10 000 stratified bootstrap replicates. Moreover, the

Brier score is used for model comparison. In order to

identify which variables have the best predictive power,

the relative Variable Importance Measure (relVIM,

known as Total Decrease in Node Impurity) was esti-

mated. relVIM computes the importance of each feature

as the sum over the number of splits across all trees

containing the feature, proportionally to the number of

samples it splits. This measure provides a ranking from

the most (relVIM ¼ 100) to the less important variable

and it is visualized by means of a bar plot. Finally, the

marginal effect that one variable has on the predicted

outcome of Random Forest was visualized by means of a

2D plot called a Partial Dependence Plot (PDP). This

graph reports in the x-axis one covariate and in the y-axis
the Random Forest predictions, showing if their relation-

ship is linear, monotonic or more complex. Results show a

PDP for each feature selected by the Lasso procedure

and used as a covariate in Random Forest. The model

obtained was compared with another ensemble tree

method, which follows the idea of perturbing and com-

bining nonaccurate trees, namely the Gradient Boosting

Machine20 (GBM), and with the logistic regression where

the continuous variables were treated as Restricted Cubic

Splines with five nodes. In the case of logistic regression,
3

predictions were cross validated (10-fold) to make logistic

regression performance comparable with Out-Of-Bag

(OOB) predictions of Random Forest and GBM. Finally,

to understand if each model had the same performance in

sample (training) and out of sample (test), the two AUCs

were compared by means of the DeLong’s test. Details

on parameters of the machine learning algorithms used in

this article are reported in Table S2, Supplementary

Materials, http://links.lww.com/JCM/A463.

Statistical analyses were performed using R version 4.1.0

(R Core Team 2019, Vienna, Austria) and SAS statistical

software version 9.4 (SAS Institute, Inc., Cary, North

Carolina, USA).

Results
Between 1 March and 9 April 2020, 701 patients were

enrolled (mean age 67.2� 13.2 years, 69.5% male indi-

viduals) of whom 165 (23.5%) died during a median

hospitalization of 15 (IQR, 9–24) days.

Original dataset contained 53 variables: 12 of these were

excluded because of the percentage of missing values

(>20%). The remaining were imputed by the MissForest

algorithm, selected by the Lasso procedure where l was

set as equal to 0.07 to retain only five variables (ffi12%)

resulting in a risk score based on a limited number

of covariates.

Variables selected by the Lasso procedure, stratified by

death status, are shown in Table 1. Compared with those

who survived, deceased patients were older (mean age

74.6� 10.2 vs. 65.0� 13.2 years; P-value <0.001), with a

lower oxygen saturation and PaO2/FiO2 ratio [89 (IQR,

82–94) vs. 93 (IQR, 89–96) and 158mmHg/% (IQR,

101–249) vs. 257 (IQR, 147–329) respectively; both P-
values <0.001] and lower creatinine clearance levels

[57ml/min (IQR, 33–81) vs. 80 (IQR, 59–93); P-value
<0.001] (Table 1). A higher prevalence of patients with

elevated troponin values was found among those who

died (70.3 vs. 37.3%: P-value <0.001). Table S1, http://

links.lww.com/JCM/A463 in Supplementary Materials

http://links.lww.com/JCM/A463
http://links.lww.com/JCM/A463
http://links.lww.com/JCM/A463


Fig. 1

Correlation plot on variables selected by the Lasso procedure (rS). The circle diameter and the color intensity are proportional to the strength of the
Spearman correlation between the variables. Grey and light greys represent a positive or negative relationship, respectively. Correlations without the
black symbol X are statistically significant (P-values <0.05).
reports the descriptive statistics for the remaining 35

variables in the dataset, stratified by death status.

Spearman correlation coefficients (rS) computed be-

tween couples of the quantitative variables selected by

the Lasso procedure (troponin was excluded from this

analysis as it is a dichotomic variable) are visualized by

means of a correlation plot (Fig. 1). The graph highlights

a strong negative correlation between age and creatinine

(rS¼�0.56; P-value <0.001) and a positive correlation

between oxygen saturation and PaO2/FiO2 (rS¼ 0.61; P-
value <0.001).

The dataset was randomly divided into two subgroups:

training (80% of patients, Ntrain¼ 561) and test set

(remaining 20%, Ntest ¼140), used for estimating and

validating the model, respectively. The random partition

of patients in these two sets was performed stratifying
Table 2 Performance metrics of Random Forest, Gradient Boosting M

Metrics

Random Forest (RF) Gradient

Training set (in sample) Test set (out of sample) Training set (in

AUC (95% CI) 0.77 (0.72–0.81) 0.78 (0.68–0.89) 0.85 (0.81–0
Thresholda (95% CI) 0.23 (0.11- 0.29) 0.21 (0.17–0.43) 0.24 (0.18–0
Accuracy (95% CI) 0.70 (0.59- 0.75) 0.71 (0.60–0.85) 0.77 (0.70–0
Sensitivity (95% CI) 0.79 (0.69–0.94) 0.88 (0.58–1.00) 0.87 (0.76–0
Specificity (95% CI) 0.68 (0.49–0.76) 0.65 (0.52–0.92) 0.72 (0.64–0
NPV (95% CI) 0.91 (0.88–0.97) 0.95 (0.88–1.00) 0.94 (0.91–0
PPV (95% CI) 0.42 (0.35–0.48) 0.42 (0.34–0.67) 0.50 (0.43–0

AUC,areaunder thecurve;CI, confidence interval;NPV,negativepredictivevalues;PPV,po
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with respect to the outcome. In this way, the two sub-

groups contained the same percentage of dead people of

the entire sample (23.54%).

The risk score for predicting mortality was estimated on

the training set by means of Random Forest where the

covariates were the five selected variables by the Lasso

procedure: age, oxygen saturation, PaO2/FiO2, creatinine

clearance, troponin.

Accuracy in sample (training) and out of sample (test) was

measured by the ROC curve: AUC, the optimal threshold

obtained with the Youden index, accuracy, sensitivity,

specificity, NPV, PPV (with corresponding 95% CI) are

reported in Table 2, separately for the Random Forest,

the GBM and the logistic regression model. Figure 2

visualizes the ROC curves of the three models computed

in training (blue lines) and in test (red lines).
achine and Logistic regression

Boosting Machine (GBM) Logistic regression

sample) Test set (out of sample) Training set (in sample) Test set (out of sample

.88) 0.75 (0.65–0.84) 0.77 (0.72–0.81) 0.52 (0.40–0.65)

.29) 0.25 (0.17–0.33) 0.20 (0.15–0.37) 0.15 (0.01–0.55)

.82) 0.72 (0.59–0.83) 0.68 (0.60–0.79) 0.58 (0.34–0.75)

.94) 0.73 (0.55- 0.94) 0.79 (0.55–0.89) 0.63 (0.09–1.00)

.82) 0.76 (0.47–0.87) 0.64 (0.53–0.85) 0.46 (0.20- 0.95)

.97) 0.91 (0.85–0.98) 0.91 (0.86–0.95) 0.80 (0.74–1.00)

.58) 0.45 (0.35–0.62) 0.41 (0.35–0.55) 0.35 (0.29–1.00)

sitivepredictivevalues. a The threshold was computed bymeans of the Youden index
)

.



Fig. 2
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ROC curves of Random Forest, Gradient Boosting Machine and Logistic regression.
Given that an accurate model should have good predic-

tions also on observations not used in the training set,

Random Forest shows the best performance [from

Table 2, the most interesting metrics are: AUC 0.78

(95% CI: 0.68–0.89), sensitivity 0.88 (95% CI: 0.58–

1.00) and specificity 0.65 (95%CI: 0.52–0.92)]. Moreover,

Random Forest is the unique model that shows same

performance in sample and out of sample (DeLong’s test

P-value ¼ 0.782); on the contrary, for GBM and logistic

regression the DeLong’s test P-values are 0.047 and

less than 0.001, respectively. Finally, the smallest Brier

Score (computed out of sample) is in correspondence with

Random Forest (BS ¼ 0.14) confirming that this model is

more accurate than GBM (BS¼ 0.15) and logistic regres-

sion (BS¼ 0.22). For better understanding of Random

Forest, two additional pieces of information were

extracted: the relVIM and the PDPs. The relVIM

(Fig. 3a) shows a ranking from the most (creatinine clear-

ance, relVIM¼ 100) to less important variables (troponin,

relVIM¼ 30.37) in predicting the mortality in patients

hospitalized for COVID-19.

The five PDPs (one for each covariate in themodel), from

Fig. 3b–f, show the nonlinear relationships between a

variable (x-axis) and the risk score (y-axis, called the

mortality risk score) of in-hospital death for COVID-19

patients obtained from Random Forest. Note that when

creatinine clearance, PaO2/FiO2, and oxygen saturation

increase, the risk score decreases. Otherwise, when age

and troponin increase, the risk score increases.

Discussion
In our study, we developed amachine learning-based risk

score to predict mortality among COVID-19 patients

hospitalized in several Italian cardiology units. Machine

learning methods have the advantage of overcoming

problems related to multicollinearity, missing values,
5

and mixed-type variables (qualitative and quantitative).

Moreover, they model nonlinear relationships between

outcome and covariates and the predictions obtained are

more accurate with respect to classical models (e.g.

logistic regression). Combining machine learning algo-

rithms with the Lasso procedure that selects only the

strongest predictors of the outcome produces an in-hos-

pital death risk score easily interpretable and based on

data that could simply be acquired on admission to the

cardiology units.

The proposed score is based on readily available clinical

characteristics to be screened at hospital admission. The

model achieved a good statistical performance out of a

sample with an AUC of 0.78 (95% CI: 0.68–0.89) and a

sensitivity of 0.88 (95% CI: 0.58–1.00), proving a not

inferior performance to existing models in literature. In

fact, during the COVID-19 pandemic, several risk strati-

fication scores using clinical parameters have been elab-

orated to predict severity and in-hospital mortality,

allowing a better management of patients and optimiza-

tion of resource allocation.

A robust and validated risk stratification model has been

proposed by the ISARIC 4C investigators, the 4C Mor-

tality Score, which is based on eight variables readily

available at initial hospital assessment: age, sex, number

of comorbidities, respiratory rate, peripheral oxygen sat-

uration, level of consciousness, urea level and C-reactive

protein.21 The model showed high discrimination for in-

hospital death with an AUC of 0.79 (95% CI: 0.78–0.79)

within the derivation cohort. Similar discriminatory ca-

pacity has been achieved by the Piacenza score, consist-

ing of six variables (age, mean corpuscolar hemoglobin

concentration, PaO2/FiO2 ratio, temperature, previous

stroke and gender).22 The score has been created to

predict mortality in 852 patients hospitalized for

COVID-19 pneumonia and achieved comparable
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predictive power, despite the smaller number of patients

considered, with an AUC of 0.78 (95% CI: 0.74–0.84,

Brier score ¼ 0.19), sensitivity of 94% and specificity of

37%. Yuan et al.23 developed an easier prognostic risk

score that included uniquely laboratory markers: lactate

dehydrogenase, high-sensitivity C-reactive protein, and

lymphocyte percentage. The accuracy in predicting the

risk of mortality was more than 95%, but did not take into

account clinical conditions and comorbidities that could

significantly affect outcomes. Moreover, the cohort under

investigation was predominantly represented by patients

with severe or critical COVID-19 disease, and it therefore

may not be as accurate in the case of asymptomatic or

mild forms. Some differences in variables identified may

be related to the population enrolled. In our study, we

investigated a large cohort of patients hospitalized for

COVID-19 infection in several Italian cardiology units,

with variable degrees of disease severity and a higher

burden of cardiovascular disease. Our results are consis-

tent with available evidence and show that the main

drivers related to COVID-19 mortality are older age,

lower oxygen saturation and PaO2/FiO2 ratio, lower
6

creatinine clearance values and elevated serum troponin

levels. The higher proportion of cardiovascular comor-

bidities in our population may have influenced the

observed results.

Age and respiratory parameters are common in different

models and are crucial in predicting risk of death. In

previous reports, hospital mortality ranged from less than

5% among people under the age of 40 years to 35% for

patients aged 70–79 years and higher than 60% for those

aged over 80 years.24 Older patients are at a higher risk of

worse outcome because of the higher burden of comor-

bidities and frailty. From the PDPs (Fig. 3d), the risk

appears higher for those above 60 years old with a linear

trend above this cut-off.

After adjustment for age-related risk factors, a 2.7% risk

increase for disease severity was observed, without any

additional risk for death per year of age.25 The higher

susceptibility to COVID-19 may be linked to an age-

related defect in immune function and control of viral

replication, with prolonged proinflammatory responses

and a more pronounced procoagulant state.26



As found in our results, assessment of respiratory param-

eters is critical for early detection of respiratory failure.

SpO2 93% or less and PaO2/FiO2 less than 300mmHg are

two parameters used to identify severe COVID-19 in

adults, in addition to the presence of dyspnea, tachypnea

with greater than 30 breaths per minute and evidence of

infiltrates in more than 50% of the lung field.27 This has

been confirmed from our analysis that showed a similar

threshold of severity. From PDPs (Fig. 3c and e), lower

values of both PaO2/FiO2 and oxygen saturation at ad-

mission identify patients with a higher lung involvement

and disease severity. The thresholds are consistent from

the physiological and clinical perspective with a higher

risk below 300 and 85%, respectively. These parameters

are essential for early recognition of respiratory insuffi-

ciency and to optimize the breathing support, allowing a

better prognosis.28,29

Inour study, impaired renal functionhas alsoproved tobea

relevant factor. This may in part be related to the high

percentage of renal insufficiency encountered in our pop-

ulationandtoagreater susceptibility to thedevelopmentof

kidney damage in patients with cardiovascular disease.

It has been shown that patients with concomitant kidney

disease have a significantly higher risk of in-hospital death.

In fact, elevated serum creatinine, elevated blood urea

nitrogen, acute kidney injury at baseline, as well as the

presence of proteinuria and/or hematuria are independent

risk factors for in-hospital mortality after adjusting for con-

founders.30 Lower levels of creatinine clearance on admis-

sion could also be related to direct kidney involvement by

SARS-CoV-2 infection and secondary systemic effects.31

Finally, cardiac involvement and detection of myocardial

injury are common findings in COVID-19, reported in

about 7.2% of all patients and, in particular, in 22.2% of

those admitted to the ICU.32,33 Increased troponin con-

centration on admission represents a marker of disease

severity and may predict a worse outcome, as it is associ-

ated with mortality and elevated risk of cardiovascular

and noncardiovascular complications (i.e. heart failure,

sepsis, acute kidney failure, multiorgan failure, pulmo-

nary embolism, delirium, major bleeding), irrespective of

concomitant cardiac disease.4,34

Limitations
Our population was characterized by a significant burden

of cardiovascular comorbidities justifying the relatively

high rate of death. Data derive from the first pandemic

wave when no effective treatment strategies were avail-

able. This should be considered for the interpretation of

the results. Our analysis lacks postdischarge follow-up

data, thus we could not assess long-term mortality.

Conclusion
In a large COVID-19 population, we showed that a

customizable machine learning-based score derived from
7

clinical variables is feasible and effective for the predic-

tion of in-hospital mortality.

This score showed good performances in terms of sensi-

tivity and involves only five clinical parameters that may

be obtained quickly at the emergency department, sup-

porting clinicians in identifying patients with a higher

risk of developing complications, which might need a

more aggressive treatment.
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