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ABSTRACT

Aims. Traditional star-galaxy classification techniques often rely on feature estimation from catalogs, a process susceptible to intro-
ducing inaccuracies, thereby potentially jeopardizing the classification’s reliability. Certain galaxies, especially those not manifesting
as extended sources, can be misclassified when their shape parameters and flux solely drive the inference. We aim to create a robust
and accurate classification network for identifying stars and galaxies directly from astronomical images.
Methods. The AutoSourceID-Classifier (ASID-C) algorithm developed for this work uses 32x32 pixel single filter band source cutouts
generated by the previously developed AutoSourceID-Light (ASID-L) code. By leveraging convolutional neural networks (CNN) and
additional information about the source position within the full-field image, ASID-C aims to accurately classify all stars and galaxies
within a survey. Subsequently, we employed a modified Platt scaling calibration for the output of the CNN, ensuring that the derived
probabilities were effectively calibrated, delivering precise and reliable results.
Results. We show that ASID-C, trained on MeerLICHT telescope images and using the Dark Energy Camera Legacy Survey
(DECaLS) morphological classification, is a robust classifier and outperforms similar codes such as SourceExtractor. To facilitate
a rigorous comparison, we also trained an eXtreme Gradient Boosting (XGBoost) model on tabular features extracted by SourceEx-
tractor. While this XGBoost model approaches ASID-C in performance metrics, it does not offer the computational efficiency and
reduced error propagation inherent in ASID-C’s direct image-based classification approach. ASID-C excels in low signal-to-noise ratio
and crowded scenarios, potentially aiding in transient host identification and advancing deep-sky astronomy.

Key words. methods: data analysis – techniques: image processing – astronomical databases: miscellaneous – stars: imaging –
Galaxies: statistics

1. Introduction

Current and future large-scale astronomical photometric surveys
are amassing, and will continue to amass, vast quantities of pho-
tometric data, including millions of images containing billions
of stars and galaxies. This data influx necessitates a series of
processing steps, such as source localization, anomaly detection,
feature extraction, and star-galaxy classification, to be further
optimized for efficiency in terms of both time and computational
resources. With the advent of CMOS detectors capable of captur-
ing large-format images of the night sky at cadences exceeding

1Hz, traditional methods and software for data processing will
be inadequate to keep pace with the data acquisition rate.

To address this challenge, our research aims to enhance
and streamline existing methods using machine learning tools.
In AstroSourceID-Light (ASID-L; Stoppa et al. 2022), we
demonstrated the potential for rapid and accurate source iden-
tification on images, achieving this in a fraction of the time
required by the currently used methods. Building on this founda-
tion, we now focus on star-galaxy classification, a fundamental
data-processing task, and often the initial step for the scien-
tific exploitation of survey data. Despite advances in source
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Fig. 1. Cutouts of stars (left) and galaxies (right) for S/N = {4, 10, 25,
65} (top to bottom). The source is always at the center of the cutout. At
a low S/N, sources are barely discernible, making their classification a
complex task.

localization and feature extraction algorithms, there remains
significant potential for improvement in star-galaxy classifica-
tion methods, which are often applied from catalogs rather
than directly from source images (Weir et al. 1995; Ball et al.
2006; Vasconcellos et al. 2011; Sevilla-Noarbe et al. 2018). Cur-
rent classification methods, including classification tree methods
based on the morphological features of the sources and Bayesian
approaches that integrate available source information with prior
knowledge about nearby star and galaxy populations, are preva-
lent but there is room for improvement (Henrion et al. 2011;
López-Sanjuan et al. 2019).

Similar to many areas of astronomy, data analysis in star-
galaxy classification has seen a surge in machine learning appli-
cations. The first machine learning application for star-galaxy
classification was introduced in Odewahn et al. (1992), and it
quickly became a core component of the astronomical image
processing software SourceExtractor (Bertin & Arnouts 1996).
More recently, a series of studies have employed various neu-
ral network architectures to address the star-galaxy classification
problem (Odewahn et al. 2004; Fadely et al. 2012; Cabayol et al.
2018), with significant progress made in Kim & Brunner (2016).
In this study, the authors demonstrated the effectiveness of con-
volutional neural networks (CNNs) in learning features directly
from multiband (ugriz) optical images of different sources.
When applied to the Canada–France–Hawaii Telescope Lensing
Survey dataset (Heymans et al. 2012), their network was able
to generate a classification score that matched the accuracy of a
random forest-based algorithm (Breiman 2017), but with better-
calibrated probability estimates, indicating a promising avenue
for future research in this field.

Most of the methods mentioned above operate under the
assumption that galaxies manifest as extended sources while
stars appear as point sources. However, this distinction becomes
less clear at fainter magnitudes and higher redshifts, where the
morphological features of galaxies are less discernible. As a
result, the effectiveness of these methods decreases under such
conditions. Our study addresses this challenge by aiming to accu-
rately classify all stars and galaxies within a survey, with a
particular focus on those with a signal-to-noise ratio (S/N) near
the detection limit, as illustrated in Fig. 1.

This task presents a unique set of challenges, primarily due to
the need to identify a limited range of morphological character-
istics. These challenges are further complicated by our deliberate

choice of single-band images. To address this, we have designed
our method to be band-agnostic, allowing for flexibility in the
choice of filters without compromising performance. While
multiband sets of the same source would undoubtedly enrich the
classification process, our approach is optimized to be effective
even with a single image. This proves particularly advantageous
for small- to medium-sized optical telescopes, where acquiring
multiband data may not always be feasible or could be resource-
intensive. By focusing on single-band images, we eliminated
the need for repeated observations of the same source, thereby
simplifying data acquisition. Furthermore, we introduced an
ensemble technique, detailed later in this paper, that allows for a
straightforward extension of our method to multiband images.
This not only refines our classification methodology but also
provides a clear path for adapting it to more complex datasets.

Given these challenges and the potential of single-band
imagery, we have developed the AutoSourceID-Classifier
(ASID-C). This tool is designed to take optical image cutouts of
sources, which in our case are retrieved with ASID-L, and their
positions in the full telescope image as input, and then output
a probability for each source being either a star or a galaxy. To
ensure the validity of our classification model’s predictions, we
have employed an enhanced Platt scaling method (Platt 1999) to
calibrate the network’s outputs.

The method presented here1 is the fourth deep learning
algorithm developed in the context of MeerLICHT/BlackGEM
telescopes (Bloemen et al. 2016; Groot et al. 2022), following
MeerCRAB, an algorithm for classifying real and bogus tran-
sients (Hosenie et al. 2021), ASID-L for source localization
(Stoppa et al. 2022), and ASID-FE for feature extraction (Stoppa
et al. 2023). Building on these deep learning algorithms, our
ultimate goal is to establish the first fully automated machine
learning detection pipeline for small- to medium-sized opti-
cal telescopes, thereby facilitating more efficient and accurate
astronomical observations and analyses.

The rest of this paper is organized as follows: Sect. 2 pro-
vides details on the datasets used and the preprocessing steps
undertaken. Section 3 describes the model, while Sect. 4 presents
the results, including a comparison with SourceExtractor (Bertin
& Arnouts 1996), a widely used tool for optical image analy-
sis. Finally, in Sect. 5, we present our conclusions and discuss
potential scientific applications of our tool.

2. Data

To develop our classifier, we constructed a dataset compris-
ing source cutouts from images captured by the MeerLICHT
telescope, paired with morphological classifications of sources
from the Dark Energy Camera Legacy Survey (DECaLS; Blum
et al. 2016). To the best of our knowledge, this dataset, con-
taining approximately 12 million source cutouts, is the largest
ever assembled for star-galaxy image classification in a machine
learning context. In the following section, we outline the tele-
scopes and catalogs used to create this dataset and provide a
brief overview of the preprocessing steps involved in obtaining
the image cutouts.

2.1. MeerLICHT images

The MeerLICHT telescope, which pairs a 65cm diameter pri-
mary mirror with a 10.5k × 10.5k CCD detector, creates a
2.7 square degree monolithic field-of-view, sampled at

1 https://github.com/FiorenSt/AutoSourceID-Classifier
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Fig. 2. Sky coordinates of the 718 MeerLICHT images (green dots)
overlayed on an image of the Galactic Plane. This visualization demon-
strates the diverse array of spatial densities covered by our dataset,
facilitating a thorough evaluation of our model’s capacity to classify
regions with varying degrees of crowdedness.

0.56′′ pix−1 (Bloemen et al. 2016). With an average image quality
of 2–3′′, point sources are sampled at 4–6 pixels per FWHM. The
telescope’s primary function is to enable simultaneous transient
detection at radio and optical wavelengths, working in conjunc-
tion with the MeerKAT radio telescope (Jonas & MeerKAT
Team 2016). The available filter set includes the SDSS ugriz fil-
ters and a broader q-band filter (440 − 720 nm), which roughly
combines SDSS g+ r. Images captured by the telescope undergo
processing at the IDIA/ilifu facility through the BlackBOX
software2 (Vreeswijk et al., in prep.), which handles standard
image processing tasks such as source detection, astrometric
and photometric calibration, creation of the position-dependent
point spread function (PSF), image subtraction, photometry, and
transient detection.

To construct a robust and diverse training set, we used
12 million source cutouts derived from 718 distinct, nonover-
lapping full-field images captured by the MeerLICHT tele-
scope. These images span multiple filters, including u, g, q, i, and
r bands, but it is important to note that each source appears
only once in the dataset due to the nonoverlapping nature of
the images. The selected images were marked “green” in the
pipeline, indicating they were free from obvious anomalies.
However, we did not impose any additional restrictions based
on visibility parameters. As depicted in Fig. 2, the full-field
images cover a wide range of spatial densities, from densely pop-
ulated regions along the Galactic Plane to areas characterized by
a sparse distribution of sources. This comprehensive coverage
allows us to train and test the neural network’s ability to classify
regions of varying crowdedness.

For each source in the images, a cutout of 34x34 pixels is
created with the source, previously localized with ASID-L, at its
center. This size was chosen to ensure that the vast majority of
sources are comfortably enclosed within the cutout boundaries.
For galaxies larger than 19 arcsec, the cutout will be smaller
than the source itself; however, this will not prevent our net-
work from learning that such images are likely to be galaxies.
In addition, we match these localized sources with their counter-
parts in MeerLICHT’s catalogs. These catalogs, produced using
SourceExtractor (Bertin & Arnouts 1996), provide approximate
estimates for flux, location, and a stellarity parameter, which are
useful for additional testing on the results of ASID-C. Finally,
out of these, we retain the 12 million cutouts that have a match-
ing source in the DECaLS dataset, which we discuss in more
detail in the next section.

2 https://github.com/pmvreeswijk/BlackBOX

Fig. 3. Source counts by morphology as a function of S/N for our
dataset. It reveals a 10:1 disproportion favoring stars and a distinct dif-
ference in S/N, where stars consistently display higher values.

2.2. Legacy survey

To complement the MeerLICHT images and provide a robust
basis for star-galaxy classification, we used the catalogs from
the Dark Energy Camera Legacy Survey (DECaLS), part of the
DESI Legacy Imaging Surveys.

The DESI Legacy Imaging Surveys aim to map 14 000 square
degrees of extragalactic sky in three optical bands (g, r, z) and
combine it with four mid-infrared bands from the Wide-field
Infrared Survey Explorer (WISE; Dey et al. 2019; Schlegel et al.
2021). This ambitious project is accomplished through three
imaging projects that comprise the Legacy Surveys: DECaLS,
the Beijing-Arizona Sky Survey (BASS; Zou et al. 2019), and
the Mayall z-band Legacy Survey (MzLS; Silva et al. 2016). The
current data release, Data Release 10 (DR10), is the tenth pub-
lic data release from these surveys. Source detection in DR10 is
performed using a filter matched to the PSF and spectral energy
distribution (SED) of the sources on the stacked images, fea-
turing a 6σ detection limit. Each image is processed using its
PSF model to detect sources, and these processed images are
then combined in a weighted manner to improve the detection
of point sources. DR10 provides a classification of sources into
five types based on their shape and structure, determined using
a multiband, multi-epoch photometric model, including one for
point sources and four for galaxies: round exponential galaxies
(“REX”), deVaucouleurs (“DEV”) profiles, exponential (“EXP”)
profiles, and Sersic (“SER”) profiles.

DECaLS, in particular, offers significant overlap with the
fields observed by MeerLICHT, making it an ideal choice for
our study. The depth and quality of the imaging data provided
by DECaLS allow for reliable and detailed morphological infor-
mation, which is crucial for differentiating between stars and
galaxies, especially at faint magnitudes where the morphological
features of galaxies may be less discernible. For our dataset, we
only use DR10 sources detected by both ASID-L and the Meer-
LICHT pipeline in the 718 MeerLICHT images, as this allows us
to use additional features estimated by the MeerLICHT pipeline,
such as flux and S/N.

As depicted in Fig. 3, the resulting dataset from the match
of MeerLICHT and DECaLS sources is characterized by an
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imbalance, with a 10:1 ratio favoring stars over galaxies and a
noticeable difference in the S/N range. This imbalance under-
scores the challenge of our task; while the source population is
predominantly stars at higher S/N values, the task of distinguish-
ing between stars and galaxies becomes increasingly complex at
lower S/N values.

2.3. Crossmatching with additional galaxies and quasar
catalogs

To evaluate the accuracy of the galaxy labels within our dataset,
we performed a crossmatch operation with external catalogs. For
this crossmatch, we incorporated galaxies from the Two Micron
All Sky Survey (2MASS; Skrutskie et al. 2006), the Lyon-
Meudon Extragalactic Database (LEDA; Paturel et al. 1995), and
the Kilo-Degree Survey Data Release 4 (KiDS; Bilicki et al.
2021). These galaxies were then cross-referenced with all the
12 million sources in our dataset, preserving those within a
proximity of less than 0.56 arcsec (approximately 1 pixel). Of
all the matching sources in the refined subset, approximately
12 640 galaxies, 99.3% were accurately identified as galaxies
within the Legacy survey dataset. The remaining 0.7% mis-
classified sources pose a minor concern for our analysis, likely
attributable to chance alignment and the fact that the sources we
use are in a sky section first incorporated in the Legacy Survey
in the latest DR10 release.

We further cross-referenced our catalog with a known list
of quasars retrieved from the SIMBAD astronomical database
(Wenger et al. 2000). Quasars, or quasi-stellar objects, are excep-
tionally luminous active galactic nuclei fueled by the accretion
of material onto supermassive black holes at the heart of dis-
tant galaxies. Within our star-galaxy classification dataset, a
minuscule fraction of the images, approximately 0.006%, are
quasars. Due to their stellar-like appearance and intense luminos-
ity, quasars are frequently misclassified as stars, a trend evident
in our dataset where 95% of these quasars are erroneously
labeled stars.

2.4. Data split, augmentation, and calibration

In this section, we discuss the process of data splitting, cali-
bration, and augmentation, which are crucial steps in preparing
our dataset for effective machine learning model training and
evaluation.

The image cutouts dataset is divided into four subsets: 50%
for training, 20% for validation, 20% for testing, and 10% for cal-
ibration. The training, validation, and test sets are used to train
the model and evaluate its performance, while the calibration set
is used to fine-tune the classifier’s probability predictions. It is
important to note that the split is made considering the dispro-
portion of stars with respect to galaxies in the dataset, which
is approximately 10:1. This ensures that the distribution of stars
and galaxies in each subset reflects the actual distribution in the
dataset, which is crucial for training a model that can accurately
classify these celestial objects.

The dataset consists of 34 × 34 pixel cutouts, specifically
designed to enable an augmentation step during the training
stage aimed at improving the prediction of the network. We
enhance the model’s robustness and generalizability by apply-
ing a random one-pixel shift in any cardinal direction (up, down,
left, or right) to each image. This random one-pixel shift reduces
the cutout’s dimensions to 32 × 32 pixels, contributing to a more
diverse training dataset. Since the shift is only one pixel, it does
not substantially impact the source’s information; however, it

introduces variability in the training set that can be leveraged
to identify sources in different positions. Additionally, this shift-
ing helps mimic the potential misalignment of the sources in the
cutouts in real scenarios.

Incorporating the calibration set ensures that ASID-C
produces well-calibrated probability predictions, ultimately
improving classification performance. The calibration process,
described in Sect. 3.3, adjusts the classifier’s output probabil-
ities to better align with the true class probabilities, reducing
the potential for over or underestimating probabilities. This step
enhances the reliability and usefulness of the probability pre-
dictions, particularly in applications where accurate probability
estimates are essential for downstream analysis or decision-
making.

3. Method

In the field of image classification, machine learning techniques
have been instrumental in transforming the way we analyze and
interpret data. Among these techniques, CNNs have emerged as a
powerful tool due to their ability to process image data in a robust
and flexible manner. Introduced by Fukushima & Miyake (1982)
and LeCun et al. (1995), CNNs have found widespread use in
the computer vision community, providing a robust foundation
for our work.

In this section, we outline our specific implementation of
a machine learning model for star-galaxy classification. This
model is designed to tackle the intricacies of our dataset, pro-
viding an optimized and custom-tailored approach to meet this
classification challenge. Although the model is specifically tai-
lored for our dataset and the star-galaxy classification task,
its general structure and approach can be adapted for other
astronomical datasets, telescopes, and purposes involving image
data. This flexibility makes our model a versatile tool that can
contribute to a wide range of astronomical research tasks.

3.1. Model

Our model uses a CNN, a type of neural network particularly
effective for image analysis. In a CNN, an image is processed
through multiple layers to generate feature maps. These maps
are created by convolving each input feature map with a set of
weights known as filters. Each feature map uses a distinct set of
filters, allowing for a rich representation of the input data. This
mechanism is at the core of our model’s ability to analyze and
classify the celestial images in our dataset.

While previous studies such as Kim & Brunner (2016) have
used CNN architectures for star-galaxy classification, they often
rely on multiple filter band images to enhance the classification
results. In contrast, our approach simplifies this requirement by
using single-band images. This makes our model versatile and
independent of the specific filter applied.

Our deep neural network is designed with a dual-branch
structure, specifically crafted to process image data and spatial
information as inputs. This architectural choice is informed by
the unique challenges of classifying celestial objects in optical
telescope images, specifically, in our case, those from the Meer-
LICHT telescope. Spatial information serves a crucial role in our
model, aiding the classifier in handling variations in the appear-
ance of sources based on their location within the full-field
MeerLICHT image. The PSF of sources, which influences their
appearance, varies depending on their position within the image.
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Fig. 4. Dual-branch network architecture used in this study. The primary branch processes the images through a series of convolutional layers
(yellow), max-pooling layers (red), and dense layers (blue) to extract key features. The secondary branch processes the spatial information (pixel
coordinates [x, y]) through multiple dense layers. Both branches merge through a concatenation layer (green), followed by additional dense layers
and a final softmax layer for classification. This architecture allows the model to leverage image features and spatial information for more accurate
star-galaxy classification.

For instance, sources at the center of the image are symmetri-
cal, while those near the edges exhibit asymmetry. Furthermore,
sources farther from the image’s center display an elongated
PSF, causing stars to resemble galaxies. By integrating spatial
information into our model, we can effectively account for these
variations, thereby enhancing the accuracy of our model in clas-
sifying stars and galaxies. We validated the effectiveness of this
approach by comparing the model’s performance with and with-
out the spatial information branch. The results are shown in
Appendix A.

As shown in Fig. 4, the model is a dual-branch neural
network that accepts image data and spatial information as
inputs. The imaging branch, a CNN, processes 32 × 32 pixel
images of celestial objects, while the spatial branch handles the
2-dimensional location data. The CNN comprises three convo-
lutional layers with 32 filters each, followed by max-pooling
layers. The spatial branch, a fully connected network, includes
two dense layers with 64 and 32 neurons, respectively. Outputs
from both branches are concatenated and passed through two
additional dense layers before reaching the final sigmoid acti-
vation function, which generates a value between 0 (galaxy) and
1 (star).

We train the model using the Adam optimizer (Kingma & Ba
2015). We implement several strategies to achieve better accu-
racy and convergence and prevent overfitting. As the network
gets trained over multiple iterations and approaches the minima
of the loss landscape, it is typically suggested to have a lower
learning rate (ηt) for improving convergence (Wu et al. 2019).
In our approach, we implement exponential decay with an initial
learning rate (η0) of 0.001 that decays exponentially after eight
epochs (iterations) with a decay rate γ = 0.99.

To prevent overfitting, we implement early stopping, which
ensures the training stops if the loss for the validation set does not
improve over ten epochs. The model’s performance is assessed
using precision, recall, and the area under the receiver operat-
ing characteristic (ROC) and precision-recall (PR) curves. Our
approach allows for a low number of parameters, approximately
72k, making the algorithm fast and suitable for the needs of an
automatic detection pipeline.

We use TensorFlow3 (Abadi et al. 2016) to implement the
model and evaluate all possible hyperparameters with Weights &
Biases4, a machine learning platform for developers to track, ver-
sion control, and visualize results, which is especially helpful in
our case for fixing hyperparameters. The results presented below
were computed using an NVIDIA GeForce RTX 2080 GPU.

3.2. Loss function

In this work, we employ the binary focal Loss as our loss
function, initially introduced by Lin et al. (2017) to tackle the
class imbalance issue in object detection tasks. The focal loss is
designed to prioritize hard-to-classify examples while reducing
the weight of easy examples. It is defined as:

FL (y, p) = −αt (1 − pt)γ log(pt), (1)

where

αt, pt =

{
α, p; y = 1
1 − α, 1 − p; y = 0.

(2)

Here, y is the true label, p is the predicted probability, α is a
weighting factor to balance the two classes, and γ is a focusing
parameter that adjusts the rate at which easy examples are down-
weighted. When α = 1 and γ = 0, the binary focal loss simplifies
to the well-known binary cross-entropy loss (Cox 1958). The
binary cross-entropy loss is a common function for binary clas-
sification tasks, but it can be less effective when there is a class
imbalance.

While the focal loss was initially designed for one-stage
detectors in computer vision tasks with a significant class imbal-
ance between foreground and background (on the order of
1000:1), we adapt this loss function to address the class imbal-
ance between stars and galaxies (approximately 10:1) in our
dataset. However, as shown in Fig. 5, we found no substantial

3 https://www.tensorflow.org/
4 https://wandb.ai/site
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Fig. 5. Calibration analysis of the output of models with varying α and γ focal loss parameters. The first and third rows display the model predictions
for the test set, with the color indicating the true class. The second and fourth rows showcase the calibration results for each corresponding model,
presenting the uncalibrated, Platt-scaled, and Logit-Transformed Platt scaling results. This side-by-side comparison illustrates the effectiveness of
the calibration techniques in enhancing the alignment of predicted probabilities with the observed frequency of positive class occurrences.

difference between the results of any of the focal loss models,
especially after the calibration method introduced in the next
section. Therefore, a focal loss with parameters α = 1 and γ = 0,
which equates to a binary cross-entropy, emerges as the optimal
choice.

The lack of improvement from the focal loss, despite the 10:1
imbalance, can be attributed to the concept of the effective sam-
ple size (ESS; Bartoszek 2016; Cui et al. 2019). The ESS of our
dataset, which is a measure of the number of independent obser-
vations that a given dataset is equivalent to, is large enough to

allow for accurate learning despite the imbalance. This suggests
that when the dataset is sufficiently large, the use of the focal
loss may not bring any additional benefit.

Although the focal loss does not yield a substantial improve-
ment over the standard cross-entropy loss in our specific case,
it offers an opportunity to investigate the impact of varying the
focusing parameter (γ) and the weighting parameter (α) on prob-
ability calibration, which we explore in the subsequent section.
The flexibility of the focal loss function could prove advanta-
geous in future studies, especially when incorporating additional
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features or diverse types of input data into the model, which may
result in more complex classification scenarios.

3.3. Improving probability calibration with Logit-transformed
Platt scaling

A crucial aspect of a well-performing classifier is its ability to
provide reliable posterior class probability estimates that align
with the actual likelihood of a positive class occurrence. This
characteristic, known as calibration, is often visualized using
probability calibration curves or reliability curves (Degroot &
Fienberg 1983).

To construct a probability calibration curve, we apply the
model to the calibration set, approximately one million cutouts,
and divide the probability estimates into discrete bins, each rep-
resenting a range of predicted probabilities. We then calculate
the fraction of positive examples for each bin and plot these
fractions against the predicted probabilities. A well-calibrated
classifier will have a calibration curve closely following the diag-
onal line, indicating that the predicted probabilities accurately
reflect the observed frequency of positive class occurrences.

However, it is often the case that the raw output scores of a
classifier do not perfectly align with these observed frequencies.
This discrepancy can be due to various factors, including the
complexity of the data, the model’s assumptions, and the train-
ing process. To address this issue, a variety of post-calibration
methods have been developed, aiming to adjust the output scores
and improve their alignment with the true probabilities.

One such method is Platt scaling, a widely used technique
for calibrating the outputs of a model. Platt scaling transforms
the raw output values to better align with the true probabilities
of the predicted classes (Platt 1999). The standard Platt scaling
formula is:

P(y = 1| f ) =
1

1 + exp (A f + B)
, (3)

where A and B are parameters estimated from the data using
the Maximum Likelihood method. This method has been shown
to improve the calibration and performance of machine learn-
ing models (Niculescu-Mizil & Caruana 2005; Kull et al. 2019).
However, Platt scaling can struggle when the output of a classi-
fier is not sigmoid-shaped (Kull et al. 2017). To address this, we
use a simple modification of the traditional Platt scaling method:
applying a logit transformation to the model’s output scores prior
to Platt scaling. While this transformation is recognized in the
calibration literature (Filho et al. 2023), existing studies have
not thoroughly investigated its advantages and disadvantages.
However, in our specific case, the Logit-Transformed (L-T)
Platt scaling shows superior performance, providing empirical
evidence of its effectiveness over simple Platt scaling.

The L–T Platt scaling formula is given by:

P(y = 1|x) =
1

1 + exp
(
A logit( f ) + B

) . (4)

In the formula above, the term logit(f) in the equation represents
the logit transformed output score of the model. The parameters
A and B, estimated from the data, are similar to those in the tra-
ditional Platt scaling method. These parameters are optimized to
achieve the best possible calibration for the specific dataset and
model at hand.

We applied the L-T Platt scaling to a range of models,
each trained with different focal loss parameters. The resulting
models’ predictions and their calibration, illustrated in Fig. 5,

demonstrate that this method can recover almost perfectly cali-
brated probabilities for each model.

The calibration process is a critical step in our methodology,
enabling the direct comparison of different models. As discussed
in Sect. 3.2, post-calibration, the performance of the models con-
verges, indicating the robustness of our dataset. This robustness
obviates the need for correction factors from the focal loss, sug-
gesting that a model trained with a simple cross-entropy loss
function can directly yield optimal results.

Interestingly, our analysis also suggests that the calibration
technique itself may not be necessary for our specific case. How-
ever, the process provides valuable insights into the performance
of different models and serves as a useful tool for model com-
parison and evaluation. Therefore, while not essential for our
specific task, the calibration process contributes to a more com-
prehensive understanding of our models’ performance and the
impact of different loss functions. This knowledge can serve
as a valuable guide for future research and model development
in star-galaxy classification and beyond. The insights gained
can potentially influence a wider range of applications, foster-
ing advancements in the broader field of astronomical image
analysis.

4. Results

This section presents a thorough analysis of our network’s per-
formance using a test set of over 2 million cutouts, focusing on
ASID-C’s robustness and versatility across various challenging
astronomical scenarios.

We first employ a Uniform Manifold Approximation and
Projection (UMAP5; McInnes et al. 2018) as a dimensionality
reduction technique to visualize the model’s decision-making
process. We then explore the model’s performance across dif-
ferent S/N bins, MeerLICHT bands, and high stellar density
regions, particularly those near the Galactic Plane. We also
evaluate ASID-C computational efficiency as a function of
increasing dataset sizes.

We use a set of relevant metrics to gauge the effectiveness
of our results. Unlike deterministic classifiers that assign dis-
crete labels to each source, our probabilistic classifier provides
a probability that determines whether each source is a star or
a galaxy. The performance evaluation of probabilistic classi-
fiers often involves transforming probability estimates into class
labels by setting a specific probability threshold. For example, a
source is classified as a star if p > 0.5 and a galaxy if p ≤ 0.5.
However, this approach can be misleading if the predictions are
not well-calibrated. Therefore, we employ several performance
metrics that are suitable for probabilistic classifiers: the area
under the curve (AUC) for the Receiver Operating Character-
istic (ROC; Swets 1996) curve, the area under the precision–
recall curve (AUPRC; Davis & Goadrich 2006) and Brier score
(Brier 1950).

Finally, we compare ASID-C’s performance with that
of SourceExtractor, a widely used software in astronomy,
and eXtreme Gradient Boosting (XGBoost), a state-of-the-art
machine learning decision tree algorithm for tabular data. This
comparative analysis serves to highlight the relative strengths
and limitations of each approach in the context of star-galaxy
classification.

5 https://umap-learn.readthedocs.io/en/latest/index.
html
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Fig. 6. UMAP latent space visualization. The axes represent the UMAP
embeddings, with each point colored by their true label, star (orange) or
galaxy (blue).

4.1. ASID-C performance and misclassifications

This section delivers an in-depth assessment of ASID-C, focus-
ing on both its performance and instances of misclassification.
The goal is to provide a nuanced perspective on the model’s
capabilities and constraints.

To gain a visual understanding of how ASID-C differenti-
ates between stars and galaxies, we employ a visualization and
dimensionality reduction technique called UMAP. The latter,
proposed as an alternative to T-distributed stochastic neighbor
embedding (t-SNE; Maaten & Hinton 2008), is renowned for its
ability to preserve the global structure of data and its efficient
implementation.

We first adapted the trained model to integrate UMAP
into our deep neural network by removing the final classifica-
tion layer (of the model depicted in Fig. 4). This adjustment
enables us to concentrate on the output from the preceding 32-
dimensional dense layer, which is abundant with insights into the
features learned by the network. Subsequently, we employed this
adapted model to generate predictions on the test set and apply
UMAP to the latter. UMAP provides a condensed summary
of the decision-making process, unveiling the intricate patterns
the model uses to make accurate classifications and offering a
more nuanced understanding of the network’s performance. This
method highlights the complex interplay of features contributing
to the successful differentiation between stars and galaxies.

As depicted in Fig. 6, the UMAP visualization reveals a dis-
tinct separation between stars and galaxies, with a clear clump
corresponding to galaxies. It is important to note that the axes
in Fig. 6 represent the UMAP embeddings and do not lend
themselves to direct interpretation as with techniques like Prin-
cipal Component Analysis (PCA). The construction of a UMAP
visualization requires selecting specific parameters that will
influence the final output. In our case, we chose a Correlation
metric, 30 nearest neighbors, and a minimum distance of 1.

Figure 7 presents the UMAP embeddings colored by their
full model prediction. This visualization further emphasizes the
separation between galaxies, predominantly predicted with a 0,
and stars, predominantly predicted with a 1. The intermediate
region of predictions, ranging between 0.4 and 0.6, corresponds
to the area where distinguishing between the two classes is most
challenging.

Fig. 7. UMAP latent space visualization. The axes represent the UMAP
embeddings, with each point colored by their full-model predicted
value.

The visual insights obtained from the UMAP analysis have
been instrumental in the model’s iterative development process.
They not only facilitated targeted refinements in the model’s
architecture but also enriched our conceptual understanding of
the classification challenge at hand. This visualization serves as
a diagnostic tool, allowing us to pinpoint both the strengths and
areas for improvement in ASID-C’s decision-making algorithm.
While the model has demonstrated good performances, as out-
lined in earlier sections, it is worth noting that the classification
is not entirely dichotomous, and there is a discernible overlap
between the two classes, indicating complexities in the task that
warrant further investigation. Subsequent sections will delve into
the key factors contributing to this complexity.

4.1.1. Performance across signal-to-noise ratio

To further evaluate the robustness of ASID-C, we analyzed its
performance across five distinct bins of S/N. This analysis aims
to shed light on how well the classifier performs under varying
levels of noise, a crucial aspect of its applicability in real-world
astronomical observations.

To provide a comprehensive view, we present both the
receiver operating characteristic (ROC) and precision–recall
(PR) curves. The ROC curve plots the true positive rate against
the false positive rate at various threshold levels, providing a
holistic view of the classifier’s discriminative power. A curve
that closely follows the top-left border of the plot indicates
a well-performing classifier. The area under the ROC curve
(ROC-AUC) serves as a single scalar metric that quantifies the
classifier’s ability to distinguish between the two classes across
all thresholds.

Conversely, the PR curve shows the trade-off between pre-
cision, True Positives / (True Positives + False Positives), and
recall, True Positives / (True Positives + False Negatives) at var-
ious thresholds. A perfect PR curve would reach the top-right
corner of the plot, indicating both high precision and high recall.
This curve is particularly useful for evaluating performance in
imbalanced datasets, and it allows the assessment of the classi-
fier’s performance separately for stars and galaxies. As for the
ROC-AUC, the area under the PR curve (PR-AUC) provides
a summary measure of the classifier’s performance across all
thresholds.
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Fig. 8. ROC curve of ASID-C evaluated across five distinct S/N bins,
ranging from low to high signal-to-noise ratios. The plot reveals a gen-
eral trend of increasing ROC-AUC values with higher S/N, highlighting
the model’s robustness to varying noise conditions. Notably, even at
the lowest S/N bin, ASID-C demonstrates resilience with a ROC-AUC
value of 0.84, underscoring its applicability in challenging observa-
tional scenarios.

As illustrated in Fig. 8, the ROC-AUC values improve with
increasing S/N, although the rate of improvement varies between
bins. While the classifier exhibits excellent performance in
higher S/N bins, it also maintains a commendable ROC-AUC
of 0.84 in the lowest S/N bin. This demonstrates ASID-C’s
resilience to noise and its capability to perform adequately even
when the signal is weak.

Having examined the ROC curves, we now turn our atten-
tion to the PR curves. It is worth noting that in the context of
astronomy, the metrics used in Precision-Recall curves are often
referred to as purity and completeness, respectively. While math-
ematically identical, the choice of terminology often depends on
the specific field and application.

As depicted in Fig. 9, the PR-AUC values for both stars
and galaxies improve as the S/N increases. It is important to
note that while the PR-AUC values for stars consistently out-
perform those for galaxies, this discrepancy is largely due to
the inherent class imbalance in the dataset, where stars are
more numerous than galaxies. This imbalance naturally affects
the precision and recall metrics, making it more challenging to
achieve high PR-AUC values for galaxies. Nonetheless, even in
the lowest S/N bin, ASID-C maintains a respectable PR-AUC,
underscoring its resilience to noise and its ability to classify both
stars and galaxies effectively under less-than-ideal observational
conditions.

This analysis confirms ASID-C’s robustness across different
S/N conditions and its adaptability to class imbalances, mak-
ing it a valuable tool for a range of astronomical applications,
especially those requiring performance in low S/N settings.

4.1.2. Performance across MeerLICHT bands

ASID-C is engineered to be band-agnostic, a feature that ampli-
fies its versatility across the diverse MeerLICHT bands. While
the network is designed to operate effectively on single-band
images, the reality of modern astronomy often involves multi-
band observations. To gain insights into any band-specific

Fig. 9. Precision–recall curves of ASID-C evaluated across five distinct
S/N bins. The PR-AUC values show an upward trend with increasing
S/N, highlighting the model’s adaptability to different noise condi-
tions. The PR-AUC values for stars are consistently higher than those
for galaxies; this discrepancy is primarily attributable to the class
imbalance in the dataset, where stars outnumber galaxies. Despite this
challenge, ASID-C maintains commendable PR-AUC values even in the
lowest S/N bin, emphasizing its resilience and effectiveness in classify-
ing both celestial objects under varying observational conditions.

Fig. 10. ROC curve of ASID-C across five MeerLICHT bands. The
figure shows consistently high ROC-AUC values across most bands. A
noticeable performance dip in the u band is observed, likely due to the
intrinsic color properties of galaxies. In this band, galaxies often lack
features that distinguish them from stars, making classification more
challenging.

nuances, we evaluated the network’s performance on the test set,
where the band of the original full-field image for each source
cutout is known.

Figure 10 shows the ROC curve of ASID-C for five Meer-
LICHT bands. The network maintains high accuracy scores
for classifying stars across most bands, but a notable excep-
tion arises in the u band. The u band, sensitive to ultraviolet
wavelengths, exhibits lower accuracy, likely attributable to the
intrinsic color properties of galaxies. Galaxies are generally red-
der and emit less in the ultraviolet spectrum, making them appear
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Fig. 11. Comparison of SourceExtractor (left) and ASID-C (right) performance across the Galactic Plane. The tiles are colored based on the
relative difference between the actual and estimated numbers of galaxies in that region. The left panel highlights the tendency of SourceExtractor
to overestimate galaxies in regions with high stellar density, indicating a bias in its classification approach. The right panel showcases the ability of
ASID-C to classify galaxies accurately, even in regions with high stellar density and complex structures, thereby enabling reliable identification of
celestial objects in such challenging environments.

more like stars and thus contributing to the classification chal-
lenges in this band (Strateva et al. 2001; Driver et al. 2006).
Further complicating this issue, galaxies with a red peak, which
are generally of an early morphological type, have been found
to have higher surface brightness than those in the blue bands.
This characteristic could also contribute to the difficulties in
classifying galaxies in the u band (Wyder et al. 2007).

To tackle two intertwined challenges – namely, the combi-
nation of predictions from multiple observations of the same
source and the variability in network performance across dif-
ferent bands – we introduce an ensemble methodology. This
approach integrates observations of the same source across var-
ious bands into a unified, more reliable classification. In this
approach, each band would be assigned a weight based on its per-
formance metrics. Specifically, bands that yield more accurate
classifications would be given higher weights, thereby influenc-
ing the final prediction more substantially and mitigating the
impact of less reliable bands like the u band. The ensemble
approach can be mathematically represented as:

Weighted Prediction =
∑n

i=1 wi pi∑n
i=1 wi

, (5)

where wi would denote the weight assigned to the ith band, and
pi would represent the prediction for the ith observation.

In summary, the ensemble methodology serves as a robust
extension of ASID-C, optimizing its performance across the
MeerLICHT bands and offering a balanced, reliable classifica-
tion scheme that is well-suited for the complexities of modern
astronomical observations.

4.1.3. ASID-C performance in high stellar density regions

In this section, we showcase the applicability of ASID-C on
images oriented toward the Galactic Plane, a region teeming
with stars and with a typical number of galaxies that are,
however, difficult to differentiate. These areas, distinguished
by a markedly high stellar density and complex background,
traditionally present considerable challenges for classification
techniques. Factors such as significant interstellar extinction,
confusion with Galactic structures, and high source overlap fur-
ther complicate the task. Despite the relative scarcity of galaxies
compared to stars, their accurate identification and classification

are crucial for various astronomical studies, particularly for iden-
tifying transients’ host galaxies and understanding the structure
of our own Galaxy.

For the analysis presented in this section, we applied a
threshold to the predictions, considering sources with a predicted
value less than 0.5 as galaxies. Although not optimal, this thresh-
old was chosen based on the distribution of predictions and the
known characteristics of the dataset. Furthermore, we visually
compare ASID-C’s results with those of SourceExtractor’s stel-
larity parameter, but a more in-depth comparison between the
two tools will be presented in a later section.

Figure 11 illustrates the performance of both SourceExtrac-
tor (left panel) and ASID-C (right panel) across the Galactic
Plane. The tiles are colored based on the relative difference
between the actual and estimated numbers of galaxies in that
region. The left panel of Fig. 11 shows the performance of
SourceExtractor, which tends to overestimate galaxies in regions
with high stellar density, indicating a bias in its classification
approach. In contrast, the right panel of Fig. 11 showcases the
performance of ASID-C in the same regions. ASID-C accu-
rately classifies galaxies almost independently of the number of
sources in the region. Even amidst the high density of stars and
complex structures close to the Galactic Plane, ASID-C enables
reliable identification of galaxies.

The robust performance of ASID-C in high stellar den-
sity regions demonstrates its versatility and potential for broad
applications in astronomy. Its ability to accurately classify galax-
ies amidst complex structures and dense star populations can
significantly enhance our understanding of celestial phenomena.

4.1.4. Evaluation of prediction timings

The computational efficiency of a model is a critical factor, espe-
cially when dealing with large astronomical datasets. To evaluate
the computational efficiency of ASID-C, we measured the time
taken to predict the class of different sizes of datasets on a GPU-
accelerated system, which significantly benefits deep learning
models like ASID-C. The datasets used in this analysis ranged
from 5000 to 100 000 images. We performed the prediction fifty
times for each dataset size and calculated the average time taken.
This approach mitigates potential variability in the timing results
due to factors such as system load or GPU thermal throttling.

The results, shown in Fig. 12, demonstrate that the time
ASID-C took to predict the class of the images scales linearly
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Fig. 12. Average time taken by ASID-C to predict on different sizes of
datasets. The red dots represent the average time taken per dataset size,
and the black dashed line represents the expected time based on linear
scaling.

with the dataset size. This linear scaling is a desirable prop-
erty, as it means that the time required to process a large dataset
can be accurately estimated based on the time taken to pro-
cess a smaller dataset sample. ASID-C demonstrates excellent
computational efficiency, with linear scaling of prediction time
with dataset size and a time per source of approximately 36µs.
This efficiency, combined with its predictions’ high accuracy
and reliability, makes ASID-C a powerful tool for star-galaxy
classification in large astronomical surveys.

4.2. Direct comparison with SourceExtractor

SourceExtractor (Bertin & Arnouts 1996), a widely used soft-
ware in the field of astronomy for source extraction, feature
estimation, and classification, serves as a benchmark in our
study. Despite its extensive use in the astronomical community
and its integration into the MeerLICHT official pipeline, Source-
Extractor exhibits certain limitations in the context of star-galaxy
classification.

Figure 13 illustrates the performance of SourceExtractor for
star-galaxy classification. The left panel shows the distribution
of SourceExtractor’s predictions, which displays a bias toward a
large number of objects with a probability value of ≈0.5, close
to the binary classifier threshold. This bias can increase misclas-
sifications, particularly for galaxies, which are often assigned
probabilities close to the 0.5 threshold. The right panel of Fig. 13
depicts the performance of SourceExtractor as a function of S/N.
It becomes evident that the tool struggles with sources with a
lower S/N, leading to decreased classification performance for
these sources.

In contrast, our method, ASID-C, generates a more refined
and well-calibrated prediction probability compared to Source-
Extractor, as depicted in Fig. 14. The left panel shows the
distribution of ASID-C’s star-galaxy predictions, which are more
evenly distributed and well-calibrated. The right panel of Fig. 14
demonstrates superior performance of ASID-C, particularly for
sources with low to medium S/N. ASID-C is more robust and
effective in classifying sources across a wider range of S/N
values, thereby outperforming SourceExtractor.

The comparative analyses presented in this section under-
score the effectiveness of ASID-C in star-galaxy classification,
particularly in challenging scenarios involving sources with
lower S/N. To further substantiate this, we evaluate the perfor-
mance of the classifiers with the previously introduced Area

Under the Precision-Recall Curve (AUPRC) and the Brier Score
(Brier 1950), both of which are computed as functions of source
S/N. The latter is a measure of the reliability of a classifier’s
probabilistic predictions. It calculates the mean squared differ-
ence between the predicted probabilities for each class and the
actual outcomes. A lower Brier Score is indicative of more accu-
rate probabilistic forecasts, with a score of zero signifying a
flawless classifier.

Table 1 provides a comprehensive view of the performance
metrics across different S/N values for ASID-C, SourceExtractor
(SE), and a baseline model (Base), where the labels are randomly
assigned with a 10:1 proportion. The best performance for each
metric and S/N value is highlighted in bold font.

From the table, it is evident that ASID-C consistently out-
performs both SE and Base across all S/N values and metrics.
ASID-C particularly excels in low S/N regions, where classify-
ing stars and galaxies becomes more challenging. This superior
performance is reflected in the higher AUPRC values and lower
Brier scores for ASID-C compared to SE and Base. The signif-
icantly lower Brier scores for ASID-C suggest that it generates
more reliable and well-calibrated probability predictions, espe-
cially for galaxies near the detectability threshold.

In the context of our study, the high AUPRC values observed
for stars across all three methods – ASID-C, SE, and Base – raise
an important point of consideration. These elevated values can
be attributed to the imbalance in the dataset, which is heavily
skewed toward stars. Such an imbalance can artificially inflate
the AUPRC values, as the metric is sensitive to the number of
true positives, which are abundant for stars in this dataset. There-
fore, while these high AUPRC values may suggest excellent
performance, they should be interpreted with caution.

Given the significant classification challenges posed by low
S/N regions, the ability of ASID-C to handle them effectively
underscores not only its robustness but also its potential as
a highly effective tool for star-galaxy classification in future
astronomical studies.

4.3. Comparison with retrained SourceExtractor

While SourceExtractor is a versatile tool capable of extracting
a wide array of features across various telescopes, its general-
purpose design may not yield optimal results for specialized
tasks such as star-galaxy classification. To ensure a fairer com-
parison with our ASID-C model, we employed an XGBoost
classifier (Chen & Guestrin 2016). This gradient-boosting deci-
sion tree is particularly proficient in handling tabular data and
was trained on a feature set extracted by SourceExtractor. This
feature set comprises magnitudes calculated at three different
aperture sizes, an elongation parameter, which quantifies the
degree to which a source is elongated, and (x, y), the same
location information used in ASID-C. For the XGBoost model
training, we used a binary logistic objective and ran a total of
200 boosting rounds. It is worth noting that the training set for
this XGBoost model is identical to that used for ASID-C, with
the key distinction being the data format; the XGBoost model
uses only tabular data. This approach allows us to directly assess
the efficacy of a two-step process – initial feature extraction fol-
lowed by machine learning on tabular data – against ASID-C’s
method of direct image-based classification.

One key attribute of tree-based machine learning methods
like XGBoost is their ability to quantify feature importance. In
our analysis, we found that the classifier’s performance is pre-
dominantly influenced by two features: the smallest aperture and
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Fig. 13. Star-galaxy prediction for SourceExtractor. Left: the histogram of the predictions, colored by true class, shows a bias toward values of ≈0.5,
indicating a lack of calibration. Right: star-galaxy classification performance of SourceExtractor as a function of source S/N. The figure shows a
decrease in classification performance for sources with lower S/N, indicating that SourceExtractor struggles to classify these sources accurately.

Fig. 14. Star-galaxy prediction for ASID-C. Left: the histogram of the predictions, colored by true class, shows a well-calibrated set of predictions.
Right: star-galaxy classification performance of ASID-C as a function of source S/N. The figure shows that ASID-C maintains a high level of
performance across a wider range of S/N values, thereby outperforming SourceExtractor, particularly for sources with low to medium S/N.

the elongation. These two parameters alone play a significant
role in the decision-making process. Further investigation into
SourceExtractor’s methodology for star-galaxy classification led
us to an additional parameter known as “seeing,” which quanti-
fies the atmospheric blurring of astronomical objects within the
entire full-field image. This parameter can be estimated either
through a PSF model of the image or manually provided. Cur-
rently, we do not have a machine learning-based method for rapid
estimation of the seeing parameter, but we plan to explore this
avenue in future work, along with a more comprehensive study
on the influence of global parameters such as seeing on local
source predictions.

Incorporating the external seeing parameter output of the
official MeerLICHT pipeline, BlackBOX, into our XGBoost
training, we observed a substantial improvement in performance,
highlighting the importance of a global parameter that character-
izes the entire image. Both XGBoost and ASID-C were retrained

with this additional parameter, and their performance, along with
that of the other methods, is presented in Fig. 15.

The analysis reveals that an XGBoost model trained
on MeerLICHT-specific features outperforms the original
SourceExtractor and is competitive with ASID-C in AUC. The
incorporation of the seeing parameter into both the XGBoost
and ASID-C models resulted in marked improvements, with the
latter achieving the highest ROC-AUC overall. Furthermore, to
quantify the impact of the seeing parameter in ASID-C, we cal-
culated relative false positive rate (FPR) differences. These are
expressed as percentages and are evaluated at the optimal thresh-
old for each method, using ASID-C with seeing as the reference
point. Specifically, ASID-C with seeing shows a substantial
improvement of 46.67% FPR over SourceExtractor, 25.20% over
SE XGBoost, and 15.54% over the version of ASID-C without
seeing. When compared to SE XGBoost integrated with seeing,
ASID-C with seeing registers a 9.46% FPR improvement.
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Table 1. Performance metrics by S/N.

S/N ∼7 ∼13 ∼26 ∼50 ∼96

AUPRC ASID (s) 0.952 0.990 0.998 1.000 1.000
AUPRC SE (s) 0.841 0.975 0.998 1.000 1.000
AUPRC Base (s) 0.813 0.893 0.950 0.984 0.997

AUPRC ASID (g) 0.614 0.786 0.899 0.937 0.947
AUPRC SE (g) 0.271 0.575 0.782 0.853 0.782
AUPRC Base (g) 0.187 0.107 0.050 0.016 0.003

Brier ASID 0.108 0.044 0.012 0.002 0.000
Brier SE 0.279 0.188 0.076 0.034 0.015
Brier Base 0.250 0.185 0.140 0.113 0.101

Notes. The AUPRC, due to its formulation, is calculated separately for
both stars (s) and galaxies (g) as the positive class. The table shows
that ASID-C consistently outperforms both SE and the baseline model
across most S/N values and metrics.

Fig. 15. ROC curves and area under the curve (AUC) values for multi-
ple methods, including two variants of ASID-C, two XGBoost models,
SourceExtractor, and a Baseline model. Optimal threshold points are
indicated on each curve, and vertical dashed lines show the false posi-
tive rate at these optimal points. The ASID-C model, when trained with
the additional seeing parameter, exhibits the highest overall AUC.

While XGBoost proves effective, especially when tailored to
specific datasets, it is important to note its computational limi-
tations. The two-step approach – feature extraction followed by
classification – does introduce a margin of error, although this
appears to be minimal, mitigating concerns about the classifi-
cation process’s integrity. On the other hand, ASID-C operates
directly on image data, thereby eliminating the risk of error prop-
agation associated with a two-step process. This makes ASID-C
more robust, particularly for large or diverse datasets or when
computational resources are constrained.

In summary, while XGBoost presents a viable alternative,
it comes with its own set of challenges, which are inherently
mitigated by ASID-C’s direct approach to classification.

5. Conclusion and discussion

This study introduced ASID-C, a dual-branch CNN specifically
designed for star-galaxy classification. ASID-C incorporates

both image data and spatial information, specifically the loca-
tion of the source within the image, to provide a robust and
effective solution for distinguishing between stars and galaxies
in astronomical images from the MeerLICHT telescope.

A standout feature of ASID-C’s performance is the near-
perfect calibration of its predictions, particularly for models
trained with cross-entropy loss. While Platt scaling, especially
when enhanced with a logit transformation, can improve the
calibration of model predictions, we found that the cross-
entropy models already yield almost perfectly calibrated pre-
dictions. This ensures that the predicted probabilities closely
mirror the actual class proportions, a critical attribute for many
applications. A well-calibrated model can significantly improve
decision-making processes, particularly when an accurate esti-
mate of class membership probability is paramount.

To rigorously assess the capabilities and limitations of ASID-
C, we employed the UMAP technique to explore its latent space.
This analysis shed light on the underlying data structures that aid
in distinguishing between stars and galaxies, offering a deeper
understanding of the model’s classification capabilities. We then
conducted a targeted evaluation across multiple dimensions.
In terms of the S/Ns, ASID-C proved resilient, maintaining
commendable accuracy even under low S/N conditions. It also
excelled in high stellar density regions, which are traditionally
challenging for classification. However, the model’s performance
was not uniformly strong across all MeerLICHT bands; it fal-
tered in the u band. To address this and, at the same time,
provide a way to combine predictions on multiband observations
of the same source, we proposed an ensemble methodology that
enhances the model’s multiband reliability. Lastly, we verified
the model’s computational scalability, affirming its suitability for
large-scale astronomical applications.

Our evaluation of ASID-C’s performance demonstrates its
superiority over the widely used SourceExtractor tool, partic-
ularly regarding the reliability and calibration of its probabil-
ity predictions. Notably, ASID-C shows exceptional advantage
at low S/N sources, a challenging area where many existing
tools struggle. We also compared ASID-C’s performance with
a gradient-boosted decision tree model, XGBoost, trained on
features extracted by SourceExtractor. While XGBoost easily
outperforms SourceExtracotr results, being trained specifically
on the dataset at hand, our results indicate that ASID-C out-
performs it in terms of both performance, but particularly in
efficiency. Importantly, the inclusion of the global seeing param-
eter in ASID-C further amplifies its performance. This addition
allows ASID-C to achieve significant improvements in the FPR
compared to other methods, solidifying its position as a highly
reliable and efficient tool for astronomical classification tasks.

One of the most promising applications of ASID-C lies in
real-time star-galaxy classification. The rapid processing speed
of CNNs, combined with the robustness of ASID-C, makes it
an ideal tool for time-sensitive astronomical observations. For
instance, transient events, such as supernovae or gamma-ray
bursts, require immediate follow-up observations to capture their
rapidly changing properties. By providing an accurate and imme-
diate classification of sources, ASID-C can help astronomers
quickly identify the nature of the transient’s host galaxy or rule
out false positives, thereby streamlining the transient detection
and follow-up process.

Beyond binary star-galaxy classification, ASID-C could
potentially be extended to classify galaxies based on their
morphology. Galaxy morphology, such as spiral, elliptical, or
irregular, provides valuable insights into the formation and evo-
lution of galaxies. By training ASID-C on a dataset labeled with

A109, page 13 of 16



Stoppa, F., et al.: A&A, 680, A109 (2023)

galaxy morphologies, we could leverage its robust feature extrac-
tion capabilities to identify the morphological characteristics of
galaxies. This would expand the capabilities of ASID-C and
contribute to our understanding of galaxy evolution.

While our current work focuses on optical data, ASID-C has
the potential to handle data across multiple wavelengths, such
as infrared, ultraviolet, or radio. This multiwavelength approach
could enhance classification accuracy by providing a more com-
prehensive view of the sources. For instance, certain types of
galaxies or stars may exhibit unique characteristics at specific
wavelengths that are not apparent in optical data. By incorpo-
rating multiwavelength data into ASID-C, we can leverage these
unique characteristics to improve classification performance.

In conclusion, ASID-C represents a significant advancement
in the field of star-galaxy classification. Its strong performance
and adaptability make it a valuable tool for the astronomi-
cal community, opening up new opportunities for research and
study. By enhancing our ability to classify celestial objects
accurately, ASID-C contributes to our understanding of the uni-
verse and accelerates the pace of discovery and exploration in
astronomy. The insights gained from this study provide valu-
able guidance for future research and applications in star-galaxy
classification.
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Appendix A: Incorporating spatial information

The dual-branch structure of our model, ASID-C, is designed
to incorporate a variety of features. A key component we have
integrated is spatial information, which plays a crucial role in
astronomical image analysis. The appearance of celestial objects
can vary depending on their location in the image, complicating
the task of distinguishing between stars and galaxies. To address
this, ASID-C considers the location of each celestial object
within the image. This approach allows the model to account
for variations in the PSF and other spatially dependent effects,
enhancing its accuracy and reliability even under challenging
imaging conditions.

To validate the effectiveness of this approach, we compared
the performance of the model with and without the spatial infor-
mation branch. The results showed a significant improvement
when spatial information was included, underscoring its impor-
tance in star-galaxy classification. Figures A.1, A.2, and A.3
illustrate the comparison of loss, Area Under the Receiver Oper-
ating Characteristic Curve (AUC), and Area Under the Precision-
Recall Curve (AUPRC) respectively, between the models with
and without the spatial information branch.

Fig. A.1. Comparison of loss between models with and without the spa-
tial information branch. The model incorporating spatial information
exhibits a lower loss, indicating improved performance.

Fig. A.2. Comparison of AUC between models with and without the
spatial information branch. The model incorporating spatial informa-
tion achieves a higher AUC, demonstrating its superior classification
performance.

Moreover, the dual-branch structure of ASID-C allows for
the inclusion of other features, such as PSF information, color

Fig. A.3. Comparison of AUPRC between models with and without the
spatial information branch. The model incorporating spatial information
shows a higher AUPRC, indicating a better balance between precision
and recall.

data from multiband images, or metadata from external cata-
logs. This adaptability ensures our model can evolve to meet the
changing needs and challenges of star-galaxy classification.
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