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Abstract: This study details the synthesis and performance evaluation of a novel lightweight thermal
and acoustic insulation material, resulting from the combination of a scleroglucan-based hydrogel
and recycled rigid polyurethane waste powder. Through a sublimation-driven water-removal process,
a porous three-dimensional network structure is formed, showcasing notable thermal and acoustic
insulation properties. Experimental data are presented to highlight the material’s performance,
including comparisons with commercially available mineral wool and polymeric foams. This material
versatility is demonstrated through tunable mechanical, thermal and acoustic characteristics, achieved
by strategically adjusting the concentration of the biopolymer and additives. This adaptability
positions the material as a promising candidate for different insulation applications. Addressing
environmental concerns related to rigid polyurethane waste disposal, the study contributes to the
circular economy.

Keywords: thermal insulating material; soundproofing; rigid polyurethane recycling; biopolymer;
circular economy

1. Introduction

The control of temperature in buildings and enclosed spaces currently accounts for
approximately 40% of global energy consumption [1–3]. Achieving proper thermal insula-
tion and improving energy efficiency are critical steps in reducing heat flow and energy
consumption, which in turn can help mitigate related emissions [4,5]. The insulating ma-
terials market is currently dominated by inorganic fibrous materials (glass and mineral
wool) [4,6] and polymeric foams (expanded polystyrene and polyurethane foams). These
materials find widespread use in providing thermal insulation and soundproofing for
both civil and industrial buildings [4,7]. However, conventional polymer-based foams
are produced from primary raw materials, often derived from fossil fuels. Additionally,
the release of fibers from mineral wool can raise health concerns [8]. In light of increased
awareness of environmental and health issues, there is growing research interest in alterna-
tive materials. These materials aim to utilize secondary, renewable or recycled sources to
meet sustainability and ecological requirements [5,7,9,10]. Rigid polyurethane (PU) foams
are widely used as insulation materials in buildings, refrigeration and appliances [11].
They offer high thermal resistance, effectively reducing heat transfer and improving en-
ergy efficiency. Additionally, they provide strength, rigidity and dimensional stability. In
the automotive industry, rigid PU foams are used for components such as seat cushions,
headrests and interior trim, enhancing comfort, impact resistance and weight reduction.
These foams are also employed in protective packaging due to their shock absorption and
vibration-dampening properties. Furthermore, they find applications in the marine and
aerospace industries owing to their high strength-to-weight ratios and resistance to water
and chemicals [11,12]. While rigid PU foams have various benefits, their disposal and recy-
cling presents challenges due to their thermosetting nature [13,14]. Unlike thermoplastic
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polymers that can be melted and reprocessed multiple times, thermoset polymers undergo
irreversible crosslinking reactions that make them difficult to reshape or remold. As a
result, traditional recycling methods used for thermoplastics, such as mechanical recycling
through melting and reforming, are not effective. The current predominant methods for
waste management of rigid PU involve landfilling or incineration. The latter option, in par-
ticular, can release toxic byproducts and pollutants into the environment, raising concerns
regarding air pollution and human health. This highlights the need for alternative solutions
in the effective management of PU waste. Efforts are being made to address this challenge
by developing alternative recycling methods, including chemical recycling, depolymeriza-
tion and conversion into bio-based materials. These approaches aim to recover valuable
materials from PU waste, diverting it from landfills and promoting a more sustainable
approach to polyurethane waste management [15–18]. The focus of this study is on a novel
material produced using a circular economy approach. It involves incorporating rigid PU
waste, ground into fine powder form, into a matrix based on scleroglucan (SG), a natural
biopolymer. The objective is to produce a foam material with good thermal and acoustic
insulation properties. To the best of our knowledge, low-temperature production methods
without the use of blowing agents are not currently available for this type of material. In
recent works, we successfully incorporated glass and fiberglass waste into an open-cell
foam structure using alginate as the biopolymer [19–21]. However, we faced limitations
in including other types of powdered waste, such as rigid PU powder, bricks or other
stone-derived construction waste. This was due to the low density of the PU powder and
the high density of bricks/stone waste. Additionally, the chemical activity of Ca2+, Mg2+ or
Fe ions within bricks powder caused rapid and uncontrolled crosslinking of the alginate
gel. In this study, we propose a similar approach but use a different bio-based polymer to
overcome these challenges. Scleroglucan is a neutral and hydrosoluble β-1,3-β-1,6-glucan
secreted by the filamentous fungus sclerotium [22–24]. Classified as a polysaccharide, it
consists of a linear chain of glucose units connected by glycosidic bonds. SG is known to
form highly viscous solutions with pseudoplastic non-Newtonian behavior, even at low
concentrations. Beyond its rheological properties, SG exhibits excellent film-forming and
gel-forming characteristics, making it suitable for various applications, including coatings,
adhesives, films and drug-delivery systems [25,26]. SG-based hydrogels are formed by
dispersing it in water to create a homogeneous solution. The unique molecular structure of
SG allows it to absorb water and swell, leading to the expansion of chains, resulting in the
formation of a viscous solution. As the concentration increases, polymer chains entangle,
forming a three-dimensional network. Gelation occurs, transforming the solution into a
hydrogel with structural stability that retains its shape [27–30]. The gelation process and
the properties of the hydrogel can be influenced by factors such as the concentration of
scleroglucan, temperature and the presence of other additives in the solution. SG solutions
at concentrations of 0.2% w/w behave as entangled polymeric solutions, while solutions at
higher concentrations, such as 1.0% and 2% w/w, behave as weak gels without the need
for crosslinking agents [31]. This behavior allows for the formation of hydrogels without
chemical modification, resulting in materials with unique properties. Furthermore, the
subsequent removal of water via freeze-drying yields a low-density material comparable
to an aerogel. Notably, SG gelation occurs more rapidly than that of alginate, and it does
not require the use of chelating agents (such as Ca2+ ions). Moreover, SG allows for the
effective incorporation of very light (PU) or very heavy (brick or rock) powders into the
forming foams, whereas alginate is limited to medium-density powders (such as glass or
fiberglass). Various molecules, including glycols and polyalcohols, are known to modify the
mechanical properties of SG-based hydrogels in terms of strength and stiffness [27], while
other molecules are used as binders or thickeners [28]. Polyvinylpyrrolidone (PVP), also
known as povidone, is commonly used as binder in various pharmaceutical and biomedical
applications, including hydrogels [32]. In brief, our synthesis route is based on the prepara-
tion of a hydrogel, which is subsequently freeze-dried to preserve its three-dimensional
porous network. Freeze-drying removes the entrapped water during gelation, preventing
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the collapse of pores. This study successfully demonstrates the possibility of incorporating
rigid PU waste as filler within the biopolymer network. We also explored the addition of
different binders and plasticizers (PVP and glycerol, the latter already tested as a plasticizer
with alginate-based gels) to fine-tune mechanical, thermal insulation and soundproofing
properties. This innovative foam material effectively addresses the utilization of secondary
and renewable raw sources while simultaneously tackling the issue of rigid PU waste dis-
posal and recycling. Unlike mineral fiber-based materials currently available on the market,
this foam mitigates the problem of fiber release, leading to significant environmental and
human health benefits. With its favorable properties and a production process rooted in
the principles of the circular economy, this novel material holds promise for thermal and
acoustic insulation applications across various sectors.

2. Materials and Methods
2.1. Samples Production

Scleroglucan (SG, Sclerotium Gum, CS 11 QD) was purchased from Cargill. Glycerol
(G, ≥99.5%) and polyvynylpyrrolidone (PVP, K30) were obtained from Sigma Aldrich
(Merck KGaA, Darmstadt, Germany). Rigid polyurethane foam (PU) production scraps
were freely donated by a company in northeastern Italy. These PU scraps underwent a
mechanical grinding process, followed by screening and sieving to obtain a fine powder
with particle sizes less than 200 µm. The production of foam was conducted using a sol-gel
process, following partially a procedure previously documented [19–21]. In brief, a sol
was prepared by mixing SG with water, PU powder and a plasticizer (PVP, glycerol or
a combination of both—see Table 1 for composition details), obtaining a sol. This sol
was then poured into molds measuring 200 × 200 mm2 (with a sol height of approxi-
mately 20 mm). The samples were left at room temperature for 30 min to complete the
gelation process. After gelation, they were placed in a freezer at −20 ◦C for 24 h and
subsequently subjected to a 48-h freeze-drying process using a 5Pascal LIO5P freeze dryer
to remove water. At least three samples were produced for each composition. The initial
reference sample composition (expressed as weight/volume %) was set as follows: SG = 1.5;
PVP = 1.5; PU = 5. This composition was determined, following preliminary tests, to
strike an optimal balance between maintaining a low sample density and maximizing its
recycled content, mechanical stiffness and insulating properties. Variations in SG and PU
powder concentrations were introduced to study their impact on the final properties, while
different concentrations and ratios of PVP and glycerol were tested to assess their influ-
ence as binders and/or plasticizers. Samples 12, 13 and 14 were produced and tested for
comparative purposes only. In these samples, the PU powder was replaced with powders
derived from waste glass, brick and carbon fibers (5% weight/volume). This was done
to demonstrate the feasibility of utilizing different types of powdered waste within the
SG matrix as a proof of concept. Following measurement and weighing procedures (as
detailed in Section 2.2), the samples were cut into smaller sizes. Square-based sample
(150 × 150 × 15 mm3) were utilized for thermal conductivity measurements, while cylin-
drical samples (diameter 45 mm) were used for acoustic characterization and mechanical
testing. Furthermore, commercial samples of rock wool, expanded polystyrene (EPS) and
rigid PU foam were tested under the same conditions (refer to Table 2 and the method
descriptions in the following paragraphs).
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Table 1. Composition of samples.

Sample Nr. SG
(% wt./vol.)

PVP
(% wt./vol.)

G
(% wt./vol.)

Filler
(% wt./vol.) Filler Type

1 1.5 1.5 - 5 PU powder
2 1.5 1.5 - 10 PU powder
3 1.5 1.5 - 15 PU powder
4 1.5 0.75 0.75 5 PU powder
5 1.5 1.00 0.50 5 PU powder
6 1.5 0.50 1.00 5 PU powder
7 1.5 - 1.50 5 PU powder
8 1.5 - - 5 PU powder
9 1.00 1.5 - 5 PU powder
10 1.25 1.5 - 5 PU powder
11 2.00 1.5 - 5 PU powder
12 1.5 1.5 - 5 glass powder
13 1.5 1.5 - 5 brick powder

14 1.5 1.5 - 5 carbon fibers
powder

Table 2. Properties of samples: debsity (ρ), compression modulus (E), compression strength (σc), noise
reduction coefficient (NRC) and thermal conductivity (λ). The values (*) measured on commercial
samples of rock wool, expanded polystyrene (EPS) and rigid PU foam are reported for comparison.

Sample Nr. Density
(kg m−3)

E
(kPa)

σc at
ε = 25% (kPa)

σc at
ε = 50% (kPa) NRC λ

(mW m−1 K−1)

1 55.2 ± 0.5 384 ± 38 61 ± 3 97 ± 4 0.40 36.5 ± 1.0
2 77.5 ± 1.4 500 ± 64 79 ± 2 152 ± 6 0.35 36.7 ± 1.5
3 105.4 ± 1.4 1273 ± 226 138 ± 4 296 ± 11 0.30 38.8 ± 1.3
4 58.8 ± 0.6 103 ± 11 19 ± 1 37 ± 1 0.40 36.9 ± 0.5
5 50.8 ± 0.8 187 ± 15 33 ± 0 58 ± 1 0.45 36.8 ± 2.0
6 55.7 ± 1.1 52 ± 3 11 ± 1 24 ± 2 0.40 37.2 ± 1.4
7 65.9 ± 1.6 16 ± 1 3 ± 0 10 ± 1 0.30 36.0 ± 0.6
8 42.5 ± 2.5 34 ± 3 7 ± 0 17 ± 1 0.45 41.2 ± 1.1
9 50.5 ± 1.1 184 ± 31 21 ± 1 40 ± 1 0.35 36.7 ± 1.5

10 50.7 ± 0.5 253 ± 10 34 ± 1 61 ± 1 0.40 36.5 ± 1.2
11 57.9 ± 1.1 445 ± 29 76 ± 9 125 ± 8 0.25 36.6 ± 1.0
12 60.5 ± 2.9 270 ± 31 38 ± 1 64 ± 1 0.35 -
13 62.2 ± 1.6 228 ± 10 35 ± 0 58 ± 1 0.30 -
14 74.8 ± 3.4 270 ± 10 50 ± 1 80 ± 0 0.30 -

rock wool * 151 ± 5.0 500 ± 20 60 ± 1 80 ± 1 0.30 37.7 ± 0.5
EPS * 18.5 ± 0.6 ≈ 2.0 × 103 120 ± 3 180 ± 5 0.20 36.7 ± 2.5

Rigid PU * 52.1 ± 0.7 ≈ 1.1 × 104 410 ± 10 470 ± 20 0.05 42.0 ± 1.2

2.2. Dimension, Mass and Density Determination

Before conducting measurements and testing, all samples were conditioned for 24 h
at 20 ◦C and 40% relative humidity. The dimensions of the dried samples were measured
using a digital caliper (RS Pro, code 841-25), with values rounded to the nearest 10−1 mm,
and averaging three measurements for each dimension. Three measurements were taken
for each dimension, and the average was calculated. Mass measurements were performed
using a digital balance (Sartorius CP244S, Sartorius AG, Göttingen, Germany), with values
rounded to the nearest 10−1 g. For square-based samples, volume was calculated by
multiplying the three dimensions, while for cylindrical samples, it was determined using
the formula πR2H (with R representing the radius and H the height). Sample density,
rounded to the nearest kg m−3, was then calculated by dividing the mass by the volume.

2.3. Macro and Micrographs

Macroscopic images of the samples were captured using a digital camera (Panasonic
Lumix DMC-TZ80, Panasonic Marketing Europe GmbH, Wiesbaden, Germany). Scanning
Electron Microscopy (SEM) images were obtained using a SUPRA40 SEM (Carl Zeiss Mi-
croscopy GmbH, Jena, Germany) operating at a 3 kV acceleration voltage with a secondary
electron detector.
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2.4. Mechanical Testing

Compression tests were conducted using a Shimadzu AGS-X (Shimadzu Europa
GmbH, Duisburg, Germany) 10 dynamometer with a 10 kN load cell. Three cylindrical
samples (diameter 45 mm; thickness 15 mm) were tested for each composition. The test
speed was set to 1.5 mm min−1, while the signal acquisition time was set at 250 ms.
Mechanical properties, including compression modulus and strength, were determined in
accordance with ASTM C165 [33]. Compression strength was conventionally recorded at
25% and 50% strain for all samples to facilitate comparison.

2.5. Thermal Conductivity Determination

Thermal conductivity measurements were carried out using a Netzsch HFM 446
(NETZSCH-Feinmahltechnik GmbH, Selb, Germany) heat flow meter on square-based
samples (150 × 150 × 15 mm3) in compliance with the ASTM C518 [34], at an average
temperature of 25 ◦C.

2.6. Sound Absorption Measurements

To determine the sound absorption properties of the samples, a two-microphone
plane wave impedance tube (Kundt’s tube) was employed, following the ISO 10534-2
standard [35]. The noise reduction coefficient (NRC) was calculated in accordance with
the ASTM C423 [36]. Three cylindrical samples (diameter 45 mm; thickness 15 mm) were
tested for each composition.

3. Results and Discussion
3.1. Foam Structure

Images of representative samples are shown in Figure 1, highlighting the visual aspects
of the foam material. Figure 2 presents a representative SEM image, providing detailed
surface morphology. The observed open-cell porous structure of the foam is essential for
achieving the desired lightweight properties and insulation capabilities, as outlined in
the subsequent paragraphs. Average pore size range from 50 to 100 µm. This structure is
maintained through the freeze-drying process, which prevented pore collapse during the
water removal.
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Figure 2. SEM images illustrating the microstructure of foam samples with varying compositions,
expressed as weight/volume percentages: (a) Scleroglucan 1.5%, PVP 1.5% and PU 5%; (b) Scleroglu-
can 2%, PVP 1.5% and PU 5%; (c) Scleroglucan 1.0%, PVP 1.5% and PU 5%; (d) Scleroglucan 1.5%,
PVP 1.5% and PU 15%.

3.2. Sample Density

The sample densities are provided in Table 2. In general, samples with the reference
quantity of PU powder (5% wt./vol) exhibit densities ranging between 50 and 65 kg m−3.
It is worth noting that samples containing glycerol (sample nr. 4, 6 and 7) are somewhat
heavier than the others. This increased weight is likely attributed to moisture absorption
from the atmosphere, as glycerol is a hygroscopic molecule. Samples numbered 2 and 3
(containing 10% and 15% wt./vol of PU powder, respectively) display higher densities,
measuring 78 and 105 kg m−3, respectively, due to their higher solid fraction. In comparison,
conventional mineral wools exhibit higher densities (100–150 kg m−3) while polymeric
foams are lighter respect most of our samples, ranging from 15 to 20 kg m−3 [37,38].

3.3. Mechanical Properties

Figure 3 displays the average compression test stress-strain curves, labeled as A,
B and C. In Figure 3A, we compare samples produced with varying concentrations of
polyurethane (PU) expressed as a percentage of weight/volume in the initial aqueous
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suspension (PU5, PU10 and PU15). Similarly, Figure 3B compares samples produced
with different concentrations of scleroglucan (SG) at 1.0%, 1.5% and 2.0% weight/volume.
Figure 3C illustrates stress-strain curves for samples produced with varying concentrations
of plasticizers (polyvynilpyrrolidone—PVP; and glycerol—G), denoted as “PVP x/G y”,
where x and y represent the percentages of weight/volume in the initial aqueous sus-
pension. Additionally, a stress-strain curve for samples produced without plasticizers,
represented by the black curve, is shown. The values of compression modulus and com-
pression strength, conventionally recorded at 25% and 50% strain, are reported in Table 2.
Notably, the majority of the samples exhibit mechanical properties comparable to those
of standard mineral wool [37]. However, these properties fall significantly short when
compared to rigid PU foam and EPS foam. It is worth highlighting that only the sample
containing 15% weight/volume of PU demonstrates a compression modulus and strength
within the same range as EPS foam [38].
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The data suggests that both modulus and compressive strength tend to increase with
higher PU, SG and PVP content, while they appear to decrease with the addition of glycerol.
This effect of glycerol-induced stiffness reduction in alginate-based matrices is already
known; a similar effect can be hypothesized in SG-based matrices [39–41]. A glycerol
concentration of 1.5% weight/volume seems to dramatically decrease both compressive
modulus and strength. Conversely, higher PVP content appears to enhance both modulus
and strength. Trend of modulus E and compression strength as a function of sample
composition are reported in Figure 4.
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3.4. Sound Absorption Properties

Average noise absorption coefficient curves as a function of sound frequency are
presented in Figure 5. In Figure 5A, a comparison is made between samples produced with
different concentrations of PU (labeled as PU5, PU10 and PU15, with the number denoting
the PU concentration as a percentage of weight/volume in the initial aqueous suspension).
Similarly, compares samples produced with varying concentrations of SG (1.0%, 1.5% and
2.0% weight/volume). Figure 5C displays the curves for samples produced with different
concentrations of plasticizer molecules (glycerol, PVP or no plasticizer). The values of the
noise reduction coefficient (NRC) are detailed in Table 2.

The observed values and overall acoustic performance do not seem to follow a clear
trend solely based on sample composition. However, it is noteworthy that samples contain-
ing glycerol exhibit superior noise absorption capabilities. The open pore structure of the
material facilitates the dissipation of sound waves. As sound waves penetrate the material,
they encounter the irregular surfaces and porous structure, causing multiple reflections
and interactions. This results in the dissipation of acoustic energy within the material due
to air resonance, damping and multiple reflection [42,43]. Softer materials tend to absorb
sound more effectively due to the deformation that occurs when sound waves interact with
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the material’s structure [42,43]. The NRC values are either on par with or even surpass
those of commercially available sound-absorbing materials.
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Figure 5. Sound-absorption coefficient curves of foam samples. (A) Comparison between samples
produces with different amount of PU (5, 10 and 15 wt./vol %); (B) comparison between samples
produced with different concentration of SG (1.0, 1.25, 1.5 and 2.0% wt./vol.); (C) comparison between
samples produced with different concentrations of PVP and G.

3.5. Thermal Insulation Properties

The values of thermal conductivity (reported in Table 2) fall within the range of
36 to 38 mW m−1 K−1. Interestingly, these values do not seem to exhibit a clear correlation
with the density of the samples. For instance, samples with a density of 48 kg m−3 exhibit
a thermal conductivity of 36.5 mW m−1 K−1, while those with a density of 94 kg m−3

have a slightly higher thermal conductivity of 37.8 mW m−1 K−1. Notably, the sample
with the highest thermal conductivity (41.2 mW m−1 K−1, with density of 42.2 kg m−3) is
the one produced with 1.5% weight/volume glycerol, suggesting a higher water content
in this particular sample due to moisture absorption. The variations in SG, PU or PVP
concentration do not appear to significantly impact thermal conductivity. However, an
increase in glycerol concentration seems to have a detrimental effect on the thermal insula-
tion properties. For comparison, conventional materials such as expanded polystyrene or
polyurethane foam typically exhibit slightly better thermal conductivity values in the range
of 20–30 mW m−1 K−1 with respect to our samples, while the conductivity of mineral wool
(35–37 mW m−1 K−1) lies in the same range [4,6,38,44]. It is worth noting that thermal
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conductivity is influenced by factors such as density and porosity structure. The thermal
insulation mechanism involves minimizing heat conduction through reduced thermal
conductivity, trapped air or gas acting as an insulator and potential reflection of thermal
radiation. The majority of thermal conduction occurs in the solid phase, which is related to
the sample density and contributes the most to the overall thermal conductivity [41]. In
closed-cell materials, thermal insulation is favored due to reduced convective heat transfer,
whereas in open-cell structures like ours, conduction in the gas phase plays a larger role,
hindering optimal heat insulation performance [45]. Open-cell structure, coupled with a
higher density compared to expanded polymeric foams, appears to limit its potential for
achieving optimal heat insulation performance.

4. Conclusions

In this study, we successfully developed a lightweight thermal and acoustic insulation
material by incorporating rigid PU waste into renewable biopolymers. This novel material
exhibits an open porous structure, with densities ranging from 170 to 320 kg m−3, thermal
conductivities between 35 and 65 mW m−1 K−1 and a noise-reducing factor within the
range of 0.25–0.45. The compressive strengths as high as 1 MPa make it an interesting
candidate for applications requiring a good combination of low weight, thermal/acoustic
insulation and a minimal amount of mechanical strength.

Preliminary tests have shown that our innovative foam possesses insulation properties
akin to those of typical mineral wool (<40 mW m−1 K−1). While its load-bearing capacity
may not outshine that of certain polymeric rigid foams, our material surpasses polymeric
foams of similar density in terms of soundproofing and thermal insulation properties.

Additionally, preliminary findings indicate that most of these properties can be finely
adjusted by varying the biopolymer concentration and/or incorporating polysaccharides
as plasticizers. Our approach prioritizes environmental sustainability by reducing energy
consumption, limiting primary raw material usage and diverting rigid PU waste from
landfills. As the industry increasingly emphasizes resource efficiency and environmental
responsibility, this method aligns with these goals.

However, further research is needed to optimize the material’s properties, especially in
terms of achieving optimal heat insulation performance. Additionally, long-term durability
and environmental impact require deeper investigation.

Regarding the recyclability, compostability and biodegradability of the products, our
findings indicate that the products are recyclable through mechanical grinding. This pro-
cess allows for the recovery of powders that can be reprocessed in a manner similar to the
original polyurethane (PU) powders, thereby supporting a circular economy approach to
waste management. However, it is important to note that the products are not compostable
or biodegradable due to the presence of rigid PU powder. While the scleroglucan com-
ponent alone may possess compostable and biodegradable properties, it is challenging to
separate from the PU after processing. As a result, the overall material cannot be considered
compostable or biodegradable in its current form.

Our research underscores the importance of considering the environmental implica-
tions of materials throughout their lifecycle, from production to end-of-life disposal. While
our products offer recyclability benefits, future studies may explore methods to enhance
the environmental sustainability of composite materials containing both synthetic and
biopolymer components. In conclusion, this study presents a significant step towards a
more sustainable and eco-friendly future in insulation materials, providing a foundation
for future research and development in the quest for innovative environmentally friendly
insulation solutions.
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