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Abstract
Coastal instability in the form of rock fall is widespread along the northern coasts of Malta 
and is strictly connected to structural controls, such as lithology and tectonics. The local 
geological and geomorphological setting combined with extreme weather events, whose 
spatial and temporal occurrence is enhanced by ongoing climate and land use change, 
determines rock-fall hazard along the north–west coast of Malta, a hotspot for Mediter-
ranean tourism. The present research portrays the results of a pilot study aimed at analyz-
ing rock-fall runout probability along this stretch of coast. Cliffs and downslope terrains 
were the object of detailed field surveys. This included the detection of persistent joints in 
the source areas and the identification of slope-forming materials like debris and boulders 
present along the downslope terrains. The outcomes of the field surveys and GIS-based 
processing of topographic information were used for identification of the input parame-
ters for rock-fall runout simulation. The latter was performed using a QGIS based plugin 
(QPROTO) that allows to determine expected runout extents and assess the rock-fall sus-
ceptibility. The result is the characterization and mapping of rock-fall runout probability 
zones along six investigated sites. The outputs of the research and the replicability of the 
method can be of interest for authorities aiming at defining risk management actions and 
undertaking mitigation measures compliant with sustainable development of coastal areas.

Keywords  Rock fall · Runout simulation · QPROTO · GIS · Malta

1  Introduction

Climate-related coastal risks affect both coastal ecosystems and human settlements leading 
to considerable impacts on socio-economic assets (Magadza 2000; McLean et  al. 2001; 
Senapati and Gupta 2014; Gallina et al. 2020; Masson-Delmotte et al. 2021). Coastal areas 
are prone to both marine and terrestrial processes including storm-surges, coastal erosion, 
inundation, slope instability and, on a longer-term, sea level rise (Neumann et  al. 2015; 
Ranasinghe 2016; Vousdoukas et  al. 2018, 2020; de Campos et  al. 2020; Arabadzhyan 
et al. 2021; Hauer et al. 2021). Extreme events coupled with rising sea levels increase the 
risk due to storm surges and coastal inundation (McInnes et al. 2003; Hallegatte et al. 2011; 
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Muis et al. 2016; Vousdoukas et al. 2017; Rizzo et al. 2022; Scardino et al. 2022; Vandelli 
et al. 2022; Hermans et al. 2023). Among these broader coastal risk issues, rock falls have 
a major impact on rocky coasts acting with high-energy (Carrión-Mero et al. 2021; Cinosi 
et  al. 2023; Neziri and Bytyqi 2024) and having the potential to damage sizable swaths 
of coastal areas. Rock falls include a single or a group of rock blocks rapidly descend-
ing down a steep slope (Volkwein et  al. 2011; Hungr et  al. 2014). The exact trajectory 
of any rock block is extremely difficult to anticipate, making it a sensitive undertaking to 
evaluate the risk of rock fall (Jaboyedoff and Labiouse 2011). Predicting rock-fall runout, 
and therefore identifying the areas that could potentially be affected, is still challenging. 
The accuracy of runout distance estimations requires measurements based on observational 
data, whose reliability depends on the volume and frequency of rock falls (Jaboyedoff and 
Labiouse 2011), thus leading to better understanding of their behavior and associated risks. 
In this context, definition of the runout distance and propagation area is vital in any hazard 
assessment.

Diverse geological, climatic, and topographic factors play a role in the distribution of 
rock-fall hazard zones at global and regional scales. The importance for understanding and 
assessing potential threats due to rock falls has been highlighted in numerous papers (Pap-
ini et al. 2005; Poisel et al. 2020; Tiranti et al. 2023) which give a broader understanding 
of rock-fall risk. Rigorous 3D analytical models considering the inertia of rock blocks have 
been illustrated by Guzzetti (2002), and Crosta and Agliardi (2004) at a global scale. At a 
regional scale, several insights related to rock-fall dynamics have been reported by Dorren 
et  al. (2006), highlighting the importance of understanding the spatial evolution of such 
events which can be examined by using numerous techniques. However, simpler models 
ignore the impact of block shape and size, therefore reducing the volume of blocks to a 
dimensionless point within a 2D or 3D framework (Piacentini and Soldati 2008; Castelli 
et  al. 2021). On a local scale, even more simplified techniques are used for preliminary 
research and territorial planning (Corominas et al. 2014; Ferlisi et al. 2019; Nappo et al. 
2019; Scavia et al. 2020) that use general parameters without including detailed geotechni-
cal information on the rock mass. In order to cope with limited data availability and scien-
tific uncertainties, a runout model is required to be both straightforward and trustworthy. 
Amongst a wide variety of methods, the energy angle method (EAM) is the one which is 
most frequently used (Castelli et al. 2021; Hantz et al. 2021). EAM was initially proposed 
by Paronuzzi (1987), built on the Fahrböschung strategy introduced by Heim (1932). Dur-
ing the last few decades, a number of simulation software, including those built in GIS 
environment, have incorporated EAM. This method is applied to understand the spatial dis-
tribution of rock-fall susceptibility in order to estimate potential runout distances, and iden-
tify areas at risk. One example of a computer tool that incorporates EAM is the CONE-
FALL tool developed by Jaboyedoff and Labiouse (2011). This tool utilizes GIS data, 
including Digital Terrain Models (DTMs) and grid files of rock-fall sources, to estimate the 
potential rock-fall propagation area by applying the EAM principles. Cone method (CM) 
is the most common term for the 3D manifestation of the EAM. Furthermore, Rock-fall 
tool (QPROTO) (https://​plugi​ns.​qgis.​org/​plugi​ns/​qproto/), an open-source cross-platform 
plugin, is a QGIS tool based on the cone method (Jaboyedoff and Labiouse 2011) devel-
oped by Politecnico di Torino and Arpa Piemonte, with reference to parameters that reflect 
block-ground interaction (Scavia et al. 2020).

This paper deals with the analysis of rock falls that characterize the north–west coast 
of Malta. Rock falls occur along steep cliffs that limit plateaus made up of resistant lime-
stones. These plateaus often show structural discontinuities due to tectonic and strati-
graphic factors, resulting in lateral spreads and block slides. Rock spreading enlarges 

https://plugins.qgis.org/plugins/qproto/
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structural discontinuities or produce long and deep cracks that can isolate large limestone 
slabs prone to fall or topple from the cliffs (Devoto et al. 2012; Soldati et al. 2019).

In detail, the research deals with rock-fall susceptibility assessment, which serves as a 
crucial component to build a comprehensive approach to risk management. The study rep-
resents an application of the QGIS predictive rock-fall QPROTO tool (Castelli et al. 2021), 
in order to simulate rock-fall runout probability along six sites in the north–west coast of 
Malta. QPROTO is a user-friendly and non-commercial tool. Its application led to detailed 
propagation analysis and to the estimation of the rock-fall probability within the detected 
invasion zones.

Rock falls may affect infrastructures leading to socio-economic losses (Mignelli et al. 
2014; Cloutier et al. 2015; Antronico et al. 2017; Donnini et al. 2017). Therefore, in order 
to cope with hazardous situations, it is immensely important to implement the use of simu-
lation tools which can determine runout distance and kinetic energy (Volkwein et al. 2011) 
involved in the process in order to detect rock-fall prone areas.

Taking into consideration the general lack of comprehensive coastal safety management 
plans with reference to rock-fall occurrence along the Mediterranean rocky coasts, this 
study intends to provide authorities with a useful insight and replicable means for under-
taking effective hazard assessments aiming at a sustainable management of rocky coastal 
areas.

2 � Study area

The study area is located in Malta, which is the largest and most populated island within 
the Maltese archipelago. The latter lies in the central Mediterranean Sea (Fig.  1), ca. 
100 km south of Sicily and 290 km east of Tunisia (Said and Schembri 2010). The Maltese 
Islands are situated on the Malta-Hyblean platform, an extensive submerged shelf bridge 
at the convergence zone of the African and Eurasian tectonic plates, which is controlled by 
two faults. The Great Fault is oriented WSW–ENE, contrary to the Maghlaq Fault which is 
aligned NW–SE marking Malta’s primary tectonic discontinuity (Pedley et al. 1978; Alex-
ander 1988; Galea 2019; Gauci and Schembri 2019). Tectonic activity, geomorphological 
processes, and sea level changes have all collectively shaped the coastline of these islands 
(Biolchi et al. 2016b). The Great Fault actually splits the Island of Malta into two struc-
tural regions. North of the Great Fault, four horsts alternate three graben features and cor-
respond to prominent ridges and well-shaped valleys, respectively (Devoto et  al. 2012). 
These structural landforms are approximately WSW–ENE oriented.

This study focuses on the north–west coast of Malta, from Paradise Bay to Gnejna Bay 
(Fig.  1). The investigated area hosts six well-known tourist spots, namely Paradise Bay, 
Anchor Bay, Golden Bay, Ghajn Tuffieha Bay, Il-Qarraba promontory and Gnejna Bay 
(Fig. 2). These are attractive destinations for the presence of pocket beaches (Zammit Pace 
et al. 2019), a natural park characterized by rich variety of geoheritage sites (Coratza et al. 
2011; Cappadonia et al. 2018; Selmi et al. 2019), an amusement park and for the possibil-
ity to carry out a variety of leisure activities. These areas can be hazardous for various 
users and the numerous tourists who visit the area due to widespread coastal instability 
processes (Devoto et al. 2013; Soldati et al. 2019; Mantovani et al. 2022).

The rocks outcropping in the study sites were formed between Miocene and Upper Oli-
gocene belonging to a marine sedimentary succession of five lithostratigraphic units, com-
prising Tertiary limestones, clays and marls overlaid by thin surficial deposits (Pedley et al. 
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1978, 2002; Scerri 2019). These units include, from the bottom to the top, Lower Coralline 
Limestone Formation, Globigerina Limestone Formation, Blue Clay Formation, Green-
sand and Upper Coralline Limestone (UCL) Formation (Baldassini and Di Stefano 2016).

Slope instability processes like rock falls are diffused along the north–west coast of 
Malta due to the presence of large rock spreads (Soldati et al. 2019). The latter result from 
the overposition of two geological formations showing a different mechanical behaviour 
like the Blue Clay and UCL (Devoto et al. 2012). According to Soldati et al. (2019), rock 
falls are common in the investigated area and represent 11% of total area affected by land-
slides. These rapid landslides mainly affect the edge of UCL plateaus, which are charac-
terized by persistent discontinuities. Tens of these discontinuities are originated and wid-
ened by lateral spreading, and were recently inventoried and mapped using the outputs of 
UAV-DP technique (Devoto et al. 2020). These discontinuities often occur in clusters, as 
in the caprock of Il-Qarraba, isolating large blocks and making them prone to be detached. 
Inventories of gravity-induced discontinuities that characterize karst plateaus of north–west 
and north–east coasts of Malta were produced by Devoto et al. (2020, 2021). Furthermore, 
the combination of gravity-induced joints and other types of discontinuities can separate 
large blocks that can fall or topple from the structural cliff that limits the plateaus. Most of 
these rock falls are therefore originating as collateral landslides of lateral spreads and block 
slides (cf. Pasuto et al. 2022).

Rock falls also occur from Lower Coralline and Globigerina limestone steep cliffs such 
as in Gnejna Bay, but they are rare compared to events that affect UCL plateaus. Large 

Fig. 1   Geographic setting of the study area and location of the investigated sites along the north–west coast 
of Malta. The satellite image is derived from ArcGIS Online World Imagery (map data: Esri, DigitalGlobe, 
GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS 
User Community)
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blocks either rest close to the scarp face from which they have been detached or extend to 
sea level and shield the coast from further erosion.

There have been incidents where people were injured as a result of rock falls or dif-
ficult terrain accessibility due to the occurrence of rock blocks at the base of the cliffs 
(Main et al. 2022). Such rock falls also affected the Il-Qarraba caprock on 26th November 
2011 and northern cliff of Anchor Bay during the Helios storm event on 9th February 2023 
(Fig. 3).

3 � Materials and methods

The rock-fall susceptibility analysis based on runout probability was performed consider-
ing a methodological approach as shown in Fig.  4. The research benefited from the use 
of high-resolution topographic data consisting of a LiDAR-derived Digital Terrain Model 
(DTM) with 1 m resolution (ERDF 156 Data 2013).

Firstly, detailed field surveys were carried out at the above-mentioned selected sites of 
the north–west coast of Malta, in order to incorporate and verify a set of data collected 
through desk activities that involved analysis of existing maps, reports, and papers regard-
ing past landslide events. The second step included processing of GIS based topographic 
information in order to identify a set of rock-fall source points along the edge of the plateau 
in the test sites and defining various input parameters. This was followed by the third step 

Fig. 2   The investigated sites along north–west coast of Malta. a Paradise Bay, b Anchor Bay, c Golden Bay, 
d Ghajn Tuffieha Bay, e Il-Qarraba promontory (photo by Col. M. Marchetti), f Gnejna Bay
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in which association of the input parameters to each source point and analysis of rock-fall 
prone areas were carried out using QPROTO tool in a GIS environment (https://​plugi​ns.​
qgis.​org/​plugi​ns/​qproto/ accessed on November 2023) utilizing a cone method modelling 
approach in order to provide rock-fall runout probability simulations. Finally, in the fourth 
step, the modelling outputs were mapped and validated through in-situ surveys in order to 
compare the localization of rock-fall accumulation zones (invasion zones) observed on the 
field with those generated by the model. In the following sub-sections, a detailed descrip-
tion of each step of analysis is provided.

Fig. 3   Examples of rock-fall events along the north–west coast of Malta. a Rock fall occurred on 26th 
November 2011 on the cliff of Il-Qarraba caprock (red dotted lines indicate the impacts of the detached 
rock mass); b Rock fall occurred on 9th February 2023 in the north side of Anchor Bay

Fig. 4   Flow chart of the methodological approach applied for the analysis of rock-fall susceptibility along 
the north–west coast of Malta

https://plugins.qgis.org/plugins/qproto/
https://plugins.qgis.org/plugins/qproto/
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3.1 � Field surveys (step 1)

Field surveys included identification of the cliffs which could host potential rock-fall 
source points and boulder accumulation zones beneath these cliffs.

In particular, the field surveys led to integration and validation of the outcomes of 
preliminary desk activities that included: (i) analysis of existing maps, reports and 
papers; (ii) analysis and interpretation of multi-temporal Google Earth Images.

3.2 � Definition and identification of input parameters (step 2)

The detection of the potential release areas (source points) was carried out in a GIS 
environment taking advantage of topographic features like elevation and slope. Then, 
the source points were refined with reference to the information gathered from field sur-
veys. In order to detect the rock-fall source points along the edge of the plateaus, a slope 
angle-based approach that takes into consideration slope inclination of 45° was adopted 
(Castelli et  al. 2021). The calculation is based on the processing of the DTM of the 
investigated area.

The procedure for rock-fall runout simulation applied in this research is based on 
propagation analysis performed with the Predictive Rock fall Tool (QPROTO) plugin. 
In order to perform rock-fall runout analyses with QPROTO, a set of data (input param-
eters) pertaining to the slope conditions and the anticipated rock-fall scenario must be 
associated with each source point having an inclination of 45° (Castelli et  al. 2021). 
Detailed information about the input parameters used in the present study to perform the 
propagation analysis is listed in Table 1 and described in Sect. 3.3.

3.3 � Association of the input parameters to the source points (Step 3)

In this phase, all the attributes required by QPROTO (cf. Table 1) were linked to each 
source point present along all the cliffs of the six test sites. Elevation and aspect were 
extracted from the DTM. Block mass of 2000 kg and block volume of 1 m3 were con-
sidered as representative of the phenomenon with respect to the investigated area. Such 
consideration was made based on (i) the UCL densities observed at a coastal boulder 
deposit located at Marfa Ridge by Biolchi et al. (2016a), (ii) the average size of blocks 
located at the foot of the cliff and (iii) expert knowledge. Each source point’s detach-
ment propensity (DI) was set to 1 and visibility distance was set to 800  m (Castelli 
et al. 2021). DI indicates that the probability of occurrence of each computed parameter 
is the same at any point inside propagation area. Since the investigated area is devoid 
of forest, the energy line angle φp was considered 34° based on the function of slope 
inclination and block volume for a non-forested slope (Castelli et al. 2021). A constant 
value for lateral angle α = ± 12° was assumed (Castelli et al. 2021) which best simulated 
the observed runout area. The intensity of the phenomenon under consideration within 
the runout area (kinetic energy) is calculated using an energy balance equation follow-
ing the QPROTO plugin (https://​plugi​ns.​qgis.​org/​plugi​ns/​qproto/) in QGIS environment 
(http://​qgis.​org). Figure  5 elucidates the process of model computation for rock-fall 
susceptibility analysis and mapping using QPROTO with reference to the Anchor Bay 
study site.

https://plugins.qgis.org/plugins/qproto/
http://qgis.org
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3.4 � Rock‑fall susceptibility mapping and validation of results (Step 4)

The results obtained from the QPROTO simulations were rasterized considering the 
mean kinetic energy field in ArcGIS 10.3 software. Additionally, a smoothed filter with 
kernel size (3 × 3 pixel) was considered in order to get enhanced area of runout probabil-
ity. This allowed smoothening of the pixels making the data easier to be interpreted and 
visualized (Fig. 5). Specifically, the values of mean kinetic energy (kJ) obtained from the 
QPROTO analysis were classified into five classes in order to depict the runout probabil-
ity. To this aim, the geometrical interval classification method was applied. Based on the 
classified rock fall invasion zones, rock-fall runout probability maps were prepared and 
validated through field surveys in order to compare the representation of invasion zones 
observed in the ground with the ones generated and mapped by the model and GIS tools 
respectively.

4 � Results and discussion

The outcomes of the analysis of the six investigated sites of north–west coast of Malta are 
represented as follows: (i) GIS-based maps that show the spatial distribution of rock-fall 
runout probability zones, (ii) areal extent and relative percentage under different runout 
probability zones.

The spatial interpretation of rock-fall runout probability zones (cf. Section 3.4) is rep-
resentative of the expected rock-fall invasion areas. The classification of runout zones has 
enabled the delimitation of the investigated territory and calculation of the areal extents 
with different runout probability levels (susceptibility classes). The areal extents are 
expressed in square metres and percentages of the total investigated surface under differ-
ent probability zones (Table 2). Spatial distribution of rock-fall runout probability for the 
six test sites is presented as maps in Fig. 6. The runout zones of the cliffs were generated 

Fig. 5   Workflow of model computation for rock-fall susceptibility analysis and mapping using QPROTO
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as consistent areas of rock-fall invasion and were represented in the form of maps. Fur-
thermore, areal extent of rock-fall runout probability zones and percentage of surface area 
under these zones for each investigated site are reported in Table 2 and outlined in Fig. 7.

In detail, Gnejna Bay shows the maximum percentage area under high runout probabil-
ity level (29.3%). This corresponds to high kinetic energy within this zone, followed by 
Anchor Bay (27.9%) and Golden Bay (27.5%). However, Il-Qarraba promontory, Paradise 
Bay and Ghajn Tuffieha Bay have 25.9%, 25.5% and 25.1% area under high runout prob-
ability level respectively. According to Jaboyedoff et al. (2005), the higher the intensity of 
an event and its mean probability, the higher is the degree of danger for exposed elements. 
It is worth noting that the coastal sectors in the north–west of Anchor Bay, north–east of 
Paradise Bay, north of both Golden Bay and Ghajn Tuffieha Bay and south–west of Gnejna 
Bay have very high and high rock-fall runout probability levels (Fig. 6).

Fig. 6   Rock-fall runout probability zonation in the investigated sites: a Paradise Bay, b Anchor Bay, c 
Golden Bay, d Il- Qarraba promontory, e Ghajn Tuffieha Bay and f Gnejna Bay
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This is due to the presence of steep slopes beneath the cliffs and the occurrence of 
numerous persistent discontinuities, which are located along the external sectors of 
Upper Coralline Limestone plateaus (Devoto et al. 2020) resulting in high fragmentation 
of the rock masses, a common physical process during rock-fall (Jaboyedoff et al. 2005; 
Matas et al. 2020). Persistence of these joints and their high values of apertures (Devoto 
et al. 2020) have a significant impact on the fragmentation characteristics during detach-
ment and fall of the outer portion of limestone plateaus when rock spreading and block 
sliding occur. The inner sector of the bays shows medium to low rock-fall runout prob-
ability zones, being located farther away from the cliff and the rock-fall source areas. 
Furthermore, there is a low rock-fall runout probability around the Il-Qarraba caprock. 
This is due to the presence of gentle Blue Clay slopes and hummocky terrains related to 
earth slides around Il-Qarraba caprock (Devoto et al. 2012).

It is important to highlight that runout zones (i.e., propagation areas) of the inves-
tigated sites are strictly connected to the outcomes of empirical cone method analyses 
carried out in an open source QGIS environment using QPROTO plugin. The obtained 
results are consistent with real cases and literature data. In fact, the modelled rock-fall 
propagation areas are congruent with the observations made during field surveys and 
with the outcomes of the analysis of available materials (maps, reports and papers) on 
past rock-fall events. Such simulation outcomes are aimed at achieving accurate and 
reliable results (Milan et al. 2023) in the form of rock-fall runout probability maps. One 
great advantage of the application of such an approach is that it could be applied to 
different study areas (Miele et al. 2021; Torsello et al. 2022) in order to assess runout 
zones in similar rock-fall prone locations. This is due to the wide variety of input 
parameters which is another advantage for easy computation of rock-fall runout prob-
ability. Moreover, resolution of the DTM significantly impacts the correct identification 
of source areas (Losasso et al. 2017) and the simulation of the runout probability zones. 
High resolution DTM enables precise detection of source areas and detailed represen-
tation of propagation zones leading to implementation of improved risk management 

Fig. 7   Graphical representation of percentage area under different runout probability zones for the investi-
gated sites located along the north–west coast of Malta
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strategies. However, such high-resolution data requires more computational time and 
high performing computers.

Furthermore, since deviations of rock blocks from the predefined path cannot be taken 
into consideration (Losasso et al. 2017), such kind of application falls short of accurately 
describing the real trajectory of rocks that fall or topple. For example, slopes that are char-
acterized by strong orientation gradient may lead to deviation of rocks from the original 
dip direction of the blocks (Castelli et al. 2021) producing unrealistic results. In the current 
study, this problem was resolved by using a large number of source points which resulted 
in the generation of wide invasion areas by overlapping differently oriented cones.

The application of the QGIS predictive rock-fall tool used in this study serves as an 
effective tool for a prompt evaluation of rock-fall runout probability zones leading to easy 
mapping of such areas in a GIS environment. These maps play a crucial role for land plan-
ning purposes since they allow for rapid identification of critical areas within extensive 
slopes. In practical terms, these slope segments require in-depth assessments, installation 
of monitoring tools, or consolidation work. Nevertheless, such outputs provide an easy 
solution for creating useful framework of knowledge and represent adequate response to 
the growing need for effective tools for the study of coastal instability processes (cf. Pia-
centini et al. 2015; Mantovani et al. 2016).

5 � Conclusions

The north–west coast of Malta shows a wide variety of coastal instability processes which 
determine risk situation for the numerous users and visitors of this sector of the island. 
Among those, rock falls require special attention by territorial and land planning authori-
ties due to their rapid and often unexpected onset. This aspect plays a crucial role in devel-
oping suitable risk management strategies and effective planning of land use in the context 
of sustainable development.

This study aimed at providing insights on rock-fall hazard issues in Malta by means of a 
systematic application of the QGIS predictive rock-fall tool for the assessment of potential 
rock-fall source areas and their propagation at a local scale in six selected sites. Specifi-
cally, this study addressed rock-fall susceptibility by simulating runout along cliffs where 
rock falls are widespread, also as collateral processes linked to the extensive lateral spreads 
and block slides, that affect limestone plateaus overlapping clayey terrains.

Within the investigated sites, the coastal sectors that showed the most critical conditions 
in terms of rock-fall runout probability are the north–east cliff of Paradise Bay, the north 
side of Anchor Bay and the north cliff of Ghajn Tuffieha Bay where high rock-fall runout 
probability levels were detected, mainly due to presence of steep slopes beneath the cliffs 
and numerous persistent discontinuities predominant along the edges of the Upper Coral-
line Limestone plateaus.

A robust and user-friendly tool like QPROTO allowing rapid generation of susceptibil-
ity maps facilitates the assessment of risk prone zones and supports cost-effective commu-
nication to relevant authorities, which is valuable for land use planning and management. A 
broad overview of susceptible areas, as that provided in this study, can guide more detailed 
investigations aimed at planning appropriate interventions and mitigation measures in spe-
cific locations for the safeguard of assets and people. The application of the QPROTO tool 
shows high degree of replicability and can be of great interest for territorial entities dealing 
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with risk assessment and mitigation both in coastal areas and mountain regions, as also 
reported in literature.
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