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Abstract. The expression of a gene is characterised by its transcription
factors and the function processing them. If the transcription factors are
not affected by gene products, the regulating function is often repre-
sented as a combinational logic circuit, where the outputs (product) are
determined by current input values (transcription factors) only, and are
hence independent on their relative arrival times. However, the simulta-
neous arrival of transcription factors (TFs) in genetic circuits is a strong
assumption, given that the processes of transcription and translation of
a gene into a protein introduce intrinsic time delays and that there is
no global synchronisation among the arrival times of different molecular
species at molecular targets.

In this paper, we construct an experimentally implementable genetic
circuit with two inputs and a single output, such that, in presence of
small delays in input arrival, the circuit exhibits qualitatively distinct
observable phenotypes. In particular, these phenotypes are long lived
transients: they all converge to a single value, but so slowly, that they
seem stable for an extended time period, longer than typical experiment
duration. We used rule-based language to prototype our circuit, and we
implemented a search for finding the parameter combinations raising the
phenotypes of interest.

The behaviour of our prototype circuit has wide implications. First, it
suggests that GRNs can exploit event timing to create phenotypes. Sec-
ond, it opens the possibility that GRNs are using event timing to react
to stimuli and memorise events, without explicit feedback in regulation.
From the modelling perspective, our prototype circuit demonstrates the
critical importance of analysing the transient dynamics at the promoter
binding sites of the DNA, before applying rapid equilibrium assumptions.
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of the state of Baden-Württemberg, and the DFG Centre of Excellence 2117 ‘Centre
for the Advanced Study of Collective Behaviour’ (ID: 422037984). Claudia Igler is the
recipient of a DOC Fellowship of the Austrian Academy of Sciences. Thomas A. Hen-
zinger’s research was supported in part by the Austrian Science Fund (FWF) under
grant Z211-N23 (Wittgenstein Award).

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31304-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-31304-3_9


1 Introduction

The fundamental conceptual breakthroughs related to how a gene is turned on
and off, have inspired a large body of theoretical and experimental work on
gene regulation, including the explanation of stochastic switching between lysis
and lysogeny of phage [25], all the way to more complex logic gate formalisms
that attempt to abstract more complex biological behaviour. Synthetic biology
enthusiasts often use analogies with how electronic circuits are manipulated by
computers [13,24], and have demonstrated success in engineering simple genetic
circuits that are encoded in DNA and perform their function in vivo. However,
such digital (in the sense that the expression states are encoded through Boolean
values) and combinational design (in the sense that the output is a pure function
of present input only, different to the sequential design) quickly becomes infea-
sible in experiment, because the cellular environment is resource-limited and
highly crosstalk-prone. The effective engineering of biological systems needs to
take into account the intrinsic properties of the biological medium, so as not to
fight against the principles of tinkering that characterise biology [16], but rather
to make use of them. Significant conceptual challenges remain related to the still
unsatisfactory quantitative but also qualitative understanding of the underlying
processes [20]. Understanding time-dependent phenomena is fundamental in this
complex picture of the cell that unravels itself at the molecular scale, especially
since cells do not have computer-like clocking mechanisms, beyond circadian and
cell cycle ones. A major question emerges as to what are the macroscopic effects
of small delays in the arrival times of different molecules at molecular targets.

Gene expression in a single cell is modelled by a stochastic process which
captures the stochastic switching among possible configurations at the DNA
(the architectural configuration of which is often termed promoter logic, e.g.
shown in Fig. 4), and their effect on the copy number of other species involved
in regulation, such as mRNA, proteins and transcription factors (TFs). The
switching mechanism depends on the binding affinities of the TFs and RNA
polymerase to their respective binding sites as well as the concentrations of those
proteins in the cell. Stochastic dynamics of such gene regulatory process typically
has a single equilibrium, as a consequence of reversibility of reactions occurring
at the DNA binding sites. Sometimes, the transient regime of the distribution
among DNA configurations is rapid and robust to possible delays in arrival of
TFs. In such cases, it is satisfactory to use the statistical thermodynamics model,
which has shown unquestionable success (e.g. [1,37]). It estimates the probability
of being in any of the possible DNA binding configurations from their relative
binding energies (Boltzmann weights) and the protein concentrations, both of
which can often be experimentally accessed. While this model takes into account
the stochasticity inherent to the DNA binding configurations (unlike the also
widely used deterministic limit [18]), it neglects the transient probabilities in
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the promoter logic before the equilibrium is reached. The question arises: In
which ways does the transient regime at the DNA (promoter) affect the shape
and duration of observable protein dynamics? Can it happen that the observable
transients move towards the unique equilibrium so slowly, that they are mistaken
for steady state dynamics?

In this paper, as a proof-of-concept, we construct a prototype genetic circuit
based on two different transcription factors that regulate the same gene, with-
out feedback. Our circuit demonstrates that, for gene regulation, qualitatively
distinct transients may take extraordinarily long times to disappear, and the
observable phenotype in the transient can be highly sensitive to the order of
arrival of TFs in the system. In particular, the transient phenotype may appear
to be stable even though it is not, creating an effect of long lived transients[7].
Our prototype circuit is realistic, experimentally implementable in the sense that
the mechanism can be implemented by the current technology and kinetic rate
values are in realistic ranges. The behaviour of this circuit suggests that the
genetic circuit can memorise the order of arrival of TFs, although there is no
explicit feedback at the gene regulatory level.

2 Preliminaries and Background

A gene is expressed at a basal rate, whenever the RNA polymerase (RNAP) is
bound to its promoter region at the DNA. Activators are transcription factors
(TFs) that bind to specific locations on the DNA, or to other TFs, and enhance
the expression of gene g by promoting the binding of RNAP. Repressors reduce
the expression of gene g, by directly blocking the binding of RNAP, or indirectly,
by inhibiting the activators, or promoting direct repressors. The mechanism of
how and at which rates the molecular species are interacting is transparently
written in a list of reactions. Reactions are equipped with the stochastic seman-
tics which is valid under mild assumptions [12].

Definition 1. A reaction system; is a pair (S,R), such that S = {S1, . . . , Sn}
is a finite set of species, and R = {r1, . . . , rr} is a finite set of reactions. The
state of a system can be represented as a multi-set of species, denoted by x =
(x1, ..., xn) ∈ Nn. Each reaction is a triple rj ≡ (aj ,νj , cj) ∈ Nn × Nn × R≥0,
written down in the following form:

a1jS1, . . . , anjSn
cj→ a′

1jS1, . . . , a
′
njSn, such that ∀i.a′

ij = aij + νij .

The vectors aj and a′
j are often called respectively the consumption and produc-

tion vectors due to jth reaction, and cj is the respective kinetic rate. If the jth
reaction occurs, after being in state x, the next state will be x′ = x + νj . This
will be possible only if xi ≥ aij for i = 1, . . . , n.

Stochastic Semantics. The species multiplicities follow a continuous-time
Markov chain (CTMC) {X(t)}t≥0, defined over the state space S = {x | x
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is reachable from x0 by a finite sequence of reactions from {r1, . . . , rr}}. In other
words, the probability of moving to the state x + νj from x after time Δ is

P(X(t + Δ) = x + νj | X(t) = x) = λj(x)Δ + o(Δ),

with λj the propensity of jth reaction, assumed to follow the principle of mass-
action: λj(x) = cj

∏n
i=1

(
xi

aij

)
. The binomial coefficient

(
xi

aij

)
reflects the proba-

bility of choosing aij molecules of species Si out of xi available ones.

Example 1 (basal gene expression). Basal gene expression with RNAP binding
can be modelled with four reactions, where the first reversible reaction models
binding between the promoter site at the DNA and the polymerase, and the
second two reactions model the protein production and degradation, respectively:

DNA,RNAP ↔ DNA.RNAP at rates k, k−

DNA.RNAP → DNA.RNAP + P at rate α

P → ∅ at rate β.

The state space of the underlying CTMC S ∼= {0, 1} × {0, 1, 2, . . .}, such that
s(1,x) ∈ S denotes an active configuration (where the RNAP is bound to the
DNA) with x ∈ N protein copy number, as depicted in Fig. 2.

Example 2 (adding repression). Repressor blocking the polymerase binding can
be modelled by adding a reaction

DNA, R ↔ DNA.R

In this case, there are three possible promoter configurations, that is, S ∼=
{DNA,DNA.RNAP,DNA.R}×{0, 1, 2, . . .}, where D0 = {DNA,DNA.R} are inac-
tive promoter states.

Computing the Transient. Using the vector notation X(t) ∈ Nn for the
marginal of process {X(t)}t≥0 at time t, we can compute this transient dis-
tribution by integrating the chemical master equation (CME). Denoting by
p(t)(x) = P(X(t) = x), the CME for state x ∈ Nn reads

d
dt

p(t)(x) =
r∑

j=1,x−ν j∈S

λj(x − νj)p(t)(x − νj) −
r∑

j=1

λj(x)p(t)(x). (1)

The solution may be obtained by solving the system of differential equations,
but, due to its high (possibly infinite) dimensionality, it is often statistically
estimated by simulating the traces of {Xt}, known as the stochastic simulation
algorithm (SSA) in chemical literature [12]. As the statistical estimation often
remains computationally expensive for desired accuracy, for the case when the
deterministic model is unsatisfactory due to the low multiplicities of many molec-
ular species [19], different further approximation methods have been proposed,
major challenge to which remains the quantification of approximation accuracy
(see [36] and references therein for a thorough review on the subject).
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2.1 Transients in Gene Expression Without Feedback

We will further focus on regulation of single gene without feedback. This allows
a circuit-view, where activators and repressors are inputs, and the average tran-
sient protein expression is the output. Since there is a single DNA molecule per
cell, each state counts one copy of the current DNA configuration, and zero copies
of all other DNA binding configurations. Hence, the expression state for a single
gene of interest consists of two layers: the proteins that we see, and the regu-
latory configuration of the DNA (for example, two activators and polymerase
are bound) (Fig. 3). Such two-layer model allows us to study the transient of
coupled promoter state and protein count. In order to focus our analysis on the
effect of input timing perturbations, yet to keep our model simple, we chose not
to involve further mechanistic details, such as the steps involving mRNA.

The following observation states that in general, when there is no feedback,
computing the output does not require integrating the Master equation for the
entire CTMC, but only for a CTMC controlling the switching among the DNA
configurations (depicted left in Fig. 3).

Lemma 1. Let {X(t)}t≥0 be the CTMC for a model of single gene regulation
without feedback, over the state space S = S0
S1 = (D0
D1)×{0, 1, . . .}, where
D0 = {D01,D02, . . .} are inactive DNA configurations, and D1 = {D11,D12, . . .}
are active DNA configurations (RNAP bound). Let the reaction system;(S,R) be
such that all reactions are of one of the following types (for some i ≥ 0 and
j ≥ 0):

(de)activation: D0i ↔ D1i at rates ki, k
−
i

switching: D0i ↔ D0j at rates k0ij , k
−
0ij

switching: D1i ↔ D1j at rates k1ij , k
−
1ij

protein syhnthesis: D1i → D1i + P at rate α

protein degradation: P → ∅ at rate β.

Then, the average amount of protein in a population follows the differential
equation

d
dt

〈xp(t)〉 = P(X(t)|D ∈ D1)α − β〈xp(t)〉, (2)

where 〈xp(t)〉 denotes the average amount of the protein molecules at time t, and
process X(t)|D is the projection of process X(t) to states at the promoter, that
is X(t)|D = d if and only if (X(t) ∈ ∪i≥0(d, i)). In other words, P(X(t)|D ∈ D1)
denotes the marginal probability that the promoter is in active state (bound
RNAP) at time t.

The proof is discussed in Appendix, Sect. 1.C.

Corollary 1. Let π1 = limt→∞ P(X(t)|D ∈ D1) denote the probability of active
promoter at stationarity. Then, whenever the initial probability equals that of
the stationary, i.e. P(X(0)|D ∈ D1) = π1, the average protein dynamics follows
the differential equation
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d
dt

〈xp(t)〉 = π1α − β〈xp(t)〉. (3)

When DNA is modelled with one binding site, the promoter can be in only
two states, and the analytic solution to Eq. (2) is tractable. In general, as
activators and repressors bind to different regions (operator sites) of the same
DNA molecule, the respective number of regulatory configurations at the pro-
moter grows combinatorially with the number of operator sites. For instance,
one hypothesised mechanism in λ-phage, containing only three left and three
right operators, leads to 1200 different DNA configurations [35]1! In such cases,
the simplification based on the argument of fast equilibrium is often employed,
meaning that the transient protein dynamics is computed according to Eq. (3),
thus neglecting the transient changes in probability distribution among the DNA
regulatory configurations.

Fast equilibrium assumption is a prerequisite to applying a widely popular
statistical thermodynamics model [38]. Assuming that the DNA regulatory con-
figurations mix rapidly, this model allows to experimentally estimate the free
energies of each promoter configuration, and then, subsequently, to derive the
equilibrium constants2 for each of the reactions [28,38]. As the absolute and
precise values of kinetic rates are rarely available in practice, this method is
powerful, because it allows to predict the dynamics of a genetic circuit from
a scarcely available experimental data. However, the statistical thermodynam-
ics model is applicable only when the assumption of rapid equilibrium at the
promoter is valid.

In the following, we showcase a simple, experimentally realisable genetic cir-
cuit which demonstrates an interesting situation where the long transient at the
promoter creates phenotypes that are qualitatively distinct from the phenotypes
created when the promoter configurations start at the equilibrium. In particular,
these phenotypes are long lived transients: they all converge to a single value,
but so slowly, that they seem stable for an extended time period, longer than
typical experiment duration.

3 Problem Statement

We focus on a single gene regulation without feedback, where activators and
repressors are inputs, and the average protein expression is the output. Assuming
that a fixed amount of activators and repressors are added to the system with a
possible time lag, our reference scenarios are (Fig. 4 in Appendix):

– XA||R in which activator and repressor are introduced together,
– XA→R(Δ) in which the activator is introduced Δ time units before the repres-

sor,and
– XR→A(Δ) in which the repressor is introduced Δ time units before the acti-

vator.
1 Models used in this paper will count 23 and 6 distinct DNA binding configurations.
2 The ratio between the binding and unbinding rate.
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Our goal is to construct a genetic circuit with the following requirements:
(i) it is realistic, that is - experimentally implementable in the sense that the
mechanism can be implemented by the current technology and kinetic rate values
are in realistic ranges, (ii) the scenarios provide striking differences in the shape
and duration of transient protein output. To quantify the latter, we introduce
two quantitative measures:

– amplitude, the maximum distance in phenotype of the scenario with delay
from the scenario without delay, that is

α|s := max
t≥t0

|〈xp〉(t|s) − 〈xp〉(t|XA||R)|,

where s refers to the scenario in question (XA→R(Δ) or XR→A(Δ)) and xp(t|s)
denotes the average protein number in a population at time t in scenario s,
and

– halflife, the time the system takes from the moment of reaching the ampli-
tude, to the moment when the distance from the phenotype without delay
disappears, that is

t1/2|s := arg min
t≥tα|s

{t | |〈xp〉(t|s) − xp(t | XA||R)| <
1
2
α|s},

where tα|s denotes the moment when the amplitude is reached in scenario s.

In summary, the amplitude reflects how observable is the sensitivity to the
delay among inputs, and the second measure, halflife, reflects how slow is the
convergence to the real equilibrium after the amplitude has been observed. Long
lived transients are characterised by a large amplitude relative to the basal
expression and a half-life exceeding several cell division cycles.

4 Searching for Long Lived Transients

We develop and analyse models for two promoter architectures (drafted in
Fig. 5):

– Model without looping. A basic mechanism for activation and repression
is assumed: repressor R competes with RNAP, and the activator A recruits
the polymerase RNAP and binds independently of the repressor and the poly-
merase (configurations shown in Fig. 6).

– Model with looping. In the model with looping (Fig. 5, right), two activa-
tors and two repressors can bind the DNA; Binding of the second activator
(resp. repressor) promotes looping of the DNA in the active (resp. repressed)
state, thereby excluding binding of the other TF. This small mechanistic
change leads to the blow-up of the state space of the CTMC to 23 states as
a composition of two sub-models (Fig. 7).
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Biological Context. The CTMC for the DNA switching of our prototype circuit
with looping is inspired by the very well-characterized regulatory mechanisms of
the lac operon and of the bacteriophage lambda genetic switch [17,30].

Mathematical Context. In Markov chains, the time to be ε-close to equilib-
rium, mixing time, varies depending on the initial distribution, the chain connec-
tivity, and the rate parameters. In particular, long mixing times are prominent
for chains with a large spectral gap of the underlying generator matrix, and can
be guaranteed for chains with large connectivity diameter, suggesting that more
states and sparse connectivities generally can prolong the mixing time [21]. Still,
tightly estimating bounds on the mixing time for a given chain is an open prob-
lem, beyond the scope of this manuscript. Intuitively, DNA looping architecture
is a good candidate for creating large mixing times, because the looped states
are quick to reach when only activators or only repressors are present, but, once
entered, they are then hard to exit (‘dynamically trapped states’).

4.1 Model Implementation

Implementation. The models are written and analysed within the rule-based
modelling framework Kappa which allows us to represent the mechanistic model
concisely and to run an efficient stochastic simulation algorithm [3,11]. Source-
code of the rule-based models is given in Appendix 1.B. Parameter exploration
and additional output analysis were performed with Python.

Simulation. We simulated multiple samples of the stochastic model, and we
statistically estimated the first two moments of protein expression. In the model
with looping, we used 1000 individual cells for a time of 36000 s = 10 h, that
equals around 20 average cell doubling times, where inputs are added from time
point t0 = 5400 = 1.5 h (see Table 2 for all simulation parameters).

Kinetic Rates. All model parameters are in realistic ranges taken from the
literature, given in Table 1 and further explained in the Appendix. The mecha-
nism for the activator is inspired by the λ-phage. The mechanism for repressor
is inspired by the lac operon. Further values that were tested to show the gen-
erality of our approach came from other well-characterized TFs such as CRP.
The chosen parameter values were found in the literature, both for the scenario
without looping [6,15] and for the scenario with looping [32–34,39,40].

Parameter Search. We implemented a grid search of the viable parameter
space (for different levels of eleven kinetic rate parameters, and the amounts of
activator, repressor and RNAP), where we compute the average protein expres-
sion, amplitude and half-life for a subset of all parameter combinations. In our
implementation, the user specifies a range for each parameter, and the models
are executed, figures drawn for each possible parameter combination.

5 Results

In further text, by phenotype, we mean the average protein expression in a popu-
lation of 1000 cells. All three scenarios XA||R, XA→R(Δ) and XR→A(Δ) have the
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Fig. 1. A small delay in arrival times of TFs can give rise to qualitatively opposite,
stable transient phenotypes for a long period of time (a) Average protein level for
a population of 1000 cells, in three input scenarios (full lines) and three reference
scenarios (dotted lines). (b) 50 single cell traces (grey lines) and the respective average,
for each of the six modes.

same phenotypes eventually. As a reference, we also analyse the scenarios where
no TFs are input (Xbasal), only activators (XA) or only repressors are input
(XR). We investigated the phenotype in the three scenarios for a large range
of parameter combinations. (there are 211 > 2000 combinations when only two
values for each parameter are set). We choose one parameter set as the refer-
ence parameter set (shown in Fig. 1a), where the phenotypes are symmetric with
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respect to the XA||R scenarios in the sense that the protein expression deviates
in the same amount from the phenotype of XA||R and the rate of reaching the
phenotype of XR||A is of the same scale.

A Small Delay in Arrival Times of TFs Can Give Rise to Qualitatively
Opposite, Stable Transient Phenotypes for a Long Period of Time. In
Fig. 1a, we plot the observable phenotype – the mean of protein expression for
a given population of cells – in the three regimes of interest (full lines) and the
three reference regimes (dotted lines). Three distinct transient phenotypes are
observed:

– for XA||R, the expression is close to the level of basal expression,
– the transient regime for the input XA→R(1min) shows high expression for

multiple average cell doubling times, while
– the transient regime for the input XR→A(1min) shows low expression for

multiple average cell doubling times.

The transient for the input XA||R lasts roughly for one average cell doubling
time (30min), while both phenotypes for XA→R(1min) and XR→A(1min) last
well over 10 average doubling times. Therefore, the delay in arrival times of
TFs can result in long lived transient regimes with qualitatively opposite pheno-
types (both differing significantly from the equilibrium phenotype), depending
on which TF arrives first. Moreover, each of the phenotypes seems stable at the
time-scale of multiple cell lifetimes. In other words, the small delays, hence two
different histories of input, produce substantially different routes to the equilib-
rium, and the routes are so slow that they appear as steady state behavior at
the timescale of most experiments.

In Fig. 1b, we see that individual cells exhibit ‘all-or-none’ behaviour: an
individual cell either has high or low expression and the phenotype depends
on whether the cell entered the active looped state or the repressed looped
state. The expected time that a cell spends in one looped state is long. The
protein expression for 50 randomly chosen single cells is displayed in Fig. 1b for
each of the three regimes. In regime XA||R, an individual cell either has high
expression at around 400 proteins or low expression, being fully inhibited. The
noise around the low expression value is not observable in the plot, because
the low expression is fully inhibited most of the time. If the DNA unloops and
subsequently loops towards a different regulatory state, eg from looped repressed
to looped active state (or vice-versa), the protein expression will change from low
to high expression (or vice-versa). In the taken time window (10 h), three (out of
50) displayed traces switching from the high to low expression level and one trace
switching from low to high expression level. As expected, the average expression
in a given population (thick line in respective color) follows a continuous line; It is
saturated at around 270 protein molecules. In regime XA→R, all of the displayed
50 cells enter the active looped state before the repressors are input, but, due
to the slow unlooping, the high expression profile is long-preserved, resulting
in slow switching towards the low-expression state, and hence long transient
time towards the average expression. In regime XR→A, even though repressors
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are input first, some cells are activated, but most of the cells are repressed.
Similarly as in the profile XA→R, since DNA unlooping from the repressed state
is slow, the transient of the average protein expression is also slow. The reference
scenarios - Xbasal, XA and XR show the expected behaviour.

Long Lived Transients are Robust to Changes in Kinetic Parameters.
Are long lived transients a consequence of system regulatory architecture or
a careful tuning of kinetic parameters? To tackle this question, we chose six
different parameter combinations, listed in Table 1, and we reproduce the plot
shown in Fig. 1a for each of the parameter combinations, each for three time
delays - 1 min, 5 min and 15 min. p1 is the reference parameter set (the plot
shown in Fig. 1). Results, shown in Fig. 8, confirm that the long lived transients
are preserved with the chosen parameter changes. Higher unlooping rate for
either activators or repressors results in shortening the transient and moving the
average expression level to lower and higher value respectively (p2 and p3). While
decreasing the number of activators does not change the phenotype much (p4),
decreasing the number of repressors results in complete dominance of activation
effect when both TFs are input simultaneously (p5). Still, the delay of activator
input shows full repression profile for a long period of time. When RNAP rates
are scaled so that the binding and unbinding rates are both ten times slower,
the duration of transients shortens and the three input regimes show the same
output after much shorter time (≈10 h, p6).

To quantify the effect of long-lived transients, in Fig. 12 (up, model with
looping), we see that the reference parameter set (p1) has a halflife longer than
20 hours no matter if the delay occurs in favour of the activator or repressor.
The halflife decreases significantly in cases when the unlooping rate is decreased
(one at a time - p2 and p3), or when RNAP binding and unbinding rate is scaled
down (p6), while the change in the number of activators/repressors reflect more
on the amplitude than on the halflife (p4, p5).

Long Lived Transients Are Not Observed in the Model Without Loop-
ing. We next inquire how changes in regulatory architecture affect the behaviour,
i.e. is DNA looping essential for observing the long lived transients? We repeated
the experiments on a model without looping. Phenotypes for six parameter com-
binations, listed in Table 13, are each plotted for three time delays (Fig. 10). For
all parameter combinations, the amplitude and duration of transient regimes is
clearly correlated with the duration of delay - the longer delays induce longer
transient regimes. The transient phase is significantly shorter than in the model
with looping (notice the different time-scale than in Figs. 1 and 8), but they still
can last for several cell doubling times (for delays of 15 min up to 2.5 h or 5 aver-
age doubling times). However, they are not long lived transients, as the shape
of transients clearly reveals that the steady-state regime is going to be reached
later on, that is, the transients in this model would not be easily confused with
the steady state. The observations above are indicating that looping is essential

3 Notice that these six parameter combinations are different than those used for the
model with looping.
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for creating the effect of long lived transients. p1 is the reference parameter set,
which we choose so that the level of expression when both activators and repres-
sors are input is close to basal (the TFs neutralise each-other’s effect overall).
As expected, decreasing the recruitment by the activator results in lower sta-
tionary expression (p2), increasing the number of repressors results in stronger
repression (p3), weakening the repressor binding results in higher expression
(p4), weak binding of repressor in combination is not affected by decreasing the
recruitment by activator simultaneously (p5) and weak binding of repressor in
combination with more repressor molecules results in low expression (p6).

In the summary of characteristics of long lived transients for the model with-
out looping (shown in Fig. 12 down), we see that, for a delay of 5min, all parame-
ter combinations achieve the amplitude at comparable scale as that in the case of
model with looping. However, the maximal halflife in all tested parameter points
is 15min, a 100-fold difference with respect to the halflife of long lived transients
in the model with looping, confirming that adding the looped configurations was
essential for the effect of long-lived transients.

Phenotypes in Long Lived Transients can be Modulated by the Delay
Between Inputs. We now comment on the dependency on the delay. In Fig. 11,
the phenotypes in scenario XA→R(Δ) are observably equivalent for all chosen
values of delay. In particular, they transiently reach the same protein expression
value as the scenario XA where only activator is present. Therefore, this scenario
seems to be independent of delay timing between TFs as long as the delay occurs
in favour of the activator.

On the other hand, the difference between phenotypes in scenario XR→A(Δ)
is different for delay Δ = 1min than for delays Δ ∈ {5min, 15min}. While for
all three delays, the effect of long lived transients can be observed (the slope of
approaching the limit value is small), the phenotype (protein expression around
which the transients seem to stabilise) is different. It appears that, unlike delays
longer than 5min, the delay of 1min is not long enough for the population to
repress protein expression to a value as low as in the scenario XR (where only
repressor is present). In other words, the lowest gene expression value for delay
of 1min is never as small as in the scenario XR. To investigate the dependency of
the transient phenotype on the delay, we simulated the scenario for several delay
values between 1 sec and 5 min, namely Δ ∈ {1s, 20s, 40s, 60s, 120s, 180s} and we
computed the amplitude for the scenario XR→A. The plot in Fig. 11 demonstrates
that the amplitude approaches the value of XR scenario exponentially fast with
increasing delay time.

Plotting the phenotypes for scenario XA→R(Δ) for delays between 1 s and
1 min shows that the same activated gene expression levels are observed even for
delays as small as 1 s (plots not shown). The explanation for different sensitiv-
ity of transient phenotypes to the delay in scenarios XA→R(Δ) and XR→A(Δ)
are the different mechanisms implementing the activation and repression. When
activator is input first, it quickly binds both operator sites and the probabil-
ity of being in the looped active state almost instantaneously increases to the
maximum value (as fast as within 1 s), and then starts decreasing only very
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slowly towards the equilibrium as soon as the repressor is present as well. On
the other hand, when the repressor is input first, it does not bind both operator
sites as quickly, because it is competing with the abundant RNAP, even while
the activator is not in the system. Only if there is enough time for the repressor
to reach the looped repressed state with a probability nearly as high as in case
of repressors only, the maximally repressed expression level will be observable.
Otherwise, as soon as the activator is in the system, the probability of being in
the looped repressed state starts shifting slowly towards the equilibrium point,
and, consequently, the protein expression in the population starts increasing.

Long Lived Transients in Protein Expression Follow the Long Lived
Transients (Mixing Times) in Promoter Activity. In Fig. 9, we plot the
probability of the active regulatory configuration of the promoter for six different
parameter combinations (listed in Table 1). Plots show the expected agreement
with those in Fig. 8.

6 Discussion

Given that the processes of transcription and translation of a gene into a protein
introduce intrinsic time delays and that there is no global synchronization among
the arrival times of different molecular species at molecular targets, the simulta-
neous arrival of TFs in genetic circuits is a strong assumption. We subjected this
assumption to a perturbation analysis, where the perturbed parameters are the
relative arrival times of the TFs (different to the usual choices of perturbation
parameters being the kinetic rates). We simulated a simple and realistic genetic
circuit with two inputs and we showed that, in presence of small perturbations
in the arrival of inputs (shorter than 1min), the circuit can exhibit three qualita-
tively distinct phenotypes which are stable for as long as any typical experiment
would last (longer than 20 cell doubling-times). This has wide implications.

First, while our showcase example was constructed with the goal of demon-
strating that long lived transients can appear in gene regulation, there are
reasons to believe that many other gene regulatory schemes also exhibit long
lived transients and implement multiple phenotypes by modulating the timing
of inputs. To see this, consider that the number of potential phenotypes grows
factorially with the number of inputs per gene as it is determined by the num-
ber of possible input orderings, meaning that, for instance, only 5 inputs would
require us to analyse 5! = 120 different input scenarios. Moreover, our analysis
indicates that long lived transients are possible in promoters with many configu-
rations and certain states that are easy to reach but hard to exit. For instance,
genomic regulation of the development of sea urchin embryo shows potential for
long lived transients. The relevance of transient TF production has already been
determined in this system [2,44]: multiple TFs regulate a single gene which in
turn has multiple targets, and there is clear differentiation between upstream
and downstream components in the network. Therefore, considering long lived
transients might clear up some puzzling observations like the discrepancy of TF
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interactions between endogenous promoters and minimal promoters controlled
by three Endo16 regulatory modules [43].

Secondly, our proof-of-concept case study suggests that any modelling app-
roach which assumes perfectly synchronous arrival of TFs or assumes rapid
equilibrium at the promoter, may fail to explain a variety of phenotypes and
raise false conclusions. To illustrate this point, think of an experimentalist who
observes the system which seems equilibrated, but is a long lived transient (e.g.
in our case study, a delay in favour of the activator occurs). Assuming that what
she sees is an equilibrium, following the approach of statistical thermodynam-
ics, she would proceed by estimating the free energies of binding configurations,
but these estimates would be wrong, as the real equilibrium is much further
away. Moreover, the obtained model would explain a single phenotype, and not
the variety of quasi-stable phenotypes such as the ones we see in our showcase
example. In summary, one cannot ignore the order of stimulating a cell, even
when the GRN under consideration is assumed to be feedback-free. Similarly,
one cannot assume what is observed towards the end of the life cycle is close to
equilibrium even when the system seems relatively stable, e.g. growth at steady
state in bulk, even when the stimulation was completed very early on. This opens
further important questions such as how can an experimentalist who observes
a stable phenotype for the chosen experiment duration, distinguish between a
long lived transient and a real equilibrium? One immediate insight is the crit-
ical importance of experimentally measuring the kinetic rates as accurately as
possible, and taking the timing of inputs into account.

Finally, our case study opens the possibility that GRNs are exploiting event
timing to perform desired behaviours - it suggests that the cell does not compute
with equilibrium dynamics - as is widely assumed in the field (with the exception
of ‘well behaved’ limit cycle behaviours or pulsatile behaviour [22]), but uses
the transients to react to stimuli and to memorise events. The DNA may be
encoding more behaviours and thus phenotypes than an understanding based on
the conventional input to output mapping suggests. In particular, as our analysis
of delay timing between TFs shows (Fig. 11), a whole range of different stable
gene expression levels can be encoded in the event timing of inputs. More broadly,
this aspect may provide an explanation to why an organism can display so many
more phenotypes, though the number of genes is limited, as the complexity of
the organism increases, e.g. number of genes in bacteria and human vary by a
factor of only 4!

Our primary goal was to show that a simple gene regulation without feedback,
with realistic parameters, can exhibit long lived transients. We hypothesised that
the promoter architecture with looping will have the desired feature, and, in order
to find the feature, we performed a search over the 11-dimensional parameter
space, which allowed us to display and discuss a range of parameterisations
showing interesting behaviour. One of the compelling questions for future work
is formalisation and computation of robustness of a given promoter architecture
wrt. property of long-lived transients, as well as its sensitivity to a specific (group
of) parameters. To this end, we believe that the ideas of parameter synthesis for
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stochastic chemical reaction networks, extensively studied in [4,9,10] (where the
properties of the CTMC assigned to general biochemical reaction networks are
expressed in continuous signalling logic (CSL)), would be a useful starting point.

Related Work. The consequences of combined effects of time delay and intrin-
sic noise on gene regulation has been studied in [45]. In more recent works [23],
the authors elucidate the importance of relative timing of TF activation in com-
binatorial gene regulation with pulsatile signals. Like Lin et al. [23], our work
shows that relative timing between TFs may be used by the cell to implement
responses to different environments and therefore has to be taken into consid-
eration for modelling gene expression patterns. However, while the authors in
[23] suggest that the phenotypes differ in pulsatile regulation patterns, our study
reveals the existence of long lived transients. From a dynamical system point of
view, the effect of long lived transients that we present here can be seen through
the prism of general theoretical frameworks such as proposed in [31,42], where
the authors discuss how to detect and automatically compute the meta-stable
states from only the topology and timescales of the network; It would be inter-
esting to see how precisely these methods could be used to detect the long lived
transients we showcase in this paper.

Of relevance for synthetic biology, our construction based on looping suggests
a way to implement memory units, though they may be leaky, in the sense that
the signal is slowly being lost. In a broader context, cellular memory refers to
systems whose present phenotype is dependent on the history of input stimuli
and therefore the trajectory by which it has been reached [8]. The molecular
mechanisms associated with such memory effects are usually based on feedback
loops (e.g. the E. coli lac operon), DNA methylation patterns (e.g. temperate
phage, pilus synthesis, cell differentiation) or inversions catalysed by site-specific
recombinases (e.g. the Salmonella Hin system or the E. coli Fim system) [8,29].
The long lived transient behaviour observed in our simulations differs from the
mentioned memory mechanisms as it is purely relying on dynamical trapping of
the transcriptional state. Different to the usual references to cellular memory,
the long lived transients require no stabilisation of the phenotype through strong
(covalent) modification of the DNA or any kind of feedback of the output on the
promoter state (which is generally considered necessary for cellular memory).

The nature of the observed long lived transient states confer an epigenetic
nature to these states. Methylation of histones is widely used in eukaryotic gene
regulation as a modulator of gene activity that confers memory and stability
to gene expression states. However, unlike methylation that requires a sleuth
of specialised proteins that expend energy in order to form covalent bonds of
methyl groups to histones, the long lived transients arise simply as a dynamical
property of the system.

Acknowledgements. We are very grateful to Moritz Lang, Tiago Paixao and Jakob
Ruess, for their feedback during the manuscript preparation.
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Appendix 1.A Parameter Values

Table 1 lists the parameter ranges used for our case study example. We next
explain the choice of each of the parameters with respect to their biological
context.

1.A.1 Stochastic Scaling Constant
The stochastic scaling of rates and concentrations is done with a standard scaling
rate for E. coli cell N = 109 [26].

1.A.2 Protein Production and Degradation
The protein production is taken 0.5 molec.s−1 ([41], caption of Fig. 2) and the
degradation rate is taken 0.001 s−1 (corresponding to the halflife of 12min, con-
sistent with [26]).

1.A.3 RNAP Rates
On rate, off rate and number of RNAP molecules are consistent with the orders
of values reported in [5,14,35].

1.A.4 Activator
The activation mechanism is inspired by the activation of the PRM promoter in
the lysogenic state by protein CI in the regulation of λ-phage: CI competes with
Cro to bind to the promoter sites, and, when bound, it recruits RNAP (increases
PRM activity). The mechanism with looping, explained at mechanistic detail
level in [35], contains three left and three right operators, leading to 1200 different
DNA binding states. We model a mechanism with two states for the activator
without looping (‘bound’ or ‘not bound’) and with four binding states for the

Table 1. Parameter combinations tested in the model with looping.

Parameter

set

RNAP A binding R binding unloop A unloop R # A # R

IDa onb off ifA on off on off uA uR xA xR

Reference

set (p1)

104N−1 1.6 · 0.01 9× 8.8 · 107N−1 0.0264 8.8 · 107N−1 0.016 1000 1000 275 350

increase

unloop A

(p2)

− − − − − − − 100 − − −

increase

unloop R

(p3)

− − − − − − − − 100 − −

decrease

# A (p4)

− − − − − − − − − 10 −

decrease

# R (p5)

− − − − − − − − − − 10

downscale

RNAP

rates (p6)

10× 10× − − − − − − − − −

aThe stochastic scalling of rates and concentrations is done with N = 109. The choice of this and other

parameters is detailed in the main text of the appendix.
bAll on-rates are given in units molec.−1s−1, off-rates in units s−1. The unlooping rate is specified relative

to the unbinding of the respective transcription factor - eg. it means that the unlooping rate is 1000 times

smaller than the unbinding of the TF A. xA, xR are given in molecule numbers.
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activator with looping (see Fig. 5). The on-rate, off-rate well as the number of
activators is taken from [35] (page 82) When activator is bound, the recruitment
of RNAP is increased by factor 10 or 50 ([34] and [27] respectivelly) (Table 3).

1.A.5 Repressor
The repression mechanism is inspired by the well-studied transcriptional regula-
tion, there is a word missing after transcription of the lac operon, the repressor
LacI. We take the binding and unbinding rates for the repressor from ([39], Fig. 4).

1.A.6 Looping Rates
The stability of the looped state is incorporated in the model by scaling down
the unlooping rate. We choose the scaling factors of 100 and 1000 based on the
computation of the ratio of dissociation rates for the models with and with-
out looping ([40], Table 1; parameter a in [39]). The mechnism proposed in,
eg. [39] suggests that the looping increases the binding rate (due to increased
local concentration of TFs), while leaving the unbinding rate unchanged. As the
scaled on-rates may exceed theoretical limit for diffusion-limited reactions, in
our model, we incorporate the same effect by leaving the binding rate identical,
and scaling down the unlooping rate.

Table 2. Parameter combinations tested for the model without looping.

Parameter set RNAP A binding R binding # A # R

ID on off ifA on off on off xA xR

Reference set

(p1)

104V −1 1.6 · 0.01 49× 8.8 · 107V −1 0.0264 8.8 · 107V −1 0.016 275 10

low

recruitment

by A (p2)

− − 9× − − − − − −

increase #

R (p3)

− − − − − − − − 350

weak R

binding (p4)

− − − − − − 0.19 − −

low

recruitment

by A, weak R

binding (p5)

− − 9× − − − 0.19 − −

weak R

binding,

increase #

R (p6)

− − − − − − 0.19 − 350

Table 3. Simulation parameters: all models were run for three different delays and in
six different regimes.

Input

time

Total

time

Time delays Input schemes Simulation

points

# samples

5400 s 36000 s 60 s, 300 s, 900 s {Xbasal, Xboth, XA, XR, XAR, XRA} 2000 1000
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Appendix 1.B Kappa Models

####### MODEL 1 (no looping) ############

#### Signatures

%agent: D(a,d) # Declaration of agent representing DNA with two binding

sites: ’a’ for

binding the activator and ’d’ for binding the Polymerase or the repressor

%agent: RNAP(d) # Declaration of Polymerase with binding site named ’d’

%agent: A(a) # Declaration of actovatpr A with binding site named ’a’

%agent: R(d) # Declaration of repressor R with binding site named ’d’

%agent: P() # Declaration of protein P

#### Rules

# numbers after the ’!’ sign denote bond identifiers

# for bimolecular reactions, the rate is scaled with the average number

of molecules in

the cell ’N’ in order to convert from units ’per Mol per sec’ to ’per

molecule per sec’)

# POLYMERASE

RNAP(d), D(d) -> RNAP(d!1), D(d!1) @ ’on_rnap’ # RNAP binds, bimolecular

reaction

RNAP(d!1), D(d!1) -> RNAP(d), D(d) @ ’off_rnap’ # RNAP unbinds

# PROTEIN

RNAP(d!1), D(d!1) -> RNAP(d!1), D(d!1), P() @ ’p_on’ # P is expressed

when RNAP is bound

P() -> @ ’p_off’

# ACTIVATION

A(a), D(a) <-> A(a!1), D(a!1) @ ’on_a’, ’off_a’ # A binds to D

A(a!1), D(a!1,d), RNAP(d) -> A(a!1), D(a!1,d!2), RNAP(d!2) @

’on_rnap_if_a’ # A recruits

RNAP, that is, if A is bound, RNAP binds with larger affinity

# INHIBITION

R(d), D(d) <-> R(d!1), D(d!1) @ ’on_b’, ’off_b’ # repressor binds the

’d’ site of D;

Since ’d’ is also the site for binding RNAP, when the repressor binds to

site ’d’, it

prevents the RNAP from binding and hence inhibits the protein expression.
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#### Variables

## rates

%var: ’N’ 10^9 # the average number of molecules in the cell

%var: ’on_rnap’ 10^4/’N’ # division because the reaction is bimolecular

%var: ’off_rnap’ 1.6*0.01

%var: ’on_rnap_if_a’ 49*’on_rnap’

%var: ’on_b’ 8.8*10^7/’N’

%var: ’off_b’ 0.016

%var: ’on_a’ 8.8*10^7/’N’

%var: ’off_a’ 0.0264

%var: ’p_on’ 0.5

%var: ’p_off’ 0.001

%var: ’rnap0’ 1500

%var: ’a_add’ 275

%var: ’b_add’ 10

%var: ’p0’ 240 # initial number of proteins

%var: ’b0’ 0 # initial number of B molecules

%var: ’a0’ 0

#### Observables

%obs: ’protein’ P()

%obs: ’d_active’ D(d!1),RNAP(d!1)

##### Perturbation

#%mod: [T]= 5400 do $ADD ’a_add’ A(a)

%mod: [T]= 5400 do $ADD ’b_add’ R(d)

#### Initial conditions

%init: 1 D(d,a)

%init: ’rnap0’ RNAP(d)

%init: ’b0’ R(d)

%init: ’a0’ A(a)

%init: ’p0’ P()

####### MODEL 2 (with looping) ############

#### Signatures

%agent: D(a1,a2,d,b2,loop~0~1) # Declaration of agent representing DNA

with four binding

sites: ’a1’ and ’a2’ for binding the activators, ’d’ and ’b2’ for

binding the repressor

(both) or Polymerase (site ’d’), and site ’loop’ which indicates whether

the DNA is looped
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or not.

%agent: RNAP(d) # Declaration of Polymerase with binding site named ’d’

%agent: A(a) # Declaration of actovatpr A with binding site named ’a’

%agent: R(d) # Declaration of repressor B with binding site named ’d’

%agent: P() # Declaration of protein P

#### Rules

# numbers after the ’!’ sign denote bond identifiers

# for bimolecular reactions, the rate is scaled with the average number

of molecules in

the cell ’N’ in order to convert from units ’per Mol per sec’ to ’per

molecule per sec’)

# POLYMERASE

RNAP(d), D(d) -> RNAP(d!1), D(d!1) @ ’on_rnap’ # RNAP binds, bimolecular

reaction

RNAP(d!1), D(d!1) -> RNAP(d), D(d) @ ’off_rnap’ # RNAP unbinds

# PROTEIN

RNAP(d!1), D(d!1) -> RNAP(d!1), D(d!1), P() @ ’p_on’ # P is expressed

when RNAP is bound

P() -> @ ’p_off’

# ACITIVATION

#A binds to the site ’a1’ or site ’a2’ of DNA whenever it is not looped

A(a), D(a1,a2,loop~0) <-> A(a!1), D(a1!1, a2, loop~0) @ ’on_a’, ’off_a’

A(a), D(a1,a2,loop~0) <-> A(a!1), D(a1, a2!1, loop~0) @ ’on_a’, ’off_a’

# lopping is immediate when the second activator binds

A(a!1), D(a1!1,a2,loop~0), A(a) <-> A(a!1), D(a1!1,a2!2,loop~1), A(a!2)

@ ’loop_a’, ’unloop_a’

A(a!1), D(a1,a2!1,loop~0), A(a) <-> A(a!1), D(a1!2,a2!1,loop~1), A(a!2)

@ ’loop_a’, ’unloop_a’

# if A is bound to site ’a1’, it recruits RNAP

A(a!1), D(a1!1,d), RNAP(d) -> A(a!1), D(a1!1,d!2), RNAP(d!2) @

’on_rnap_if_a’

# INHIBITION

# R binds to site ’d’ or site ’b2’ of DNA whenever it is not looped

# By binding to site ’d’, repressor inhibits the binding of RNAP to the

same site, and

hence inhibits the expression of the protein indirectly

R(d), D(d,b2,loop~0) <-> R(d!1), D(d!1,b2,loop~0) @ ’on_b’, ’off_b’
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R(d), D(d,b2,loop~0) <-> R(d!1), D(d,b2!1,loop~0) @ ’on_b’, ’off_b’

# looping is immediate when the second repressor binds

R(d!1), D(d!1,b2,loop~0), R(d) <-> R(d!1), D(d!1,b2!2,loop~1), R(d!2) @

’loop_b’, ’unloop_b’

R(d!1), D(d,b2!1,loop~0), R(d) <-> R(d!1), D(d!2,b2!1,loop~1), R(d!2) @

’loop_b’, ’unloop_b’

#### Variables

## rates

%var: ’N’ 10^9 # the average number of molecules in the cell

%var: ’on_rnap’ 10^4/’N’

%var: ’off_rnap’ 1.6*0.01

%var: ’on_rnap_if_a’ 9*’on_rnap’

%var: ’on_b’ 8.8*10^7/’N’

%var: ’off_b’ 0.19

%var: ’on_a’ 8.8*10^7/’N’

%var: ’off_a’ 0.0264

%var: ’p_on’ 0.5

%var: ’p_off’ 0.001

%var: ’rnap0’ 1500 # initial number of RNAP molecules

%var: ’a_add’ 275

%var: ’b_add’ 350

%var: ’unloop_a’ ’off_a’/1000

%var: ’unloop_b’ ’off_b’/1000

%var: ’p0’ 240 # initial number of proteins

%var: ’b0’ 0 # initial number of B molecules

%var: ’a0’ 0

%var: ’loop_a’ ’on_a’

%var: ’loop_b’ ’on_b’

#### Observables

%obs: ’protein’ P()

%obs: ’d_active’ D(d!1),RNAP(d!1)

##### Perturbation

#%mod: [T]= 5400 do $ADD ’a_add’ A(a)

%mod: [T]= 5400 do $ADD ’b_add’ R(d)

#### Initial conditions

%init: 1 D(d,a1,a2,b2,loop~0)

%init: ’rnap0’ RNAP(d)

%init: ’b0’ R(d)

%init: ’a0’ A(a)

%init: ’p0’ P()
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Appendix 1.C Supplementary Theory and Proofs

1.C.1 Deterministic Limit
In the continuous, deterministic model of a chemical reaction network, the state
z(t) = (z1, . . . , zn)(t) ∈ R

n is represented by listing the concentrations of each
species. The dynamics is given by a set of differential equations in form

d
dt

zi = νij

r∑

j=1

kj

n∏

i=1

zi(t)aij , (4)

where kj is a deterministic rate constant, computed from the stochastic one and
the volume N according to kj := cjN

|aj |−1 (|x| denotes the 1-norm of the vector
x). The deterministic model is a limit of the stochastic model when all species in
a reaction network are highly abundant [19]: by scaling the species multiplicities
with the volume: Zi(t) = Xi(t)/N , adjusting the propensities accordingly, in
the limit of infinite volume N → ∞, the scaled process Z(t) follows an ordinary
differential Eq. (4).

1.C.2 Expected Output in the Transient
The CME implies that the expectation of the marginal distribution of {Xt}
satisfies the equations

d
dt

E(Xt) =
r∑

j=1

νjE(λj(Xt)). (5)

To check (5), observe a transition from x to x+νj . The term λj(x)P(Xt = x)
appears exactly once when summing up for the state x̂ = x as the outflow
probability, and exactly once when summing up for the state x̂ = x + νj , as
the inflow probability. This gives the term (x+ νj) − x = νj · λj(x)p(t)(x). It is
worth noting that, upon scaling the rate constants, the equations for E(Xt) are
equivalent to (4) only if all rate functions are linear, that is, when all reactions
are unimolecular.

1.C.3 Proof for Lemma 1
We first notice that the process X(t)|D is indeed Markovian, because all states of
X(t) projected to the same state in X(t)|D are behaviourally indistinguishable
(bisimulation equivalent), due to rates between lumped states not depending on
protein count. From (5), it follows that

d
dt

〈xP(t)〉 = −β〈xP(t)〉 +
r∑

j=1

1 ·E(α · xD1j(t)) = −β〈xP(t)〉 + α
∑

all j

〈xD1j(t)〉,

where 〈xD1j(t)〉 denotes the expected value of being in one of the active promoter
configurations. The latter equals (2), since in every reachable state x ∈ (D0 

D1) × {0, 1, . . .}, exactly one DNA configuration takes value 1.
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. . .

. . . . . .s1,x−1

s0,x

s1,x

. . .

s1,x+1

k ·xRNAPk−

α

xβ (x + 1)β

α

Fig. 2. Transitions of the CTMC underlying basal gene expression. The state space
S ∼= {0, 1} × {0, 1, 2, . . .}, such that s1,x denotes an active configuration (where the
RNAP is bound to the DNA) and x ∈ N protein molecules.

regulatory configurations of the DNA

. . .

. . .

. . .

protein count

. . . x x + 1 . . .×
if active

Fig. 3. Each binding configuration of the DNA can be active (green, polymerase bound)
or inactive (gray, polymerase not bound). Protein count can increase only when the
DNA configuration is active. (Color figure online)

Appendix 1.D Supporting Figures

See Fig. 13.

Fig. 4. Searching for long lived transients in gene regulation without feedback: three
modelled scenarios. We demonstrate that small delays Δ can raise qualitatively different
phenotypes, which are stable for cell lifetime.
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Fig. 5. Two prototype GRNs and their promoter logic: (a) Model without looping: reg-
ulatory architecture (promoter logic), (b) Model with looping: regulatory architecture
(promoter logic). Mechanistic models are listed in (Appendix 1.B).

Fig. 6. Model without looping: the CTMC regulating six different DNA configurations.
Thicker blue line denotes that the recruitment of RNAP is faster when the activator is
bound. (Color figure online)

Fig. 7. Model with looping: CTMC regulating the DNA configurations has 23 different
states. It is naturally represented as a composition of two sub-models: (left) the switch-
ing among configurations with respect to activator binding to its main and auxiliary
binding sites (OAm and OAx respectively, and (right) the switching among configura-
tions with respect to repressor binding to its main and auxiliary binding sites (OAm and
OAx respectively. The unlooping rates (thicker blue lines) are typically much weaker
than the TF unbinding. Any combination of the states in the two sub-models can be
observed (reachable), except the state where both repressor and activator are looped.
(Color figure online)
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The effect of kinetic parameters on the shape and
duration of transients for a model with looping

Fig. 8. The effect of kinetic parameters on the shape and duration of transients for a
model with looping (for six parameter values listed in Table 1 and time delays of 1 min,
5min and 15 min respectively).
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Long lived transients in protein expression are
due to long lived transients in promoter activity

Fig. 9. Long lived transients in protein expression follow the long lived transients
(mixing times) in promoter activity. We plot the statistically inferred probability of
promoter logic being in the active state for six different parameter combinations, listed
in Table 1 and time delays of 1 min, 5 min and 15 min respectively.

26



Transient Memory in Gene Regulation 181

re
fe
re
nc
e

se
t

lo
w

re
cr
u-

it
m
en
t
by

A
in
cr
ea
se

#
R

w
ea
k

R
bi
nd

in
g

lo
w

re
cr
ui
t-

m
en
t
by

A
,w
ea
k

R
bi
nd

in
g

Long lived transients in protein expression are
not observed in the model without looping

w
ea
k
R

bi
nd

in
g,

in
cr
ea
se

#
R

Fig. 10. Long lived transients are not observed in the model without looping (for six
parameter values listed in Table 1 and time delays of 1 min, 5 min and 15 min respec-
tively).
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Fig. 11. In the reference parameter set, when there is no delay (Δ = 0), the phenotype
in scenario XR→A(Δ) is equal to the one in scenario XA||R, visibly different than the
phenotype XR (290 protein molecules). The difference of from the scenario XA||R (the
characteristic we formally termed amplitude – see Sect. 5) exponentially grows as the
delay increases, that is, it quickly approaches the phenotype of scenario XR. The dif-
ference of XR→A(Δ) from XR becomes observably negligible already for delays larger
than Δ = 5min = 300 s (difference of 10 molecules, 0.035% of the initial difference). We
obtained the dependency by fitting the data obtained by simulating the system for
Δ ∈ {1, 20, 40, 60, 120, 180, 240, 300, 600, 900}.
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Fig. 12. For chosen parameter sets (Tables 1 and 2) and for a delay Δ = 5 min, we plot
the amplitude and the half-life (defined in Sect. 2).
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Fig. 13. We define a more global measure of the effect of delay in arrival times of
TFs: first, the range of values that can be observed with a delay Δ = 5min by the
measuring the maximum distance between phenotypes the scenarios XA→R and XR→A

β := maxt≥t0 |xp(t|XA→R)−xp(t|XR→A)|, and secondly, the halflife of this range t1/2 :=
arg mint≥tβ

{t | |xp(t|XA→R) − xp(t | XR→A)| < 1
2
β}.
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10. Česka, M., Šafránek, D., Dražan, S., Brim, L.: Robustness analysis of stochastic
biochemical systems. PLoS ONE 9(4), e94553 (2014)

11. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of
cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 17–41. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74407-8 3

12. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81, 2340–2361 (1977)

13. Guet, C.C., Elowitz, M.B., Hsing, W., Leibler, S.: Combinatorial synthesis of
genetic networks. Science 296(5572), 1466–1470 (2002)

14. Harada, Y., Funatsu, T., Murakami, K., Nonoyama, Y., Ishihama, A., Yanagida,
T.: Single-molecule imaging of RNA polymerase-dna interactions in real time. Bio-
phys. J. 76(2), 709–715 (1999)

15. Hermsen, R., Tans, S., Ten Wolde, P.R.: Transcriptional regulation by competing
transcription factor modules. PLoS Comput. Biol. 2(12), e164 (2006)

16. Jacob, F.: Evolution and tinkering. Science 196(4295), 1161–1166 (1977)
17. Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins.

J. Mol. Biol. 3(3), 318–356 (1961)
18. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump

Markov processes. J. Appl. Probab. 7(1), 49–58 (1970)
19. Kurtz, T.G.: Limit theorems for sequences of jump Markov processes approximat-

ing ordinary differential processes. J. Appl. Probab. 8(2), 344–356 (1971)
20. Kwok, R.: Five hard truths for synthetic biology. Nature 463(7279), 288–290 (2010)
21. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American

Mathematical Society (2009)

31

https://doi.org/10.1007/978-3-642-39799-8_7
https://doi.org/10.1007/978-3-540-74407-8_3
https://doi.org/10.1007/978-3-540-74407-8_3


186 C. Guet et al.

22. Levine, J.H., Lin, Y., Elowitz, M.B.: Functional roles of pulsing in genetic circuits.
Science 342(6163), 1193–1200 (2013)

23. Lin, Y., Sohn, C.H., Dalal, C.K., Cai, L., Elowitz, M.B.: Combinatorial gene reg-
ulation by modulation of relative pulse timing. Nature 527(7576), 54–58 (2015)

24. Marchisio, M.A., Stelling, J.: Automatic design of digital synthetic gene circuits.
PLoS Comput. Biol. 7(2), e1001083 (2011)

25. McAdams, H.H., Arkin, A.: It‘sa noisy business! genetic regulation at the nanomo-
lar scale. Trends Genet. 15(2), 65–69 (1999)

26. Milo, R., Jorgensen, P., Moran, U., Weber, G., Springer, M.: Bionumbers–the
database of key numbers in molecular and cell biology. Nucleic Acids Res. 38(suppl
1), D750–D753 (2010)

27. Müller-hill, B.: Lac Operon. Wiley Online Library (1996)
28. Myers, C.J.: Engineering Genetic Circuits. CRC Press (2009)
29. Nashun, B., Hill, P.W., Hajkova, P.: Reprogramming of cell fate: epigenetic memory

and the erasure of memories past. EMBO J. 34(10), 1296–1308 (2015)
30. Ptashne, M.: A Genetic Switch: Phage Lambda Revisited, vol. 3. Cold Spring

Harbor Laboratory Press Cold Spring Harbor, New York (2004)
31. Radulescu, O., Swarup Samal, S., Naldi, A., Grigoriev, D., Weber, A.: Symbolic

dynamics of biochemical pathways as finite states machines. In: Roux, O., Bour-
don, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 104–120. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23401-4 10

32. Saiz, L., Rubi, J.M., Vilar, J.M.G.: Inferring the in vivo looping properties of DNA.
Proc. Nat. Acad. Sci. U.S.A. 102(49), 17642–17645 (2005)

33. Saiz, L., Vilar, J.M.: DNA looping: the consequences and its control. Curr. Opin.
Struct. Biol. 16(3), 344–350 (2006). Nucleic acids/Sequences and topology Anna
Marie Pyle and Jonathan Widom/Nick V Grishin and Sarah A Teichmann

34. Saiz, L., Vilar, J.M.: Stochastic dynamics of macromolecular-assembly networks.
Mol. Syst. Biol. 2(1) (2006)

35. Santillán, M., Mackey, M.C.: Why the lysogenic state of phage λ is so stable: a
mathematical modeling approach. Biophys. J. 86(1), 75–84 (2004)

36. Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods
for stochastic biochemical kinetics–a tutorial review. J. Phys. A: Math. Theor.
50(9), 093001 (2017)

37. Segal, E., Widom, J.: From dna sequence to transcriptional behaviour: a quanti-
tative approach. Nat. Rev. Genet. 10(7), 443–456 (2009)

38. Shea, M.A., Ackers, G.K.: The OR control system of bacteriophage lambda: a
physical-chemical model for gene regulation. J. Mol. Biol. 181(2), 211–230 (1985)

39. Vilar, J.M., Leibler, S.: DNA looping and physical constraints on transcription
regulation. J. Mol. Biol. 331(5), 981–989 (2003)

40. Vilar, J.M., Saiz, L.: Dna looping in gene regulation: from the assembly of macro-
molecular complexes to the control of transcriptional noise. Curr. Opin. Genet.
Devel. 15(2), 136–144 (2005)

41. Vilar, J.M., Saiz, L.: Suppression and enhancement of transcriptional noise by
DNA looping. Phys. Rev. E 89(6), 062703 (2014)

42. Vivek-Ananth, R., Samal, A.: Advances in the integration of transcriptional reg-
ulatory information into genome-scale metabolic models. Biosystems 147, 1–10
(2016)

32

https://doi.org/10.1007/978-3-319-23401-4_10


Transient Memory in Gene Regulation 187

43. Yuh, C.H., Bolouri, H., Davidson, E.H.: Cis-regulatory logic in the endo16 gene:
switching from a specification to a differentiation mode of control. Devel. (Cam-
bridge, England) 128(5), 617–629 (2001)

44. Zeller, R.W., Griffith, J.D., Moore, J.G., Kirchhamer, C.V., Britten, R.J., David-
son, E.H.: A multimerizing transcription factor of sea urchin embryos capable of
looping DNA. Proc. Nat. Acad. Sci. 92(7), 2989–2993 (1995)

45. Zhu, R., Salahub, D.: Delay stochastic simulation of single-gene expression reveals
a detailed relationship between protein noise and mean abundance. FEBS Lett.
582(19), 2905–2910 (2008)

33


	Preface
	Organization
	Contents
	Transient Memory in Gene Regulation
	1 Introduction
	2 Preliminaries and Background
	2.1 Transients in Gene Expression Without Feedback

	3 Problem Statement
	4 Searching for Long Lived Transients
	4.1 Model Implementation

	5 Results
	6 Discussion
	References




