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Abstract. Forecasting photovoltaic (PV) power generation, as in many
other time series scenarios, is a challenging task. Most current solutions
for time series forecasting are grounded on Machine Learning (ML) algo-
rithms, which usually outperform statistical-based methods. However,
solutions based on ML and, more recently, Deep Learning (DL) have
been found vulnerable to adversarial attacks throughout their execution.
With this in mind, in this work we explore four time series analysis
techniques, namely Naive, a baseline technique for time series, Auto-
regressive Integrated Moving Average (ARIMA), from the statistical
field, and Long Short-term Memory (LSTM) and Temporal Convolu-
tional Network (TCN), from the DL family. These techniques are used
to forecast the power generation of a PV power plant 15 minutes and
24 hours ahead, having as input only power generation historical data.
Two main aspects were analyzed: i) how training size influenced the per-
formance of the forecasting models and ii) how univariate time series
data could be modified by an adversarial attack to decrease models’ per-
formance through cross-technique transferability. For i), the mentioned
methods were used and evaluated with monthly updates. For ii), Fast
Gradient Sign Method (FGSM), along with a logistic regression sub-
stitute model and past data, were used to perform attacks against DL
models at test time. LSTM and TCN decreased the error as the train-
ing sample size increased and outperformed Naive and ARIMA models.
Adversarial samples were able to reduce the performance of LSTM and
TCN, particularly for short-term forecasts.
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1 Introduction

Intelligent generation and distribution of electrical energy are beneficial for sys-
tems operators, plant managers and consumers [2]. A key aspect in this process
is the accurate forecast of produced energy, which is fundamental to enable the
integration of several plants to the grid, save costs, make power grids more reli-
able amid the variation in the demand, avoid power outage, and prevent plant
managers from penalties. It is also advantageous for the sake of the environ-
ment [10], particularly when renewable sources are employed.

For photovoltaic (PV) generation, the focus of our work, forecasting is chal-
lenging due to the dependence on meteorological factors such as clouds covering
solar panels and variations of solar radiation [22]. Thus, building accurate fore-
casting models based only on historical power data is a complex task.

Many works attempted to predict future PV power output [1,9,18,22,23]
making use of statistical models, artificial intelligence, or a combination of them.
However, the models are often built in batch, which assumes that data distribu-
tion does not change over time and, as a consequence, the model is not updated.
Cerqueira et al. [7] compared the performance of machine learning (ML) and
statistical methods when dealing with univariate time series (observing a single
variable throughout time) forecast. The authors updated the models according
to new incremental observed samples and found out that ML tends to provide
better results as the training sample size increases.

In this context, we explored a novel real-life dataset collected from the gen-
eration history of a newly built PV power plant, and compared the performance
of traditional time series forecasting techniques (Naive and Autoregressive Inte-
grated Moving Average (ARIMA)) with Deep Learning (DL) methods (Long
Short-term Memory (LSTM) and Temporal Convolutional Network (TCN)) to
forecast power generation 15 minutes and 24 hours ahead. Since the amount of
data about power generation increases over time, these models were updated and
assessed monthly with the goal to evaluate the influence of the training sample
size in their performance.

Another factor that may influence the power generation forecasting is its
susceptibility to different attacks, which seek to interrupt the grid’s safe oper-
ation or obtain financial gains, for instance [17]. Tampering with the results
of the forecasts is among the possible attacks, since wrong forecasts on power
generation may drive operators or automated control to make harmful decisions
towards grid balancing. This shows that besides obtaining accurate models, their
reliability should be investigated.

Considering that anticipating the potential model vulnerabilities and analyz-
ing the impact of the possible attacks are the first steps of a proactive protection
mechanism [5], and also that adversarial attacks against time series regression
models have been overlooked by the literature, we performed attacks during the
test time of the DL models, which obtained the best prediction results in the
first part of this study.

We examined an adversary with restricted knowledge about the training data
and the victim’s forecasting models. To degrade the DL model’s performance,



the attacker modifies the algorithm input data by using Fast Gradient Sign
Method (FGSM). In view of this, we evaluated whether FGSM is suitable to
generate adversarial test samples which are almost visually imperceptible and,
concomitantly, able to increase test error.

The rest of this paper is organized as follows. In Sect. 2, we provide a brief
background related to time series and the forecast methods adopted in this
work. Section 3 describes experimental details, while results are presented and
discussed in Sect. 4. Section 5 concludes the work with the main highlights and
future work proposal.

2 Background

2.1 Time Series

A time series is given by the data sequence in a particular time period, and this
data can produce different values at distinct moments in time. Formally, it can
be defined as an ordered set X = [z1,Z3,... 27| in which T corresponds to the
length of the series.

The forecasting task consists of finding a function f that predicts the h-th
future value of X, i.e., Z;1, based on i past values:

Tpgn = f(Tr—ic1, Tpmim2y .o Teo1, L) (1)

where i represents the input window size and h, the forecast horizon. When the
latter is equal to one, the forecasting task is referred to as a one-step-ahead
forecast. Otherwise, it is known as a multi-step ahead forecast.

In addition, time series can present seasonality. This occurs when regular
patterns are captured in the series. Seasonal events are phenomena that occur,
for instance, daily at a certain time, every day, or in a certain month every year.

The Naive method to forecast the future value in a time series, also known as
the persistence model, consists of supposing that the next value of a time series
will be the same as the current value:

fi.t+h = Tt (2)

Given the complexity involving PV power generation, more sophisticate mod-
els are generally required.

2.2 Statistical Methods

Understanding the different factors of a time series is important to extract infor-
mation that can be used to predict future points in this series. Many statistical
methods were applied in time series for this purpose and one of the most adopted,
ARIMA, is presented next.

ARIMA method is essentially exploratory and seeks to fit a model to adapt
to the data structure [6]. With the aid of the autocorrelation and partial auto-
correlation functions, it is possible to obtain the essence of the time series so that



it can be modeled. Then, information such as trends, variations, cyclical com-
ponents, and even patterns present in the time series can also be obtained [13].
This allows the description of its current pattern and predictions of future series
values [20].

This model is defined by the values (p, e, q), where p is the number of auto-
regressive terms, e is the number of differences, and ¢ is the number of moving
averages. Auto-regressive (AR) indicates that the evolution variable of interest is
returned to its own previous values. The Moving average (MA) part indicates the
regression error consisting of a linear combination of values at various times in
the past. The Integrated (I) part indicates the process of differentiating between
current values and previous values. In some cases, the ARIMA model is applied
to non-stationary data. To solve this problem, the integrated part is applied,
where differentiation processes are carried out and can be applied more than
once until stationarity is obtained.

2.3 Machine Learning Methods

ML, particularly DL, models have been showing to be adequate for dealing with
time series made up of power related data, from both demand and generation
sides. Among them, TCN and LSTM achieved relevant results for this type of
data [16,22,24].

TCN [4] is a specific Convolutional Neural Network (CNN) that has the capa-
bility of dealing with time series. For this purpose, it uses causal convolutions,
which performs the convolution operation depending only on past values.

This kind of convolution may be submitted to dilation. In TCN, dilated con-
volutions in one dimension are used seeking to explore long-term patterns. The
procedure for doing this is skipping d values between the inputs of convolution.
The dilations will be denoted in this work as [di,ds,...,dy], where d; corre-
sponds to the dilation rate of the layer that is the closest to the input, and d,,
to the layer that is the closest to the output.

Aiming to increase the receptive field of the network, b convolutional blocks
can be stacked. Since it increases the number of parameters, the learning process
becomes more complex. Figure 1 shows a dilated causal network with two stacked
blocks.

The parameters b, k and d are factors that define the receptive field of the
network by the following Eq. 3. For an adequate use of TCN, the receptive field
should cover past history, which, in turn, should cover seasonality.

receptive field =bx k X dy (3)

LSTM. A classical neural network for dealing with time series is Recurrent Neu-
ral Networks (RNN). In this network, the information is propagated throughout
a chain of repeating units of neural network located in the hidden layer.

However, standard RNN suffers from error backflow problems as gradient
vanishing and explosion, which restraint long-term dependency learning. The
first may lead to very slow learning, and the latter, to weight oscillation.



Lt-12) Tt-11 L-10 Lt-9) Tt-8) Lt-7) [Tt—6) Tt—5) Lt-4) Tt-3) Tr-2) Zt-1) | Tt

Fig. 1. Example of dilated causal networks with b =2, k =3 and d = [1, 2].

The backflow calculation drawback was one of the main motivations for the
development of LSTM [14]. This network, a particular case of RNN, uses a gating
mechanism for learning long-term dependencies without losing the short-term
capability. These gating mechanisms are inside memory cells, which are located
in the hidden layer. Each unit in traditional LSTM has the aspect presented in
Fig. 2.

Forget Input
Tt | Gate Gate

Fig. 2. LSTM cell.

Hyperbolic tangent function (tanh(.)) transforms the values to the range
from —1 to 1, and the sigmoid function (sig(.)) to values between 0 and 1. This
property makes sig(.) act as a gate, since the values that are transformed to 0
are forgotten by the network and the values that are transformed into 1 are kept.

Each cell is mainly composed of three gates (forget, input and output gates)
and a cell state. The forget gate (f;) is the main gate to select which information
should pass forward to the next cell or be eliminated. The input gate (i) is used



to update the cell state and to select what will be written to the cell. The output
gate (o) decides the values that will be part of the output. The cell state (Ct)
allows the gradient flow. Considering v; the concatenation of x; and y;_1, the
equations related to these components are:

fr = sig(Wp.ve + by) (4)
iy = sig(W;.vp + by) (5)
0r = sig(W,.v + by) (6)
Cy=fixCi1 + iy % C, (7)

C’t and y; are also calculated to select the new candidate values that can be
added to regulate the network and to actually calculate the output of the cell,
respectively:

C, = tanh(We.vs + b.) (8)

Yyt = o¢ x tanh(C}) (9)

Wy, Wi, W, and W, correspond to the weights matrices related to forward,
input, output gates and cell state; by, b;, b, and b. correspond to bias of the
respective gates and cell state.

2.4 Related Work

Related works in the literature, which address time series forecasting and elec-
tricity energy consumption prediction, are presented next.

Regarding statistical methods, Atique et al. [3] used ARIMA to forecast
the total daily solar energy generated in a specific solar panel. In most of the
recent works, this method is compared to DL. For instance, Jaihuni et al. [15]
compared ARIMA and LSTM to a hybrid version to predict 5 minutes and one
hour ahead. The hybrid version had better performance in predicting the longest
forecast horizon, whereas LSTM and ARIMA outperformed for 5 minutes ahead.

Another example of solar energy generation prediction through DL methods
is seen in Torres et al. [22]. In this work, the application of DL consists of pre-
dicting the generation of energy for the next day. According to the authors, the
proposed method was capable of handling big time series data. In [23], Wang
et al. evaluated CNN, LSTM, and a hybrid model with CNN and LSTM for
modeling a PV system. The results showed robustness, stability, and great per-
formance. TCN is also a very suitable DL method, as shown in [24], in which Yen
et al. verified that TCN is capable of satisfactorily predicting PV generation.

Relating to adversarial attacks in time series, Favaz et al. [11] adapted FGSM
and Basic Iterative Method to univariate time series classification and performed
attacks to DL models. These attacks achieved an average reduction in the model’s
accuracy of 43.2% and 56.89%, respectively, and pointed out that FGSM allows
real-time adversarial sample generation.



3 Materials and Methods

3.1 Dataset

The data was collected from a PV power generation system installed in a parking
lot at the State University of Londrina. It started to operate in November 2019
with a total capacity of 300 kW distributed over 6 inverters. For being represen-
tative of the other inverters, inverter 1 was chosen for the analysis. Since the PV
plant relies on solar energy to operate, it is usually turned off between 7 pm and
6 am (of the next day). Table 1 shows the data description for each month.

Table 1. Main monthly information about power generation in inverter 1.

Month |Maximum value [W]| Minimum value [W] | Average [W]| Number of samples

2019-11{41521.48 0 8749.14 2880
2019-12/41148.77 0 7582.21 2976
2020-01|42189.33 0 8062.55 2976
2020-02{41194.93 0 7485.98 2784
2020-03 | 43521.93 0 8506.43 2976

Samples were collected every 15 minutes, implying that each day is composed
of 96 samples. Considering this and that the data behavior mostly repeats every
day, the input window size was set to 96 (i = 96) to cover seasonality.

The interest in energy production forecast can be part of different strategies
in very short and short-term time horizons. Thus, we evaluated the performance
of these methods when forecasting the production in the next 15 minutes (h = 1)
and 24 hours (h = 96).

Two experiments (Setup 1 and Setup 2) were performed using Intel Xeon
CPU @2.3 GHz and Tesla K80 GPU made available by Google Colab. The source
code can be found at!.

3.2 Setup 1 - Obtaining the Forecasting Model

Setup 1 is dedicated to assess the prediction performance of Naive, ARIMA,
LSTM, and TCN methods. Naive was picked to be a baseline for our experiment.
ARIMA is likely the most adopted option when it comes to statistical methods
for time series analysis. Lastly, LSTM and TCN are DL methods, which represent
the state-of-the-art of ML methods for time series forecasting.

Prequential evaluation was used to show the evolution of performance as
the sample size grows and to simulate a situation in which the model is updated
monthly. In this case, each month (except the first and the last) was used for test
before being incrementally used for training, making the most use of available
data, as observed in Fig.3. Furthermore, for hyper-parameter tuning, 20% of

! http://www.uel.br/grupo-pesquisa,/remid /?page_id=145.
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training data was reserved for validation. A preprocessing step with z-score was
performed to improve convergence. The normalization parameters were obtained
for each new training set.

Train Test

2019-11 2019-12

2019-11 2020-01

2019-11

n

w

2019-12 I 2020-01 ‘ 2020-02

2019-11 | 2019-12 | 2020-01 |2020-02 ‘

2020-03

Fig. 3. Train and test sets for Setup 1.

To apply the ARIMA model, auto-arima from pmdarima library? was used
since it auto-tunes its parameters. This approach was applied because the prepa-
ration of the parameters ends up being a time-consuming task. The auto-arima
technique performs several procedures automatically, making the process simpler
and faster, finding the best parameters for each data entry.

Both deep methods share some training parameters. We selected Adam as
optimizer, Mean Absolute Error (MAE) as loss function, 25 epochs and evaluated
batch sizes of 32 and 128. The specific hyper-parameters of LSTM and TCN are
shown in Tables 2 and 3, respectively.

Table 2. Specific hyper-parameters of LSTM.

Parameter Experimental choice
Number of stacked layers (1) | 1, 2, 3

Units 32, 64

Dropout 0

Table 3. Specific hyper-parameters of TCN. *The possible dilations followed Eq. 3.

Parameter Experimental choice
k 2,3
d* (1,4, 12, 48], [1, 2, 4, 8, 12, 24, 48], [1, 4, 16, 32], [1, 2,

4,8,16, 32, [1, 3,6, 12, 24], [1, 2, 6, 12, 24, [1, 2, 4,
8, 16], [1, 4, 16], [1, 2, 4, 8], [1, 4, §]

b 1,2
Number of filters | 32, 64
Dropout rate 0

2 https://pypi.org/project/pmdarima/.
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For TCN, Rectified Linear Unit (ReLU) was adopted as activation function
and each block output has a residual connection. For this method, we adopted
the keras-tcn library®. The hyper-parameters not specified previously assumed
the default configuration of Keras-TensorFlow?.

3.3 Setup 2 - Evaluating the Impact of the Adversarial Attacks

In Setup 1, the objective is to find the models with the best predictive perfor-
mance. In Setup 2, we evaluate the impact of attacks against these models at test
time. For this purpose, we consider that the attacker has limited computational
and knowledge capabilities, as follows.

Adversary’s Goal. The adversary aims to carry out attacks at test time, in
the sense that the attacker modifies input data during operation to increase the
prediction error of the victim’s forecasting model F' (obtained during training
time). In this case, F' could be either TCN or LSTM.

Adversary’s Knowledge. We simulated a gray-box attack [21] in which the
attacker has limited knowledge about training data and no knowledge about
the model adopted by the victim. Particularly, in our scenario, the attacker has
access to the data collected during the first 2 months of operation.

Adversary’s Capability. The attacker is able to read the legitimate input
data during the operation phase, craft new malicious input based on this legiti-
mate data and a substitute model F’, and, finally, feed the victim’s forecasting
model with this malicious data. The attacker has to define a substitute model
F’ because they do not know the model F built by the victim.

To create the adversarial input, the attacker uses an adaptation of the Fast
Gradient Sign Method [12] to the time series regression context. The goal is to
add perturbations in the input of testing data. The two main requirements of
the perturbation are being not easily visually detected and, at the same time,
degrading the performance of the victim’s ML model. The perturbation n gen-
erated by FGSM is given by:

n = exsign(AxJ(0,%,y)) (10)

where € corresponds to the coefficient that controls the attack magnitude, x to
the input to the model, y to the output associated to x, 6 to the weights of the
adversarial model and J(.) to the loss function.

The attacker also has limited computational resources. This means that the
attacker is not able to use complex models to generate adversarial examples,
so that simpler models should be adopted as I’ and rely on cross-technique
transferability, i.e., adversarial examples generated by the model F” can affect the

3 https://pypi.org/project/keras-tcn/.
4 https://www.tensorflow.org/api_docs/python /tf/keras/.
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performance of another model, trained using a different learning technique [8].
For being simpler than DL, successful in classification scenarios [19] and still
differentiable, logistic regression (LR) was adopted to build the substitute model.

Figure 4 shows, in practical terms, how the available data is used to perform
the attack.

€

ot ) @ |
" o)

a) Substitute model training b) Perturbation generation :c) Adversarial sample generation

Fig. 4. Illustration of the adversary capability and knowledge.

To obtain F’(a), the first collected month is used as training data. For build-
ing the perturbation (b), along with the LR substitute model, the second month
is used as x and y in Eq. 10. Then, at test time (c), the adversarial sample 7},
for the corresponding legitimate test input e is computed by:

Tyest = Ttest + 1] (11)

and inputted to the victim’s model. The € value was varied from 0.05 to 2 with
steps of 0.05.

3.4 Evaluation Metrics

To compute the model performance, the root means squared error (RMSE) was
assessed for the test sets as:

RMSE — > i1 (Ern — Tj4n)?

n

; (12)

where n corresponds to the number of samples of the test set.

4 Results and Discussion

4.1 Setup 1

Figure5 presents the test error obtained by the assessed models. As observed,
the Naive and ARIMA models had the worst performances, incurring an error
of around 16 and 11 kW, respectively. Moreover, for the last test set, the error
increased for both methods. During the operation of the plant, the derivatives
between 2 intervals are very high, which probably led to a worse performance.

10
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Fig. 5. RMSE of the methods using one month as testing period and the two exper-
imented forecasting horizons. For LSTM and TCN, the mean values for the different

hyper-parameters configurations are shown.

For the DL models, the error tended to monotonously decrease as the amount
of training data increased. The performance improvement is more evident for
h = 96: the mean error decreased from almost 8 kW to nearly 5 kW.

Table 4 shows the hyper-parameters configurations that led to the lowest

error.

Table 4. Best results of TCN and LSTM for both forecasts horizons and the test
datasets. The bold values correspond to the best RMSE values for LSTM and TCN in
each forecast horizon.

h Test Method | RMSE Batch |k |d b | Filters |l | Units
1 2019-12 | TCN 3625.71 32 2 [17 4,12, 48] 1]/64
LSTM 4276.75 32 1|32
2020-01 | TCN 3811.69 |32 2[1, 4, 12, 48] 1/64
LSTM |4067.07 |32 132
2020-02 | TCN 3576.19 |32 2[1, 2, 6, 12, 24] 2|64
LSTM 3705.22 32 164
2020-03 | TCN 3333.10 128 2[1, 3, 6, 12, 24] 2132
LSTM |3672.89 32 164
96 | 2019-12 | TCN 7320.73 |32 311, 2, 4, 8, 16] 2|64
LSTM 7294.97 128 2132
2020-01 | TCN 6265.15 |32 2[1, 2, 6, 12, 24] 2132
LSTM 6016.31 128 1]32
2020-02 | TCN 5276.89 128 3101, 2, 4, 8, 16, 32]|1|32
LSTM |5175.33 |32 1/32
2020-03 | TCN 4497.43 |128 2|[1, 4, 12, 48] 132
LSTM |4408.46 128 1/32

11



For h = 1, TCN achieved the best performance, with an error of 3333.10 W.
It represented 29.24% and 19.57% in relation to ARIMA and Naive RMSEs for
the same test set and 7.66% in relation to the maximum power value of 2020-03.

For h = 96, LSTM slightly outperformed TCN, with an error of 4408.56 W.
It represented 38.04% of the error presented by ARIMA, 25.69% in relation to
Naive and 10.13% in relation to the maximum power value of this set.

As to the hyper-parameters, for h = 1, LSTM presented a preference for
smaller batch size and a single layer (i.e, no stacking). As the training sample
size increased, the number of required units also increased. For the same forecast
horizon, the preferred kernel size of TCN was 2 and higher training sample sizes
preferred more blocks. The last month preferred the largest batch size and a
lower number of filters.

Still analyzing the hyper-parameters, for h = 96, LSTM preferred 32 units
for all training sample sizes and mostly only one layer. The last month preferred
the largest batch size. TCN mostly required 32 filters, and as the training sample
size increased, the batch size and the number of blocks increased as well.

Alongside the error values, we also wanted to evaluate qualitatively the mod-
els. With this intention, Fig.6 compares the true output values from 7 days of
the last test set to the forecast results that led to the lowest RMSE for each h.

— True — TCN —— LST™M
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30000 30000
25000 25000
2 2
= 20000 = 20000
[ [
5 5
815000 815000
10000 10000
5000 5000 kv
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¢) TCN for h =1 d) TCN for h = 96
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Fig. 6. Comparison between true output and predicted results by the best models.

In general, the predictions followed the true output values. TCN presented
lower stability around 0 than LSTM, particularly for A = 1. When A = 96 and

12



the true output values are very high, it is observable a conservative forecast of
the power generation.

4.2 Setup 2

As previously mentioned, the adversarial input data must be subtle for not
being easily visually identified. Considering this, Fig. 7 compares one sample of
an original input window that belongs to the test set and its respective sample
of a maliciously crafted window input generated by FGSM.

—— Legitimate Adversarial

/
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Fig. 7. Sample of legitimate input window and adversarial input window according to
variation in € following the procedure described in setup 2.

Given the high similarity between the shape of both curves, it is very difficult
to distinguish between the adversarial and the legitimate input, showing that a
human would have difficulties to visually detect the attack. Although small,
the difference in both curves increases as € increases, and the most noticeable
difference occurs when the curve starts to increase more intensively or stops
decreasing.

To demonstrate how the adversary perturbation influenced the models’ per-
formance, Table 5 shows the error increase caused by the different e values to
the best DL models obtained in Setup 1 (when test set was 2020-03).

Table 5. Percentual error increase in relation to the corresponding original
dataset/method.

LSTM TCN

e=005€=01]|e=015/e=02e=0.05€=0.1|e=0.15|e=0.2
h=1 [0.88% 4.55% |10.75% |19.05%|0.22% 3.66% |9.97% |17.86%
h=96|270% | 17.77% | 42.33% |57.06% | 4.20% | 21.03% | 50.24% | 77.99%

For h = 1 and ¢ = 0.05, nearly no increase in error was found for both
methods, but when e slightly varied from 0.05 to 0.1, the error increase was

13



multiplied by a factor of 5.17 for LSTM and 16.63 for TCN. The biggest error
was found for LSTM when € = 0.2.

For h = 96, the biggest error increase was found for TCN, reaching almost
78%. Such error increase may cause serious harm to the grid operation. Suppose
a situation where the legitimate forecast, i.e., the TCN legitimate output, is
10000 W and there is a fixed demand of 20000 W for the region connected to the
studied PV plant. Considering our most extreme setup for an attack (e = 0.2),
the TCN output could be changed to 17799 W. Then, based on this wrong
forecast, the system operator would assume that it was necessary to deliver only
more 2201 W from other plants to meet the demand of that region. However,
during the operation, the operator would be actually required to deliver a value
closer to 10000 W to properly meet this demand. This difference would unbalance
the grid and possibly culminate in a power outage.

Therefore, it was possible to verify that FGSM can generate adversarial sam-
ples for the studied models, based only on a limited amount of historical data
and using LR as substitute model. Thus, in the context of this work, a defense
mechanism should be developed for the adopted forecasting models for prevent-
ing them from adversarial attacks.

5 Conclusion and Future Work

Results showed that DL models outperformed Naive and ARIMA. Those models
were able to deal with the complexity of PV generation data. Moreover, the
bigger the training sample size, the better the TCN and LSTM performances, so
updating these models is recommended. As for the attacks at test time, FGSM
was able to increase models’ error even with small € values. It was also possible
to validate the cross-technique transferability of LR as a substitute model for
generating adversarial examples for LSTM and TCN.

Future work can analyze other influencing factors in PV power generation
and treat the time series as multivariate aiming at improving the accuracy of
forecasting models. Concomitantly, we will investigate defense mechanisms for
these attacks since it is a real-world application.
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