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Abstract

Future spectroscopic galaxy redshift surveys will observe the Large-Scale Structure
(LSS) of the Universe over large volumes with the goal of testing the Standard
Cosmological Model with high accuracy. This will be achieved thanks to the
developments of LSS studies directed towards the optimisation of the extraction
of cosmological information from correlation functions of the observed galaxy
distribution. These efforts focused on the progressive refinement of the theoretical
Perturbation Theory modelling, and on the optimisation of the estimators that
provide measurements, reaching an agreement for current N-body simulations
of the order of sub-percent level between the two. This work aims to build
the tools required for the joint analysis of the redshift-space power spectrum
and bispectrum, fully exploiting the content of their anisotropic signal, and to
characterize the parameter constraints that can be expected from such analysis.

In a first stage, together with my collaborators, I investigate the benefit of a power
spectrum and bispectrum joint analysis in real space in terms of the improvement,
with respect to a power spectrum-only study, of parameter posteriors extracted
from a likelihood analysis. In doing so, we take advantage of a set of 300 N -body
simulations and an even larger set of mock catalogs. In this work I also explore
different options to define the range the validity of the real-space bispectrum
model with respect to those usually found in the literature, and assess the
advantages resulting from the adoption of these definitions in terms of constraints
on bias parameters.

Afterwards, I focus on extending my results to Fourier space, discussing the main
goal of my Ph.D. project, i.e. the estimate and analysis of the galaxy bispectrum
multipoles. For this project we adopt the same simulations used for the power
spectrum and bispectrum joint analysis in real space. We fit measurements of the
bispectrum ` = 0, 2, 4 multipoles with a tree-level model in perturbation theory
that depends on linear and nonlinear bias parameters as well as on the growth
rate of density fluctuations. We find that the range of validity of the tree-level
model, for the total volume of the N -body simulations, of about 1000 Gpc3 h−3,
reaches a maximum wavenumber of 0.08 Mpch−1 for the monopole, while it is
limited to 0.06 and 0.045 Mpch−1 respectively for quadrupole and hexadecapole.
We confirm results of previous forecast studies saying that the addition of the
quadrupole to the analysis allows for significant improvements, specially on f
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constraints. Finally, we compare our numerical estimate for the covariance with
its theoretical prediction in the Gaussian approximation and find the latter to
work remarkably well.

Eventually I discuss two projects to which I have provided a minor contribution,
one dealing with the derivation of an expression to compute the the convolution
of bispectrum predictions with the survey window, and the other studying
the additional constraining power provided by the redshift-space bispectrum
multipoles to the power spectrum ones.
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Chapter 1
Introduction

Studies about the nature of the Universe and the fundamental interactions that govern its
physical evolution focus today on testing the Standard Cosmological Model against several
probes, with the Cosmic Microwave Background, gravitational waves, and standard candles
being some notable examples. In addition, the large-scale distribution of matter and galaxies
revealed in weak lensing and galaxy surveys has been playing an increasingly large role in
the last years.

Spectroscopic galaxy surveys, in particular, provide a three-dimensional picture of the
Large-Scale Structure. The correlation function of the galaxy distribution, or its Fourier
Transform, the power spectrum, are in this case the main observables. This represents the
probability of finding two galaxy at a given spatial separation and constitutes the main
characterisation of the galaxy field statistical properties.

An important feature imprinted on the galaxy 2-point correlation function is the peak
due to baryonic acoustic oscillations in the early Universe. Given the well-understood
underlying physics, this has been recognised as a cosmological standard ruler, allowing to
constrain the late-time accelerated expansion of the Universe. Another important aspect
of the 2-point correlation function is the anisotropy induced by Redshift Space Distortions
(RSD) [94]. This effect is linked to the intrinsic nature of distance measurements along the
line of sight in spectroscopic surveys based on the redshift determination and Hubble’s law.
The peculiar velocity of the galaxy, however, adds to the Hubble expansion and alter the
measured distance and thus the final spectra. This anisotropy, controlled at large scales by
the matter velocity, can be use to constrain the growth rate of structures.

The study of these features of the galaxy 2-point function or power spectrum do not
fully exploit their information content. The most recent analyses of the BOSS galaxy survey
aim at the so-called “Full Shape” analysis of the power spectrum [90, 39, 95, 152], mostly
thanks to the refinement of theoretical models in the last decade.

If the galaxy distribution was a Gaussian random field, its statistical properties would
be completely encoded in its 2-point function. While the Planck experiment showed that the
Gaussian picture is a very good description of the density perturbations during early stages
of the Universe, non-Gaussianity is induced by gravitational instability, non-linear galaxy
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Chapter 1. Introduction 2

bias and RSD, and spreads the information content from the 2-point to over higher-order
correlation functions. Moreover, despite current bounds from the CMB, a certain level
of non-Gaussianity could still be detected in the initial conditions, providing important
information of the model of inflation describing the very early Universe [37]. It is therefore
imperative for the upcoming surveys to go beyond the analysis of two-point statistics in order
to extend and strength the results from the standard analysis of the two-point correlation
function and power spectrum.

The lowest order statistics to quantify non-Gaussianity is the 3-point correlation function
or, in Fourier-space, the bispectrum. This represents the excess probability, with respect
to an uncorrelated, Poisson distribution to find a triplet of glaaxies forming a triangle of
a given size and shape. The first bispectrum measurements provided a first test of early
models of gravitational instability on large-scales [18], nonlinear bias [59, 105] and local non-
Gaussian Initial Conditions [93, 145]. Besides, bispectrum measurements provide additional,
"perpendicular" information in the full-shape analysis, lifting degeneracies between model
parameters present in the case of the single power spectrum. Several recent works focus
on the derivation of model parameter constraints from the joint analysis of 2 and 3-point
statistics [64, 67, 68, 121, 39, 127] showing that the addition of this observable helps improve
these constraints by a significant level.

A proper analysis pipeline for the bispectrum, however, is still being defined. For instance,
while the power spectrum analysis takes routinely full advantage of the anisotropy induced
by RSD in terms of a multipole expansion (see e.g. [4, 139]), past bispectrum analyses
have always been limited to the monopole, with the notable but very recent exception of
[38]. Nonetheless, as in the power spectrum case, the anisotropic signal carries additional
information and a complete analysis should take advantage of this contribution. A few of
forecast works considered the relevance of the full anisotropic bispectrum [158, 61, 170, 77, 28]
remarking that we can expect additional information in the higher-order multipoles of the
bispectrum, although the exact extent of improvement on parameters constraints depend
on several assumptions on the parameters considered, the covariance model, and survey
features.

My Ph.D. work addresses the analysis of the redshift-space bispectrum in terms of its
multipoles, monopole, quadrupole and hexadecapole providing a rigorous and extensive
comparison of measurements in numerical simulations to the tree-level predictions in per-
turbation theory, adopting the definition of [147]. We perform a likelihood analysis sharing
the same methodology of references [119] and [118]. In particular, our work constitutes the
natural continuation the study started with these papers exploring in details the challenges
of a joint analysis of the galaxy power spectrum and bispectrum, there limited to real-space.
Our aim, for the future, will be to give a full redshift-space analysis of power spectrum and
bispectrum, using an extended multipoles decomposition for both the observables.
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Each of these works focus on a single extension to our pipeline, and meticulously
investigates several methodological choices. The first work of this series [119], presented
a full likelihood analysis of the bispectrum monopole in real space. This opening paper
also presents extensively the tools adopted for this works, namely: our likelihood code to
perform Monte Carlo Markov Chains (MCMC) for the evaluation of posterior distributions,
the reference set of 300 N-body simulations of Dark Matter halos used as data vector, and
the set of 10,000 mocks generated by the approximate Pinocchio code used to compute the
covariance matrix. A second paper [118], to which I directly contributed, considers the joint
likelihood posteriors of power spectrum and bispectrum in real space. This will be described
in Chapter 4. The main work of this thesis, described in chapter 5, extends the analysis to
bispectrum multipoles in redshift space. We describe the cosmological inference results for
the bispectrum multipoles alone in order to provide tools to interpret future work, already
in preparation, that will combine power spectrum and bispectrum multipoles together. This
will be mentioned in the last chapter along with extensions to the analysis pipeline that will
eventually enable the analysis on actual data from a survey with non-trivial geometry.

The whole work is of particular relevance for the upcoming Euclid spectroscopic galaxy
survey which is expected to be launched in 2024 and that will provide observations over
a large fraction of the sky, 15000 deg2, in a redshift range 0.2 ≤ z ≤ 1.8, still unobserved
by present-day LSS missions. Part of my Ph.D was carried out as a member of the Euclid
Collaboration where I worked in the Level 3 Galaxy Clustering Organisation Unit, the team
responsible for the development of scientific data analysis software that will provide official
measurements of the correlation functions of the galaxy distribution. In this work, Chapter3
is dedicated to the description of the power spectrum and bispectrum estimator codes that I
developed, that will eventually contribute to the official Euclid data analysis Pipeline and
that I used as well for almost all measurements mentioned in this thesis.



Chapter 2
The Large Scale Structure of the Universe

2.1 Introduction on Cosmology

2.1.1 Einstein Field Equations

From its very first stages [52], the attempts to provide a mathematical description of the
Universe structure, as a whole, had deep roots in the Theory of General Relativity (GR). At
present, the validity of such description holds up even to observations of extreme events in
the cosmos [1]. According to this interpretation (and differential geometry), the Einstein
tensor governs the local curvature of a differentiable mainfold on which a symmetric, smooth
and non-degenerate metric gµν is defined. Such object is given by

Gµν = Rµν −
1

2
gµνR , (2.1)

where Rµν , the Ricci tensor, and R, the Ricci scalar, depend solely on the metric. This
object is symmetric and is only subject to variations in the second-order partial derivatives
of the metric tensor and on the square first order ones.

In GR, the Einstein tensor is directly related to the stress-energy tensor

Tµν = (ρ+ p)uµuν − pgµν (2.2)

describing the matter-energy distribution in terms of the density ρ, velocity uα and pressure
p of a fluid that permeates and flows in space, through the Einstein Field Equations (EFE)

Gµν − Λgµν =
8πG

c4
Tµν , (2.3)

where the Λ-term corresponds to a constant contribution to the overall curvature that can be
absorbed by Tµν . This equation describes how the curvature is sourced by the matter-energy
distribution through the stress-energy tensor which acts on the metric through its second
derivatives.
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Chapter 2. The Large Scale Structure of the Universe 5

2.1.2 Friedmann Equations

Along with GR, the modern description of the Universe is built upon the assumption that
matter is distributed homogeneously and isotropically on large scales. This hypothesis,
which goes with the name of Cosmological Principle (CP), allows to define a reference frame
where matter can be considered (at first order) at rest and where cosmic distances and time
intervals are described by the metric

ds2 = gµνdx
µdxν = c2dt2 − a2(t)

[
dr2

1−Kr2
+ r2dθ2 + r2 sin2 θdϕ2

]
. (2.4)

This is the Friedmann-Lemaitre Robertson Walker (FLRW) metric [137] [167] which de-
scribes the behavior of space-time differentials in a homogeneous and isotropic universe free
to expand or contract. This behavior is described through scale factor a(t). The spatial
coordinates in equation (2.4) are called comoving coordinates1 and t is the cosmic time, the
temporal coordinate measured by comoving observers at each point (r, θ, ϕ).

We can then insert the FLRW metric in the EFE to obtain differential equations for
the scale factor, the Friedmann equations. The only non-vanishing Ricci tensor components
are

R00 =− 3
ä

a
(2.5)

Rii =

[
ä

a
+ 2
( ȧ
a

)2
+

2K
a2

]
gii (2.6)

and the Ricci scalar is

R = −6

[
ä

a
+
( ȧ
a

)2
+
K
a2

]
. (2.7)

Writing the time and spatial component separately, the Einstein tensor becomes

G00 = 3
( ȧ
a

)2
+

3K
a2

(2.8)

Gii =−
[

2
ä

a
+
( ȧ
a

)2
+
K
a2

]
gii . (2.9)

Under CP, the existence of a frame under which matter can be considered at rest at
first order allows to write the stress-energy tensor of equation (2.2) for a perfect fluid as a

1In Cosmology, two types of coordinates are ususally used: proper and comoving. The first ones are
defined in a static system of reference so that space elements enlarge as the Universe expands. In the second
case, the metric follows the expansion of the universe, so that volume elements remain constant. The two are
related through the scale factor by dx = dl/a.
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diagonal with

T00 =ρg00 (2.10)

Tii =− pgii . (2.11)

Friedmann equations result from replacing the Einstein tensor for the FLRW metric (2.8)
and the expression for the stress-energy tensor under the perfect-fluid approximation (2.10)
in the EFE (2.3), giving

( ȧ
a

)2
=

8πG

3
ρ+

Λ

3
− K
a2

Friedmann I (2.12)

ä

a
=− 4πG

3

(
ρ+ 3p

)
+

Λ

3
Friedmann II (2.13)

where, from now on, we adopt the usual notation c = 1, and the second equation is gathered
by subtracting from it (2.12), to remove the (ȧ/a) dependence present in the original form.
These equations govern the evolution of the scale factor a(t) in an isotropic and homogeneous
universe filled by a perfect fluid of density ρ and pressure p.

2.1.3 Energy content of the Universe

An additional step can be taken by considering an equation of state for the perfect fluid

p = wρ , (2.14)

where w contains information on the fluid properties. Assuming the shear components to be
negligible in the early Universe, the condition of momentum conservation ∇µTµ,ν = 0 can be
solved under the perfect-fluid approximation, giving

ρ ∼ a−3(1+w) . (2.15)

For ordinary, non-relativistic matter, w = 0 and ρm ∼ a−3; for radiation, w = 1/3 and
ρr ∼ a−4; for a constant energy density, ρΛ ∼ a0 so that w = −1. The contribution of the
different species to the stress-energy tensor is traditionally formulated in terms of the density
parameters, defined with respect to the value of the total matter-energy density which would
correspond to a flat geometry K = 0, ρcrit:

Ωj(t) =
ρj(t)

ρcrit(t)
, (2.16)

where

ρcrit =
3H2(t)

8πG
' 1.87847 · 10−29(h2 g cm−3) (2.17)

and h = H0/100 is just a convenient way of writing the Hubble parameter, i.e. the value of
the present-day Hubble parameter in units of 100 km s−1 Mpc−1. The current estimates of
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the density parameters refer to the data collected by the Planck mission and are reported in
Table 2.1.

At present day the dominant energy source is Dark Energy (DE), responsible for the
late-time accelerated expansion. The true origin of this component is still object of great
debate in the scientific community and much of the current observational efforts are directed
towards uncovering its nature. The expansion of the Universe was first observed by Hubble
[87]. This discovery forced Einstein to reject his choice of introducing an additional parameter
Λ in the EFE during his attempts to extrapolate the local metric of the Universe outside
of the domain of cosmological observations. At that time, Λ emerged from the desire to
obtain a static solution to a homogeneous universe which turend out to be inconsistent
with the first observation of cosmic expansion. Ironically, this quantity was reconsidered
after the discovery of the expansion acceleration, confirmed nowadays by observations of the
Cosmic Microwave Background (CMB) [129], of Type-Ia Supernovae [133, 134] and Baryonic
Acoustic Oscillations (BAO) [4]. In Friedmann equations (2.12) and (2.13), it is described by
the Λ parameter, the cosmological constant, and can be absorbed in the stress-energy tensor
as a component providing a constant energy budget which sources the accelerated expansion
at late times. A possible physical interpretation of this term is vacuum energy. However,
problems arise when one tries to relate such form of energy to the respective Quantum
Mechanical definition of vacuum-state energy fluctuations. In particular, the value of the
energy density calculated assuming this Quantum Mechanics origin clashes with the one
resulting from cosmological observations by nearly 60 orders of magnitude. Another issue
with the cosmological constant model is the coincidence problem, the fact that the ΩΛ being
very close to present mass density of the Universe could be more than a fortuitous event.

Over the years, other models have been proposed to give an alternative explanation
for the accelerated expansion. Among these, time-evolving DE models like Quintessence
[173] and Modified Gravity (MG) models [92], postulating deviations of from standard GR
equations on cosmological scales, have been explored. Although these theories are able to
solve the coincidence problem (Quintessence) or both (MG), many models of the second
class have been recently ruled out [104] since the observation of the black hole-black hole
merger event of [1]. This represents the first detection of gravitational waves, confirming
Einstein prediction of 1916 and providing tests of gravity in the strong-field regime. Relating
the mass and spin of the final object to the same quantities of original mergers, and testing
the phase of the gravitational waveform no evidence for disagreement with GR has been
observed. Next-generation galaxy redshift surveys envision to provide accurate tomographic
measurements on the equation of state parameter describing DE at multiple redshifts, and
therefore will possibly be able to rule out Quintessence or models for which w deviates
significantly from −1.

Matter represents almost 30% of the total density but only 4% is ascribable to baryons.
The main contribution is supplied by an unknown form of matter, which is expected have
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a low interacting cross-section with ordinary matter and light. Evidence for its existence
dates back to 1933, when Zwicky observed that the gravitational virial mass derived from
the dynamics of the Coma cluster, was much higher than that estimated from the luminous
content through a well-known empirical relation translating brightness to mass. Today,
hints to the existence of this elusive component have grown over the years, the rotation
curves of spiral galaxies [138], studies on intra-cluster motions [174], gravitational lensing
measurements, and CMB experiments [85], [129] being only few of them. The nature of this
component is still debated and many particle candidates have been proposed. Cold Dark
Matter (CDM) is a particular model of Dark Matter (DM) defined in such a way that it
is non-relativistic when it decouples from radiation and was introduced by Peebles [123] to
predict temperature fluctuations compatible with CMB limits, and since then it has been
overly refined [159] [10].

Finally, relativistic species include radiation and relativistic neutrinos and account for
only 0.001% of the total energy density at present time.

Substituting the expressions for (2.16) in the Friedmann equations (2.12) and (2.13),
governing the evolution of the scale factor in terms of the energy content of the universe,
gives

H2(t) = H2
0 [Ωr,0a

−4(t) + Ωm,0a
−3(t) + ΩΛ,0 + (1− Ω0)a−2] , (2.18)

where the null indices indicate that the density parameters are evaluate at present time. After
inserting the current values of these parameters, measured by observations, this equation can
be solved returning the time-evolution of H(t). Consequently, it is possible to identify the
phases in which a particular component has dominated the energy content of the Universe.
In first approximation, looking at the dependence of the different terms in the equation above
on the scale factor, one can predict three main stages. At early times, we expect an era
during which the dynamics is dominated by relativistic species (Radiation Dominated era).
Then, after the equivalence of matter and radiation contribution Ωr,0(1 + zeq) = Ωm,0, non
relativistic matter is expected to dominate the energy budget (Matter Dominated era). These
relative contributions decrease in time and eventually the cosmological constant becomes the
main energy component (DE Dominated era).

2.1.4 Initial Conditions

Before ending this section, we want to clarify the scenario which seeded the particular
conditions we observe in the Universe today. A well known concept is that taking t → 0,
leads to a singularity problem where the overall temperature and other physical quantities
diverge to ∞. This situation corresponds to a time when Quantum Mechanics effects
dominate. As a result of the continuous expansion, the Universe cooled and the physics
became governed by the laws we have outlined in this section. The picture arising from this
description, known as Standard Model of Cosmology, however, is not free of problems. Let
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us consider the most relevant.

The picture arising from observations of the CMB yields a Universe homogeneous and
isotropic on large scales, yet made by a several number of disconnected regions which have
never been in causal contact. Therefore, it is difficult to explain why all these regions show
the same temperature values. This goes with the name of horizon problem. In addition, the
present-day density of the Universe is very close to critical density Ωtot ∼ 1 (flatness problem),
which is difficult to explain, for if an initial curvature would had been present Ωtot 6= 1 in
the primordial Universe, this could only increase in time. The present observations of a
vanishing curvature thus, require that the primordial one would had been even smaller in
magnitude, resulting in a fine-tuning problem.

These problems are solved by the inflationary paradigm [78]. The exponential expansion
characterising the inflationary paradigm would boost the comoving radius of the horizon
reachable by photons, providing a way to solve the horizon problem. As a matter of fact,
according to the inflationary model of [78], two sky patches that appear disconnected on
the CMB plane, were actually part of the same connected region before the inflationary
expansion. Moreover, this hypothesis would also solve the flatness problem since, as a result
of the expansion, the curvature radius would exponentially increase, leading Ωtot to 1. Several
models have been proposed over the years as possible implementation of the mechanism, and
today inflation is still a hot topic in Cosmology [20, 9, 48, 79]. For the sake of this work, it
is worth to mention that apart from the solutions to the problems above that motivated its
introduction, inflation provides an explanation to the origin of matter perturbations that
seed the formation of late-times collapsed structures.

To summarize, the equations we have discussed in this section describe a Universe that
obeys GR and where the fabric of space-time is described in terms of space-time elements
that obey to the FLRW metric, under the assumption of homogeneity and isotropy. This
space, filled with a matter-energy distribution that is described in terms of a perfect fluid,
expands with an accelerated rate. The expansion is described in terms of a scale factor
that obeys Friedmann equations and which undergoes three different evolutionary states
according to the epoch we consider it (which, in turn, depends on the specific component
that dominates the total energy budget). According to present-day observations, we have
ΩΛ ' 0.7, Ωm ' 0.3, Ωr ' 10−4, Ωc ' 0.25. This description, coupled with the most
appreciated models for DE and DM, the cosmological constant Λ and CDM, make up the
ΛCDM Standard Model of Cosmology, usually combined with the inflationary paradigm.
This model proved successful in describing many observational evidences such as the early
Universe, the accelerated expansion at late-times, and the distribution of matter on large
scales, which preserves imprints of processes that shaped its history, and represents the most
established explanation for most present day observations.

However, this is not the end of the story as questions related to the true nature of cosmic
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Table 2.1: Present-day density parameters from Planck analysis [129], Ωm,0 and ΩΛ,0

estimated from temperature power spectra (TT), polarisation spectra (EE), cross spectra
(TE), and Low-` HFI EE polarisation (LowE), or estimated from its results, Ωr,0 and Ωc,0.

Density source Relative abundance

Ωm,0 0.3166± 0.0084

ΩΛ,0 0.6834± 0.0084

Ωr,0 ∼ 9.23640 · 10−5

Ωc,0 0.2649± 0.0026

accelerated expansion, DM, and Inflationary models, remain that are still unanswered at the
moment. Future observations aim at refine current constraints on the cosmological model
parameters and probe epochs that remain mostly uncovered. Some of these missions will
couple an exceptional redshift depth with an incredible angular aperture, observing the
Universe over large sky areas and will take measurements of remarkable accuracy which will
allow to study LSS with unprecedented subtlety.

2.2 Statistics of classical random fields

The easiest and most general description to study the matter density perturbations is in
terms of classical random fields, variables that assume a stochastic value in each point of
space. Statistical properties of matter perturbations can then be computed from moments
of these objects2. Given a random field ψ(x) with Probability Distribution Function (PDF)
P(ψ), its n-order moment is given by

〈ψn〉 =

∫
dψ ψnP(ψ) , (2.19)

while its multi-point moments, expressing the degree of correlation of the random field at
different positions, are

〈ψ(x1) . . . ψ(xn)〉 =

∫
dψ1 . . . dψn [ψ1 . . . ψn]P

(
ψ1, . . . , ψn

)
, (2.20)

and are often called n-point correlation functions.

In LSS studies theoretical predictions are defined in terms of ensemble averages. However,
when comparing to observations we are limited by having at our disposal a single Universe.

2Meaning that knowing all the moments of a random field is potentially equivalent to having its PDF.
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We must assume therefore that ensamble averages are equivalent to volume integrals, so that
∫

dψ ψP(ψ) = lim
V→∞

1

V

∫

V
d3xψ(x) . (2.21)

This is the hergodic hypothesis. We should also assume, of course, that the observed volume
represents a ”fair sample” of the Universe.

In Cosmology we usually focus on two types of random fields: the matter density contrast
δ and the density contrast of a distribution of objects that trace the matter field, as galaxies
δg, or DM halos δh. These quantities represent at each point the local variation in the
matter density ρ(x) or galaxy/halo number count ng/h(x) with respect to its mean value,
computed over a large volume. In order to avoid duplication, in the following description we
will only discuss equations regarding one of the random fields, the matter density contrast,
as equations for δh and δg are equivalent to the ones we will derive for δ. Neglecting for the
moment the time component, and writing the equations for ρ, we have

ρ(x) = ρ̄ [1 + δ(x)] , (2.22)

where ρ̄ = 〈ρ(x)〉, with 〈〉 representing the ensemble average operator.

Before proceeding, we want to point-out that in general one can distinguish between
a connected and an unconnected contribution to a correlation function. For the two-point
correlation of (2.22), we have

〈ρ(x1)ρ(x2)〉 = 〈ρ(x1)〉〈ρ(x2)〉+ 〈ρ(x1)ρ(x2)〉c , (2.23)

where the second term corresponds to the connected contribution to the two-point correlation
function of the matter density field ξ. Taking the ensemble average of ρ, it is straightforward
that 〈ρ(x)〉 = ρ̄ returns 〈δ(x)〉 = 0, so that

〈ρ(x1)ρ(x2)〉 = ρ̄2〈[1 + δ(x1)][1 + δ(x2)]〉
= ρ̄2[1 + 〈δ(x1)〉+ 〈δ(x2)〉+ 〈δ(x1)δ(x2)〉]
= ρ̄2[1 + ξ(x1 − x2)]

(2.24)

where, under the assumption of CP, ξ only depends on the modulus |x1 − x2|. The function
ξ is the connected term of two-point correlation function of the matter density contrast δ,
and corresponds to the connected term of the two-point correlation function of the matter
density distribution ρ, measuring the excess probability to find two particular values of the
density contrast, δ(x1) and δ(x2), at a given distance |x1 − x2|,

ξ(|x1 − x2|) = 〈δ(x1)δ(x2)〉c . (2.25)
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Higher order correlations can be written in terms of a connected term plus products of
lower order connected correlation functions,

〈ψ(x1) . . . ψ(xn)〉 = 〈ψ(x1) . . . ψ(xn)〉c
+ 〈ψ1〉c〈ψ2 . . . ψn〉c + cyc.

+ 〈ψ1ψ2〉c〈ψ3 . . . ψn〉c + cyc.

+ . . .

+ 〈ψ1〉c〈ψ2〉c . . . 〈ψn〉c .

(2.26)

As a result, all the information about a given random field, encoded in its Probability
Distribution Function (PDF), can be investigated by studying the connected part of its
correlation functions.

For a Gaussian random field, the PDF for a single point is

P[ψ] =
1√
2πσ

exp

(
− 1

2

ψ2

σ2

)
, (2.27)

while for n points we have

P[ψ(x1), . . . , ψ(xn)] =
1√

(2π)ndetC
exp

(
− 1

2
ψiCijψj

)
, (2.28)

where all the statistical properties are encoded in the two-point correlation function, Cij =

〈ψ(xi)ψ(xj)〉, and all other higher-order correlation functions being equally zero.

COBE mission, by observing the CMB proved that the temperature fluctuations arising
from the last-scattering surface are indeed Gaussian [56]. These temperature fluctuations
relate to energy density perturbations of the primordial Universe so that we can treat them
as initial conditions of our description which, therefore, can be very well described by 2PCF
alone.

After recombination, during Matter Dominated era, perturbations in the matter density
grow under the effect of gravity in a non-linear way, developing a characteristic non-Gaussian
signature that can be probed by higer-order correlation functions. As non-Gaussianity in the
matter distribution grows due to gravitational instability, the information content originally
present in the two-point correlation function will be transferred to higher order correlation
functions, such as three-point:

ζ = 〈δ(x1) δ(x2) δ(x3)〉c . (2.29)

This is the reason behind high order correlation functions being extremely sensitive to
gravitational collapse models and a possible, small non-Gaussian component in the initial
conditions. However, as we will see, other non-linear effects exist who can source a non-
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vanishing contribution to high order correlation functions in the galaxy distribution: galaxy
bias and redshift space distortion being the main responsibles.

2.3 Fourier Space

A useful way to study the evolution of cosmological perturbations is working in Fourier space.
Fourier Transforms (FT) allow to decompose a signal in its spatial frequencies and therefore
study how fluctuations behave on different scales. We assume the following convention for
the FT of a field φ(x) and its inverse transformation:

FT[φ(x)] ≡ φ(k) ≡
∫

d3x

(2π)3
e−ik·x φ(x) , (2.30)

iFT[φ(k)] ≡ φ(x) ≡
∫

d3k eik·x φ(k) . (2.31)

In general, the Fourier transform of a random field is a complex-valued random field. If the
original, configuration-space field is such that φ(x) ∈ R, then its Fourier transform is equal
to its complex conjugate under k→ −k, φ(k) = φ∗(−k).

Taking the two-point correlation function of the FT of the density contrast δ(k), gives

〈δ(k1)δ(k2)〉 =

∫
d3x1

(2π)3
e−ik1·x1

∫
d3x2

(2π)3
e−ik2·x2 〈δ(x1)δ(x2)〉 . (2.32)

Under the assumption of homogeneity and isotropy, 〈δ(x1)δ(x2)〉 = ξ(|x1 − x2|) therefore,
for y = x1 − x2, we can rewrite

〈δ(k1)δ(k2)〉 =

∫
d3x1

(2π)3
e−i(k1+k2)·x1

∫
d3y

(2π)3
e−ik2·y ξ(y)

= δD(k1 + k2)P (k2) ,

(2.33)

where P (k) is the power spectrum that, as consequence of CP assumptions, depends only
on the modulus of k ≡ |k| = |k1| = |k2|. Moreover, this equation shows that the two-point
correlation function and the power spectrum are the FT of one another

FT[ξ(x)] = P (k) , (2.34)

iFT[P (k)] = ξ(x) . (2.35)

Similarly, starting from the three-point correlation function of equation (2.29), we can
compute the Fourier-space three-point counterpart of δ(k) as

〈δ(k1)δ(k2)δ(k3)〉 = δD(k1 + k2 + k3)B(k1,k2) . (2.36)

B(k1,k2) is the bispectrum of the matter density contrast. Under the usual assumptions
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of homogeneity and isotropy, it depends only on wavenumber triplets that form a closed
triangle of sides k1, k2, k3. Just as the power spectrum is the FT of the two-point correlation
function, the bispectrum can be obtained as the FT of the three-point correlation function,
and encodes the same properties of being sensitive to gravitational instability, non-Gaussian
initial conditions, bias, Redshift Space Distortions, and broadly speaking to all those
effects that introduce some non-linearity in the density contrast distribution that eventually
contributes to the non-Gaussianity of the fields.

2.4 Matter evolution

2.4.1 Eulerian Dynamics

In order to extract cosmological information out of observations, it is crucial to develop a
theoretical description that allows us to make predictions for the observed quantities.

In the standard cosmological model, the formation of cosmic structures is described by
the evolution of a uniform and isotropic matter distribution in an expanding universe, under
the effect of gravity. Homogeneity and isotropy, however, hold only in a statistical sense,
and small perturbations δ in the matter distribution grow due to gravitational instability
into collapsed objects that eventually merge into larger structures such as galaxy clusters.

On large scales, an analytical description of this phenomenon is possible as long as δ
remains small. In this case, the adoption of the fluid approximation is perfectly reasonable
due to the collisionless nature of CDM, as long as the velocity dispersion of DM particles
is negligible. Moreover, considering scales much larger than the Hubble horizon H and
velocities u� c makes the Newtonian approximation a fair simplification.

On smaller scales this description ceases to be valid as perturbations approach δ ∼ 1,
yet we will show that it is still possible to look for a perturbative solution using as perturbed
field the density contrast.

We choose to write the following equations in terms of the conformal time τ , related to
the cosmic time by dt = a(τ)dτ , and of the comoving coordinates x, related to the physical
ones by r = a(τ)x. The evolution of the matter density perturbations δ(x, τ) in its most
general form, i.e. without any approximation, is determined by the continuity equation ([19])

∂δ(x, τ)

∂τ
+∇ · {[1 + δ(x, τ)]u(x, τ)} = 0 , (2.37)

and the Euler equation

∂u(x, τ)

∂τ
+H(τ)u(x, τ) +

[
u(x, τ) · ∇

]
u(x, τ) = −∇Φ(x, τ)− 1

ρ
∇j(ρσij) , (2.38)

describing respectively the conservation of matter and energy momentum. u(x, τ) is the
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peculiar velocity field, σij is the anisotropic stress tensor, and H = Ha.

In the single-stream approximation, expected to be valid at large-scales, σij is neglected.
So an additional equation is needed in order to find a solution for two remaining unknowns
δ and u. This is the Poisson equation, relating perturbations in the matter distribution to
the gravitational field Φ

∇2Φ = 4πGρ̄(τ)δ(x, τ) =
3

2
Ωm(τ)H2(τ)δ(x, τ) . (2.39)

This is the set-up for the so-called Standard Perturbation Theory.

Linear Perturbation Theory

Neglecting second-order contributions in the perturbed fields, δ and the velocity divergence
θ ≡ ∇ · u, the set of equations (2.37) and (2.38) can be linearised, to give:

∂δ(x, τ)

∂τ
+ θ(x, τ) = 0 (2.40)

∂u(x, τ)

∂τ
+H(τ)u(x, τ) = −∇Φ(x, τ) . (2.41)

The linear Euler equation (2.41) describing the evolution of the velocity field can be de-
composed in two parts, one addressing the velocity divergence θ and the other the vorticity
w,

∂θ(x, τ)

∂τ
+H(τ)θ(x, τ) +

3

2
H2(τ)Ωm(τ)δ(x, τ) = 0 , (2.42)

∂w(x, τ)

∂τ
+H(τ)w(x, τ) = 0 . (2.43)

We can neglect the vorticity since, for a perfect fluid, σij = 0, and equation (2.43) implies
that any initial contribution to vorticity decays with the Hubble expansion as w ∝ a−1.
Then, substituting equation (2.40) in equation (2.42), gives

∂2δ(x, τ)

∂τ2
+H(τ)

∂δ(x, τ)

∂τ
− 3

2
H2(τ)Ωm(τ)δ(x, τ) = 0 . (2.44)

Assuming δ(x, τ) to be separable in its time and space part, δ(x, τ) = D(τ) δI(x), equation
(2.44) becomes a second order differential equation for D, which gives two independent
solutions, D+ and D−, so that the general solution is

δ(x, τ) = D+(τ) δ+(x) +D−(τ) δ−(x) (2.45)
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with δ+/− describing the initial distribution δI. In a matter dominated, Einstein de-Sitter
Universe, D+ ∝ a and D− ∝ a−3/2. Neglecting the decaying mode,

〈δ(k1, τ)δ(k2, τ)〉 =

∫
d3x1

(2π)3

∫
d3x2

(2π)3
e−ix1·k1e−ix2·k2 〈δ(x1, τ)δ(x2, τ)〉

= D2
+(τ)

∫
d3x1

(2π)3

∫
d3x2

(2π)3
e−ix1·k1e−ix2·k2 〈δI(x1)δI(x2)〉

= δD(k1 + k2)D2
+(τ)PI(k2)

(2.46)

so that, given eq. (2.32), in the linear regime the power spectrum at time τ can be computed
by rescaling the initial-time linear power spectrum PI by the linear growth factor D+,

PL(k, τ) = D2
+(τ)PI(k) . (2.47)

This implies that, in the linear regime, the shape of the power spectrum is preserved in time,
therefore each Fourier mode k evolves independently. Moreover, if the initial distribution
δ+(x) is Gaussian, this property is preserved as long as the evolution is linear.

PI(k) is directly related to the power-law power spectrum of curvature perturbations
originated during inflation, PI ∼ kns . Such power law is then altered during the subsequent
evolution during radiation and matter domination leading to a suppression on the small
scales which entered the horizon before matter-radiation equality. The linear power spectrum
accounts for these effects through the Transfer Function T (k), so that its scale-dependence
is given by

PL(k) ∼ kns T (k) . (2.48)

Although the spectral index of an exactly scale-invariant power spectrum, predicted by
the fine-tuning of the flatness in the scalar field potential, should be ns = 1, in many,
standard inflationary models a small tilt due to the slow-rolling inflaton potential is expected.
Remarkably, measurements of the CMB power spectrum from Planck constrain ns to
0.9652± 0.0042 showing that while close to one, a small deviation is in fact observed.

Non-linear Perturbation Theory

In the large-scale limit, where the perturbed fields are small, Linear PT is able to provide a
good description of the growth of density fluctuations as measured, for instance, in numerical
simulations. This agreement stops when non-linear effects become important, at much
smaller scales, around ∼ 0.1hMpc−1. Nevertheless, relying on PT, it is possible to extend
theoretical predictions beyond the linear regime.
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PT assumes that it is possible expand the general fields around their linear solution as

δ(x, τ) =
∑

n

δ(n)(x, τ)

θ(x, τ) =
∑

n

θ(n)(x, τ) ,
(2.49)

where, δ(1) ∼ δL, δ(2) ∼ δ2
L, and so on. Stopping the series at second-order, the evolution of

the perturbed fields is derived by solving the fully non-linear equation (2.38). In Fourier
space, dropping for semplicity the explicit time-dependence,

∂δ(k)

∂τ
+ θ(k) = −

∫
d3k1d3k2 δD(k− k12)α(k1,k2) θ(k1) δ(k2)

∂θ(k)

∂τ
+Hθ +

3

2
ΩmH2δ(k) = −

∫
d3k1d3k2 δD(k− k12)β(k1,k2)θ(k1) θ(k2)

(2.50)

where the functions

α(k1,k2) =
(k1 + k2) · k1

k2
1

, β(k1,k2) =
k2

12 · (k1 · k2)

2k2
1k

2
2

, (2.51)

are responsible of the mode-couplings between perturbations of different scale k1 and k2.
As a consequence, the evolution of a given mode k ceases to be independent from other
scales when progressing from large to small scales, where the linear approximation fails.
Moreover, in such a regime, all the modes for which k1 + k2 = k holds, will contribute to
the second-order non-linear dynamics.

Working in the limit for an Einstein de Sitter Universe, with Ωm = 1 and ΩΛ = 0,
equations (2.50) become homogeneous in the time component and can be separated in their
time and space parts. As a result, each term in the expansion (2.49) can be written as the
product of a time-dependent coefficient and a spatial-dependent term

δ(k, τ) =
∑

n

Dn
+(τ)δ(n)(k) . (2.52)

The evolution of the density and velocity divergence fields is then obtained by multiplying
the time-independent solution, specified in terms of the initial, linear solution δI for the
corresponding growth factor,

δ(n)(k) =

∫
d3q1 ...

∫
d3qn δD(k− q1...n)Fn(q1, ...,qn) δI(q1)... δI(qn) , (2.53)

θ(n)(k) =

∫
d3q1 ...

∫
d3qn δD(k− q1...n)Gn(q1, ...,qn) δI(q1)... δI(qn) . (2.54)

F (n) and G(n) are symmetrized kernels that couple the q1, . . . ,qn scales, such that q1 +

...+ qn = k holds, contributing to the evolution of the mode k. The second-order kernels
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F2(k1,k2) and G2(k1,k2) are

F2(k1,k2) =
5

7
+

1

2
(k̂1 · k̂2)

(
k1

k2
+
k2

k1

)
+

2

7
(k̂1 · k̂2)2 , (2.55)

G2(k1,k2) =
3

7
+

1

2
(k̂1 · k̂2)

(
k1

k2
+
k2

k1

)
+

4

7
(k̂1 · k̂2)2 . (2.56)

For a more general cosmology with Ωm 6= 1, δ(n)(x, τ) is not be separable, however it turns
out that the same kernels provide a very good approximation to the nonlinear solution,
provided that the growth factor D is the correct one.

Correlation functions

We now turn to the predictions for the Fourier-space observables, specifically the power
spectrum and the bispectrum. In what is about to come and throughout this work, we will
sometimes adopt the following notation to shorten equations and simplify their interpretation:
δ(k, τ) = δk(τ) - often omitting the time component, δk.

Starting from the definition (2.32) and replacing the expansion (2.52), gives

〈δk1 δk2〉 = 〈(δ(1)
k1

+ δ
(2)
k1

+ δ
(3)
k1

+ ...)(δ
(1)
k2

+ δ
(2)
k2

+ δ
(3)
k2

+ ...)〉

= 〈δ(1)
k1
δ

(1)
k2
〉+ 〈δ(2)

k1
δ

(2)
k2
〉+

(
〈δ(1)

k1
δ

(3)
k2
〉+ 〈δ(3)

k1
δ

(1)
k2
〉
)

+O[δ6
L]

= δ(k1 + k2)
[
PL(k2) + P1−loop(k2) +O[δ6

L]
]
,

(2.57)

where

〈δ(2)
k1
δ

(2)
k2
〉 = 2

∫
d3q F 2

2 (k− q,q)PL(|k− q|)PL(q) , (2.58)

〈δ(1)
k1
δ

(3)
k2
〉 = 6PL(k)

∫
d3q F3(k,q,k− q)PL(q) . (2.59)

The first-order contribution corresponds to the linear solution, and higher-order terms in
the linear density field are expected to give a subdominant contribution to the total power
spectrum, with odd powers vanishing for Gaussian initial conditions. The 1-loop power
spectrum is the next contribution after the linear one and is expected to become relevant at
mildly non-linear scales, where the linear solution ceases to give an accurate description of
the evolution of perturbations.

An analogous treatment for the three-point statistics of the density field in Fourier space
gives

〈δk1 δk2 δk3〉 = 〈(δ(1)
k1

+ δ
(2)
k1

+ δ
(3)
k1

+ ...)(δ
(1)
k2

+ δ
(2)
k2

+ δ
(3)
k2

+ ...)(δ
(1)
k3

+ δ
(2)
k3

+ δ
(3)
k3

+ ...)〉
= 〈δ(2)

k1
δ

(1)
k2
δ

(1)
k3
〉+ 〈δ(1)

k1
δ

(2)
k2
δ

(1)
k3
〉+ 〈δ(1)

k1
δ

(1)
k2
δ

(2)
k3
〉+O[δ

(6)
L ] .

(2.60)
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The first-order contribution to the bispectrum (tree-level), induced by gravitational instability,
corresponds to

Btree(k1, k2, k3) = 2F2(k1, k2)PL(k1)PL(k2) + cyc. (2.61)

Higher-order contributions can be computed, with the lowest, the 1-loop term, accounting
for contributions at sixth order in the linear density field.

2.4.2 Lagrangian Dynamics

An alternative description of the evolution of density perturbations was first provided by
Zel’dovich [171]. While the perturbation and velocity fields are the main unknowns in the
Eulerian picture, in the Lagrangian description displacement fields are the relevant degree of
freedom. In particular, the displacement field ψ follows shifts of fluid elements from their
original positions q such that the final position at time t is

x(q, t) = q + ψ(q, t) , (2.62)

with ψ(q, t = 0) = 0. The equation of motion for the position x of the volume-element is

∂2x

∂t2
+ 2H∂x

∂t
= − 1

a2
∇xΦ (2.63)

where Φ is the gravitational potential. We can take the gradient of this equation so that
the resulting ∇2Φ on the r.h.s. can be replaced by the matter perturbations δ via Poisson
equation, so that

∂2

∂t2
(∇xx) + 2H ∂

∂t
(∇xx) = −4πGρ̄ δ(x) . (2.64)

Finally, from matter conservation is possible to relate the Eulerian matter density δ(x) to
the Jacobian J(q) of the coordinate transformation between initial and final coordinates q
and x as

1 + δ(x) =
1

J(q)
, (2.65)

and therefore to the displacement field Ψ(q).

The solution is then obtained by expanding perturbatively the displacement field,

ψ(q, t) =
∑

n

ψ(n)(q, t) . (2.66)

In the linear approximation we have

∇x · ψ ' ∇qψ
(1) , (2.67)

J(q) ' 1 +∇qψ
(1) , (2.68)
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and equation (2.63) becomes

∂2

∂t2
(∇qψ

(1)) + 2
∂

∂t
(∇qψ

(1)) = 4πGρ̄∇qψ
(1) . (2.69)

Noting the analogy with (2.44), we have

∇qψ
(1) = −D(t)δ(q) . (2.70)

The first-order Lagrangian solution, known as Zel’dovich approximation, already provides
insights on Eulerian non-linearities in the density field at large scales, providing, for instance,
a good description of the smoothing of the acoustic features present in the initial power
spectrum due to nonlinear evolution.

The second-order correction (2LPT) [110] represents a great improvement over Zel’dovich
solution, as it accounts for non-locality of the gravitation instability. In particular it provides
an accurate prediction for the bispectrum at large scale.

The Lagrangian approach, providing predictions for particle displacements, is particularly
useful for all applications requiring a numerical realisation of the matter density and velocity
fields. These include the set-up of initial conditions in N-body simulations or the productions
of approximate mock halo and galaxy catalogs, as we will see.

2.5 Bias

To translate predictions of matter clustering statistics into predictions of the galaxy distribu-
tion, galaxy bias must be considered. This accounts for the fact that galaxies could not be
perfect tracers of matter and therefore, a non-linear relation, that can be described by a
small set of parameters, is adopted to allow deviations from a one-to-one correspondence.

Since the observed scales are much larger than the characteristic scale of galaxy formation,
where non-local phenomena are important, the simplest model theorises a local Eulerian,
deterministic relation between matter and galaxy density contrasts. Deterministic bias
assumes that although a scatter between δ and δg exists, this can be neglected, with biasing
being described only by the mean relation between δ and δg. Perturbations in the galaxy
number density δg are written as an expansion in the matter density profile δ, as

δg(x) =

∞∑

j=1

bj
j!
δj(x) , (2.71)

where the coefficients bj are the bias parameters. At first-order, δg ' b1δ, so that Pg(k) =

b21P (k), with b1 being the linear bias. Going beyond the linear bias model, i.e. breaking the
series (2.71) at second-order, induces non-linearities in the correlation functions.

While non-linear, local biasing was historically motivated by being a simple generalisation
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to linear biasing, the density perturbations in the non-linear regime receive contribution
from different scales, as suggested by equation (2.53) and (2.54). This hints at a possible
non-local nature of bias. Works as [13] and [33] showed that non-local corrections are needed
to provide an accurate description of the halo power spectrum and bispectrum. This is done
showing that local bias parameters b1 and the second order bias b2, vary with the smoothing
scale of the density perturbations. Later, a major result came from [11], which realized that
the re-normalisation of the bias parameters [107], adopted to remove the dependence from
the smoothing scale from physical quantities, as δ, and possible divergences in the δ(n) fields,
requires non-local biasing.

Re-normalisation of the density field is achieved by adding counterterms C

δ
(n)
R (x, τ) = δ(n)(x, τ) +

∑
C[δ(n)]F(x, τ) , (2.72)

where additional fields F are required to account for these contributions. These terms can
be effectively absorbed by bias, providing an effective theory in which the density contrast
is given in terms of a re-normalized bias expansion b

(R)
j . At quadratic order the tidal

tensor (∇i∇jφg)2 is added, φg being the gravitational potential. At cubic order, the velocity
potential φv must be considered. In addition, some higher derivative terms can be added to
account for sub-leading contributions in the smoothing scale.

Up to third order, the most general expansion considering both local and non-local
corrections is

δg = b1δ +
b2
2
δ2 +

b3
6
δ3+

+ bG2G2 + bG3G3 + bG2G2δ + bΓ3Γ3 ,

(2.73)

where b3 is the third-order bias coefficient and bG2 arises from re-normalizing the one-loop
contribution of 〈δ2(q)δL(q1)δL(q2)〉. G2 is a non-local Galileon3 operator made up from the
second derivatives of the gravitational and velocity potentials. Up to second order there’s
no distinction between the two because, at this order, differences depend on squares of the
linear potential and, in linear regime, δL = −θL. Differences appear only at third order,
so now an additional degree of freedom must be considered, Γ3. G3 is the cubic Galileon
operator, analugous to G2. These operators are the only ones in the bias expansion which
are not renormalized at first order in derivatives.

In addition, in order to account for the stochastic nature of galaxy formation, stochastic
operators are usually introduced. These operators account for the shot-noise contributions
in measurements of galaxy clustering coming from analysing a discrete distribution of points,
and correspond to the two and three-point auto-correlation functions of galaxies. At third

3This kind of operators cannot be renormalized by terms with first order derivatives, but only through
∇2δ terms.
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order these terms are
δstoch
g = ε+ εδδ + εδ2δ2 + εG2G2 . (2.74)

This description lead to a galaxy power spectrum model at one loop that can be written as

Pg(k) = b21[PL(k) + P1−loop(k)] + b1b2Pb1b2(k) + b1bG2Pb1G2(k)+

b1bΓ3Pb1bΓ3
(k) + b22Pb2b2(k) + b2bG2Pb2bG2

(k) + b2G2
PbG2

bG2
(k) + Pshot(k) .

(2.75)

The Pαβ terms correspond to loop corrections arising from non-linearities from the biased
tracer and include two types of mode-coupling integrals

Pαβ(k) =

∫
d3q K(q,k− q)PL(q)PL(|k− q|) (2.76)

Pαβ(k) = PL(k)

∫
d3q K(q,k− q)PL(q) . (2.77)

The re-normalisation procedure subtracts from expressions (2.76) and (2.77) their large-scale
limit [107, 11]. This enforces the requirement that bias parameters should not change
when higher-order terms are added in the analysis. If this was not the case, this extra
contribution would be absorbed by other parameters providing biased estimates of their
posterior probability.

The analogue expression to equation (2.75) can be written for the tree-level galaxy
bispectrum as

Bg(k1, k2, k3) = b21[2b1F2(k1,k2) + b2 − 2bG2S(k1,k2)]PL(k1)PL(k2) + cyc.

+ b21(1 + α1)[PL(k1) + PL(k2) + PL(k3)]PSN + (1 + α2)P 2
SN

(2.78)

where α1 and α2 are free parameters introduced to account for possible deviations from
Poisson shot-noise.

The same description can be extended to other type of objects sampling the matter
distribution, yet we should expect that different families of tracers will show different values
of bias parameters.

2.6 Redshift Space Distortions

Real galaxy surveys measure galaxy positions with a combination of angles and redshift. This
quantity is related to the effect experienced by light emitted from a source when travelling
in an expanding universe. As a result of the this expansion along the line-of-sight (LOS),
electromagnetic radiation is shifted to longer wavelengths by a factor proportional to the
distance between the observer and the source,

1 + z =
a0

a(temission)
. (2.79)
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This quantity z, known as redshift, is consequently adopted as a measure of distance. The
space parametrised by angles and z is referred to as redshift space. To complicate the picture,
contributions to the observed redshift do not come from the coherent Hubble expansion
alone,

zobs = Hx + v · n̂ . (2.80)

Peculiar velocities v induce distortions in the observed galaxy distribution along the LOS n̂.
These distortions break the isotropy otherwise present in the correlation functions and are
known as Redshift Space Distortions (RSD).

The observed position s in redshift space is then related to the real position x by

s = x +
v · n̂
aH(a)

n̂ . (2.81)

As a result, clustering properties estimated from real galaxy redshift surveys, as galaxy
correlation functions, will depend on the local LOS and bear non-isotropic contributions due
to v, so that equations (2.32) and (2.36) become

〈δs(k1)δs(k2)〉 = δD(k12)P s(k1, n̂), (2.82)

〈δs(k1)δs(k2)δs(k3)〉 = δD(k123)Bs(k1,k2, n̂) , (2.83)

where the superscript s refers to redshift-space quantities.

Throughout this work we will work under the assumption of a fixed line of sight n̂ = ẑ,
which is a fair restriction as long as the survey footprint spans a sufficiently small sky area.
Given (2.81), the Jacobian ∂s/∂x allows to compute the density contrast in redshift space

δs(k) =

∫
d3x

(2π)3

[
δ(x)− ∇zvz(x)

aH(z)

]
e−ik·xe−ikzvz(x)/H . (2.84)

The relative power spectrum is then

P s(k) =

∫
d3x

(2π)3
e−ik·x〈eifkz∆uz [δ(x) + f∇zuz(x)][δ(x′) + f∇zuz(x′)]〉 , (2.85)

where we have used uz = vz/(aHf) with f = d logD
d log a being the growth rate of matter

perturbations. The linear limit of (2.85) was studied by Kaiser [94]. Using that ∇ · u = δ in
linear dynamics, and assuming linear bias,

P sKaiser(k) = P sKaiser(k, µ) = (b1 + fµ2)2PL(k) , (2.86)

where µ = k̂ · n̂, in our specific case µ = kz/|k|. From this equation, it follows that the
power spectrum amplitude in redshift space is enhanced on large scales (where linear theory
can be assumed) by the peculiar velocities of the coherent motion of perturbations towards
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high-density regions.

On small scales, the velocity dispersion of particles and galaxies inside a collapsed
structure results in a distribution elongated along the LOS (the so-called Fingers-of-God)
and the power spectrum is dampened. In the literature [146, 162], this effect is sometimes
described by a Gaussian exponential factor

DFoG = exp(−f2k2
zσ

2
v) , (2.87)

where σv is the pairwise velocity dispertion of particles σ2
v = 〈∆u2

z〉, often treated as a
free-parameter in model inference studies. The two effects are then combined separately

P s(k, µ) = DFoG[σv]PKaiser(k, µ) , (2.88)

and several authors have explored different choices of the two effects. The first step taken to
refine the accuracy of this prediction is to go beyond linear theory, and apply the factor in
equation (2.86) to the non-linear power spectrum

P 1−loop
Kaiser (k, µ) = Pδδ(k) + 2fµ2Pδθ(k) + f2µ4Pθθ(k) , (2.89)

where Pδδ, Pδθ, Pθθ stand for the cross-spectra between δ(k), and θ(k) and the linear regime
Pδδ(k) = Pδθ(k) = Pθθ(k). [146] gives a general derivation of the large-scale limit of the
redshift space power spectrum, showing that it differs form (2.86) by terms that depend
on the Gaussian and non-Gaussian contributions to the velocity dispersion of large-scale
flows. Nonetheless, [162] adopted a model that differs from (2.88) in the fact that, while
Kaiser and Finger-of-God operators are treated separately, they include corrections coming
from the non-linear coupling between density and velocity-divergence fields, and performed
a fit to N-body simulations with σv used as a free parameter. The deviation of the best-fit
parameters measured from the model without these additional terms from their fiducial value
is taken as a claim that expression (2.88) is missing additional terms, A(k, µ) and B(k, µ),
that arise form this non-linear coupling, so that

P (k, µ) = DFoG[Pδδ(k) + 2fµ2Pδθ(k) + f2µ4Pθθ(k) +A(k, µ) +B(k, µ)] . (2.90)

A and B have the form

A(k, µ) = j1

∫
d3x

(2π)3
e−ik·x 〈A1A2A3〉 (2.91)

B(k, µ) = j2
1

∫
d3x

(2π)3
e−ik·x 〈A1A2〉〈A1A3〉 (2.92)
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where

A1 = vz(x)− vz(x′) , (2.93)

A2 = δ(x) + f∇zuz(x) , (2.94)

A3 = δ(x′) + f∇zuz(x′) . (2.95)

The A-term contributions show oscillatory features and are tipically larger than those coming
from B which are smooth and slightly lower. A fit performed on a volume Veff = 20 Gpc−3 h3

considering these additional terms, shows a better agreement to the fiducial parameters
f,H,D wrt the one missing these components, where the correspondent best-fit parameters
are slightly biased.

The theoretical description of redshift-space correlation function predictions is usually
given in terms of kernels analogous to those of equations (2.55) and (2.56), Zn, which
encode our predictions about this additional form of non-linearities. The expressions of those
entering the 1-loop prediction for the power spectrum and tree-level bispectrum are

Z1(k) = b1 + fµ2 , (2.96)

Z2(k1,k2) =
b2
2

+b1F (k1,k2)+fµ2G2(k1,k2)+
fµk

2

[
µ1

k1
(b1 +fµ2

2)+
µ2

k2
(b1 +fµ2

1)

]
, (2.97)

Z3(k1,k2,k3) =
b3
6

+ b1F3(k1,k2,k3) + fµ2G3(k1,k2,k3)

+ fµk[b1F2(k1,k2) + fµ2
12G2(k1,k2)]

µ3

k3

+ fµkZ1(k1)
µ23

k23
G2(k2,k3)

+
(fµk)2

2
Z1(k1)

µ2

k2

µ3

k3
+ 3b2F2(k1,k2) ,

(2.98)

where k = |∑ki|, µ = k̂ · n̂, µi = k̂i · n̂, F2 and G2 are the second-order real-space density
and velocity divergence kernels, and F3 and G3 are the corresponding third-order real-space
kernels. Once symmetrized with respect to all Fourier wavelengths, the 1-loop power spectrum
can be written as

P (s)
g (k) =Z2

1 (k)PL(k) + 2

∫
d3q [Z2(q,k− q)]2PL(q)PL(|k− q|)+ (2.99)

+ 6Z1(k)PL(k)

∫
d3q Z3(k,q,−q) + P

(s)
shot(k) (2.100)

where P (s)
shot(k) represent the shot-noise contribution. Historically, working with P (k) can

be a nuisance given how large the datavector can be, in particular for numerical analyses,
where the accessible memory of the computing infrastructure is finite. This shortcoming can
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be avoided by projecting the anisotropic signal on a basis of Legendre polynomials

P (k, n̂) =
∑

`

P`(k)L`(k̂ · n̂) , (2.101)

where n̂ is the LOS, here given in the most general case without assuming any approximation,
and

P`(k) =
(2`+ 1)

2

∫
dµP (k, n̂)L`(µ) , (2.102)

where µ is the cosine of the angle between k and n̂.

Early analyses were limited to the monopole P0(k), i.e. to the signal averaged over the
LOS and much of the information encoded in the anisotropic power spectrum was thrown
away. Today P (k) is now routinely expanded in multipoles according to equation (2.102)
and their power to determine cosmological parameters, as the cosmic growth factor f , or
combinations of b1/f , is recognized.

While many studies exist in which power spectrum analyses take full advantage of this
multipoles expansion [4] [139], in the past bispectrum analyses have always been limited to
the monopole. Nonetheless, as in the power spectrum case, the anisotropic signal carries
additional information [61, 28] and a complete analysis should take advantage of this
contribution. We will come back to this topic in Chapter 5 as we will discuss the assessment
of the constraining power of the information content present in the redshift-space anisotropic
bispectrum on best-fit model parameters inferred from likelihood analyses. This is the
primary focus of my work and Chapter 5 is dedicated to the description of this analysis.

2.7 Baryonic Acoustic Oscillations

Baryonic Acoustic Oscillations, hereafter BAOs, arise from density variations in the baryon-
photon fluid before photon decoupling. These perturbations, which were previously driven by
the huge number of high energy photons coupled with high Thomson scattering interaction
rate, freeze in the matter distribution after decoupling. This process left an imprint in the
density distribution around 110 Mpch−1 from primordial overdensities, which corredsponds
to the distance travelled by density perturbations in primordial baryon-photon plasma prior
to decoupling.

Imprints from BAOs in galaxy correlation functions have been first detected as a bump
in the 2PCF in [53] or as an oscillatory feature in the power spectrum at the same scales.
This signal constitutes a feature that can be used as a standard ruler which, observed
at different redshifts, allows to measure robustly the cosmic expansion rate through the
Hubble parameter. Luckily, many systematic effects targeting the power spectrum affect the
broadband component without affecting the position of the peak [156] and are marginalized
out when fitting the BAO signal. This allows to measure cosmological parameters with good



Chapter 2. The Large Scale Structure of the Universe 27

precision.

Bulk flows from long-wavelength modes, however, produce small deviations on short-
wavelength due to the coupling effect coming from non-linear evolution. In other words,
this long modes shift randomly particles positions closer and further away from each other,
moving away power from the characteristic BAO scale. This results in a broadening of the
peak in the two-point correlation function and to a damped oscillatory feature in the power
spectrum.

Several strategies can be taken to handle this problem. One way is to measure these
long wavelength modes and use them to reconstruct particle positions at smaller scales.

2.8 Galaxy Redshift Surveys

LSS analyses through galaxy redshift surveys allow to probe with exceptional accuracy many
cosmological parameters of the ΛCDM model. Baryonic Acoustic Oscillations, arising from
perturbations in the density field, frozen in the matter distribution after decoupling from
radiation, allow to measure expansion and DE parameters [153]. The anisotropic signal
due to Redshift Space Distortions encodes information about the growth rate of structures.
Full Shape analysis of the two-point correlation function and power spectrum [90] [39], and
power spectrum plus bispectrum joint analysis [40], fully exploit the information content
encoded in the measured observables, allowing to constrain simultaneously cosmological
and bias parameters. The amplitude of the bispectrum over specific triangle configurations
allows to put constraints on primordial non-Gaussianity models predicted by many inflation
prescriptions [40]. To further shrink joint parameter posterior contours from maximum
likelihood analyses, different datasets can be combined together as happens for BAO and
RSD information in [22] or for different surveys [152], in many data analyses of the BOSS
collaboration.

I will now introduce the SDSS-III Baryon Oscillation Spectroscopic Survey, one of the
most recent galaxy redshift surveys that has been thoroughly analysed by a large number of
papers [141, 142, 71, 66] that represent the state-of-the-art for galaxy clustering analyses.
The power of these methods has received much attention in these days and future missions
are planned to provide increasingly accurate measurements. Two are the reasons to seek
these new data. First, as we already addressed in this chapter, the nature of DE and DM is
still poorly understood, the second is that new data start to display deviations from Planck
results. In particular, local measurement of the Hubble constant through distance-ladder
measurements of Cepheids and SNe Ia [135] show a 5σ deviation from the value predicted by
Planck, while weak lensing data [42] systematically undershoot the amplitude of the matter
power spectrum σ8 from Planck. Euclid is a space-born mission that is expected to fly in
2023, which provide exceptional measurements for almost ∼ 30 million spectrscopic redshifts
for galaxy clustering studies. A particular feature of the Euclid mission will be the possibility
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to perform simultaneous photometric and spectroscopic measurements that will allow to
have overlapping catalogs for weak lensing and galaxy clustering. Cross-correlating these
datasets will allow to place further constraints on cosmological and bias parameters up to an
accuracy that would match current constraints on CMB.

2.8.1 BOSS

The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) is a ground-based mission
that has measured the spectroscopic redshifts af almost 1 million galaxies using two targeting
algorithms, LOWZ and CMASS, providing two samples covering complementary redshift bins
over the range 0.15 ≤ z ≤ 0.70. The total, effective volume of the sample is Veff ∼ 7.4 Gpc3.

Over the years, several papers were produced by the collaboration and I will provide
hereby some references, although without aiming to give a complete picture of the whole
scientifiic production. Most early works focused on measurement of the Hubble parameter
by BAO extraction from two-point correlation and power spectrum [6], from power spectum
multipoles in the twelfth and final data release [66], and from the three-point correlation
function [155] and galaxy bispectrum [121].

A lot more papers focused instead on the exploitation of the anisotropic signal present
in RSD using power spectrum multipoles, [22] on DR11 sample, and [65] focusing on the full
DR12, while the joint power spectrum and bispectrum analysis is addressed in [67].

Progress in the theory of EFTofLSS allowed to apply full shape analysis to power
spectrum multipoles measurements [39] fitting a one-loop model in EFT and scanning
over different cosmologies with mµ 6= 0 [90]. Finally [127] provides constraint on ΛCDM
cosmological parameters from the joint analysis of power spectrum and bispectrum monopole.

It is worth pointing out that all ΛCDM cosmological parameters have been measured
from the BOSS DRs. More recent analyses focus instead on the retrieval of limits on
primordial non-Gaussianies through the bispectrum of galaxies [40].

Despite the large number of galaxies observed by BOSS and the exceptional measure-
ments provided to the scientific community, future surveys are planned to provide data on
complementary redshift ranges and on large sky areas, as DESI [100] and Euclid [96].

2.8.2 Euclid

Euclid is a Medium Class mission of the European Space Agency (ESA) Cosmic Vision
2015-2025 program, with the goal of studying:

• DE models, in particular the cosmological constat interpretation, by putting constraints
on the parameter of state w in different redshift bins;

• Modified Gravity models, through the growth factor f(z) = Ωm(z)γ ;
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Figure 2.1: Structural and thermal model of the Euclid satellite. Picture taken from
https://sci.esa.int/web/euclid/multimedia-gallery.
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• DM models, by putting constraints on the total neutrino mass mν ;

• Initlial condition models, setting limits to primordial condition parametrisations, by
constraining fNL.

To accomplish this goals a space mission is needed in order to survey a large fraction of the
sky with exquisitely precise measurements. The spacecraft will host a 1.2 m Korsch telescope
and two scientific instruments, a VISual imager (VIS) and a Near-Infrared Spectrometer and
Photometer (NISP). These instruments will be used to map the distribution of matter and
galaxies in the Universe and feed this informations to two main cosmological probes, Weak
Lensing (WL) and Galaxy Clustering (GC). The Euclid mission will last at least 6 years and
will perform a wide field survey, designed to cover an area of 15000 deg2. This wide survey
will be coupled with two additional deep field surveys located close to the ecliptic poles and
covering 20 deg2.

The work that I will describe in the following chapter can be very much considered as
aimed at fully exploiting data that will be available with this mission. In fact, during my
Ph.D. I was part of a work force in Euclid for the implementation, development, integration
and validation of estimator codes, named Processing Functions (PFs), for GC. In particular, I
was in charge of the power spectrum and bispectrum codes named LE3_GC_PowerSpectrum
and LE3_GC_Bispectrum that will be used to provide official measurements of the Euclid
survey. The next chapter will be devoted to the description of the state-of-the-art power
spectrum and bispectrum estimators, and will particularly refer to the experience achieved
working inside of the Euclid collaboration.



Chapter 3
Estimators of Correlation Functions in
Fourier-Space

I shall now describe the power spectrum and bispectrum estimators commonly used in
Large-Scale Structure studies. My experience with this topic relates to the activity I have
carried out during my Ph.D. as a member of the Level3 Organisation Unit (OU-LE3) of the
Euclid mission for Galaxy Clustering (GC).

In this regard, I worked as developer of the power spectrum and bispectrum estimator
codes. These software units, hereafter named Processing Functions (PFs), need to be thor-
oughly tested against simulations and a meticulous assessment of the impact of observational
systematics must be carried out in order to meet Euclid exceptional requirements. This
requires to plan a dedicated validation campaign and produce a detailed documentation of
the software design, accuracy and computing-performance for each PF.

In the following I will describe my implementation that has been adopted for the Euclid
official data analysis and the tests defined to assess their maturity status. Moreover, I will
provide a thorough description of the estimators commonly used in literature and of the
ingredients that can help mitigate some of their inherent casualties.

3.1 Theory

3.1.1 Simple Estimator

Power Spectrum

A simple estimator for the power spectrum of the continuous, random density field δ(x) can
be written as

P̂ (k) =
1

Nk

∫

k
d3q |δ(q)|2 , (3.1)

where the integration is assumed to cover the shell of radius k and size ∆k, so that k−∆k/2 ≤
q ≤ k + ∆k/2, and where

Nk ≡
(2π)3

V

∫

k
d3q (3.2)

31
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is the number of modes q in the shell for a finite cubic volume V = L3 with kf = 2π/L

being the fundamental frequency of the box. While for a FT of a continuous field defined
over a finite volume, the modes in Fourier space are discretised in units of kf , we will keep,
for simplicity, the integral notation through-out this thesis. It is easy to see that, given our
definition of the power spectrum, eq. (2.33) we have 〈P̂ (k)〉 = P (k).

Bispectrum

For the bispectrum, the simple estimator of a random density field δ(x) can be written as

B̂(k1, k2, k3) =
1

NT (k1, k2, k3)

∫

k1

d3q1

∫

k2

d3q2

∫

k3

d3q3 δD(q123)δ(q1)δ(q2)δ(q3) , (3.3)

where the δD ensures that the integrals are computed over the wavenumber triplets (q1,q2,q3)

forming closed triangles that lie in the triangle bin defined by (k1, k2, k3), and where

NT (k1, k2, k3) ≡ (2π)3

V

∫

k1

d3q1

∫

k2

d3q2

∫

k3

d3q3 δD(q)123 (3.4)

is the number of triangular configurations in a given {k1, k2, k3} bin.

3.1.2 Direct Summation Approach

In the case of a discrete distribution of objects, the most trivial way to compute the density
ng(x) is through a sum over the position xi of all the objects in the sample

ng(x) =
1

Np

Np∑

i=1

δD(x− xi) , (3.5)

with Np being the number of particles of the input distribution. The Fourier space density
required to evaluate the power spectrum and bispectrum of equation (3.1) and (3.3) results
from applying the FT to this equation, giving

δ(k) =
1

Np

Np∑

i=1

ng(xi)e
−ik·xi . (3.6)

This is known as the Direct Summation approach. Its shortcomings relate to the fact that
the sum of the equations above are evaluated over the particle number, so that it can get
very expensive to compute the FT for distributions with a large number of objects and a
large Fourier data-vector. In particular, if Nk is the dimension of the Fourier wavelength
domain on which we want to compute eq. (3.5), the scaling of this approach is Nk × Np.
Usually, to speed-up the calculation, a regular grid of equispaced points is adopted to evaluate
the FT above. If the linear dimension of the grid is NG, the scaling for a cubic grid is
NG × NG × NG, independent from the number of object. The introduction of the grid,
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however, introduces some shortcomings due to the finite size of the grid that are not present
in the Direct Summation approach. We will discuss these additional source of noise later on
in this chapter, in section 3.2.4.

3.1.3 Yamamoto estimator

Departure from homogeneity and isotropy in the density field δ(x) introduces an additional
dependence on the LOS in the power spectrum. Following the reasoning of the Simple
Estimator, we can define a general estimator that takes into account this fact,

P̂ (k, n̂) =

∫
d3q δ(k + q/2) δ(−k + q/2) eiq̂·n̂ , (3.7)

where n̂ is the LOS direction to the midpoint of the galaxy pair x = (x1 + x2)/2. The
anisotropic power spectrum then, can be expanded in multipoles P`(k) as

P̂`(k) = (2`+ 1)

∫
dΩ

4π

∫
d3x

(2π)3
P (k, n̂)L`(k̂ · n̂)

= (2`+ 1)

∫
dΩ

4π

∫
d3x1

(2π)3

d3x2

(2π)3
δ(x1)δ(x2)eik·(x1−x2) L`(k̂ · n̂) .

(3.8)

This is the Yamamoto estimator [169]. The discretisation step required to translate (3.8)
into a code implementation, results in a double sum over space, giving a bottleneck of order
N2, N being related to the grid1 dimension needed to compute Discrete Fourier Trasforms
(DFTs).

Early works adopt a constant LOS, traditionally n̂ = ẑ, so that

P̂`(k) = (2`+ 1)

∫
dΩ

4π
P (k)L`(kz) . (3.9)

While this may work fairly well for pencil-beam surveys with a narrow sky aperture, upcoming
space-missions as Euclid will cover a sky area of almost 15, 000 deg2 so that n̂ ' ẑ might not
hold for galaxies with large angular separations. [23] proposes to choose the LOS definition
in the Legendre term as n̂→ x̂1. This allows us to split equation (3.8) in the product of two
separate integrals:

P̂`(k) = (2`+ 1)

∫
dΩ

4π

(∫
d3x1

(2π)3
δ(x1) eik·x1 L`(k̂ · x̂1)

)(∫
d3x2

(2π)3
δ(x2) e−ik·x2

)
, (3.10)

and to define

δ`(k) =

∫
d3x

(2π)3
δ(x) eiq·x L`(k̂ · x̂) (3.11)

1In Signal Theory regular grids of equally spaced points are required to apply Discrete Fourier Transforms
formalism.
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so that:
P̂`(k) = (2`+ 1)

∫
dΩ

4π
δ`(k)δ0(−k). (3.12)

The estimator resulting from the approximation n̂ = x̂1 is known as end-point estimator.
The advantage brought by (3.11) is easily recognized if the k̂ dependence is taken out of the
integral, by writing the explicit expression for the Legendre term. For for ` = 2, 4, equation
(3.11) reads

δ2(k) =
3

2
k̂ik̂jQij(k)− 1

2
δ0(k) (3.13)

δ4(k) =
35

8
k̂ik̂j k̂lk̂kQijlk(k)− 5

2
δ2(k)− 7

8
δ0(k) (3.14)

with

Qij(k) =

∫
d3x

(2π)3
e−ik·x δ(x) x̂ix̂j , (3.15)

and

Qijkl(k) =

∫
d3x

(2π)3
e−ik·x δ(x) x̂ix̂j x̂lx̂k . (3.16)

The Q operators are fully symmetric, so only 6 DFTs are needed to compute the quadrupole
and 15 for the hexadecapole. In order to measure all multipoles then, 22 DFTs are needed to
measure ` = 0, 2, 4 multipoles moments. Reference [147] expands this reasoning questioning
whether it would be possible to reduce further computing complexity for the hexadecapole,
showing that, taking

L4(k̂ · x̂) =
35

8
[L2(k̂ · x̂)]2 − 5

9
L2(k̂ · x̂)− 7

18
, (3.17)

the first term can be splitted as [L2(k̂ · x̂)]2 = L2(k̂ · x̂1)L2(k̂ · x̂2), so that

P̂4(k) =
35

2

∫
dΩ

4π
|δ2(k)|2 − P̂2(k)− 7

2
P̂0(k) . (3.18)

To compute (3.18) no additional DFTs with respect to those computed for ` = 0, 2 are
required and the total nuber of DFTs is just 7 (1+6), leading to additional computational
savings. In [140] the authors find a small bias in the end-point estimator P4 compared to
the full anisotropic signal and [147] finds that it is slightly favoured with respect to the one
of (3.18) due to lower cosmic variance.

We can understand the origin of the end-point estimator bias by geometrical arguments,
comparing it to equation (3.8). First we note that as long as we only consider the monopole,
the two estimators return the same prediction, therefore any bias is induced by higer order
multipoles, ` = 2, 4. In particular, the approximation n̂→ x̂1 has two major consequences:
1) it introduces an error in the measured multipoles; 2) it breaks the symmetry between
galaxy pairs, so that odd-multipoles will became non-vanishing. We restrict to point 1)
as the information present in odd-multipoles is purely due to this symmetry breaking and
thus purely geometrical. Reference [140] quantified the difference of the end-point estimator
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Figure 3.1: Left: Angles between the vector y = x2 − x1 connecting the galaxy pair and
the LOS in the case of a constant LOS ẑ (green), in the case of the mid-point LOS (red).
Right: Angles between the vector connecting the galaxy pair and the LOS in the case of the
end-point LOS approximation n̂ = x̂1 (green), in the case of the mid-point LOS (red).

with respect to the Yamamoto estimator, where a pairwise LOS direction is originally
considered and show by geometrical arguments that the situation in which the end-point
approximation returns the largest difference with this reference is for pairs with large angular
separations. On the other hand, the fixed LOS breaks already for galaxy pairs for which the
mid-point direction departs from the fixed LOS, even for small pair separations. This result
is schematically summarized by figure 3.1, taken from reference [140].

The same LOS hack can be arranged for the Bispectrum multipoles. We will adopt
the definition of the redshift-space multipoles of the bispectrum introduced by [148], and
assumed as well by [147] and [61], where Bs(k1,k2, n̂) is given in terms of the variables k1,
k2, k3, µ1 = cos(θ1) and ξ, with θ being the angle between k1 and the LOS n̂ while ξ is the
azimuthal angle describing a rotation of k2 around k1. Nonetheless, for the moment being,
we stick to [147] definition of the local bispectrum at x, so that angular coordinates are given
with respect to the real-space position x. In what follows, we start from the most generic
description of a varying LOS, n̂ = x̂, without any initial approximation. According to these
choices, the local estimator is

B̂local(k1,k2,x) =

∫
d3x13

(2π)3

d3x23

(2π)3
e−i(k1·x13+k2·x23)

3∏

i=1

δ(x + wi) , (3.19)

where x = (x1 + x2 + x3)/3, xi = x + wi and wij = xi − xj . We can expand the local
bispectrum on the angular variables µ1 = q̂1 · x̂ and ξ, being the azimuthal angle of q1
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around q2, with spherical harmonics

B̂`m(k1, k2, k3) =
(2`+ 1)

NT (k1, k2, k3)

∏∫

ki

d3qi δD(q123)

∫
d3x

(2π)3
B(q1,q2,x)Y`m(µ1, ξ) ,

(3.20)
where integrals are computed over ki bins. For m = 0 multipoles, the ξ-dependence is
dropped and

B̂`(k1, k2, k3) =
(2`+ 1)

NT (k1, k2, k3)

∏

i=1,2,3

∫

ki

d3qi δD(q)123

∫
d3xi
(2π)3

δ(xi)e
−iqi·xiL`(q1 · n̂) ,

(3.21)

where we have substituted n̂ = x̂ =
̂(x1+x2+x3)

3 to emphasize the LOS dependence of the
equation, which is the analogous of equation (3.12) for the bispectrum. Note that, in the
most general form, the LOS corresponds to the direction of the geometrical center of the
triangle. Taking the limit n̂→ x̂1, the integrals over the spatial coordinates are separable
and the quadrupole and hexadecapole are:

B̂2(k1, k2, k3) = 5

∫

k1

d3q1

∫

k2

d3q2

∫

k3

d3q3
δD(q123)

NT (k1, k2, k3)
δ2(q1)δ0(q2)δ0(q3) (3.22)

B̂4(k1, k2, k3) = 9

∫

k1

d3q1

∫

k2

d3q2

∫

k3

d3q3
δD(q123)

NT (k1, k2, k3)
δ4(q1)δ0(q2)δ0(q3) (3.23)

As for the Power Spectrum case, one can decompose the 4-th order Legendre term and write
an alternative expression for the hexadecapole which doesn’t need δ4:

B̂4(k1, k2, k3) =
35

2

∫

k1

d3q1

∫

k2

d3q2

∫

k3

d3q3
δD(q123)

(2π)3
δ2(q2)δ2(q̂1,q2)δ0(q3)

− B̂2(k1, k2, k3)− 7

2
B̂0(k1, k2, k3)

(3.24)

where
δ2(q̂1,q2) =

3

2
q̂iq̂jQij(q)− 1

2
δ0 . (3.25)

The additional q̂1 dependence makes much harder to evaluate this term, so that in general
(3.23) is used.
The evaluation the bispectrum multipoles suffers from an additional complication due to
the Dirac delta function ensuring that q1,q2,q3 form a closed triangle. A possibility is to
expand δD in plane waves and factorize the estimator as

B̂`(k1, k2, k3) =
(2`+ 1)

NT (k1, k2, k3)

∫
d3x

(2π)3
δ

(k1)
` (x)δ

(k2)
0 (x)δ

(k3)
0 (x) + cyc. , (3.26)

where
δ

(ki)
` (x) =

∫

ki

d3q eiq·xδ`(q) , (3.27)
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and cyc. stands for cyclic permutations in ` terms.

Bispectrum shot noise

Estimating the auto-correlation term for the bispectrum multipoles Bshot is a hard task.
Referfence [147] provides an expression with some internal bug so, to derive our own
expression, we start from

〈δ(x1)δ(x2)δ(x3)〉 = δ1δ2δ3

+
1

n̄
[δ1(1 + δ2)δD(x23) + δ2(1 + δ3)δD(x13) + δ3(1 + δ2)δD(x12)]

+
1

n̄2
(1 + δ1)δD(x12)δD(x23) .

(3.28)

Substituting the noise terms in the estimator, gives

B̂SN
` (k1, k2, k3) =

(2`+ 1)

NT (k1, k2, k3)

∏

i=1,2,3

∫

ki

d3qi δ(q123)

[
1

n̄2

(∫
d3x

(2π)3
(1 + δ(x))L`(q̂1 · x̂1)

)

+
1

n̄

(
δ`(q1)δ0(−q1) + δ0(q2)δ`(q̂1,q2) + δ0(q3)δ`(q̂1,q3)

)
]
,

(3.29)

where

δw` (q̂1,q) =

∫
d3x

(2π)3
e−iq·x

(
1 + δ(x)

)
L`(q̂1 · x̂) . (3.30)

To compute this term, one can factor out the dependence on q̂1 by expanding the Legendre
polynomial, such that (for l = 2)

δ2(q̂1,q2) =
3

2
q̂1iq̂1jQ

w
ij(q2)− 1

2
δ0(q2) , (3.31)

where Qwij has a similar form to Qij . Then one can adopt once more the Dirac delta expansion
trick to get the terms in (3.27). Each of these terms needs to be integrated over q1, q2, q3,
so one has to keep these fields separately in memory when the shot-noise term is evaluated.
Being each of these a symmetric tensor, 6 fields must be allocated for the quadrupole. Going
to ` = 4, makes the problem even worse: instead of rank 2 tensors, you get rank 4 tensors,
with 15 independent components each.For this reason, thin-shell approximation is often
adopted and this allows to reduce the number of auxiliary fields to be computed to 2.

Beyond-Yamamoto Power Spectrum estimator

The approximation to the end-point estimator leads to differences with respect to the
Yamamoto estimator that can biases two-point observables on BAO scales on a level of
0.1− 1.0%, although being still smaller than the cosmic variance error for a typical survey
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observing a large fraction of the sky [32], [21]. A recent paper, [128], questions the possibility
to reach an efficient implementation of the Yamamoto estimator, adopting mid-point n̂ =
x̂1+x2

2 and bisector θ = 1
2 cos(x̂1 · x̂2) definitions. The authors find that a series expansion of

the angular dependence in the opening angle can do the trick, providing an algorithm that
scales as O[Ng logNg] and allows in the meantime to use the FFT libraries.

3.1.4 The Feldman-Kaiser-Peacock (FKP) estimator

Historically, one of the milestones in power spectrum measurements from galaxy redshift
surveys is the Feldman Kaiser Peacock (FKP) paper [55]. The authors develop an optimal
weighting scheme for the estimator just described, according to which each galaxy is assigned
a weight to reduce the variance of measurements on the scale of interest. This provides an
optimal estimation in the case that

• the scale 1/k is small compared to the size of the survey,

• galaxy density fluctuations are Gaussian.

The estimators defined so far assumed an homogeneous distribution in a finite volume.
This can be a box with periodic boundary conditions as in the case of N-body simulations.
The estimation of the power spectrum (and bispectrum) in an actual galaxy survey must
account for an irregular footprint geometry and the evolution of the mean number density
with redshift, n̄(z). Therefore, galaxy perturbations must be evaluated from a comparison of
the observed distribution against a simulated catalog with a uniform distribution of objects,
constructed over the same survey footprint. Such mock allows us to incorporate observational
systematic effects that affect the survey so that the comparison between the two datasets is
consistent. This comparison is then described by the auxiliary field F measuring the excess of
particles in each point against the simulated catalog of Nr objects, where typically Nr � Nd,
Nd being the total number of observed objects. In this work we will swap sometimes from δ

to F and viceversa depending on what we want to highlight in our discussion. We shall use
δ when we prefer to put the accent on the physical interpretation of the fluctuations, hiding
unnecessary implementation technicalities present in F . On the other hand, we shall use F
when we want to discuss the algorithm used and show details.

This auxiliary field is given by

F (x) =
w(x)[nd(x)− αnr(x)]

[
∫
d3x n̄2(x)w2(x)]1/2

. (3.32)

where w is the FKP weight, given by

w =
1

1 + n̄(z)P (k)
, (3.33)

α is a factor needed to rescale the total number of particles in the random catalog to the
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number density observed in the data,

α =

∫
d3xw(x) n̄g(x)∫
d3xw(x)nr(x)

, (3.34)

and the denominator ensures that the power spectrum is dimensionless. One might question
whether measuring the power spectrum with a weight that depends on P (k) is a circular
argument. This is a legitimate question. However, the application of a k-dependent weight
is an even more cumbersone one. Usually, the solution to his problem is to use a single
number for this term, corresponding to the order-of-magnitude amplitude of P (k) at the
wavenumber where we want the variance to be reduced. Taking the FT of equation (3.32)
F (k), the volume average of the signal is

〈|F (k)|2〉 =

∫
d3k′P (k′)|W (k− k′)|2 + (1 + α)

∫
d3x n̄(x)w2(x)∫
d3x n̄2(x)w2(x)

, (3.35)

with the second term being the shot noise contribution Pshot, and

W (k) =

∫
d3x n̄(x)w(x)eik·r

[
∫
d3x n̄2(x)w2(x)]1/2

(3.36)

being the window function of the random distribution, holding information on the survey
geometry and on the galaxy weights. The FKP estimator is then defined as

P̂FKP(k) = 〈|F (k)|2〉 − P̂shot(k) . (3.37)

Note that the FKP estimator does not provide a direct evaluation of the power spectrum
of a given distribution, but rather a convolution of the true power spectrum with the survey
window function. In order to make a proper comparison with the theory, predictions must be
convolved with the measured survey window. However, the broad extent of W (k) in Fourier
space makes the convolution computationally expensive. We will come back to this later
on, when we discuss future extensions of this work to lightcone measurements. For the time
being, let us just say that some smart shortcuts to deal with this issue exist [168, 24].

3.2 Implementation

Figure 3.2 and 3.3 provide the flow charts of the power spectrum and bispectrum codes
that I developed during my PhD and that have eventually been adopted for the Euclid
LE3_GC_PowerSpectrum and LE3_GC_Bispectrum codes. A former version of the code
computing the bispectrum was used to provide measurements of N -body simulations and
approximate mock catalogs of Chapter 4 and 5.

In this section we provide a description of the major steps that are needed to compute
the power spectra and bispectra of a given particle distribution, starting from their positions
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LE3 Data catalog XML
product


PK Configuration Set
XML file


Get PK

ini file

Configure PK

Get FITS file names
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Load Data and
Random catalog
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Get *** Density Grid


Get Interlaced density
Grids


PK product (XML + FITS)
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XML product
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NoApply interlacing
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compute *** product

Write *** results in PK
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Get *** Fourier Grid

Get Fluctuation field and
Grids to compute ***

multipoles


Compute Power Spectrum

1. *** = Random / Window

2. *** = Data / Power Spectrum


Figure 3.2: Flow Chart for Power Spectrum code

in configuration space. We will now describe the general behavior and major steps, while a
more detailed description of each procedure will be given in a dedicated section.

After setting-up the options for the run, completely configurable by the user, the data
catalog and the random catalog required to evaluate the FKP density field are loaded and
stored into memory. The data catalog consists of the spectroscopic galaxy catalog whereas
the random catalog corresponds to a synthetic mock populated by a uniform distribution of
objects, which accounts for the systematic observational effects present in the data.
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LE3 Data catalog XML
product


BK Configuration Set
XML file


Get BK
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Figure 3.3: Flow Chart for Bispectrum code

Binning parameters are then computed, based on the user choices, specified in the
configuration file. The catalogs are then run through and the density field is computed
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over a grid for the data nd(xG) and random nr(x
G) samples. The size of the grid NG is a

parameter that can be tuned in the configuration file according to the needs. The subscript
G in the equations that follow, indicates that the coordinates are evaluated on a grid. We
will address the need of introducing this object in the next section, Section 3.2.1.

The densities are then Fourier transformed to the wavelength domain where some
procedures are adopted to mitigate some odd noise introduced by previous steps, ascribable
to the finite size of the grid. These noise contributions relate to the convolution process
inherent to the evaluation of the density on a grid of finite size and to the fact that small
scale-modes not supported by the grid are mistakenly identified as large-scale supported
modes. At this point, the data and random densities are combined together to compute
the FKP fluctuation field F (kG). Depending on the estimator chosen, specified in the
configuration file, additional fields of equation (3.13) and (3.14) are computed.

Up to this moment, both power spectrum and bispectrum estimators share the same
procedures. The power spectrum code, then, evaluates the first ` = 0, 1, 2, 3, 4 multipoles of
the power spectrum and of the window function, by averaging the signal F0(k)F`(k) over
Fourier-space shells according to the binning choices specified in the configuration file. In
this section we adopt the notation implying the fluctuation field F , as we want to highlight
the details of the code implementation.

The bispectrum code, on the other side, must consider some additional steps in order to
evaluate the δ(k)

` (xG) fields of equation (3.27), which we will call F (k)
` (xG) to highlight their

derivation from F (xG). We will address the details of their computation in section 3.2.5.
Once computed, the code evaluates the bispectrum and its ` = 0, 2, 4 multipoles at different
triangle bins (k1, k2, k3) by taking the real-space average of F (k1)

` (xG)F
(k2)
0 (xG)F

(k3)
0 (xG).

In the following paragraphs we focus on some major steps that require particular care.

3.2.1 Discretisation of estimators on a Grid

The code reads a particle distribution and provides, in the first place, an estimate of the
Fourier-space density of a distribution of Ng particles with given weight. The DFT step
needed to move from configuration to Fourier space requires the density field n(x) to be
sampled on regular intervals. It is common practice to introduce a finite grid of equally-spaced
points xG

i of size NG such that

xG = hm = h (mx,my,mz) , with mx,my,mz ∈ (0, . . . , NG − 1) , (3.38)

h being the grid cell linear size, such that h = Lbox/NG. The particle distribution is then
sampled on the grid by means of an interpolation on the grid points. As a consequence,
discrete sampling drives equations (3.32)-(3.25) towards discrete notation. We show how
this is performed for a generic integral Iαβ , which is just generalizing the normalisation term
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in (3.32),

Iα,β =
1

V

∫
d3x n̄α(x)wβ(x)

=
α

V

∫
d3x n̄α−1(x)wβ(x)

Nr∑

i=1

δD(x− xi)

=
α

V

Nr∑

i=1

n̄α−1(xi)w
β(xi) ,

(3.39)

but we do not rewrite the equations already specified above.

3.2.2 Density interpolation on a grid

The sampling of the density distribution on the grid is performed by means of an interpolating
procedure which assigns particle contributions from the given catalog to nearby grid points.
At each grid point xG, the density is evaluated by summing the contributions provided by
all particles

nW (xG) =

Np∑

i=1

wiW
(`)(xG − xi) (3.40)

where Np is the number of particles in the catalog, and W (`) is the interpolating kernel.
Explicitly,

W (`)(xG − xi) = W
(`)
1−Dim

(
xG − xi

h

)
W

(`)
1−Dim

(
xG − yi

h

)
W

(`)
1−Dim

(
xG − zi

h

)
, (3.41)

where W1−Dim is the one dimensional Kernel of order `. The first orders are:

• Nearest Grid Point (NGP)

W
(1)
1−Dim(s) =





1 for |s| < 1
2

0 otherwise

(3.42)

• Cloud In Cell (CIC)

W
(2)
1−Dim(s) =





1− |s| for |s| < 1

0 otherwise

(3.43)
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• Triangular Shaped Cloud (TSC)

W
(3)
1−Dim(s) =





3
4 − s2 for |s| < 1

2

1
2

(
3
2 − |s|

)2
for 1

2 ≤ |s| < 3
2

0 otherwise

(3.44)

• Piecewise Cubic Spline (PCS)

W
(4)
1D (s) =





(2− |s|)3 for 1 ≤ |s| < 2

0 otherwise

(3.45)

The order of the interpolating-kernel indicates the number of points which receive contribution
from a given particle, so that if NGP is chosen, a galaxy contribution is attributed to a single
point, its nearest neighbour, while CIC assigns non-zero contribution to the nearest two and
so on and so forth. Note that the total contribution of a particle does not depend on the
order of the interpolating kernel, and it is always equal to 1. As the catalog is run through,
the code computes the contribution of each particle and assigns it to the correspondent grid
points according to the scheme above.

Mass assignment correction

In practice, the result of the Density Interpolation step is a convolution of the configuration-
space density with the Mass Assignment Scheme (MAS) kernel W (`) therefore, it needs to
be corrected. Taking advantage of the fact that convolutions in configuration space become
products in Fourier space and viceversa, this step is taken after DFT are applied to n(xG).
For a given MAS, the corrected density then becomes,

n(kG) =
nW (kG)

W (`)(kG)
, (3.46)

where, for a given MAS order `, the kernel is

W (`)(kG) =

[
sin(kxh/2)

kxh/2

]`[
sin(kyh/2)

kyh/2

]`[
sin(kzh/2)

kzh/2

]`
. (3.47)

3.2.3 Fourier Transform

Fourier Transforms are needed to translate the configuration-space estimate of the density
to the Fourier domain. Be n(xG) the density field, already interpolated on the grid - the
density grid. The Fourier Transform is performed taking advantage of the FFTW library
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[58]. This gives

n(kG) =
∑

xG

n(xG) e−ik
G·xG

=
∑

m

n

(
Lbox

NG
m

)
e−2πin·m/NFFT

(3.48)

The code takes full advantage of the time-optimization of this library, which allows parallel
computation on multiple OpenMP threads. The scaling with respect to an increasing number
of threads is not ideal, but the speed-up is anyway crucial.

3.2.4 Aliasing

It is broadly recognized that power spectrum estimator implementations relying on FFTs
suffer from limitations. In particular, the Sampling Theorem guarantees that a lossless
sampling of a given band-width limited signal is achieved only in the case when the sampling
frequency is twice the frequency at the cut-off. Of course, these conditions are not met in
the case of cosmological density perturbations, which are defined over the whole Universe. A
poor matching of the Sampling Theorem’s hypothesis is responsible for small scale modes,
unresolvable for the given grid resolution, being erroneously identified as supported, long-
wavelength modes, spoiling the Fourier space density and thus biasing the resulting power
spectrum and bispectrum, specially at small scales.

The sampling in configuration space given by eq. (3.40) can be mathematically described
in terms of the sampling function

X(x) =
∑

n

δD(x− n) , (3.49)

where n is an integer vector identifying each point of the grid, so that equation (3.40) can
be re-written as

nG(x) = X(x/h)nW (x) , (3.50)

and the Fourier Transform of this product is

δG(k) = k3
f

∑

k′

X(k′)δW (k− k′) , (3.51)

where kf is the fundamental frequency of the box 2π/Lbox. As the Dirac delta function
becomes a Kronecker delta in Fourier space, the transform of the sampling function gives

δG(k) =
∑

m

δW

(
k− 2π

H
m

)
(3.52)

wherem 6= 0 terms represent the spourious aliasing contribution due to small-scales unresolved
modes.
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Reference [91] computes the prediction of the aliasing contribution to the power spectrum.
This is given by

〈|δG(k)|2〉 =
∑

n

P (k + 2kNn)|W (k + 2kNn)|2 +
1

N

∑

n

|W (k− 2kNn)|2 , (3.53)

where kN = π/h is the largest wavenumber accessible, i.e.Nyquist frequency of the grid,
and the second term represents the aliasing contribution to the shot-noise. This function
connects the true power spectrum P (k) to the one estimated on the grid 〈|δG(k)|2〉. Two
are the effects that enter in this equation. One is the convolution of the density with the
MAS-window-function that returns the multiplication of the true power spectrum withW (k),
the other comes from the finite size of the grid which translates in a sum over the aliasing
images.

Interlacing

The Interlacing technique, taking place right after the Fourier Transform one in 3.3 in order
to reduce the memory budget, requires to estimate the density field δG(k) on two, equal
grids displaced by half of the cell size. Be δG1(k) the first density grid, the displaced density
is

nG2(k) = X
(
x

H
+

1

2

)
nW (x) , (3.54)

where 1 is the unit vector. The Fourier transform is

nG2(k) =
1

2

∑

m

(−1)mx+my+mz nW

(
k− 2π

H
m

)
(3.55)

Taking the proper weighted average between nW (kG1) and nW (kG2) we get

nG(k) =
1

2

∑

m

[1 + (−1)mx+my+mz ]nW

(
k− 2π

H
m

)
. (3.56)

The term between square brackets vanishes for odd values of mx +my +mz, therefore odd
aliasing contributions can be completely removed by this technique. Note that higher-order
interpolating schemes and MAS correction act to minimize the aliasing effect and can be
coupled to interlacing to limit it to the frequencies above Nyquist and make it practically
irrelevant for the scales of interest. In the case of the Euclid mission, which is the main
target of this work, these are 0.005− 0.5hMpc−1.

3.2.5 Shell average

Power Spectrum

Once that the density has been interpolated over the grid and Fourier transformed for both
the data catalog nd(kG) and the random one nr(kG), the FKP auxiliary field F (kG) is
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computed as
F (kG) = nd(k

G)− αnr(kG) . (3.57)

Note that the normalisation factor is not considered in the equation above and that nor-
malisation is only applied after the shell-average has been performed. The reason for this
choice is that this auxiliary field is shared by both the power spectrum and bispectrum
codes, which, however, retain different normalisation factors, I22 and I33. If the Yamamoto
estimator is chosen in the configuration file, F2(kG) and F4(kG) are computed.

The power spectrum and its multipoles can then be evaluated by averaging over the
Fourier space shells defined by the binning scheme. In the case of the distant observer
approximation, this becomes

P̂`(k) =
(2`+ 1)

Nmodes

1

I22

∑

k−dk≤kG≤k+dk

|F (kG)|2L`(k̂ · n̂) . (3.58)

On the other hand, according to [147] [26], the Yamamoto estimators are given by

P̂`(k) =
(2`+ 1)

Nmodes

1

I22

∑

k−dk≤kG≤k+dk

F0(kG)F`(k
G) , (3.59)

where F2 and F4 are given by (3.13) and (3.14), and I22 takes care of the normalisation.

Bispectrum

As previously mentioned, the bispectrum code requires some additional steps after F0(kG),
F2(kG), F4(kG) have been computed, before being able to return the final product. In
particular, masked shells F (k)

` (kG) for each of these fields must be constructed. This procedure
is schematically presented in Figure 3.4, where a filter is applied to F`(kG) according to the
binning scheme selected for the wavenumbers k1, k2, k3. The filter operates in such a way that
Fourier modes lying outside of the bin k are set equal to 0 whereas modes contained within
the bin remain unchanged. An additional set of masked binary-valued grids being equal to 1
over the given shell and 0 outside, I(k)(kG), are also generated to compute NT (k1, k2, k3).
Inverse FFTs are then computed for all masked shells F (k)

` (kG), giving F (k)
` (xG) and I(k)(xG)

as output. Finally, shell-averaged measurements of the monopole, quadrupole, hexadecapole,
and number of fundamental triangles are computed from summations of products of the
real-space fields.
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Figure 3.4: Visual rendering of the masked-field objects F (k)
` (kG). The colored area

identifies the shell k in 2D. The masked field vanishes outside the shell and retains the
correspondent value of F`(kG) inside it.

The bispectrum is given by

B̂`(k1, k2, k3) =
2`+ 1

NT (k1, k2, k3)

1

I33

∑

xG

F k1
`

(
xG
)
F k2

0

(
xG
)
F k3

0

(
xG
)
, (3.60)

where
NT (k1, k2, k3) =

∑

xG

Ik1
(
xG
)
Ik2
(
xG
)
Ik3
(
xG
)
, (3.61)

and the normalisation factor is

I33 =
[ ∫ d3x

(2π)3
n̄3(x)w3(x)

]1/3
→
[ Nr∑

i=1

n̄2(xi)w
3(xi)

]1/3
. (3.62)

Note that the arrow in this last expression follows from equation (3.39).

3.3 Contributions to Euclid Code

A large part of my Ph.D. work was carried out within the Euclid collaboration, where I was
in charge of the development of the official data analysis software that will be used to provide
measurements of the power spectrum and bispectrum of the spectroscopic Wide Survey
sample. The development of such software is a complex duty as a meticulous assessment of
its accuracy and computing performances is required to ensure that the mission requirements
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are achieved and that the software execution proceeds flawlessly from the beginning to the
end of the data reduction pipeline.

Each of the PFs (as the PK-GC and BK-GC) must possess a dedicated documentation
describing the implemented algorithm, consisting of the Software Design Document (SDD),
a Validation Plan document (VP-STS) describing the test developed to assess the scientific
accuracy, a Software User Manual (SUM) providing the generic installation and usage
instructions, and Software Release Notes (SRN) describing features of each new release.
Consequently, each PF must take on a rigorous test campaign made by Maturity Assessment
(MA) where a designated reviewer is expected to verify the quality of the code, the status
of the PF with respect to the validation tests defined in the VP, and that the overall
requirements are met. Each MA triggers the production of a new version of the documents
and a new instance of the test execution, therefore, they must be prepared in advance with
particular care.

Validation is intended to be an end-to-end testing. In practice, we run the PF using as
inputs mock catalogs (produced by the validation team in collaboration with the Galaxy
Clustering Science Working Group, who defines the science validation criteria) and compare
the results to some benchmark measurements. As an output we obtain a pass/fail and/or
a percentage of fulfilment of the scientific requirements. Requirement criteria for Euclid
PK-GC and BK-GC codes usually require that the numerical systematic errors between the
computed output and the reference values are smaller than 10% of the predicted Gaussian
sample variance errors for the Euclid Wide Survey (as defined in the Euclid SGS LE3
Requirement Specification Document), on a bin-by-bin basis, in the range for which the input
PF is expected to be recovered (binning and k-ranges are also specified in the Requirement
Spscification Document). Since assessing that these requirements are actually met is not
feasible for the time being, we assume that Euclid requirements are met if the same residuals
are below 0.1%. In the following, we assume that Euclid requirements match with this
threshold.

I will now briefly describe each test that is part of the validation campaign for the power
spectrum PF, PK-GC ,and bispectrum PF, BK-GC. For each test I will identify the section
of the code under review, the data-set used, and the purpose of the given analysis. No
explicit results will be provided of these test, even if already completed, as they will be part
of an official Euclid publication, currently in preparation.

3.3.1 Power Spectrum Validation Tests

Mass Assignment test by Direct Summation

This test focuses on the Mass Assignment Scheme (MAS) that interpolates the density field
on a grid and the FFT that provides the Fourier-space density. The objective is to validate
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the PK-GC code against the results obtained by direct summation from the PowerI4 code2.
This tests adopts as dataset the publicly available POWMES N-body simulation, provided in
the package of the POWMES code of [36] for testing purposes. It consists of a simulation of
1283 particles in a Lbox = 50Mpc/h box run to z = 0. We will refer to this simulation as
the POWMES N-body simulation or POWMES for short. The particle distribution is isotropic
and therefore only the monopole of the matter power spectrum is considered for the test.
Direct summation, at a great computational cost, provides an aliasing-free estimate of
the Fourier-space density since it does not require an estimate of the configuration-space
density on a grid. The comparison therefore allows us to estimate the aliasing contribution
introduced by the FFT-based approach assumed by the PK-GC code.

Mass Assignment test by comparison with an external code

With this test we still focus on the MAS and FFT steps already analysed in the previous
test, yet, this time we compare the results against an estimator of PowerI4 that shares
the same Mass Assignment Schemes (MAS) and interlacing technique implemented in the
PK-GC code. Using the same options in both cases the codes are run on the same POWMES
simulation already introduced, the difference between the outputs provided by the two
codes should amount to the aliasing contribution expected for the given MAS and should
therefore be within the accuracy limits of Euclid, stated in the Euclid SGS LE3 Requirements
Specification Document.

Power spectrum multipole comparison against external code

This test goal is to check that our estimator products agree with results from a well-known
and reliable software. We validate our results against the power spectrum multipoles
obtained from the external code Nbodykit [82] which is a well-tested software in the scientific
community for computing the power spectrum multipoles. The test is performed both for
a simulation snapshot with periodic boundary conditions and a lightcone catalog. The
snapshot corresponds to a realisation of the Minerva simulation [74] suite at redshift z=1
with box size Lbox = 1500 Mpch−1 (a more detailed description of these simulations is
given in Chapter 4). The second is a lightcone coming from the Euclid Flagship Simulation,
spanning a redshift range from 0.9 to 1.1. The Euclid Flagship Simulation [130] is made by 2
trillion DM haloes on a box with side Lbox ∼ 3780 Mpch−1, populated by galaxies through
the application of an empirical Halo Occupation Distribution model following the reference
[131].

2https://github.com/sefusatti/PowerI4
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Random phase mocks test on multipoles computation

This test focuses on the Yamamoto estimator. It is performed on realizations of a density
field which has a given power spectrum following the linear Kaiser prediction for redshift
space distortions, so that its monopole, quadrupole and hexadecapole are all known exactly.
The PowerSpectrum reads directly the density field in Fourier space, so that only the shell-
average procedure is performed. Results are then compared to expected results and a check
is performed to assess that accuracy expectations are met.

Test of the Yamamoto estimator in the distant observer limit

FFT-based Yamamoto estimators of the power spectrum moments can speed up the estimate
of the same quantities computed using the rigorous but impractically slow Yamamoto
estimator [169] at the cost of introducing a “wide-angle” bias (whose magnitude and correction
have been investigated by the Euclid SWG-GC Systematic Error Tiger Team). The objective
of the test is to validate the FFT-based Yamamoto estimator in the limit of a distant observer.
For this test we use a catalog with a sky area of 500deg2 and a thickness 0.95 ≤ z ≤ 1.05 in
redshift. We consider a distribution of objects very far away (to the limit of infinitely far
away) so that the FFT-based Yamamoto estimator is expected to measure the same power
spectrum as the standard Distant Observer Approximation power spectrum estimator of
eq. (3.58). Consequently, the catalog is moved 1 · 108 Mpch−1 away from the coordinate
center so that the DOA approximation is valid. A check is run to see that measurements
computed with Yamamoto-like estimators recover the Distant Observer Approximation
results with residuals below percent level.

Ideal window test

A requirement on the power spectrum code is to compute the power spectrum of the random
distribution. This test checks that the code correctly computes and outputs the window
power spectum when a random mock catalog is provided as input, and it validates its
accuracy. The measured power spectrum is compared to a known analytical window function.
For the test, a random catalog that represents a sphere of volume 7003[Mpch−1]3 is adopted.
This allows to write a simple analytic expression for the expected window function which is
used for comparison.

Test on the output file

Euclid data-processing analysis is composed of multiple tasks that are planned to run in
close sequence. In order to assure that no conflicts between inputs and outputs from different
tasks are met, I/O products must match a predefined structure, i.e. a Data Model. The
objective of this test is to check that the PowerSpectrum code produces output files in the
expected format. A representative galaxy mock catalog from the Euclid Flagship simulation
is provided as input into the PowerSpectrum code. This test then seeks to confirm that an
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xml-file is produced containing a fits-file for each power spectrum and window function,
with the right output templates.

Test on the capability for processing the full spectroscopic catalog

The objective of the test is to verify that the PowerSpectrum code is capable to process the
full spectroscopic catalog of Euclid or fractions of it, meeting the k-binning and time-limit
requirements imposed by the Requirement Specification Document. In particular, this test
verifies that power spectrum output file covers a wavenumber range from 0.001 to 0.5 Mpc−1 h

with a bin width of 0.001 Mpc−1 h. Together with this test, other checks are performed,
aiming at validating the requirement on the maximum computation time and RAM usage
for the full spectroscopic catalog. These are satisfied if the code successfully processes the
provided catalog within the required time limit of 8 CPU hours and within the required
memory limit of 120 GB.

3.3.2 Bispectrum Validation Tests

In addition to the test on the density estimation common to the PK-GC and BK-GC codes,
a few test are specific to the bispectrum estimator.

Comparison with a brute-force estimator

The objective of this test is to validate the Bispectrum software with an estimate from a
brute-force approach from an external software for a realistic distribution of points in a
given volume, extracted from cosmological simulations. The data come from a catalog whose
objects populate a cubic box of sidelength 200 Mpch−1. Because the computational cost
of the brute-force approach is extremely high (O ∼ N6

G), a grid of size 323 will be used
to compute the Fourier transform of the galaxy density field. The residuals between the
monopole computed from the Bispectrum code and the expected output, acquired from the
brute-force approach, are computed, and a check is performed to verify that they are below
Euclid requirements.

Comparison with an external code

The test mirrors the first one introduced for the PowerSpectrum code and focuses on the
Mass Assignment Scheme that interpolates the density field on a grid and the FFT that
provide the Fourier-space density. It validates the code against the results obtained by
direct summation through the PowerI4 code on the POWMES N-body simulation. Although
computationally expensive, the direct summation approach provides an aliasing-free estimate
of the Fourier-space density since it does not require an estimate of the configuration-space
density on a grid. The comparison, therefore, provides an estimate of the aliasing contribution
introduced by the FFT-based approach implemented within the Bispectrum software.
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Test on the input-output products

This test verifies that the Bispectrum code is able to process a simple mock catalog, matching
the DataModel structure for the Bispectrum code, and outputs the galaxy bispectrum
products according to the Data Model Definitions of Euclid, in all the cases allowed for the
parameter file options.

Binning test

The objective of the test is to verify that the code is able to process a representative
mock catalog of the Euclid Wide Survey providing measurements that satisfy the binning
requirements imposed by the Requirement Specification Document. The bispectrum binning
is given in terms of the three wavenumbers k1, k2, and k3. The minimum wavenumber
is set equal to the binning in k which must span the range from [0.005, 0.2]hMpc−1 with
separation 0.005hMpc−1.

Triangle modes test

The objective of the test is to verify that the output file of the Bispectrum code provides results
for at least 6530 unique triangle configurations {k1, k2, k3} when run on a representative
mock catalog of the Euclid Wide Survey, providing measurements that satisfy the binning
requirements imposed by the Requirement Specification Document.

Increasing Fraction test

The objective of the test is to verify that the Bispectrum code can execute successfully with
input catalogs which are one-sixth, one-half, and one times the full spectroscopic catalog,
while providing measurements that satisfy the binning requirements. For such test, we built
a representative mock catalog of the Euclid Wide Survey consisting of 3 · 107 galaxies and
random catalog of 1.5 · 109 objects which will be partitioned into the three fractions defined
above which are provided as sequential inputs to the Bispectrum code. This test checks that
the output products provide the right binning, given in terms of the three wavenumbers k1,
k2, and k3. The minimum wavenumber is set equal to the binning in k which must span
the range [0.005, 0.2]Mpc−1 h with separation 0.005 Mpc−1 h. Two additional checks are
performed to verify that the code successfully processes the full catalog within the required
time limit of 200 CPU hours and within the required RAM usage limit of 1.1 TB of memory.
This last test is crucial for the Bispectrum code, as memory is the main challenge that
hampers an accurate, dense estimation of the bispectrum on a large wavenumber range. I
will briefly address this issue in the next paragraph.

The bispectrum estimation algorithm employs FFTs of the density grid of linear size
NG, where the CPU usage scales as NG logNG. Given the large number of grids required at
the same time, the memory budget is the most challenging requirement for the Bispectrum,
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and it is driven by the girds size. For this reason, the main parameter to consider is NG.
The peak of memory usage occurs when the four grids F0(k), F2(k), F4(k) and Fw0 (k) are
loaded in memory together with the masked shells. Then, the memory peak is

MEM = NgridsN
3
G + (Ngrids + 1)Nbins (Nmask

G )3 (3.63)

where NG is the number of grid points (per dimension) of the original grids, Nmask
G is the

number of grid points of each shell (per dimension), Nbins is the number of Fourier-bins
required by the binning scheme adopted and Ngrids is the number of fields required to
estimate the products, i.e. 4 if we want to compute the ` = 0, 2, 4 multipoles as well as the
shot-noise of the monopole. From these grids, masked fields are built, giving a number of
Nbins shell fields per grid. In order to optimize the use of memory, the grid on which these
fields are computed is allowed to have a lower linear dimension than the original one and
a mapping procedure between the two grids takes care of evaluating the quantities on the
new one. In addition to the masked fields corresponding to the F0(k), F0(k), F0(k), Fw0 (k)

grids, identity masked fields are built (which are responsible for the "+1" term in the square
brackets). Each of these masked identity fields is 1 on the particular shell, identified by the
given bin, and zero outside. It is important to highlight that the amount of memory required
for a given run of the code depends mainly on the chosen binning Nbins and on the number
of fields Ngrids, that need to be computed.



Chapter 4
Toward a robust inference method for LSS
observables

The following chapters are dedicated to the work done in the context of an end-to-end data
analysis pipeline to extract cosmological information from LSS catalogs. This project has
been a shared effort by a relatively small group of people in Trieste which began with [119].
This paper presents the results from the likelihood analysis of the real-space bispectrum
computed from N-body simulations using the new code PBJ, developed by A. Oddo (paper
in preparation). In this analysis the authors address the consequences of different choices
routinely made on binning schemas, theoretical models, covariance estimation and likelihood
function on bias parameter constraints. In doing so, they take advantage of a precise estimate
of the full anisotropic covariance of a large set of mock catalogs in order to make unbiased
determination of model parameters.

The present chapter describes the natural continuation of [119], hereafter named Paper
I. In this project we investigate the consequences of several assumptions that can be made
on the joint likelihood analysis of the galaxy power spectrum and bispectrum in real-space,
and their effects on the constraints of bias and cosmological parameters. We also apply the
Bayesian model selection methods considered there to evaluate theoretically or numerically
derived relations among the bias parameters that can reduce the parameter space and speed-
up the likelihood evaluation. We make use of the same set of Minerva simulations of Paper I,
allowing, due to the small sample variance, not only an assessment of the systematic errors in
the theoretical model, but also an evaluation of the effects related to technical details of the
likelihood analysis. In addition, we estimate the full covariance, including cross-correlations
between power spectrum and bispectrum, from measurements of the Pinocchio mocks
already adopted in Paper I.

We fit the data with a one-loop PT model for the power spectrum similar to those
tested in the blinded challenge presented in [117] (here limited to real space), including a
counterterm to account for the dynamics of short-scale perturbations [132, 17, 31], higher-
derivative bias [44, 108, 45, 46] and including the infrared (IR) resummation procedure to
describe the non-linear evolution of the BAO features [12, 89]. Finally, we also consider a
possible scale-dependent correction to the constant shot-noise contribution induced by halo

55
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exclusion [157, 14]. For the bispectrum we limit the prediction to the tree-level contribution,
testing the possible effect of including higher-derivative bias and IR resummation.

We explore the consequences of an improper treatment of Fourier-space discretization
effects in the theoretical predictions on the estimate of the parameters, and study different
criteria for the selection of the triangular configurations of the bispectrum. In addition, we
investigate common approximations to the covariance matrix. Finally, we present the results
of a full likelihood analysis of the combination of the galaxy power spectrum and bispectrum
in real space where cosmological parameters are allowed to vary, using the full simulation
volume.

This study has ended up in a published paper [118] at the beginning of 2021.

My contribution to this work consisted in investigating the validity of the real-space
bispectrum model not only, as routinely done, in terms of a range of scales but also accounting
for the shape of the triangular bispectrum configuration. The aim is to more fully exploit
available data-sets. Typically, these type of analyses consider all triangles with sides equal
or lower than a given kmax. However, there exist several triangular configurations, past this
limit, for which our model still works to good extent. I devised various options to include
these configurations by choosing a different way to define the triangular configuration limit,
which is no more imposed by setting the largest k-vector smaller than kmax, as, for instance,
by limiting the sum between two k-vectors to higher values of k. All such options are then
tested in terms of the constraints on galaxy bias parameters they provide, after running a
full likelihood analysis of a synthetic data-set.

This chapter is organised as follows. We introduce all numerical data in section 4.1 and
the theoretical model and the likelihood functions in section 4.2. Our results are discussed
in section 4.3. Finally, we present our conclusions in section 4.4.

4.1 Data

For this analysis the authors adopt two datasets. The first is composed by 298 N-body
simulations that comprise a volume of almost 1000 Gpc3 h−3, so large that it allows to reduce
the statistical error associated to the measurements and grant the opportunity to investigate
the effect of different choices often made in these analyses with high accuracy. Whereas, for
the sake of a precise estimation of the covariance, a series of 10,000 mocks allows us to limit
the noise affecting the inverse of the covariance matrix, which propagates to model parameter
posteriors. Requirements for future surveys as Euclid demand that the precision matrix
be determined with sufficient accuracy such that the bias introduced in the cosmological
parameter errors does not exceed 10%. The problem of precise covariance estimation is
well-known in the literature and it is particularly relevant in maximum likelihood analyses
that use a numerical estimation from simulations and seek to vary the assumed cosmology,
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as the number of required mocks quickly explodes. Methods to control this additional source
of error exist, but the ultimate target would be to produce an analytic covariance sufficiently
precise to mimic the measured one, which would allow to rapidly compute the covariance
matrix in different cosmological models.

4.1.1 N-body simulations and measurements

N-body simulations have seen renewed interest since since the early 2000. This enthusiasm
is due to the fact that not only they can be used for a direct comparison with observed data,
but also because they provide precise calibration for clustering estimators. As upcoming
surveys like Euclid and DESI will reach exceptional level of accuracy in their clustering
measurements, reaching sub-percent level from linear to strongly non-linear scales, extreme
simulations are needed to match these requirements.

The main bottleneck in the production of large N-body simulations is the computation
of the displacement on each particle due to the gravitational effect of the distribution.
However, as the costly direct-summation approach has been outperformed by new algorithms,
simulations with an exceptional number of objects have become accessible. Moreover, an
important role was also played by the hardware evolution and, currently, the most extreme
simulations are able to reproduce cosmological boxes with almost a trillions of particles.
An example is the flagship wide field simulation which is set-up for the Euclid mission and
comprise 4.1 trillion DM particles in boxes of size L ∼ 3600 Mpch−1.

Following Paper I, for this series of works we have used the Minerva N-body simulations
developed by [74, 103] , where they have been used to validate their model of the analytic
covariance prediction for the anisotropic signal of galaxy clustering two-point statistics. These
simulations were produced using GADGET-21 [160], and contain positions and velocities
of 10003 DM particles of mass 2.67 · 1012M� h−1 simulated in boxes of 1500 Mpch−1 with
periodic boundary conditions, assuming a flat ΛCDM model with h = 0.695, Ωm = 0.285,
Ωb = 0.046, as suggested by the combined anaylis of WMAP and BOSS DR9. The initial
particle distribution is taken at z = 63 and evolved to z = 1 adopting second-order Lagrangian
Perturbation Theory (2LPT). The transfer function is taken from CAMB [102] assuming
ns = 0.9632 and a r.m.s. matter density fluctuation, averaged over spheres of radius equal
to 8h−1 Mpc, of σ8 = 0.828.
Unlike [74], which populate halos with galaxies according to a suitable Halo Occupation
Distribution (HOD) model, [119] directly focus on the halo catalog, with the additional
constraint of considering only halos above a certain mass threshold, 1.12 · 1013M� h−1.

Measurements of matter and halo power spectra are obtained from the PowerSpectrum

1http://www.gadgetcode.org/
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code, using the estimator presented in Chapter 3 (3.1),

P̂ (k) ≡ 1

NP (k)L3
box

∑

q∈k
|δ(q)|2 , (4.1)

where V = L3
box and the Fourier-space density δ(k) is the result of fourth-order interpolation

and the interlacing technique [150] described in Chapter 3. The sum runs over all discrete
vectors q in a bin of size ∆k with k − ∆k/2 ≤ |q| < k + ∆k/2, and NP (k) =

∑
q∈k 1

represents their total number.

The bispectrum is computed through the simple estimator of Chapter 3

B̂(k1, k2, k3) ≡ 1

NB(k1, k2, k3)L3

∑

q1∈k1

∑

q2∈k2

∑

q3∈k3

δK(q123)δ(q1)δ(q2)δ(q3) , (4.2)

where δK(k) denotes the Kronecker delta function (equal to 1 for k = 0 and 0 otherwise)
and qi1...in ≡ qi1 + · · ·+ qin . The normalisation factor

NB(k1, k2, k3) ≡
∑

q1∈k1

∑

q2∈k2

∑

q3∈k3

δK(q123) , (4.3)

corresponds to the total number of wavenumber triplets (q1,q2,q3) forming closed triangles
that lie in the “triangle bin” defined by the triplet (k1, k2, k3), with the ki’s being the bin
centers, and where each bin has a width ∆k. In the rest of the chapter we refer to the triplets
(q1,q2,q3) formed by wavevectors on the original density grid as “fundamental triangles” to
distinguish them from the “triangle bin” (k1, k2, k3).

Following the notation adopted in Paper I, we denote with s = ∆k/kf the k-bin size
and with c the center of the first bin, both in units of the fundamental frequency. We
focus on the power spectrum and bispectrum measurements with the binning scheme given
by (s, c) = (2, 2.5). Imposing a maximum wavenumber kmax = 0.09hMpc−1, the range of
validity (also known as the reach) for the tree-level model found in Paper I for the whole
Minerva data-set, an s = 2 binning leads to a total of 170 triangle bins.

The left panels of figure 4.1 show the total halo power spectrum (i.e. including shot-
noise), averaged over the full set of 298 N-body simulations (top panel) and the relative error
on the mean (bottom panel). Measurements of the cross halo-matter power spectrum (not
shown) have also been performed and used for cross-checks and independent estimates of
some of the model parameters. The right panels of figure 4.1 show instead the average total
halo bispectrum (top panel) and the relative error on the mean (bottom panel). We show all
triangle bins with increasing values for the sides subject to the constraint k1 ≥ k2 ≥ k3. The
gray vertical lines and the numbers mark those configurations where the value of k1 changes.

We should notice that the statistical uncertainty on the halo power spectrum is below
the percent level even at the largest scales considered, while for the bispectrum it is below the
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Figure 4.1: The upper panels show the mean of the measurements of the halo power
spectrum (left) and bispectrum (right) extracted from the N-body simulations; the dashed
lines represent the Poisson prediction for the shot-noise contributions of the corresponding
statistics. The lower panels show the relative standard error on the mean of the power
spectrum (left) and the bispectrum (right); the dashed lines show the relative contribution
of the Poisson prediction of the shot-noise to the total statistics. In the panels for the
bispectrum measurements, we show triangles with increasing values of the sides subject to
the constraint k1 ≥ k2 ≥ k3, with gray vertical lines marking the last configuration sharing
the corresponding value of k1.

10 percent level for most of the triangles considered, and in some cases is even sub-percent.
It is natural to expect that systematic errors related to the approximations assumed by the
N-body solver might then be larger and relevant. We refer the reader to [5] for a study of
how systematic errors affect the determination of the reach of PT models on the matter
power spectrum and bispectrum. Based on that work, we expect systematics to affect to
some extent the determination of the bias and cosmological parameters, but we assume their
effect to be overall negligible. For this reason, we are not accounting for them in our results.

4.1.2 Mock halo catalogs and covariance

The production of a high number of simulations to limit the noise in the estimate of the
precision matrix, in particular when aiming at properly sampling the cosmological parameter
space, poses a strong challenge also for current N-body simulation techniques. This reason
brought interest to approximate methods, algorithms that favour speed at the expense of
accuracy in the small-scale regime [113, 112, 111, 114] . The PINpointing Orbit Crossing
Collapsed HIerarchical Objects (Pinocchio) developed by Monaco et al. starts from a
Gaussian smoothed field and adopts 3LPT to evolve halos whose collapsing history is
described by ellipsoidal collapse.
In addition to the Minerva set of N-body simulations, we also employ a much larger set of
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10 000 mock halo catalogs, generated with the Pinocchio code. These mocks are produced
with the same characteristic and the same cosmological model as the one used for the
Minerva simulations. Furthermore, the first 300 realizations of both samples share the same
random seeds, i.e. the same initial conditions and particle positions, with the result of the
comparison of the two samples not being affected by sample variance.

We use the mock halo catalogs to estimate the covariance matrix for the joint power
spectrum and bispectrum measurements. For both the power spectrum and bispectrum,
the leading Gaussian contribution to the covariance matrix depends on the amplitude of
the total halo power spectrum. Therefore, we require the total halo power spectrum of the
mock catalogs to match the one of the N-body simulations at large scales, by adjusting the
mass threshold in the Pinocchio mocks. This is done in order to minimize the systematic
differences between the covariance matrices extracted from the mocks and the ones from the
N-body simulations, and thus to allow for an assessment of the goodness of the fit of the
theoretical models we study. The relative difference between the power spectrum variance
from the simulation and the one recovered from the Pinocchio mocks is within a few percent
while for the bispectrum variance the difference is at the 5% level (see Paper I for further
details).

In a fitting problem with Np free parameters, approximating the Nb ×Nb covariance
matrix C of the data with the sample covariance C̃ measured from a finite number Nm of
mock catalogs leads to spuriously enlarged errors for the model parameters. According to
[164, 124], the actual parameter covariance is multiplied by the factor

f = 1 +
(Nm −Nb − 2)(Nb −Np)

(Nm −Nb − 1)(Nm −Nb − 4)
. (4.4)

In our case, setting Nm = 10 000, a maximum of Nb = 233, and assuming Np = 10, gives
f = 1.023. We thus expect that our error estimates for the model parameters are accurate
to percent level.

Figure 4.2 shows the correlation matrix

rij =
C̃ij√
C̃iiC̃jj

(4.5)

for the power spectrum and bispectrum measurements estimated from the set of 10 000
mock halo catalogs. Specifically, the upper left and the lower right quadrants show the
correlations of power spectrum and bispectrum respectively, with maximum wavenumbers
kmax,P = 0.53hMpc−1 for the power spectrum and kmax,B = 0.09hMpc−1 for the bispectrum;
the other two quadrants show the cross-correlations between power spectrum and bispectrum
measurements. Off-diagonal correlations in the power spectrum are of the order of a few
percent, and tend to increase up to 15-20 % at smaller scales due to the relative importance
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Figure 4.2: Correlation matrix for the power spectrum and bispectrum measurements of the
mock halo catalogs generated with the code Pinocchio. The upper-left quadrant shows the
power spectrum correlations between the measurements in the 63 Fourier bins from kmin,P '
0.0063hMpc−1 to kmax,P ' 0.53hMpc−1; the lower-left quadrant shows the bispectrum
correlations between the measurements in the 170 triangle bins from kmin,B ' 0.0063hMpc−1

to kmax,B ' 0.09hMpc−1. The other two quadrants show the cross-correlations between the
power spectrum and the bispectrum measurements.

of non-linearities and of the shot-noise in that regime. In the bispectrum, off-diagonal
correlations reach 10-20 %, while cross-correlations between power spectrum and bispectrum
can reach 30-40% for those triangular configurations where, as one can expect, one of the
sides coincides with the power spectrum bin. Therefore, neglecting these correlations could
in principle lead to inconsistent results in a likelihood analysis. We explore the effects of
possible approximations to this covariance matrix on parameters determination in section
4.3.5.
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4.2 Model inference

4.2.1 Theoretical model

The theoretical model we consider for the halo power spectrum is essentially equivalent to the
one employed for the recent analyses of the BOSS data in [90, 39] and tested in the challenge
paper [116], albeit limited to real space. This assumes for the matter power spectrum the
one-loop expression in Standard Perturbation Theory (SPT) (see, e.g. [19]) with the addition
of a counterterm contribution accounting for the dynamics of short-scale perturbations as
proposed in the Effective Field Theory of the Large Scale Structure (EFTofLSS) [31]. The
galaxy power spectrum expression includes galaxy bias one-loop corrections, arising from
local and non-local bias operators, and taking into account bias renormalization (see [46] for
a recent review). The bispectrum model is limited to the tree-level expression, the leading
contribution in SPT. In addition, we account for the damping of the oscillatory features in the
power spectrum and the bispectrum following the IR resummation approach of [12, 27, 89].
In the following, we write explicitly the expressions we assume for both the power spectrum
and the bispectrum.

We consider the bias expansion for the galaxy overdensity δg given by

δg = b1δ +
b2
2
δ2 + bG2G2 + bΓ3Γ3 + b∇2δ∇2δ + ε+ εδδ, (4.6)

where δ is the matter overdensity, while G2 and Γ3 are the relevant non-local operators, up
to third order, that can be written as a function of the gravitational and velocity potentials
Φ and Φv as

G2 ≡
[
(∂i∂jΦ)2 − (∇2Φ)2

]
(4.7)

Γ3 ≡ G2(Φ)− G2(Φv). (4.8)

The bias expansion in eq. (4.6) includes as well the ∇2δ higher-derivative operator [108]
(that could be particularly relevant for massive halos [60, 115]), while ε and εδδ are stochastic
contributions to the galaxy density field [41, 106, 163]. We are not considering those
third order operators that only provide scale-independent corrections contributing to the
renormalization of linear bias [107, 11, 50].

The expression for the one-loop galaxy power spectrum in real space can be written as
the sum of the SPT model plus contributions due to the higher-derivative bias corrections,
the counterterm of the matter power spectrum, and stochasticity

Pgg(k) = PSPT(k) + Ph.d.(k) + Pct(k) + Pstoch(k). (4.9)
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The SPT model is explicitly given by

PSPT(k)(k) = b21 PL(k) + 2

∫
d3q [K2(q,k− q)]2 PL(q)PL(|k− q|) +

+ 6 b1 PL(k)

∫
d3qK3(k,q,−q)PL(q) . (4.10)

with PL(k) being the linear matter power spectrum, and the Kn kernels defined (in analogy
to the redshift-space kernels Zn adopted, e.g., in [19]) as

K2(k1,k2) = b1F2(k1,k2) +
b2
2

+ bG2S(k1,k2) (4.11)

K3(k1,k2,k3) = b1F3(k1,k2,k3) +
b2
3

[F2(k1,k2) + cyc.] +

+
2

3
bG2 [S(k1,k23)F2(k2,k3) + cyc.]− 4

21
bΓ3 [S(k1,k23)S(k2,k3) + cyc.] ,(4.12)

where F2(k1,k2) is the usual second-order kernel of the matter expansion in the Eistein-de
Sitter approximation of equation 2.55, while

S(k1,k2) =
(
k̂1 · k̂2

)2
− 1, (4.13)

provides the tidal term at second order. We refer the reader to, e.g. , [73] for an explicit
expression of the third order kernel F3(k1,k2,k3) of the matter density SPT solution. The
higher-derivative bias corrections lead to the galaxy power spectrum contribution

Ph.d.(k) = −2b1b∇2δk
2PL(k) (4.14)

while the EFT counterterm leads to

Pct(k) = −2b21c
2
sk

2PL(k) , (4.15)

with c2
s representing the effective sound speed of the matter fluid. Finally, we write the

stochastic contribution as

Pstoch(k) =
(
1 + αP + εk2k2

)
n̄−1 (4.16)

where the two free parameters αP and εk2 describe, respectively, constant and scale-dependent
corrections to the Poisson shot-noise term n̄−1. The integrals include loop-corrections to the
matter power spectrum ∆Pm1−loop(k), as well as other contributions coming from the galaxy
bias expansion.

We can expand equation (4.9) to obtain

Pgg(k) = b21Pmm(k) + b1b2Pb1b2(k) + b1bG2Pb1bG2
(k) + b1bΓ3Pb1bΓ3

(k) + (4.17)

+ b22Pb2b2(k) + b2bG2Pb2bG2
(k) + b2G2

PbG2
bG2

(k)− 2b1b∇2δk
2PL(k) + (4.18)
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+
(
1 + αP + εk2k2

)
n̄−1, (4.19)

where
Pmm(k) = PL(k) + ∆Pm1−loop(k)− 2c2

sk
2PL(k) (4.20)

is the one-loop model for the matter power spectrum, and where we have introduced the
individual contributions

∆Pm1−loop(k) = 2

∫
d3q [F2(q,k− q)]2 PL(q)PL(|k− q|) +

+6PL(k)

∫
d3qF3(k,q,−q)PL(q) , (4.21)

Pb1b2(k) = 2

∫
d3qF2(q,k− q)PL(q)PL(|k− q|) , (4.22)

Pb1bG2
(k) = 4

∫
d3qF2(q,k− q)S(q,k− q)PL(q)PL(|k− q|) +

+8PL(k)

∫
d3qF2(k,−q)S(q,k− q)PL(q) , (4.23)

Pb1bΓ3
(k) = −16

7
PL(k)

∫
d3qS(q,k− q)S(k,q)PL(q) , (4.24)

Pb2b2(k) =
1

2

∫
d3qPL(q)PL(|k− q|)− 1

2

∫
P 2

L(q)d3q , (4.25)

Pb2bG2
(k) = 2

∫
d3qS(q,k− q)PL(q)PL(|k− q|) , (4.26)

PbG2
bG2

(k) = 2

∫
d3qS2(q,k− q)PL(q)PL(|k− q|) . (4.27)

The constant subtracted to Pb2b2(k) in equation (4.25) ensures that all loop-corrections
converge to zero in the large-scale limit, and allows for the renormalization of the constant
shot-noise parameter αP . Notice that, whenever this model is used without any additional
information on its parameters, the EFT counterterm and the higher-derivative contribution
are perfectly degenerate. When this is the case, we can define the combination

c̃0 = b21c
2
s + b1b∇2δ , (4.28)

reducing the dimensionality of the parameter space.

We account for the smoothing of the acoustic features due to the bulk flow by imple-
menting the IR resummation [12, 27] in the power spectrum model. The starting point to
this is to split the linear power spectrum into a smooth, no-wiggle part Pnw(k), capturing
the broadband shape of the power spectrum, and a wiggly part Pw(k), describing the baryon
acoustic oscillations,

PL(k) = Pnw(k) + Pw(k) . (4.29)

We obtain this split by applying the 1D Gaussian filter method described in the appendix of
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[166]. Following [12], the wiggly part is then suppressed by a damping factor, e−k2Σ2 , with

Σ2 =
1

6π2

∫ kS

0
dq Pnw(q)

[
1− j0

(
q

kosc

)
+ 2j2

(
q

kosc

)]
, (4.30)

where the jn(x) are the spherical Bessel functions, kosc is the BAO wavenumber, with
1/kosc ' 103h−1 Mpc for the Minerva cosmology, and kS = 0.2hMpc−1 is an arbitrary
cut-off scale that separates the short and long modes; note that Σ2 is only weakly dependent
on the choice of kS (see [12]). The leading order galaxy power spectrum in real space reads
then

PLO(k) = b21

[
Pnw(k) + e−k

2Σ2
Pw(k)

]
. (4.31)

Finally, all loop corrections are computed replacing PL(k) with the leading-order power
spectrum for the matter perturbations (obtained by setting b1 = 1 in eq. 4.31) in eqs. (4.21)-
(4.27). These are then multiplied by the respective bias parameters, and finally summed to
obtain the IR-resummed loop correction ∆P 1−loop

IR . This leads to the next-to-leading order
galaxy power spectrum

PNLO(k) = b21

[
Pnw(k) + e−k

2Σ2 (
1 + k2Σ2

)
Pw(k)

]
+ ∆P 1−loop

IR (k). (4.32)

The tree-level galaxy bispectrum in real space can be written as

Bggg(k1,k2,k3) = BSPT(k1,k2,k3) +Bh.d.(k1,k2,k3) +Bstoch(k1, k2, k3) , (4.33)

where

BSPT(k1,k2,k3) = 2 b21K2(k1,k2)PL(k1)PL(k2) + cyc.

= 2b21

[
b1F2(k1,k2) +

b2
2

+ bG2S(k1,k2)

]
PL(k1)PL(k2) + cyc. ,(4.34)

while the contributions coming from the higher-derivative operator in the bias expansion
(limited to the correction to linear bias) are given by

Bh.d.(k1,k2,k3) = − 2b21b∇2(k2
1 + k2

2 + k3
3)F2(k1,k2)PL(k1)PL(k2) + cyc.

− b1b∇2(k2
1 + k2

2) [b2 + 2bG2S(k1,k2)]PL(k1)PL(k2) + cyc. .(4.35)

Although these contributions are often included only in one-loop corrections [50], we still
decide to include them because, since they depend on the same b∇2δ appearing also in
the power spectrum model, they can potentially break the degeneracy between the higher-
derivative bias and the effective sound speed in the EFT counterterm. Other higher-derivative
contributions could be included in the bispectrum model due to further operators (see e.g.
[51]). However, as shown in Paper I, the bispectrum model at tree-level is able to describe
our measurements in terms of the parameters b1, b2, and bG2 at the scales we consider.
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Therefore, while including for the moment the contributions in eq. 4.35, we neglect possible
contributions from these extra higher-derivative operators.

Finally, the stochastic contribution to the galaxy bispectrum is given by

Bstoch(k1, k2, k3) =
1 + α1

n̄
b21 [PL(k1) + PL(k2) + PL(k3)] +

1 + α2

n̄2
, (4.36)

with α1 and α2 representing corrections to the Poisson prediction.

As with the power spectrum, we perform here the IR resummation by replacing any
instance of the linear matter power spectrum PL(k) with its IR-resummed counterpart, the
leading order power spectrum PLO(k). Notice that, with respect to e.g. [89], for simplicity
we do not subtract the contribution proportional to e−2k2Σ2

P 2
w, since it is negligible at the

scales we consider.

4.2.2 Fourier-space grid effects

While the theoretical models for matter or halo correlators are functions of Fourier wavevectors
defined over an infinite volume, measurements from N-body simulations in boxes with
periodic boundary conditions are not. Therefore, care must be taken when comparing the
two, especially in our case where statistical uncertainties are significantly small due to the
large volume available.

The most consistent approach requires to average exactly the theoretical model over
each Fourier bin. In the power spectrum case this amounts to compute

P bin
gg (k) =

1

NP (k)

∑

q∈k
P th
gg (q), (4.37)

where in practice we replaced the term |δq|2/L3 with its expected theoretical mean Pgg(q)
in the expression for the power spectrum estimator (4.1). In this way the theory is eval-
uated on the wavenumbers available on the discrete grid characterising the simulation we
want to compare with. Similarly for the bispectrum model, we replace δq1δq2δq3/L

3 with
Bggg(q1,q2,q3) to obtain

Bbin
ggg(k1, k2, k3) =

1

NB(k1, k2, k3)

∑

q1∈k1

∑

q2∈k2

∑

q3∈k3

δK(q123)Bth
ggg(q1,q2,q3). (4.38)

Clearly this approach is numerically demanding, particularly in a likelihood analysis
that requires this evaluation at each step of the Markov chain. One common alternative is
to evaluate the theoretical model at “effective” values of the Fourier wavenumbers, often
computed as averages over the bin, both for the power spectrum and the bispectrum. For
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the power spectrum this definition is unambiguous and unique for any bin of center k,

keff(k) =
1

NP (k)

∑

q∈k
|q|, (4.39)

and allows for a fast evaluation of the theoretical model as

P eff
gg (k) = P th

gg (keff). (4.40)

However, for the bispectrum the definition of average Fourier wavenumbers is not unique.
Among a couple of possible choices tested in Paper I, the one performing best is the one
defined on sorted Fourier wavevectors and defined as follows

keff,l(k1, k2, k3) =
1

NB(k1, k2, k3)

∑

q1∈k1

∑

q2∈k2

∑

q3∈k3

δK(q123) max(q1, q2, q3)

keff,m(k1, k2, k3) =
1

NB(k1, k2, k3)

∑

q1∈k1

∑

q2∈k2

∑

q3∈k3

δK(q123) med(q1, q2, q3)

keff,s(k1, k2, k3) =
1

NB(k1, k2, k3)

∑

q1∈k1

∑

q2∈k2

∑

q3∈k3

δK(q123) min(q1, q2, q3). (4.41)

In real space, the effective wavenumbers provide a fast evaluation of the theoretical prediction
as

Beff
ggg(k1, k2, k3) = Bth

ggg (keff,l, keff,m, keff,s) . (4.42)

We also consider, as an additional approach, an extension to the effective wavenumbers
prescription based on a Taylor expansion of the theoretical model. For the power spectrum
we can write, for instance,

Pbin(k) =
1

NP (k)

∑

q∈k

∞∑

n=0

1

n!
P (n)(keff)(q − keff)n ' P (keff) +

1

2
P ′′(keff)µ2(k) ≡ Pexp(k)

(4.43)
where the Taylor series has been truncated to include up to the second-order term and where

µ2(k) ≡ 1

NP (k)

∑

q∈k
(q − keff)2 . (4.44)

We refer to this approach as an “expansion” to the effective approach. Details of its
implementation to the bispectrum tree-level predictions can be found in Appendix A.1.

Differences between these approximations and the bin-average of the theoretical model are
typically larger for small values of the wavenumbers, and in the bispectrum case, particularly
pronounced for squeezed triangular configurations. In general, a larger bin width also leads
to a worse agreement with the case involving the full bin-average.
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An alternative approach to account for grid effects employs the same expressions in eqs.
(4.37) and (4.38), but where the sums over Fourier wavevectors are replaced by integrals
(see [51] for a fast implementation for the bispectrum). However, we do not consider this
approach in our analysis, since this introduces systematic errors comparable to the statistical
uncertainties of our datasets on a wide range of scales, as well to the systematics of the
effective wavenumbers approach, see Appendix A.1.

4.2.3 Bias relations

In our analysis we consider some relations between the bias parameters in order to reduce
the dimensionality of the parameter space. These relations are helpful in the analysis of
the real-space power spectrum alone since large degeneracies between bG2 and bΓ3 make the
determination of both bias and cosmological parameters difficult. As shown in section 4.3.7,
this is less of a problem in the joint fit of power spectrum and bispectrum, since the latter
provides useful constraints on bG2 . Still, reducing the dimensionality of the bias parameter
space can in general provide tighter constraints on the cosmological parameters, as long as
it does not introduce systematic errors relevant for the level of statistical uncertainty that
characterises our measurements.

We test the following relations between bias parameters with joint fits of power spectrum
and bispectrum:

• the relation b2(b1, bG2) from [98], given by

b2 = 0.412− 2.143 b1 + 0.929 b21 + 0.008 b31 +
4

3
bG2 ; (4.45)

this is a fitting formula from measurements in separate universe simulations, obtained
for values of b1 in the range (1, 10); notice that the 4/3 bG2 term in the equation
accounts for the different definition of the bias expansion adopted in [98];

• the relation bG2(b1) from [49],

bG2 = 0.524− 0.547 b1 + 0.046 b21 , (4.46)

obtained as a quadratic fit to the excursion set prediction of the tidal bias in [154];

• the relation bΓ3(b1, bG2) derived in [50, 49] assuming conserved evolution of the galaxies
after formation (co-evolution), that in our basis becomes

bΓ3 = −1

6
(b1 − 1)− 3

2
bG2 . (4.47)

While this is not a comprehensive list of all possible relations proposed in the literature,
they represent a starting point of possible relations to explore. We do not consider the
local-Lagrangian relation between bG2 and b1 [33, 13] since different studies have shown its
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limits [97, 2]; moreover, in the bispectrum-only analysis of Paper I, it is shown to lead to
systematic errors in the constraints on the bias parameters, at least when the full simulation
volume is considered.

All these bias relations have been derived and studied in the context of distributions of
dark matter halos. While their validity is expected to extend as well, to some degree, to
galaxy measurements (see, e.g. [16, 172]), we will leave the quantitative exploration of such
topic to future work.

4.2.4 Likelihood function

As for the analysis in Paper I, we fit all power spectrum and bispectrum measurements from
the Minerva simulations together, assuming that they are independent. This means that
the total log-likelihood we use to sample the parameter space is given by

logLtot(θ) =
∑

α

logLα(θ|Xα), (4.48)

where the subscript α runs over all realizations, θ is the parameter vector, and Xα is the
dataset of realization α. The dataset Xα represents either the data vector for the power
spectrum, the one for the bispectrum, or the combination of the two. For the individual
logLα, we use two different likelihood functions, depending on the type of covariance used.
When the covariance is chosen as the sample covariance of the measurements from the mock
catalogs, we assume the Sellentin & Heavens likelihood [151] to account for the residual
uncertainties in the numerical estimation of the precision matrix due to the finite number of
mocks. The adoption of Sellentin & Heavens likelihood model reduces the broadening of the
posteriors which is largely overestimated by the Gaussian approximation when the Hartlap
factor (4.4) is applied, and when the length of the datavector becomes comparable to the
dimension of measurement sample. In the case of a theoretical prediction for the covariance
(diagonal assuming Gaussianity), we assume the usual Gaussian likelihood. In both cases,
the individual likelihood Lα can be written as a function of the chi-square of the model for
each single realization α. This allows for a fast evaluation of the likelihood when only bias
parameters are varied.

4.2.5 Likelihood evaluation

We perform two types of analyses: in the first, the cosmological parameters are fixed
to the values used to run the N-body simulations and we perform tests of the different
implementations and approximations of the theoretical model; in the second, we also vary
three cosmological parameters in order to assess if possible model systematics can bias the
recovered cosmological information.

When the cosmological parameters are fixed, the parameter space is given by the set of 10
parameters {b1, b2, bG2 , bΓ3 , c

2
s, b∇2δ, αP , α1, α2, εk2}. We refer to this choice as the “maximal
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Parameter Prior (uniform)

b1 [0.9, 3.5]

b2 [0, 4]

bG2 [−4, 4]

bΓ3 [−10, 10]

c̃0 [h−2 Mpc2] [−100, 100]

b∇2δ [h−2 Mpc2] [−100, 100]

εk2 [h−2 Mpc2] [−10, 10]

αP [−1, 1]

α1 [−1, 1]

α2 [−1, 1]

As/A
fid
s [0.0004, 4.]

h [0.4, 1.]

Ωmh
2 [0.07224, 0.2224]

Table 4.1: Uniform prior intervals of the model parameters.

model”, since we explore the possibility of reducing the number of parameters by setting
some of them to zero, or by imposing the relations described in section 4.2.3. The priors
on these parameters are assumed to be uniform, and are given in table 4.1. In addition,
we consider varying the power spectrum amplitude parameter As, the Hubble parameter
h, and the relative matter density parameter ωm = Ωmh

2. Including these cosmological
parameters, and in particular As, introduces degeneracies that can hamper the estimation
of the posterior with Monte Carlo Markov Chains (MCMC). For this reason, we define the
relative amplitude parameter A ≡ As/Afid

s . Any n-th order operator O scales proportionally
to An/2. In order to reduce the degeneracies between the bias parameters and the amplitude
of the scalar perturbations, we redefine the coefficients bO as follows:

b̃1 = A1/2 b1, b̃2 = Ab2, b̃G2 = AbG2 , b̃Γ3 = A3/2 bΓ3 , (4.49)

adopting the same uniform priors. We keep the tilt of the scalar power spectrum ns and the
baryon content Ωb fixed, as these parameters are very well constrained by CMB experiments.

We evaluate posterior distributions by means of MCMC using the code emcee [57]. With
fixed cosmological parameters, we evaluate the posterior distribution by simulating 100
dependent walkers; moves are performed using the affine invariant “stretch move” ensemble
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method from [72] with parallelization, as described in [57]. We run chains for a number
of steps equal to min(50 000, 100τ), where τ is the integrated autocorrelation time. With
our setup, we can run chains of this type in approximately 5 minutes on a single core of a
laptop. When we include cosmological parameters, we evaluate the posterior distribution by
simulating independent chains; moves are performed using a Metropolis-Hastings sampler with
steps defined by a Gaussian proposal function, with the parameters covariance determined
iteratively running chains a few times. MCMC simulations are run until convergence defined
by the Gelman-Rubin diagnostic [63], assuming a precision ε = 0.05 and a confidence
percentile of 95%. The change in sampling method is due to the longer running times
when including cosmological parameters. At each step, we call the Boltzmann solver CAMB
[102] to compute the linear power spectrum, we compute loop corrections to the power
spectrum using a custom implementation based on the FAST-PT code [109], and perform
our IR-resummation routine. Grid effects for both power spectrum and bispectrum are
accounted for by adopting the approximated approach outlined in appendix A.1. This allows
us to have a likelihood evaluation (and thus one MCMC step) in ∼ 1.5 s, and therefore
to reach convergence in a relatively short time, of the order of 10 hours (running each
independent chain on a separate core at the same time). Marginalized one-dimensional and
two-dimensional posterior distributions are shown in triangle density plots generated through
the code GetDist [101].

4.2.6 Goodness of fit and model selection

As a way to compare the quality of the fits we perform, we compute the posterior predictive
p-value ppp and the posterior-averaged reduced chi-square 〈χ2

ν〉post. For details on the
particular choice of these diagnostics, we redirect the reader to Paper I; for the purposes
of the present work, it suffices to say that we consider a value of ppp ≥ 0.95 to signal a
failure of the model in reproducing a good fit to the data. We compare instead 〈χ2

ν〉post to
the corresponding 95 percent (upper) confidence limit associated to a number of degrees of
freedom equal to the total number of data points fitted: when 〈χ2

ν〉post is greater than this
value, the model fails to describe the data.

However, our main goal is to extract unbiased values of the fitted parameters. For the
cosmological sector, the systematic shift can be easily quantified by comparing the results
of the fit to the input values used in the N-body simulations. Conversely, this procedure
cannot be followed for the bias parameters as we do not know their values a priori. For the
sake of understanding whether our analysis leads to biased estimates for the bias sector, we
thus attempt to measure b1 from the ratio between the halo-matter cross-power spectrum
Phm(k) and the matter auto-power spectrum Pmm(k). In order to obtain an estimate of b1
which is independent of our likelihood pipeline, we fit the large-scale behaviour of the ratio
Phm(k)/Pmm(k) assuming for the cross-power spectrum the model

Phm(k) = (b1 + ck2)Pmm(k) (4.50)
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Figure 4.3: Average of the ratios between the cross halo-matter power spectrum and the
matter power spectrum over the full set of Minerva simulations. The red line is the best fit
of the data up to kmax = 0.023hMpc−1 with a constant function; the solid green line is the
best fit of the data up to kmax = 0.044hMpc−1 with a constant plus a k2-dependent term.
The green dashed line shows the best-fit value for b1 with this second fit function. Shaded
regions show the errors on the best-fit values for b1.

where c is a constant and the k2-correction is a way to partially account for non-linearities
detectable even at the largest scales, see figure 4.3. In what follows, we refer to the
estimate of b1 derived assuming this model as b×1 . Using chi-square minimization, we find
b×1 = 2.7081 ± 0.0012, which we use as a reference value2 to draw conclusions about the
unbiasedness of the posterior distributions extracted from the MCMC runs discussed in
section 4.3. In practice, we use b×1 as if it was the true value for b1.

A note is in order concerning this test. Eq. (4.50) is not equivalent to the full one-loop
expression in perturbation theory, given the bias expansion in eq. (4.6). While the two
models share the same large-scale limit, they describe non-linearities in different ways, which
could lead to a slightly different value of the linear bias. For this reason, we will not conclude
that the results of our main analysis are biased unless they lie more than two standard
deviations away from the best-fitting value for b×1 . Note that our estimate for b×1 is only
used to measure the bias of our fits and does not enter our fitting procedure as a prior.

2It is worth stressing that a different fit for b×1 was used in Paper I, where we fit a constant linear bias
coefficient to the ratio Phm(k)/Pmm(k) up to kmax = 0.023hMpc−1. This leads to a best-fit value almost 3σ
away from (and thus inconsistent with) our reference b×1 . In any case, due to the larger relative uncertainties
in Paper I, the posteriors of the bispectrum-only analysis are compatible with both values in the same range
of validity of the model.
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An alternative approach in order to test for the consistency of our results with Phm(k)

would be to include the cross-power spectrum in the data vector for the likelihood analysis
(see, e.g. [49]). However, this would require the full covariance for all correlators, including
all cross-covariances, and in our case this is not available.

For the comparison between different models and different assumptions on the bias
parameters, we take advantage of the Deviance Information Criterion (DIC) computed from
the MCMC simulations as a model-selection statistic. Again, we refer the reader to Paper I
for a brief introduction to the DIC and a description of our implementation.

4.3 Results

We now present the results of our analysis of the halo power spectrum and bispectrum
measurements using, unless otherwise stated, the full volume of the combined Minerva

simulations of about 1000h−3 Gpc3. We stress that, while clearly out of reach for even future
surveys, such large volume is still useful to explore and quantify systematic errors from both
the model and the methodology.

4.3.1 Selecting the fiducial model

We first perform a joint analysis of power spectrum and bispectrum adopting the models in
equations (4.19) and (4.33) as a function of 10 free parameters: 5 bias coefficients, one EFT
counterterm, two stochastic parameters for the power spectrum, and two for the bispectrum.
This is what we introduced as the maximal model. Figure 4.4 shows the corresponding 1D and
2D marginalized posteriors with different values of the maximum wavenumber for the power
spectrum, kmax,P = 0.15, 0.20, 0.25 and 0.30hMpc−1, while for the bispectrum we consider
the fixed maximum wavenumber of kmax,B = 0.09hMpc−1, this being the reach for the
tree-level bispectrum model as shown in Paper I. In the rest of this chapter, unless otherwise
stated, we keep kmax,B fixed to this value. The recovered value of b1 is consistent, well
within the 95% credibility regions, with the reference value from the cross-power spectrum
b×1 , shown with its own uncertainty by the vertical gray band. We observe that the credible
regions for the parameters bΓ3 , c2

s, αP , and εk2 shrink as a function of kmax,P. Note that these
parameters do not appear in the bispectrum model, and thus are constrained by the power
spectrum alone, so that their constraints improve with larger kmax,P. On the other hand,
the constraints on the parameters b2, bG2 , b∇2δ, α1, and α2 do not improve as a function of
kmax,P. The two shot-noise parameters are in fact only present in the bispectrum model (and
as such their constraints do not improve with increasing kmax,P, since kmax,B is kept fixed),
while the others appear in the models for both power spectrum and bispectrum, suggesting
that they are mostly constrained by the bispectrum.

Just like in the bispectrum-only analysis of Paper I, α2 is completely unconstrained inside
the prior, and α1 is consistent with zero at 1σ level. Moreover, while the bispectrum appears
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to be able to partially break the degeneracy between b∇2δ and c2
s, b∇2δ is still consistent with

zero. Finally, also the k2 correction to the power spectrum stochasticity is consistent with
zero within the 95 percent credibility regions, although only for kmax,P = 0.15hMpc−1. All
of the other parameters are either required by the data, or significantly different from zero.

In order to explore the possibility of a smaller parameter space, we use the DIC to assess
the performances of a number of different reductions of the maximal model where a subset of
the parameters is set to zero. Figure 4.5 shows the results of the comparison of the following
cases:

• the maximal model,M10, with all 10 parameters left free to vary;

• the maximal model,M9, where b∇2δ has been set to zero;

• the maximal model,M8, where both b∇2δ and α2 have been set to zero;

• the maximal model,M7,a, where b∇2δ, α2 and εk2 have been set to zero;

• the maximal model,M7,b, where b∇2δ, α1 and α2 have been set to zero.

In the left panel, we show the difference in DIC between each model and the maximal model
as a function of the kmax of the power spectrum (kmax,B being fixed at 0.09hMpc−1). The
right panel shows the number of effective parameters pV constrained by each model, defined
as half of the posterior variance of the deviance D = −2 logLtot [62], again as a function of
kmax,P.

The large degeneracy between the higher-derivative bias b∇2δ and the EFT counterterm
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amplitude c2
s is such that setting b∇2δ = 0 allows for a large reduction of the DIC by ∼ 15 at

all values of kmax considered. For this reason, in all subsequent analysis we set b∇2δ = 0,
and thus ignore the higher-derivative bias correction in the bispectrum model, while in the
power spectrum model it remains as degenerate with the EFT counterterm. In the following,
we consider the combination in eq. (4.28). Setting α2 to zero does not improve by much the
DIC, however, since α2 is unconstrained and prior dominated, it allows for the number of
effective parameters pV to be consistent with the number of model parameters.

A further reduction to a seven-parameters model can be achieved by setting either α1

or εk2 to zero, in addition to b∇2δ = α2 = 0. While α1 = 0 decreases the DIC by ∼ 5 at
all values of kmax,P considered, setting εk2 = 0 leads to a comparable improvement only for
kmax,P < 0.2hMpc−1, but this improvement is rapidly lost for larger Fourier modes. In fact,
at small scales the k2 stochastic term turns out to be relevant, perhaps accounting as well
for additional corrections beyond the one-loop model we assumed.

In what follows we considerM7,b as the reference bias model, being the one defined by
the seven parameters

θreference = {b1, b2, bG2 , bΓ3 , c̃0, αP , εk2}, (4.51)

with b∇2δ, α1, and α2 set to zero in the bispectrum model. For this case the number of
effective parameters shown in the right panel of figure 4.5 matches the number of free
parameters over the entire kmax,P interval explored.

4.3.2 Analysis with the reference model

Figure 4.6 shows the results obtained fitting the reference model to the power spectrum data
and to the combination of power spectrum and bispectrum data. The left column of panels
shows the mean of the posteriors of the model parameters as a function of kmax,P (kmax,B

is again set to 0.09hMpc−1). Darker shaded regions correspond to the central 68 and 95
percent ranges.

The two outcomes are in general agreement, for the most part because of the large
uncertainties characterising the posteriors from the power spectrum-only analysis. When
fitting the power spectrum alone, we notice that some of the priors turn out to be informative,
with b2 being unconstrained from below, and with εk2 being basically unconstrained at small
values of kmax,P, where the k-dependent stochastic contribution is expected to be negligible.
Moreover, the recovered value of b1 mildly runs as a function of kmax,P, but this feature
is not present in the joint analysis. In any case, the posteriors of b1 in the two fits are in
general agreement with each other, and they also agree with the value of b×1 from the cross
halo-matter power spectrum, albeit at 2σ in the case of the joint-fit. However, considering
the method used to fit b×1 (see section 5.4.3), we do not deem this deviation to be significant.

The top-right panels show the goodness-of-fit for the power spectrum only (in blue) and
for the combination of power spectrum and bispectrum (in red). Both the posterior-averaged
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reduced chi-square and the ppp agree in assessing that the power spectrum model provides
a good fit to the data up to kmax,P ∼ 0.30hMpc−1, while in the case of the joint fit the
model seems to provide a good fit of the data even beyond that. By direct inspection of
the total posterior-averaged chi-squares, compared to the one of a bispectrum-only fit at
kmax,B = 0.09hMpc−1, we suspect that this apparent inconsistency is likely due to the large
number of triangles in the bispectrum, that reduce the relative weight of the power spectrum
in the evaluation of the joint fit.

The bottom-right panels show 1D and 2D marginalized posteriors for the power spectrum-
only fit and for the joint fit, with kmax,P = 0.30hMpc−1. A number of results are worth
noticing. The addition of the bispectrum tightens the constraints on b1 by a factor of ∼ 3.4,
and is able to break the degeneracies between b2 and bG2 , and between bG2 and bΓ3 , thus
providing a significant improvement in constraining higher-order bias parameters. The
constraints on the effective counterterm c̃0 are shrunk by almost a factor of two, while the
ones on αP and εk2 by almost a factor of 3.5.

Figure 4.7 shows the comparison between the model from the MCMC fit and the
measured data of power spectrum and bispectrum. We compute the posterior-averaged
models for both correlators, and then plot the mean residuals with the data, normalized by
the standard deviation. The blue markers show points where the model is computed from
the posterior of a power spectrum-only fit, while the red markers indicate that the model is
computed as the average over the posterior of a joint fit of power spectrum and bispectrum;
for the fits in this plot, we choose kmax,P = 0.30hMpc−1 and kmax,B = 0.09hMpc−1. In the
plot showing the residuals for the bispectrum, we mark with empty squares the residuals
computed with a posterior-averaged model from a bispectrum-only fit. The two cases relative
to the power spectrum are consistent up to the kmax,P of the fit, which is as well close to
the maximum Fourier wavenumber up to which the model is expected to work. As shown
by the residuals in the lower panel of figure 4.7, a bispectrum model determined as the
posterior-average of a power spectrum-only fit is visibly not able to reproduce the bispectrum
data; notice however that the model from the joint fit is largely consistent with the model
from a bispectrum-only fit. Since we average the models over the posterior of the MCMC
runs, and the posterior from the joint fit is consistent with the posterior from the power
spectrum-only fit, we suspect that the observed deviation is due to the additional information
provided by the bispectrum on nonlinear bias.

4.3.3 Testing bias relations

We now turn to the performances of the bias relations in eq.s (4.45), (4.46), and (4.47). We
take our reference model as a starting point and impose each of these relations to reduce
to six the number of free parameters. We assume that all relevant halo bias coefficients
are physical parameters, consistently describing nonlinear corrections in both the power
spectrum and bispectrum, as opposed to simple nuisance parameters. Therefore, any valid
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physical relation among them should not, in principle, introduce any significant deviation in
their recovered values. The results are shown in figure 4.8. In general, all relations appear to
fail, to some extent, in reproducing the values of the parameters obtained with the reference
model. We should remember that this test takes advantage of the full simulation volume,
well beyond the typical size even of future redshift surveys. It is interesting to notice how
the bΓ3(b1, bG2) relation (4.47) introduces a notable dependence on kmax,P in the posteriors
for parameters like b1 and b2. On the other hand, the bG2(b1) relation (4.46) is recovering
correctly the expected value of b1, but leading to differences as large as 30% on parameters
as b2. These inconsistencies appear even more significant in the 2D marginalised posteriors
in the bottom right inset obtained for kmax,P = 0.3hMpc−1.

In order to assess the relevance of the systematic errors induced by the bias relations
in a more realistic context, we repeat the same analysis for a smaller effective volume of
Veff = 6h−3 Gpc3. The effective volume of the full Minerva dataset is given by (e.g. [153])

V N−body
eff (k) =

[
n̄Phh(k)

1 + n̄Phh(k)

]2

VN−body, (4.52)

where VN−body = 298 × (1.5h−1 Gpc)3 ' 1000h−3 Gpc3. We then choose the reference
kr = 0.1hMpc−1, and then compute the factor η = V N−body

eff (kr)/6h
−3 Gpc3, that we use to

rescale the covariance matrix. Finally, we rerun the analysis with the rescaled covariance
matrix. The results are shown in figure 4.9. Notice that, in this case, the goodness-of-fit
statistics we have defined cannot be used anymore to determine the range of validity of the
model, because of the artificial rescaling of the covariance. For this reason, we simply assume
the range of validity to be kmax,P = 0.30hMpc−1. With this smaller effective volume, all bias
relations are consistent with the reference analysis and they all provide tighter constraints
on one or more parameters, with the b2(b1, bG2) fitting function, in particular, leading to the
smaller uncertainty on the linear bias b1.

In order to further compare the performance of the bias relations considered, we compute
the difference in DIC with respect to the reference analysis, still using the smaller effective
volume of 6h−3 Gpc3, and show them in figure 4.10. In the range of validity of the model, all
bias relations are favoured with respect to the reference model with the eq. (4.46) providing
the largest improvement (largest negative difference ∆DIC) over the whole range in kmax.
The bΓ3(b1, bG2) relation (4.47), instead, appears to improve the fit only at the largest scales.

4.3.4 Effects of binning approximations

We now study how different ways to account for Fourier-space grid effects in the theoretical
models impact parameter posteriors. Our reference case is the full bin-average of the
theoretical predictions of both the power spectrum and the bispectrum, eq.s (4.37) and
(4.38), which we compare to two, more efficient alternatives. We refer to the first as the
“effective wavenumbers” approach, eq.s (4.40) and (4.42), where the theoretical predictions
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are evaluated on the average Fourier wavenumbers, and to the second, based on a Taylor
expansion about the effective method approximation, as the “expansion” approach, eq.s (4)
and (9), both truncated to include up to second-order terms.

The comparison, which considers the full volume of all Minerva simulations, is shown
in figure 4.11. Even in this rather challenging test, the results for the expansion method
(in green) are essentially indistinguishable from the results assuming the exact binning
(in blue, but exactly underneath the green areas). The effective approach shows instead
some significant discrepancies: the posterior of the linear bias b1 is clearly inconsistent with
the value measured from the cross-to-matter ratio at all values of kmax,P, and moreover
significant tensions are present for most of the parameters, particularly at larger scales. The
2D marginalized posteriors also show these strong deviations, with the b2 − bG2 contours
being completely inconsistent in the two cases.

These differences are evident because of the large volume considered and the correspond-
ing small statistical uncertainties in both the power spectrum and the bispectrum. Still,
such effects are typically larger for higher-order multipoles in redshift space and it is inter-
esting to explore alternative, efficient methods to deal with Fourier-space discreteness. The
expansion method allows us to compute an excellent approximation of the full bin-average
of theoretical predictions in a time of the same order of magnitude needed for an evaluation
with the effective method: we use it in section 4.3.7 to run the MCMC simulations where
the parameter space includes cosmological parameters, since in this case the exact binning
approach for the bispectrum would be impracticable.

4.3.5 Covariance approximations

So far, all results assumed the covariance matrix for power spectrum and bispectrum,
including the cross-covariance, estimated from the full set of 10 000 Pinocchio mocks. Such
a large number of mocks is very often not available and it is necessary to resort to various
approximations for the data covariance properties. We consider specifically three different
cases in addition to our reference full covariance. In the first we exclude the cross-covariance
between power spectrum and bispectrum, retaining the full individual covariance matrices
for both statistics. The other two cases both consider the approximation that reduces the
covariance matrix to its diagonal, requiring simply an estimate of the variance of power
spectrum and bispectrum. In one case, this is estimated numerically from the mocks (and
denoted as mock variance) while in the other we compute its Gaussian prediction from the
power spectrum nonlinear, theoretical model assuming the bias parameters given by the
best-fit values of the reference analysis (theoretical variance).

The comparison is shown in figure 4.12. All approximations are consistent with the
reference case starting from the mildly non-linear regime, kmax,P & 0.15hMpc−1. At larger
scales, we notice some differences between the reference case and all approximations, including



Chapter 4. Toward a robust inference method for LSS observables 80

the one excluding only the cross-covariance. This suggests that this contribution has some
impact in the recovery of unbiased estimates of the model parameters, at least at the 1σ

level. This is also consistent with the fact that these cross-correlations are expected to be
quite large, with some of them being of the order of 40%. We remind the reader that the
single-parameter posteriors are shown as a function of kmax ≡ kmax,P, denoting the power
spectrum range only, while for the bispectrum we fixed kmax,B = 0.09hMpc−1. It is possible
that if both statistics covered the same range of scales these effects would appear at larger
values of k.

Looking at goodness-of-fit metrics, the covariance approximations determined from the
mocks, including the case of the sole variance, provide estimates of the range of validity of
the model quite close to our reference case. The theoretical Gaussian variance, however,
does not provide a good fit at any of the scales shown in the plot. Since the reduced
chi-square is nearly constant as a function of kmax, one possible explanation might be
that the Gaussian approximation provides a bad estimate of the full bispectrum variance.
Indeed, by direct comparison, we observe that the theoretical Gaussian variance is a few
percent lower with respect to the Pinocchio variance, and that differences reach 20%

for some squeezed triangles, even at relatively large scales. It is possible that for such
configurations the non-Gaussian contributions can be particularly large, but we leave this to
future investigations.

4.3.6 Triangle selection criteria

In the power spectrum case, the range of validity of a given theoretical model is usually
simply determined in terms of the largest wavenumber, kmax,P, where the model provides a
good fit to the data. In the bispectrum case, each value of kmax,B corresponds to a subset of
triangles and we can expect a given theoretical model to perform more or less well on these
configurations characterised by the same largest side but different shapes.

This is illustrated in figure 4.13, where we show the mean residuals with respect to the
model, normalized to the standard error on the mean, of all the measured bispectrum bins up
to the maximum wavenumber k1,max = 0.174hMpc−1, assuming a posterior-averaged model
from the reference joint fit. Each panel shows a subset of triangles characterised by the same
value for the largest side k1, shown as a function of the ratios k2/k1 and k3/k1 so that at the
top-left we have squeezed configurations, at the top-right equilateral configurations, while
at the bottom we have collinear, isosceles triangles (k1 ' 2 k2 ' 2 k3). So far we assumed
for all our analysis a kmax,B = 0.09hMpc−1. Including the whole subset of triangles with
the next value of the largest side k1 > kmax,B leads to the failure of the model to correctly
describe the additional data, but we can expect this to happen first for nearly equilateral
configurations, while a good fit can still be recovered for generic collinear configurations, i.e.
with k1 ' k2 + k3.
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We want to check if different selection criteria based on other parameters than the sole
kmax,B could lead to sensibly improved constraints on the model parameters. To this end we
consider the following two triangle selection criteria:

• we choose only triangles satisfying the condition k1 + k3 ≤ k̃ for a fixed value of k̃, and
study parameter constraints as a function of k1;

• we choose only triangles satisfying the condition k1 + k2 ≤ k̃ for a fixed value of k̃, and
study parameter constraints as a function of k1;

Both choices, that always assume k1 ≥ k2 ≥ k3, allow us to remove from the analysis nearly
equilateral triangle bins, while keeping a subset of triangles with a different shape, as we
include smaller scales by increasing k1. This means that, when compared to the usual
analysis, these selections lead to a smaller total number of triangles for the same value of
k1 = kmax,B, but, at the same time, they should provide a good fit for larger values of kmax,B.

Figure 4.14 shows (in blue) the results of the analysis of the bispectrum alone as a
function of kmax,B as usually performed, compared with the same analysis where an additional
condition is imposed to the combination k1 + k3, reducing the total number of triangles. In
particular we consider k1 + k3 ≤ 0.14hMpc−1 (red) and k1 + k3 ≤ 0.18hMpc−1 (green). We
notice that the stricter condition k1 + k3 ≤ 0.14hMpc−1 allows the inclusion of only a few
more configurations w.r.t. those included in the standard result for kmax = 0.09hMpc−1. In
fact, for kmax > 0.13hMpc−1 the posteriors do not change as no additional configuration can
satisfy the condition and the quality of the fit remains acceptable for all the selected triangles.
Comparing these results at kmax = 0.14hMpc−1 with the usual ones at kmax = 0.09hMpc−1

we find a non-negligible improvement on the parameters constraints of almost 50%. Imposing
the condition on the sum k1 + k3 with the larger value k1 + k3 ≤ 0.18hMpc−1 allows for
too many triangles not properly described by the model to be included, leading quickly to
significant systematic errors on the recovered parameters.

In figure 4.15 we consider instead a condition on the sum k1 + k2. In this case, both k1 +

k2 < 0.14hMpc−1 and k1 +k2 < 0.18hMpc−1 do not allow for any additional configurations
for kmax > 0.12hMpc−1 and in both cases we retrieve constraints on b1 consistent with
the expected value b×1 . However, only the looser condition k1 + k2 < 0.18hMpc−1 provides
better constraints, of about 30%, than the standard case with kmax = 0.09hMpc−1.

We expect the introduction of selection criteria of this kind to be particularly relevant
for constraining non-Gaussian initial conditions of the local type, where the signal peaks in
the squeezed configurations [149]. We limit ourselves to remark, here, that the improvement,
even when small, is obtained at no additional cost.
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4.3.7 Inference of cosmological parameters

We finally present the results for the joint fit of the halo power spectrum and bispectrum in
real space aimed at recovering unbiased estimates of the cosmological parameters. We use
here the total volume of the Minerva simulations. The theoretical model coincides with
the reference model depending on the seven bias and shot-noise parameters in eq. (4.51). In
this case, however, also the three cosmological parameters As, h, and ωm are let free to vary
within a range specified by uniform priors (see table 4.1). Notice that, in practice, the bias
parameters that we vary are the ones defined in eq. (4.49) (but we show the original ones in
the figure). This alleviates the strong degeneracy between e.g. b1 and As, and thus speeds
up the convergence of the MCMC runs. All parameters are varied consistently at each step
of the MCMC runs, the theoretical model is recomputed fully, and Fourier-grid effects are
accounted for by means of the expansion method described in appendix A.1. The covariance
matrix is again the one estimated from the Pinocchio mocks.

Figure 4.16 shows the parameter constraints on the model parameters for four different
values of kmax,P = 0.15, 0.20, 0.25, 0.30hMpc−1 (for the bispectrum, we still set kmax,B =

0.09hMpc−1). The posteriors for the cosmological parameters are nicely consistent with
the input values used to run the N-body simulations, marked with gray lines, and the one
for the linear bias b1 again agrees with the value measured from the cross halo-matter
power spectrum. This agreement is clearly visible in the 2D marginalized posteriors as well.
Moreover, all the other parameters are still perfectly consistent with the values extracted
from the reference analysis with fixed cosmological parameters. It is also worth noticing
how, regardless of the degeneracies that might be present between bias and cosmological
parameters, the posteriors for the bias parameters are still stable as a function of kmax,P.
Similar conclusions can also be drawn for the parameter c̃0 and for the stochastic parameters.

In figure 4.17, we compare the constraints obtained fitting the power spectrum only
(up to kmax,P = 0.30hMpc−1) and performing a joint fit of the power spectrum and the
bispectrum (for the latter we use kmax,B = 0.09hMpc−1). The fiducial model discussed in
section 4.3.2 is fitted to the data but, once again, we let the cosmological parameters As, h,
and ωm vary. Strong parameter degeneracies are present in the power spectrum-only fit and
the Markov chains do not satisfy the formal convergence criterion we use even after very
many steps. Therefore, it is possible that the size of the blue constraints in the figure are
underestimated, although we suspect not by much (based on multiple MCMC chains). The
inclusion of the bispectrum to the analysis, even at large scales, tightens the constraints on
the cosmological parameters: constraints on As are reduced by a factor 3.3, while the ones
on h and ωm by a factor of roughly 2.

The data set we have analysed does not capture the full complexity of a galaxy redshift
survey. Our setup, based on simulations within periodic boxes, at fixed redshift, and in real
space, still lacks a proper modelling (in the observables, and possibly in the covariances) of
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non-linearities arising from redshift-space distortions, and of mode-coupling effects due to
the survey window function. To an extent, this might result in a minor improvement on
the constraints of the model parameters when the bispectrum is included in a realistic data
analysis. However, given the unprecedentedly large volume we considered (1000h−3 Gpc3,
almost twice the volume analysed in the challenge paper of [117]), our results form a very
stringent test of halo bias models, as well as a strong consistency check between perturbative
models and the non-linear dynamics simulated by N-body solvers. They also provide
strong evidence that the perturbative bias treatment and the counterterms do not distort
the posterior distribution of the cosmological parameters, at least in real-space. We thus
conclude that a joint likelihood analysis of the power spectrum and the bispectrum should
be able to provide unbiased estimates for the cosmological parameters, including information
on the accelerated expansion of the Universe.

4.4 Conclusions

We presented a joint likelihood analysis of the real-space halo power spectrum and bispectrum
extracted from 298 N-body simulations covering a total volume of roughly 1000h−3 Gpc3.
We compared the data to a perturbative model at one-loop for the power spectrum and
at tree-level for the bispectrum. The model implementation, limited here to real space, is
essentially the same that has been recently applied to the analysis of the BOSS data in [90].
In order to estimate the full non-linear covariance matrix for both observables along with
their cross-covariance, we used measurements from 10 000 mock halo catalogs generated with
the Pinocchio code. We can summarize the main results of our analysis as follows.

• Using Bayesian model selection, we identify the optimal set of free parameters that
can be constrained by the data (with a fixed background cosmological model), namely
four bias parameters, one counterterm parameter, and two stochastic corrections to
the power spectrum model.

• The theoretical model for the power spectrum nicely fits our numerical data up to
kmax,P ∼ 0.3hMpc−1. Considering the power spectrum along with the bispectrum
(up to kmax,B = 0.09hMpc−1), the fit provides unbiased estimates of the linear bias
parameter b1 with sub-percent precision, as well as a good fit to the data as estimated
both in terms of the χ2 and ppp diagnostics – even when the full data set is considered.

• We explore the possibility of reducing the dimensionality of parameter space by
assuming that not all the bias parameters are independent, as suggested by several
numerical and theoretical studies. In all cases, fitting the simplified models to the full
data set gives biased estimates of the parameters. However, when the probed volume
is reduced to match those that will be covered by the upcoming surveys (6h−3 Gpc3),
all the fits based on the bias relations provide consistent values of the free parameters
with smaller uncertainties than the default case. In particular, the DIC indicates that
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the data are best described by the bG2(b1) relation proposed by [49].

• We investigate different methods to account for the discrete nature of measurements of
Fourier-space correlators in the binning of the theoretical predictions. We find that,
when the larger volume is considered, the evaluation of the model at a single effective
triangle per bin leads to strongly biased parameter constraints. We propose a new
method, discussed in appendix A.1, and we show that it is able to provide constraints
consistent with our reference results (obtained by averaging exactly the model over the
Fourier wavenumbers in each bin).

• We test several approximations to the covariance matrix. We find that neglecting
the cross-correlations between power spectrum and bispectrum slightly biases the
constraints on the model parameters. In addition, we show that the Gaussian (diagonal)
approximation to the covariance matrix underestimates the errors by up to 20% on some
triangular configurations, and fails to provide a proper estimate of the goodness-of-fit
of the theoretical model.

• We explore different selection criteria to reduce the number of triangular configurations
for the analysis of the bispectrum. We find that a selection of the triangular configu-
rations accounting as well for their shape, rather than only the largest wavenumber
kmax,B, can lead to an improvement in the parameters constraints by up to 50%.

• Finally, we perform a likelihood analysis in which also three cosmological parameters
are varied. In this case, we use the power spectrum and the bispectrum data extracted
from the full simulation suite. The constraints on the cosmological parameters obtained
with our default 7-parameter model are nicely consistent with the input values of the
simulations, up to kmax,P = 0.3hMpc−1. Moreover, compared to a power spectrum-
only analysis, the constraints on cosmological parameters in a joint analysis shrink
significantly, by a factor of ∼ 3 for the amplitude of scalar perturbations As and by
a factor of ∼ 2 for the Hubble parameter h and the relative abundance of matter
ωm. This major achievement demonstrates the feasibility of using perturbative models
with free parameters in order to extract information on the underlying cosmological
parameters from the joint analysis of the power spectrum and the bispectrum.

As already mentioned in the introduction, the likelihood analysis of three-point statistics
is still a relatively poorly explored subject (particularly in order to set constraints on the
cosmological parameters). While the ideal data set considered here does not have the
complexity of a galaxy redshift survey, its large total simulation volume (combined with the
10,000 mock catalogs), allowed us to investigate the impact of several assumptions which
are routinely made in this kind of studies. Upcoming observations will require a better
quantification and control over possible systematic errors both in the theoretical modelling
as in the methodology. For these reasons, we think that our work is a step towards more
rigorous and thorough analysis of spectroscopic redshift surveys.
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Figure 4.6: Comparison between the fit of the halo power spectrum and the joint fit of the
halo power spectrum and bispectrum measured from the N-body simulations. The left panels
show the posterior mean (solid lines), and central 68 and 95 percent ranges (darker and
lighter shaded areas respectively) of the model parameters as a function of kmax ≡ kmax,P.
The bispectrum data range is fixed by kmax,B = 0.09hMpc−1. The vertical dashed line
highlights the reference scale of kmax,P = 0.30hMpc−1 for which we display contour plots
for the joint posterior density of parameter pairs in the lower-right panel. Here, darker and
lighter shaded areas represent the 68 and 95 percent joint credibility regions, respectively.
The narrow gray bands indicate the constraints on the linear-bias parameter derived from
the halo-matter cross power spectrum. Two goodness-of-fit diagnostics are displayed in the
top-right panel as function of kmax: the reduced χ2 statistic averaged over the posterior
(top inset) and the ppp (bottom inset). As a reference, the dashed curves in the top inset
indicate the upper one-sided 95 percent confidence limit in a frequentist χ2 test (note that
the number of datapoints included in the fit varies with kmax).
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Figure 4.8: Same as figure 4.6, but comparing the fit performed with the fiducial model to
models where different relations between bias parameters are assumed; in blue the reference
case of the fiducial model, in red the case where equation (4.45) is assumed, in green the case
where we set equation (4.46), and in orange the case with equation (4.47). The deviations in
the 2D marginalised posteriors suggest that all relations fail in reproducing the values of the
parameters obtained with the reference model. However, note that this test takes advantage
of the full simulation volume, which is far beyond the usual size of a redshift survey.
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Figure 4.11: Same as figure 4.6, but now comparing different methods to evaluate the
theoretical models for the power spectrum and the bispectrum. In blue, the reference case
with the bin-average of the theoretical prediction, in red the case where the models are
evaluated at effective wavenumbers, and in green the case where the expansion method,
described in appendix A.1, is used. Blue and green lines and contours coincide almost
exactly.
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Figure 4.12: Same as figure 4.6, but now comparing different approximation to the
covariance matrix. In blue, the reference case with the full mock covariance; in red, the
case where cross-correlations between power spectrum and bispectrum are set to zero; in
green, the case where only the mock variance is used; in orange, the case where a theoretical
Gaussian covariance is assumed.
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Figure 4.14: Comparison between the fits to the bispectrum-only data shown as a function
of the largest wavenumber kmax included (blue) against the same analysis performed over
data sets satisfying an additional condition of the maximum value of the combination k1 +k3.
We consider in particular k1 + k3 ≤ 0.14hMpc−1 (red) and k1 + k3 ≤ 0.18hMpc−1 (green).
The 2D contour plots in this case correspond to different values of kmax defined as the largest
values ensuring consistent results. They are marked with vertical lines of the corresponding
colors in the left and top-right panels. In the contour plot, the number of triangles is 170,
222, 215 for the blue, red and green contours respectively.
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Figure 4.15: Same as fig. 4.14 but with the additional condition on the combination k1 +k2.
We consider k1 + k2 ≤ 0.14hMpc−1 (red) and k1 + k2 ≤ 0.18hMpc−1 (green). This time,
in the contour plot, the number of triangles is 170, 121, 236 for the blue, red and green
contours respectively.
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Figure 4.16: Triangle plot showing the 1D and 2D marginalized posteriors of the parameters
of the fiducial model, where also three cosmological parameters are varied, from a joint fit
of the halo power spectrum and bispectrum measured from the N-body simulations, for
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respectively). Gray lines show the linear bias measured from the cross power spectrum and
the input values of the cosmological parameters.
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Figure 4.17: Triangle plot showing the 1D and 2D marginalized posteriors of the cosmolog-
ical parameters inferred through a likelihood analysis of power spectrum (blue) and power
spectrum and bispectrum (red) using the fiducial model. In this plot, we marginalize over
all bias and stochastic parameters in order to highlight the impact that the inclusion of
the bispectrum to the analysis has on the inference of cosmological parameters. For the
power spectrum we set kmax,P = 0.30hMpc−1, while we set kmax,B = 0.09hMpc−1 for the
bispectrum. Gray lines show the input values of the cosmological parameters.



Chapter 5
The Halo Bispectrum Multipoles in Redshift Space

While the analysis of the power spectrum takes full advantage of redshift-space distortions
by means of a multipoles expansion with respect to the angle between the wavenumber k
and the line-of-sight (see, e.g. [4, 139]), in the case of the bispectrum past data analyses have
always been limited to the monopole. On the other hand, the potential offered by the galaxy
bispectrum measured in future surveys to further constrain cosmological parameters has
been explored in several papers [158, 61, 170, 34, 81, 77, 80, 3, 88]. A subset of these works
specifically considered the relevance of the anisotropic bispectrum signal [158, 61, 170, 77, 3]
remarking that we can expect additional information in the higher-order multipoles of
the bispectrum, although the exact extent of the improvement on parameters constraints,
typically of the order of tens of percents, highly depends on the assumptions on the observable,
its covariance and the survey specifications.

A first theoretical modelling of the redshift-space bispectrum at tree-level in Perturbation
Theory can be found in [86] (see [19] and references therein for earlier work on the matter and
galaxy bispectrum in real space). Early comparisons against measurements of the bispectrum
monopole in numerical simulations are presented in [165, 148, 144] with [148] including as
well a first test of the quadrupole. The analysis of the BOSS data-set of [64, 68, 67] includes
the bispectrum monopole and takes advantage of a phenomenological model [69], based on fits
to simulations, to extend the validity of the tree-level expression to smaller scales, reaching
0.15hMpc−1 with a 5% accuracy on the halo bispectrum monopole at redshift z = 0.55 (to
contrast 0.06hMpc−1 in the case of tree-level PT). A similar approach is adopted as well in
[76] where the monopole and quadrupole of the power spectrum, bispectrum and integrated
trispectrum are compared to simulations.

Ref. [84] goes beyond the tree-level expression presenting a one-loop PT model for the
redshift-space matter bispectrum multipoles (but defined differently from [148]), including
additional corrections along the lines of those introduced by [162] for the power spectrum.
The comparison with numerical simulations shows an agreement up to k ∼ 0.15 - 0.2hMpc−1

depending on redshift and configuration shape while the corresponding tree-level approxima-
tion typically fails already around k ∼ 0.07 - 0.08hMpc−1 for both the monopole and the
quadrupole.

96
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More recently, [39] re-analysed the BOSS bispectrum monopole, adopting a tree-level
model up to 0.1hMpc−1, although no comparison with simulations or details on model
validation are provided. A further analysis, extending the model to include one-loop
corrections and corrections due to primordial non-Gaussianity is presented in [40]. A
comparison with large-volume simulations can be found instead, again for the monopole only,
in [88] for measurements obtained from the very large simulation set already adopted for the
challenge paper [117], corresponding to a cumulative volume of 566h−3 Gpc3: in this case as
well the reach of the tree-level expression is found to be kmax ∼ 0.08hMpc−1. The same
pipeline for the bispectrum monopole analysis is applied to the BOSS data in [127, 30, 29].

It appears that, despite the recent attention, tests of the redshift-space galaxy bispectrum
model have been rather limited. In fact, current literature is for the most part focused on the
bispectrum monopole with only partial assessments of higher-order multipoles predictions in
PT.

The main goal of this chapter is to provide a rigorous and extensive comparison of
the tree-level predictions for the halo bispectrum monopole, quadrupole and hexadecapole
(as defined in [148]) against measurements in a very large set of numerical simulations
(∼ 1, 000h−3 Gpc3) while taking advantage of a robust estimate of their covariance properties
from an even larger set of mock catalogs. It constitutes the natural continuation of a series of
papers exploring in details the challenges of a joint analysis of the galaxy power spectrum and
bispectrum, so far focused on real-space modelling [119, 5, 118]. We will refer, in particular
as Paper I and Paper II respectively to [119] and [118] as this work shares with these
references, to a large extent, both data-sets and methodology. We test the model by means of
a likelihood analysis in terms of bias parameters along with the growth rate of perturbations
f , using the simulation input and real-space results as reference values. For measurement
uncertainties corresponding to the total combined volume of our simulations, we find that
the model provides a valid description up to a maximum wavenumber of 0.08hMpc−1 for
the monopole, 0.06hMpc−1 for the quadrupole, and 0.045hMpc−1 for the hexadecapole.
We show that, as in the power spectrum case, the inclusion of the bispectrum quadrupole
greatly improves the posteriors from the monopole alone.

This chapter is organised as follows. In section 5.1 we introduce the theoretical back-
ground for the tree-level prediction of the bispectrum multipoles in Perturbation Theory.
Section 5.2 describes the numerical simulations and mock catalogs adopted and the bis-
pectrum estimator. In Section 5.4 we present the set-up for our likelihood analyses and in
Section 5.5 the relative results. We will present our conclusions in Section 5.6.
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5.1 Theoretical background

5.1.1 Model

Given the halo number density contrast δh(x) ≡ [nh(x) − n̄h]/n̄h defined in terms of the
number density nh(x) and its expectation value n̄ = 〈nh(x)〉, and its Fourier Transform1

δh(k) we can define the halo power spectrum Ph and bispectrum Bh respectively as

〈δh(k1)δh(k2)〉 ≡ (2π)3δD(k12)Ph(k1) (5.3)

〈δh(k1)δh(k2)δh(k3)〉 ≡ (2π)3δD(k123)Bh(k1, k2, k3) , (5.4)

where the Dirac deltas δD results from the assumed statistical homogeneity and isotropy.
For the same reason Ph(k1) is a function of one variable, k1 = |k1| and Bh(k1, k2, k3) is a
function of the three sides of the triangle formed by k1, k2 and k3 and independent of its
orientation.

In redshift-space, peculiar velocities v induce distortions in the galaxy distribution along
the line-of-sight (LOS) n̂. The observed position s will then be related to real position x

by 2.81. As a result clustering properties, and in particular galaxy correlation functions
estimated in a given region of the sky, will depend on the local LOS. Since our focus is to test
the modelling of the bispectrum based on measurements in simulation boxes with periodic
boundary conditions, we will assume throughout this work the plane-parallel approximation
for redshift-space distortions and therefore a global, constant LOS. The halo bispectrum will
then be a function of the wavenumbers defining the triangular configuration k1, k2 and k3

plus the LOS n̂, that is Bs = Bs(k1,k2, n̂).

Our model for the redshift-space halo bispectrum is the sum of a deterministic and
stochastic contribution, as

Bs(k1,k2,k3) = B(det)
s (k1,k2,k3) +B(stoch)

s (k1,k2,k3) , (5.5)

corresponding to the tree-level expression in Perturbation Theory (PT) resulting from the
halo density given, in turn, by the sum of a deterministic and a stochastic component

δs = δ(det)
s + δ(stoch)

s . (5.6)

1We adopt the convention for the Fourier Transform

δ(k) ≡
∫
d3x e−ik·x δ(x) , (5.1)

with the inverse given by

δ(x) ≡
∫

d3k

(2π)3
eik·x δ(k) . (5.2)
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In Fourier space and up to the relevant order the deterministic contributions are given by

δ(det)
s (k) = Z1(k) δL(k) +

∫
d3q1d

3q2δD(k− q12)Z2(q1,q2) δL(q1) δL(q1) , (5.7)

where δL is the linear matter density and the relevant Zn redshift-space kernels are given in
terms of the local (b1, b2) and tidal (bG2) bias parameters and the linear growth rate f by
[59, 86, 165, 148, 33, 13, 47]

Z1(k) = b1 + fµ2 , (5.8)

Z2(k1,k2) =
b2
2

+ b1F2(k1,k2) + bG2S(k1,k2) + fµ2
12G2(k1,k2) +

+
fµ12k12

2

[
µ1

k1
Z1(k2) +

µ2

k2
Z1(k1)

]
(5.9)

with F2 and G2 representing the usual matter density and velocity quadratic kernels and

S(k1,k2) =
(
k̂1 · k̂2

)2
− 1 (5.10)

while µi ≡ ki · n̂/ki is the cosine of the angle formed by the wavenumber ki with the LOS.
We also adopt the short-hand notation for vector sums k12 = k1 + k2 so that

µ12 =
k12 · n̂
k12

= −k3 · n̂
k3

= −µ3 , (5.11)

for a closed triangle with k123 = 0. The expansions of eq. (5.7) leads to the tree-level
prediction for the bispectrum

B(det)
s (k1,k2, n̂) = 2Z1(k1)Z1(k2)Z2(k1,k2)PL(k1)PL(k2) + 2 perm. (5.12)

where PL(k) is the linear matter power spectrum.

The stochastic contribution to δs is given instead, following [47] and their notation, by

δ(stoch)
s (x) = ε(x) + εδ(x) δ(x) + εη(x)η(x) , (5.13)

where ε, εδ and εη are stochastic fields uncorrelated to the density perturbations. The
composite terms are limited to those linear in the matter density δ and in the l.o.s. derivative
of the l.o.s velocity component η ≡ ∂n̂(v · n̂), as these are responsible for the leading order
contributions to the bispectrum. We neglect any higher-derivative operator in the stochastic
contribution and we note that the last term should appear only due to selection effects [47].
In the large k limit, we expect to recover the Poisson predictions for the power spectrum
and bispectrum of the stochastic fields, that is [143]

〈ε(k1)ε(k2)〉 → δD(k12)
1

n̄
, (5.14)
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〈ε(k1)ε(k2)ε(k3)〉 → δD(k123)
1

n̄2
, (5.15)

〈ε(k1)εδ(k2)〉 → δD(k123)
b1
2n̄

, (5.16)

〈ε(k1)εη(k2)〉 → δD(k123)
1

2n̄
, (5.17)

where the first only appears in the halo power spectrum, while the last three all contribute
to the halo bispectrum. In principle we can expect independent departures from the Poisson
prediction for all three terms, which in the large-scale limit can be described in terms of
three constant parameters2

The corresponding stochastic contribution to the bispectrum at tree-level will then read

B(stoch)
s (k1,k2, n̂) =

1

n̄

[
(1 + α1) b1 + (1 + α3) f µ2

]
Z1(k1)PL(k1) + 2 perm.+

1 + α2

n̄2
,

(5.19)

where αi are all parameters vanishing in the Poisson limit3.

In this work we do not consider any modelling of Finger-of-God effects as we expect
them to be negligible at large scales and for a halo distribution.

5.1.2 Bispectrum multipoles

We adopt the definition of the redshift-space multipoles of the bispectrum introduced by
[148] (and assumed as well by [147] and [61]) where the vector configurations comprising
the domain of Bs(k1k2, n̂) are given in terms of the variables k1, k2, k3, µ1 ≡ cos(θ1) and ξ,
with θ1 being the angle between k1 and the LOS while ξ is the azimuthal angle describing a
rotation of k2 around k1.

Bs is then expanded in spherical harmonics as

Bs(k1, k2, k3, θ, ξ) =
∑

`

∑̀

m=−`
B`m(k1, k2, k3)Y m

` (θ, ξ) (5.20)

2In [88] the authors follow [125] in the modelling of the stochastic contribution assuming

δ(stoch)
s = d1 εP + d2 b1 εP δ + d1 εP η , (5.18)

where the coefficients d1 and d2 parameterize the corrections to the Poisson prediction represented by field
εP (for which the limits (5.14) and (5.15) hold as equalities). The Poisson case is recovered for d1 = 2 d2 = 1.
This implies that 〈εε〉 = 〈εεη〉 and their corrections to Poisson are therefore described by a single degree of
freedom. They also relate 〈εε〉 and 〈εεε〉 but it does not seem justified. Such relation also appears inconsistent
with the expansion above and it does not seem to be supported by the halo model description of [70].

3The notation for the αi parameters is chosen in order to be consistent with Paper I and Paper II, where
α2 already appeared as correction to the 1/n̄2 term, while α3 was not present.
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with the coefficients of the expansion given by

B`m(k1, k2, k3) =

∫ +1

−1
dcos θ

∫ 2π

0
dξBs(k1, k2, k3, θ, ξ)Y

m
` (θ, ξ) . (5.21)

We only consider m = 0 multipoles as the loss of information coming from excluding
the m 6= 0 terms is negligible [61]. In this case the spherical harmonics reduce to Legendre
polynomials L` and only depend on µ1 ≡ cos θ1,

Y 0
` (θ, ξ) =

√
2`+ 1

4π
L`(µ1) (5.22)

and the expansion of eq. 5.20 is replaced by

1

2π

∫
dξBs(k1, k2, k3, θ, ξ) =

∑

`

B`(k1, k2, k3)L`(µ1) (5.23)

where

B`(k1, k2, k3) =

√
2`+ 1

4π
B`0(k1, k2, k3)

= (2`+ 1)
1

2

∫ +1

−1
dcos θ

[ 1

2π

∫ 2π

0
dξBs(k1, k2, k3, θ, ξ)

]
L`(cos θ) . (5.24)

5.2 Data

5.2.1 N-body simulations

The analysis is performed on redshift-space, halo bispectrum measurements from the set of
298 Minerva N -body simulations [74] whose real-space counterpart was already studied in
Paper I and Paper II. These follow the evolution of 10003 dark matter particles in a cubic
box of side L = 1500h−1 Mpc and correspond to a total volume of about 1, 000h−3 Gpc3.
Each halo catalog is defined by a minimal mass of M ' 1.12× 1013 h−1M�. We refer the
reader to Paper I for a more detailed description of the simulations and of the halo catalog
construction.

Paper II provides us with an estimate of the bias parameters characterising the halo
population obtained as posteriors from the joint analysis of the halo power spectrum and
bispectrum in real space. We will use these here as a reference for our redshift-space analysis,
in addition to the value for the linear growth rate expected from the fiducial cosmology.

5.2.2 Bispectrum multipoles estimator

Our estimator of the bispectrum multipoles follow the definition of [148] for the m = 0

case and constitutes an implementation of the one described in [147] based on Fast-Fourier
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Transforms. In our case, however, we assume a constant line-of-sight n̂, corresponding to
an exact realisation of the plane-parallel or distant observer approximation. The estimator
reduces therefore to the following expression

B̂` = (2`+ 1)
k3
f

NB

∑

q1∈k1

∑

q2∈k2

∑

q3∈k3

δK(q123) δs(q1) δs(q2) δs(q3)L`(q̂1 · n̂) , (5.25)

where the sums, accounting for the discrete nature of the Fourier Transform δs(q) of the halo
density in a simulation box, are over all wavenumbers qi falling into the bin centered at ki of
radial size ∆k, that is, such that ki −∆k/2 ≤ |qi| < ki + ∆k/2. Also, δK(q) is a Kronecker
symbol equal to unity for q = 0 and vanishing otherwise, while the normalisation factor

NB(k1, k2, k3) =
∑

q1∈k1

∑

q2∈k2

∑

q3∈k3

δK(q123) , (5.26)

provides the number of “fundamental triangles” {q1,q2,q3} present in the “triangle bin”
{k1, k2, k3}. The grid-interpolation of the halo density δs(q) is obtained by means of a fourth-
order mass assignment scheme and adopts the interlacing technique for aliasing reduction
[150]. All bispectrum measurements, unless otherwise stated, assume a wavenumber bin size
∆k = kf , that is corresponding to the fundamental frequency characterising the simulation
box, kf ≡ 2π/L. This leads to the measurement of 1475 triangular configurations up to
kmax = 0.1hMpc−1 for each multipole4.

5.2.3 Measurements

Figure 5.1 shows the mean of the bispectrum multipoles measured from the 298 Minerva
N-body simulations for all triangular configurations. In these type of plots, the ordering of
the configurations is determined by increasing values of k1, k2, k3 which obey the requirement,
k1 ≥ k2 ≥ k3 (see Paper I for a more detailed explanation). Vertical gray lines mark the
triangle where the value of k1 changes, so that all configurations on the left correspond to
triangles made up with sides smaller or equal to such value of k1. All measurements include
shot-noise. The bottom half of each panel shows the relative error on the mean, along with
the ratio between the expected Poisson shot-noise contribution and the overall signal (black,
dashed lines).

We notice that the relative error on the mean for the bispectrum monopole is at the
ten-percent level and just slightly smaller at smaller scales. The shot-noise level is comparable
to the statistical error at large scales and it is larger at smaller scales, as it happens in
real-space for this halo population (see Paper I). The relative error on the quadrupole

4We include “open triangle bins”, that is those where the bin centers cannot form a closed triangle such as
{k1, k2, k3} = {6, 3, 2}kf but that nevertheless contain closed fundamental triplets {q1,q2,q3}. See section
2.2 of Paper I for a detailed description of the binning definition.
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and hexadecapole mean is instead of the order of tens of percent and hundreds of percent,
respectively. Because of the first term on the r.h.s. of equation (5.19), all multipoles receive
a shot-noise contribution. This is comparable to the error on the mean for the quadrupole
and lower by an order of magnitude for the hexadecapole.

5.3 Covariance

5.3.1 Numerical estimate

As for Paper I and Paper II, the covariance properties of our observables are estimated
from a much larger set of 10,000 measurements from mock halo catalogs obtained with
the Pinocchio code [113, 112, 114]. The mocks share the same cosmology, box size and
resolution with the Minerva simulations and 298 realisations also adopt the same initial
conditions. The mass threshold for the mocks is chosen to reproduce (below percent level)
the amplitude of the large-scale halo power spectrum (including shot-noise) of the numerical
simulations (see Paper I for details). This quantity, in fact, accounts for the Gaussian
contribution to the bispectrum covariance, the leading one for most triangular configurations
(see also [15, 25]).

The covariance matrix for each bispectrum multipole and their cross-covariance is defined
as

C`1`2(ti, tj) ≡ 〈B̂`1(ti) B̂`2(tj)〉 − 〈B̂`1(ti)〉〈B̂`2(tj)〉 , (5.27)

where ti = {k1i, k2i, k3i} and tj = {k1j , k2j , k3j} represent two triangle configurations. We
will denote as Ĉ`1`2(ti, tj) its estimate from the 10,000 mock catalogs.

The left column of figure 5.2 shows the ratio between the mean of each bispectrum
multipole measured in the numerical simulations and the mean of the same quantity measured
in the Pinocchio mocks, limited to the 298 mocks with matching initial conditions. We
find for the monopole the same discrepancy, as large as 7-8% depending on the triangle
shape, already encountered in real space (see Paper I). The noise in the measurements for
the higher-order multipoles, on the other hand, does not allow to clearly identify systematic
differences at the level of 10% or below. The right column of figure 5.2 shows instead
the ratio between the variance ∆B`(ti) ≡ C``(ti, ti), estimated again from the numerical
simulations and the one estimated from the Pinocchio mocks. Again, the Pinocchio set
is limited here to the 298 realisations with matching seeds. Despite possible systematics on
the observables, the variance is recovered by the Pinocchio mocks with an error below 10%
and no apparent systematic difference for all multipoles. This is expected, given the close
match of the power spectra and the fact that the leading contribution to the bispectrum
covariance is fully determined by the power spectrum, see eq. (5.29).
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5.3.2 Theoretical Gaussian covariance

In addition to the numerical estimate of the covariance we consider as well the analytical
prediction in the Gaussian approximation. The Gaussian contribution is present for the
variance of each multipole, ∆B` ≡ C``(ti, ti), but also for the correlation C`1`2(ti, ti) between
B̂`1(ti) and B̂`2(ti) with `1 6= `2 but measured for the same triangle ti.

From the definition of the multipoles estimators, eq. (5.25), we can write

C`1`2(k1, k2, k3) ≡ 〈B̂`1B̂`2〉 − 〈B̂`1〉〈B̂`2〉

= (2`1 + 1)(2`2 + 1)
k6
f

N2
B

∑

q1∈k1

∑

q2∈k2

∑

q3∈k3

δK(q123)
∑

p1∈k1

∑

p2∈k2

∑

p3∈k3

δK(p123)

× L`1(µq1)L`2(µp1)
[
〈δq1 δq2 δq3δp1 δp2 δp3〉 − 〈δq1 δq2 δq3〉〈δp1 δp2 δp3〉

]
.

(5.28)

In the Gaussian approximation, from the expectation values on the r.h.s. of the equation
above, we retain only the contributions depending on the field power spectrum. Assuming
(without loss of generality) that k1 ≥ k2 ≥ k3, these are given by

CG`1`2(k1, k2, k3) =
(2`1 + 1)(2`2 + 1)

N2
B k

3
f

∑

q1∈k1

∑

q2∈k2

∑

q3∈k3

δK(q123)Ptot(q1)Ptot(q2)Ptot(q3)

×
[
(1 + δKk2,k3

)L`1(µq1)L`2(−µq1) + (δKk1,k2
+ δKk2,k3

)L`1(µq1)L`2(−µq2)+

+ 2 δKk1,k3
L`1(µq1)L`2(−µq3)

]
, (5.29)

where Ptot(q1) = P (q1) + PSN is the anisotropic halo power spectrum including a shot-noise
contribution while δKki,kj is the Kronecker symbol equal to one for ki = kj , and vanishing
otherwise. Notice that the terms in the square brackets correspond, in the case `1 = `2 = 0,
to the usual factor equal to 6, 2 and 1 respectively for equilateral, isosceles and scalene
triangles.

Similarly to the power spectrum variance case, see e.g. [74], we can expand the anisotropic
power spectra in multipoles to obtain

CG`1`2 =
(2`1 + 1)(2`2 + 1)

N2
B k

3
f

∑

`3,`4,`5

∑

q1∈k1

∑

q2∈k2

∑

q3∈k3

δK(q123)Ptot, `3(q1)Ptot, `4(q2)Ptot, `5(q3)

×
[
(1 + δKk2,k3

)L`1(µq1)L`2(−µq1) + (δKk1,k2
+ δKk2,k3

)L`1(µq1)L`2(−µq2)+

+ 2 δKk1,k3
L`1(µq1)L`2(−µq3)

]
L`3(µ1)L`4(µ2)L`5(µ3) . (5.30)

This is the expression we adopt in our evaluation of the Gaussian variance, with the sums over
the k-shells performed exactly over the discrete wavenumbers q defining the Fourier-space
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density grid5.

The comparison between the numerical estimate and analytic prediction for these
quantities is shown in figure 5.3. One can see how the Gaussian prediction for C00, C22 and
C44 is able to describe the measured ones at the level of 5%, with a slight deficit noticeable in
the monopole and quadrupole case for squeezed triangles, due to the missing non-Gaussian
contribution [15, 25]. The agreement in the case of the cross-covariance C`1`2(ti, ti) is also
rather good, with the theory underestimating the measurements by an overall 10%. In these
cases, the ratio can take large values when the denominator is close to zero, as it is the case
particularly for C0,4.

Finally, figure 5.4 shows a subset of the correlation matrix, defined as

r`1`2(ti, tj) =
C`1`2(ti, tj)√

C`1`1(ti, ti)C`2`2(tj , tj)
. (5.36)

Each data-set B̂`(ti) is restricted, for illustration purposes, to its first 32 triangular config-
urations ti, denoted in the figure in terms of the three sides in units of the fundamental

5It is possible to simplify further this expression in the thin-shell approximation so that

CG`1`2 '
(2`1 + 1)(2`2 + 1)

NB k3
f

∑
`3,`4,`5

Ptot, `3(k1)Ptot, `4(k2)Ptot, `5(k3)R`1,`2;`3`4,`5(k1, k2, k3) . (5.31)

where we defined

R`1,`2;`3`4,`5(k1, k2, k3) ≡ 1

NB

∑
q1∈k1

∑
q2∈k2

∑
q3∈k3

δK(q123)

×
[
(1 + δKk2,k3)L`1(µq1)L`2(−µq1) + (δKk1,k2 + δKk2,k3)L`1(µq1)L`2(−µq2)+

+ 2 δKk1,k3 L`1(µq1)L`2(−µq3)
]
L`3(µ1)L`4(µ2)L`5(µ3) . (5.32)

In the continuum limit, we can replace the sums over the shells with integrals and reduced them to a simple
average over the orientation of the triangle {q1,q2,q3}, that is

1

NB

∑
q1∈k1

∑
q2∈k2

∑
q3∈k3

δK(q123) ' 1

NB k6
f

3∏
i=1

∫
ki

d3qi δD(q123) =
1

4π

∫ 1

−1

dµ1

∫
dξ , (5.33)

with an integrand that is now only a function of powers of µ1, µ2 and µ3. Then, assumming only even values
for `3, `4 and `5 (and clearly for `1 and `2), we can use the expansion for the Legendre polynomials

L(µ) =
1

2`

`/2∑
n=1

(−1)n(2`− 2n)!

n!(`− n)!(`− 2n)!
µ`−2n ≡

`/2∑
n=1

C`,nµ
`−2n (5.34)

to get an expression that can be automatically evaluated with a software allowing for symbolic manipulation,

R`1,`2;`3`4,`5(k1, k2, k3) '
5∏
i=1

`i/2∑
ni=1

C`i,ni

[
(1 + δKk2,k3)I`1+`2+`3−2(n1+n2+n3), `4−2n4, `5−2n5

+ (δKk1,k2 + δKk2,k3)I`1+`3−2(n1+n3), `2+`4−2(n2+n4), `5−2n5

+ 2 δKk1,k3 I`1+`3−2(n1+n3), `4−2n4, `2+`5−2(n2+n5)

]
, (5.35)

, where the integrals Iα,β,γ are defined in Appendix A.2.
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frequency, that is {k1, k2, k3}/kf . It follows that while the block-diagonal matrices show the
correlation coefficients r``(ti, tj) for each multipoles, the off-diagonal matrices depict their
relative cross-covariance r`1`2(ti, tj). In addition, the top-right half is estimated from the
full set of 10,000 Pinocchio mocks, while the bottom-left half is the theoretical prediction
in the Gaussian approximation, vanishing for all elements with ti 6= tj . The bottom panels
compare in more detail the predicted and measured coefficients r`1`2(ti, ti) with `1 6= `2 as
a function of the selected triangles ti. On these quantities the agreement between theory
and numerical estimates is truly remarkable and extends up to kmax ∼ 0.1hMpc−1, that is
over the full range of scales that we will consider in the analysis described in the following
sections.

Regarding the structure of the correlation coefficient, it is clear that only the elements
corresponding to the expected Gaussian contributions appear to be relevant at these large
scales. These, however, are not limited to the diagonal for the full data vector D =

{B0, B2, B4}, but obviously include all elements corresponding to the correlation between
different multipoles sharing the same triangles.

5.4 Likelihood analysis

5.4.1 Likelihood function

Following Paper I and Paper II, we fit all measurements together assuming their independence.
This means that our total log-likelihood function corresponds to the sum of the log-likelihood
for each individual realisation,

lnLtot =

NR∑

α=1

lnLα , (5.37)

where NR is the total number of realisations considered.

We work under the assumption of Gaussianity for the individual likelihood Lα. However,
we adopt the proposal of [151] to account for possible uncertainties in the determination
of the precision matrix due to a limited number of mocks. The log-likelihood for a single
realisation is then, modulo an additive, normalization constant,

lnLα = −NM

2
ln
[
1 +

χ2
α

NM − 1

]
, (5.38)

where NM is the number of mock catalogs used for the numerical estimation of the covariance
matrix (we refer the reader to Paper I for further details). In this expression χ2

α represents
the chi-square for the individual realisation, given by

χ2
α =

ND∑

i,j=1

[
D̂

(α)
i −D(theory)

i

]
C−1
ij

[
D̂

(α)
j −D(theory)

j

]
, (5.39)
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where, in the most general case, D̂(α) ≡
{
B̂0, B̂2, B̂4

}
is the data vector, of size ND,

encompassing the three bispectrum multipoles while D(theory) and Cij are, respectively, the
corresponding theoretical model and covariance matrix.

We should notice that given the large number of 10,000 Pinocchio realisations, even for
the largest data-set corresponding to the joint analysis of the three bispectrum multipoles up
to kmax,B = 0.1hMpc−1, with a total of 1, 475× 3 ' 4, 425 data-points, the difference w.r.t.
the Gaussian case is in fact negligible. The alternative approach of re-scaling the inverse
covariance, as suggested in [7, 83], gives rise to error bars up to 10% larger, although we have
checked that these do not lead to any appreciable differences in the recovered parameter
posteriors that we discuss below.

5.4.2 Model evaluation

Our main goal is assessing the validity and reach of the tree-level bispectrum model, eqs. (5.12)
and (5.19) leaving the exploration of their potential to constrain cosmological parameters to a
future work. For this reason, in our likelihood analyses we assume galaxy bias, shot-noise and
the growth rate f as the only free parameters. The bispectrum multipoles defined in eq. (5.21)
can be written as a linear combination of several contributions where the dependence on
these parameters can be factorised, leading to a quick exploration of the likelihood function
since each term only needs to be computed once for the fiducial cosmology.

This allows as well for an exact binning of the theoretical model, taking advantage of
the discrete Fourier-space grid characterising numerical simulations in boxes with periodic
boundary conditions. In this case we can sum Bs(q1,q2,q3, n̂) over all discrete modes qi
forming a close triangle q123 = 0 and belonging to the bin {k1, k2, k3}. This leads to

B
(binned)
` (k1, k2, k3) =

2`+ 1

NB

∑

q1∈k1

∑

q2∈k2

∑

q3∈k3

δK(q123)Bs(q1,q2,q3, n̂)L`(q̂1 · n̂), (5.40)

where the sums account for the angle-average defining the bispectrum multipoles.

This approach requires the evaluation of the bispectrum model over a very large number
of triangular configurations, making it unfeasible in a likelihood analysis where cosmological
parameters are explored. An approximate solution would be to evaluate the model B` on a
single triangle defined by effective values of the wavenumbers. This approach, that takes
advantage of the analytical evaluation of the angle integrals in (5.24) described in Appendix
A.2, is presented in Appendix 5.5.6 along with a quantification of the systematic errors
resulting in the parameter determination.

5.4.3 Goodness of fit and model selection

We will assess the goodness of the fits that we will perform in terms of the posterior predictive
p-value (ppp) and the posterior-averaged reduced chi-square 〈χ2

ν〉post. The ppp is defined in
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Parameter Prior (uniform)

b1 [0.9, 3.5]

b2 [−4, 4]

bG2 [−4, 4]

α1 [−1, 2]

α2 [−1, 2]

α3 [−1, 2]

f [0.1, 1]

Table 5.1: Uniform prior intervals of the model parameters.

the interval 0 to 1 with values of ppp ≥ 0.95 signaling a failure of the model. The 〈χ2
ν〉post is

compared to the 95 percent (upper) confidence limit associated to a number of degrees of
freedom equal to the total number of data points fitted: when 〈χ2

ν〉post is greater than this
value, the model fails to describe the data. For the comparison between different models
and assumptions on the bias parameters, we use the Deviance Information Criterion (DIC)
computed from the MCMC simulations. For details on the choice of these diagnostics, we
redirect the reader to Paper I.

5.5 Results

5.5.1 Maximal model

We start with a test of the full model with all seven bias and shot-noise parameters free.
We compare the fit to the bispectrum monopole to the joint analysis of monopole and
higher-order multipoles, assuming the full volume of the 298 Minerva simulations. The first
goal is to identify the set of parameters that can effectively be determined by our data-set,
and the relative importance of the different multipoles in their constraints. We assume
uniform priors on all parameters, with bounds specified in table 5.1.

The main results are shown in figure 5.5. The left panels show the marginalised, 1-σ
posteriors for the model parameters as a function of the maximum wavenumber included in
the triangle selection. Two-dimensional marginalised contours are shown in the bottom-right
panel for the kmax = 0.06hMpc−1 case (indicated as the vertical, dotted line in the other two
sub-panels). Finally, the top-right panel shows the posterior-averaged, reduced chi-square,
〈χ2
ν〉 and the posterior predictive p-value.

The tree-level model described in section 5.1.1 provides a good fit to the data up to a
kmax ' 0.08hMpc−1 for the monopole, while the reach is restricted to 0.06 and 0.045hMpc−1,
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respectively, when B2 and B4 are also considered.

For kmax = 0.06hMpc−1, the combination B0 +B2 properly recovers the best-fit values
of the bias parameters obtained from the joint analysis of the real-space power spectrum
and bispectrum, given by the horizontal solid line in the marginalised, 1-σ posteriors, along
with the fiducial value of the linear growth rate f , which are shown by the gray, dashed lines
in the bottom-right panel.

The addition of the quadrupole B2 greatly reduces the large degeneracy between the linear
bias b1 and the growth rate f , as well as with the quadratic bias parameters, characterising the
monopole-only constraints. This qualitatively confirms the expectation that the bispectrum
monopole does not fully capture the information potentially present in the anisotropic,
redshift-space bispectrum [170, 75]. On the other hand, including as well the hexadecapole
leads to no significant improvement for any parameter and we will drop it from all results
that will follow.

5.5.2 Shot-noise

It is clear that, despite the large total simulation volume, the data set is not able to provide
meaningful constraints on all shot-noise parameters. This was true as well, for the same halo
catalogs, in real space, even including power spectrum information (see Paper II).

In this section we compare different options to reduce the shot-noise parameters to a
single one. In addition to the maximal model, characterised by seven parameters in total,
we will consider the following models

• α2 = 0 (6 parameters); this is justified by the posteriors obtained for the maximal
model, which show that this parameter is simply not constrained by the data and can
therefore be set to zero without affecting the overall fit;

• α3 = −1 (6 parameters); this corresponds to setting εη = 0, as expected under the
assumption of no velocity bias and no selection effects.

Another option is to set α1 = α3. This is implicit in the Poisson prediction for the shot-noise
of a generic distribution in redshift space, where both corrections vanish. This prediction is
also the outcome of a count-in-cell estimate of the shot-noise contributions to the bispectrum
[122, 105] and corresponds to the standard shot-noise correction often implemented in
bispectrum estimators [147, 161] and implicitly assumed in some data analysis [64, 67]. We
will therefore consider the two, additional 5-parameters models (both assuming α2 = 0):

• α3 = α1 and α2 = 0 (5 parameters);

• α3 = −1 and α2 = 0 (5 parameters).

The top left panel in figure 5.6 shows a general comparison between all the models
described in the bullet points above in terms of the difference in their DIC w.r.t. the maximal
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model with seven parameters, as a function of the maximum wavenumber kmax, again for
the monopole and quadrupole analysis. Differences larger than 5 are usually considered
relevant. The top right panel of the same figure shows instead the effective number of
parameters we are able to constrain from the data also as a function of kmax. For a value of
kmax < 0.05hMpc−1, we do not have enough information to determine even the least number
of parameters and the ∆DIC simply favours the simplest models. These are still favoured up
to kmax ∼ 0.08hMpc−1, where the additional degrees of freedom of more complex models
are probably accounting for missing nonlinear corrections. The test does not clearly indicate
a preference for the 5-parameters model with α3 = α1 model over the one one with α3 = −1,
except for kmax > 0.08hMpc−1, where we know that none of the models provides a good
overall fit anymore. A comparison of the 2D marginalised posteriors from the monopole and
quadrupole analysis at kmax = 0.06hMpc−1 is shown for the two 5-parameters models and
the maximal one in the bottom panel of figure 5.6. Both models improve the constraints
on the growth rate, with minimal differences on the posteriors for the other parameters.
The α3 = −1 case provides a slightly better agreement with the fiducial value of f and the
real-space estimate of b1.

We will assume the α3 = −1 (i.e. εη = 0) and α2 = 0 case as our default model in all
following tests. This implies the expression for the shot-noise contribution

B(stoch)
s (k1,k2, n̂) =

1 + α1

n̄
b1 Z1(k1)PL(k1) + 2 perm.+

1

n̄2
, (5.41)

only depending on the parameter α1. We assume that this model provides an accurate
description of the stochastic contribution to the bispectrum, consistent with the large-scale
expectation, in a relatively restricted range (k . 0.08hMpc−1) where the Poisson limit
(α1 = α3 = 0) does not apply.

5.5.3 Bias relations

The parameter space can be further reduced by introducing relations among the bias
parameters. In Paper I and Paper II we considered a few of such relations, either theoretically
motivated or from results of numerical simulations [154, 98, 97, 49, 51]. Of those, we select
the two that provide the best improvement to the fit of the power spectrum and bispectrum
in real space and test them again here in redshift space. The first is the fitting function
for b2(b1, bG2) obtained in [98] from separate universe simulations. The second is the fit to
the excursion set prediction for the tidal bias parameter bG2(b1) proposed in [49, 51]. For
convenience we reproduce these two relations here:

b2(b1, bG2) = 0.412− 2.142 b1 + 0.929 b21 + 0.008 b31 +
4

3
bG2 , (5.42)

bG2(b1) = 0.524− 0.547 b1 + 0.046 b21 . (5.43)
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In figure 5.7 we compare three cases with our reference 5-parameter model: applying
each of the bias relations b2(b1, bG2) and bG2(b1) individually, as well as the two of them
combined. In the top-left panel we show their difference in the DIC with respect to the
reference model, as a function of the largest wavenumber kmax for the analysis of the monopole
plus quadrupole. The top-right panel shows instead the effective numbers of parameters,
again as a function of kmax and for B0 +B2. The DIC shows a marginal preference for the
bG2(b1) relation, for values of kmax close to 0.06hMpc−1, whereas the combination of the
two relations quickly becomes disfavoured beyond kmax = 0.05hMpc−1.

In the bottom panel of figure 5.7 we show the contour plots from the analysis at
kmax = 0.06hMpc−1, showing the 1- and 2-σ 2D constraints on the bias and shot-noise
parameters for the three models. All three cases lead to a reduction in the marginalised
posterior constraints, however, we notice how the application of the tidal bias relation leads
to constraints on b1 and f that are systematically offset from the fiducial values, while
the other two cases involving the b2(b1) relation significantly reduce any potential tension.
We caution that this outcome might in fact be fortuitous since the b2(b1) relation crosses
the b1 - b2 contour of the reference model close to the fiducial value of b1 recovered from
the real-space analysis of Paper II. We should stress, in any event, that these systematic
differences are only evident due to the very large cumulative simulation volume: we leave for
future work an assessment for a more realistic volume (Moretti et al., in preparation).

5.5.4 Scale cuts

In section 5.5.1 we have seen that for higher-order multipoles, the range of validity of the
tree-level model is more limited than for the monopole. This suggests that it could be
convenient to consider different values of kmax for the different multipoles.

We illustrate this point in figure 5.8 where we compare the contour plots for the B0 +B2

analysis under the following assumptions:

• kB0
max = kB2

max = 0.06hMpc−1 (blue);

• kB0
max = 0.08hMpc−1 and kB2

max = 0.06hMpc−1 (yellow);

• kB0
max = kB2

max = 0.08hMpc−1 (magenta).

In all cases we adopt the reference, 5-parameter model.

We find that extending kB0
max to 0.08hMpc−1 can significantly reduce the error, in

particular on the bias parameters. However, for the kB0
max = kB2

max = 0.08hMpc−1 case, where
the χ2 for the fit is already above the 95% C.L., we notice that the f -b1 contour already
shows a discrepancy with the expected values at more than 2-σ. We will adopt the scale
cuts defined by kB0

max = 0.08hMpc−1 and kB2
max = 0.06hMpc−1 as our reference choice for

most of the tests in the following sections.
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5.5.5 Covariance approximations

In section 5.3 we directly compared the Gaussian prediction for the bispectrum covariance
with the numerical estimate from the Pinocchio mocks, finding a remarkable agreement
both in the variance C`1`2(ti, ti) as in the correlation coefficients r`1`2(ti, ti).

Here we check if any residual difference could affect the parameters determination. The
comparison is shown in figure 5.9 in terms of the contour plots for the reference analysis
of B0 and B2 assuming, respectively, kB0

max = 0.08hMpc−1 and kB2
max = 0.06hMpc−1. The

full numerical covariance, Ĉ`1,`2(ti, tj) (blue contours) is compared to the numerical variance
Ĉ`1,`2(ti, ti) (orange) and to the Gaussian prediction (magenta). In the last two cases, all
elements with ti 6= tj are set to zero. We notice that the inclusion of such elements is
responsible for constraints only slightly larger, while the Gaussian prediction reproduces
the results from the numerical variance case almost exactly, with no appreciable differences
in the 1D or 2D marginalised posteriors. This is perhaps not too surprising given that the
analysis is restricted to relatively large-scales.

5.5.6 Effective binning of the theoretical model

All of our results assumed an evaluation of the theory predictions implementing the exact
scheme of eq. (5.40). Since this approach can be numerically quite demanding, particularly
in likelihood evaluations extended to several cosmological parameters, it is worth exploring
the systematic errors induced on the parameter posteriors by the more efficient choice of a
single bispectrum evaluation at the effective wavenumbers, after the analytical integration
over the angles described in Appendix A.2.

In this case, the theoretical prediction is given by

Beff
` (k1, k2, k3) ≡ B`(keff,l, keff,m, keff,s), (5.44)

where the computation of the multiples assumes the analytical integration over the angles
described in Appendix A.2 and where the definition of the effective triplet, in general not
unique, is based on “sorted” {q1, q2, q3} triplets as (see Paper I)6.

keff,l(k1, k2, k3) =
1

NB

∑

q1∈k1

∑

q2∈k2

∑

q3∈k3

δK(q123) max(q1, q2, q3) ,

keff,m(k1, k2, k3) =
1

NB

∑

q1∈k1

∑

q2∈k2

∑

q3∈k3

δK(q123)med(q1, q2, q3) ,

keff,s(k1, k2, k3) =
1

NB

∑

q1∈k1

∑

q2∈k2

∑

q3∈k3

δK(q123) min(q1, q2, q3) . (5.45)

6See also [51] and [88] for alternative proposals.
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For the choice of the bin size ∆k = kf adopted in our result, the difference between the
two approaches, estimated in terms of the posteriors on the bias and shot-noise parameters,
is completely negligible. For a larger size of the bin ∆k, useful to reduce the overall size of
the data vector, however, we can find some systematic effect on parameters determination.
This is shown in fig. 5.10, where we plot the 2D marginalised posteriors for different choices
of the binning scheme and evaluations of the theoretical prediction. In particular, there is a
significant shift in the 1D marginalised posterior for f (shown in orange in fig. 5.10) for the
case ∆k = 3 kf when we compute the theoretical prediction at the effective wavenumbers.
We notice as well how the larger bin size leads to larger contours, even in the exact binning
case, due to the reduced shape-dependence of the bispectrum measurements.

5.6 Conclusions

This work presents a test of the tree-level prediction in Perturbation Theory for the halo
bispectrum in redshift space with particular attention to its anisotropic signal as described
by higher-order multipoles such as the quadrupole and hexadecapole. It extends previous
results in real space (Paper I and Paper II), taking advantage of a very large set of 298
N-body simulations corresponding to a cumulative volume of about 1,000h−3 Gpc3 and an
even larger set of Pinocchio mocks. The latter provides a robust estimate of the covariance
properties for the full data vector given by the three bispectrum multipoles. We explore
different assumptions on the observables and related covariance models and assess them in
terms of constraints on bias parameters and the fiducial linear growth rate.

We summarise below our main findings.

• The Pinocchio mocks provide a very good description of the variance estimated
from full numerical simulations with a residual scatter below the 10% level and no
apparent shape-dependence (Fig. 5.2), for all bispectrum multipoles, extending previous
assessments in real-space (Paper I, [35]).

• The comparison of the likelihood analysis based on the monopole alone with the
joint analyses of B0 +B2 and B0 +B2 +B4 (Fig. 5.5), using the full covariance from
the mocks, indicates that the addition of the quadrupole alone greatly improves the
determination of bias parameters and, perhaps not surprisingly, allows to properly
constrain the growth rate f ; the further addition of the hexadecapole, instead, leads to
no appreaciable improvement.

• For our full simulation volume, the tree-level model provides a good fit for the bispec-
trum monopole up to kmax = 0.08hMpc−1 while the inclusion of the quadrupole and
of the hexadecapole reduce significantly this range to 0.06 and 0.045hMpc−1, respec-
tively. Indeed, an optimal configuration for the joint B0 +B2 analysis should assume
distinct values for kmax. We tested that better constraints on the model parameters
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are obtained assuming kB0
max = 0.08hMpc−1 and kB2

max = 0.06hMpc−1 with respect to
the case where a single, lower value of kB0

max = kB2
max = 0.06hMpc−1 is adopted to keep

within the model validity range (Fig. 5.8).

• In general our data, despite the large volume, cannot fully determine all constant
shot-noise parameters describing different departures from the Poisson expectation.
It appears, however, that the stochastic velocity contribution εηη to the halo density,
that one can expect when selection effects are present [46], is indeed disfavoured in our
ideal set-up, at least at the large scales we are exploring (Fig. 5.6).

• Both the fitting function for the quadratic local bias parameter b2(b1, bG2) of [98] as the
relation for the tidal bias parameter bG2(b1) proposed in [49, 51] (and their combination)
appear to significantly improve the posteriors on b1 and f (Fig. 5.7); the first, however,
appears to introduce some bias in the determination of b1, although relevant only
because of the large cumulative volume of our simulations set.

• For our ideal measurements in a simulation box with periodic boundary conditions,
the Gaussian model for the bispectrum multipoles covariance provides a very good
approximation to the numerical estimate. A small underestimate is noticeable (and
expected [15, 25]) for the squeezed configurations of the bispectrum monopole (Fig. 5.3).
On the other hand a quite remarkable agreement is obtained in the comparison with the
cross-correlation coefficients (Fig. 5.4). In terms of the posteriors on bias parameters
and f we find no noticeable difference between the Gaussian theory variance and the
numerical variance, while a very small difference is present when compared to the full
numerical covariance (Fig. 5.9).

• All our main results assumed an exact binning of the theoretical prediction. When a
single evaluation on a triplet of effective wavenumbers is assumed we notice a negligible
difference only if the bin size is small (equal to the box fundamental frequency). For a
larger bin size, in addition to somehow larger posteriors, this approximation can lead
to significant systematic differences, particularly on the growth rate f .

As mentioned in the introduction, not many works explored the modelling and the
potential information of the anisotropic bispectrum. Our results qualitatively confirm earlier
Fisher-matrix forecasts [158, 61, 170, 3] in remarking on the importance of going beyond
the analysis of the bispectrum monopole. The same can be said for [77] and [76], both
based instead on a full likelihood analysis and therefore closer, in principle, to our work. For
these last two references, however, many differences in methodology do not allow a rigorous,
quantitative comparison with our results, in addition to the fact, of course, that we do not
include power spectrum measurements in our data-vector. We will present a joint analysis
of the Minerva-set power spectrum and bispectrum in redshift space elsewhere (Moretti et
al. in preparation). For the time being we limit ourselves to observe that the inclusion of
full anisotropic bispectrum information will likely be an important step toward a complete
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exploitation of cosmological information in spectroscopic galaxy surveys.
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Figure 5.5: Results for the analysis of the whole 298 Minerva simulations data-set in
terms of the full, seven-parameters model. Left panels: marginalised, 1-σ posteriors for each
parameter as a function of kmax. Top-right panels: posterior-averaged, reduced chi-square,
〈χ2
ν〉 and the posterior predictive p-value (ppp) as a function of kmax. The blue, red and green

dashed lines in the 〈χ2
ν〉 panel represent the 95% confidence limits for the three combinations

of multipoles considered. Bottom-right panel: two-dimensional, marginalised 1-σ contours
for kmax = 0.06hMpc−1 case (corresponding to the vertical line in the other panels). In all
panels, the B0-only analysis (blue) is compared to the joint B0 +B2 (red) and B0 +B2 +B4

(green). All posteriors are compared with the results from the joint analysis of the real-space
power spectrum and bispectrum derived in Paper II, whose best-fit values are shown by the
gray, dashed lines.
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Chapter 6
Current and future developments

In this chapter I will briefly summarize two projects to whom I have provided a minor
contribution.

The former [120] is the derivation of an exact expression for the analytical convolution
of the bispectrum prediction with the window function, developed for the standard FKP
estimator. This is crucial to exploit bispectrum measurements in upcoming redshift surveys
accurately, accounting for all measurable scales.

The second project, currently being completed, constitutes the natural extension of [136]
as it considers the constraining power of the bispectrum multipoles in the natural context of
a joint analysis of power spectrum and bispectrum in redshift space.

6.1 Bispectrum Window Convolution

6.1.1 Theory

Conventional FKP-like estimators [148, 145, 147] provide as output measurements of the true
galaxy bispectrum which are convolved with the survey window function, just as happens for
the FKP power spectrum. Consequently, theoretical predictions for the matter bispectrum
B(k1,k2) must be convolved with the window BW (k1,k2) ≡W (k1)W (k2)W ∗(k1 + k2) to
obtain

B̂(k1,k2) =

∫
d3p1

(2π)3

∫
d3p2

(2π)3
BW (k1 − p1,k2 − p2)B(p1,p2) . (6.1)

A similar computation is now routinely evaluated for power spectra by means of one-
dimensional Hankel transforms [168], especially by implementing the so-called mixing matrix
form P̃`(k) =W``′(k,p)P`′(p) [39, 22] which allows to pre-compute W``′(k,p) and use it for
optimized likelihood analysis when cosmological parameters are changed at each step.

For the bispectrum, the exact convolution was often bypassed by ignoring the effect
on the non-linear kernel characterizing the tree-level prediction, as in BOSS bispectrum
analyses [64, 68, 67]. While this approach works quite well on most triangle shapes, squeezed
configurations give somehow a worse agreement. This could lead to discarding potentially
valuable information on large scales and bias results for local primordial non-Gaussianity
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related to this triangle shape [149]. Alternatives to this method exist, however they adopt a
different coordinate system then the one routinely adopted in most and our analyses [136]
or, a completely different estimator [126].

In [120] we provide a method to compute (6.1) for the redshift-space bispectrum multi-
poles estimator of [147], presented in Chapter 3. The main result is equation (6.2) where the
convolved bispectrum is given in a form of matrix multiplication, as happens for the Power
Spectrum in [168]. In the following we will not provide the full derivation of these equations
as the mathematical details, consisting of spherical harmonics expansions, contractions, and
integrations over angular variables, do not add much information to the final result and their
description is beyond our purpose here which is just to declare that, in the broader picture
of a full likelihood pipeline, we are able to address the effect of convolution with a realistic
survey window function. Therefore we directly provide the final result, given by

B̂L(k1, k2, k3) =

∫
dp1

2π2
p2

1

∫
dp2

2π2
p2

2

∫
dp3

2π2
p2

3

∑

L′M ′

BL′M ′(p1, p2, p3)

×
∑

`

I``0(p1, p2, p3)QLL′,−M ′,`(k1, k2, k3; p1, p2) . (6.2)

The matrix, represented by the second row of this equation, is defined on the usual wavelength
triplet {p1, p2, p3} and is written in terms of the I``0(p1, p2, p3) function, enforcing the triangle
condition on {p1, p2, p3}, and a second term accounting for the window function contribution,

QLL′M ′`(k1, k2, k3; p1, p2) ≡
∑

`1,`2,`′

128π2

VB

∫

k1

dq1q
2
1

∫

k2

dq2q
2
2

∫

k3

dq3q
2
3 I`2`20(q1, q2, q3)

×WL
L′M ′``′`1`2(q1, q2; p1, p2) , (6.3)

that can be evaluated as a two-dimensional Hankel Transform of the product of two spherical
Bessel functions with the 3PCF multipoles of the window function,

QLL′M ′``′`1`2(x13, x23) ≡(−1)M
′∑

˜̀
1,˜̀2

∑

M,m1,m2

m,m′,m̃1,m̃2

4πi`
′−`+`2−`1 GMm1m2

L`1`2
GM ′mm′L′``′ Gm1m′m̃1

`1`′ ˜̀1
Gm2mm̃2

`2`˜̀2

×
∫
d3x3

∫
d2x̂13

4π

∫
d2x̂23

4π
Y ∗LM (x̂3)Y˜̀

1m̃1
(x̂13)Y˜̀

2m̃2
(x̂23)

×W (x3 + x13)W (x3 + x23)W (x3). (6.4)

6.1.2 Results

We test this method by applying it to the Minerva and Pinocchio mocks already used
in previous papers. In this work, I provided measurements for the bispectrum monopole in
real-space, on periodic boxes which do not account for the effect of the survey footprint,
and on spheres of radius 400 Mpch−1 carved inside each realisation of the Minerva and
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Figure 6.1: Top panels: mean of the bispectrum equilateral configurations, B̂0(k, k, k), as
a function of k for both the box (blue) and spherical window (orange) measurements and for
both the Minerva simulations (left) and Pinocchio box (right). Bottom panels: ratio of the
sphere to box measurements for simulations and mocks. The vertical dashed line indicates
the effective fundamental frequency of the sphere ksphere

f = 2π/V
1/3

sphere.

Pinocchio mocks. This last set of data simulate measurements on an ideal footprint, in this
case taken as a simple sphere of Veff ∼ 700 Mpc3 h−3. The choice of the spherical footprint
relates to the fact that for such a geometry it is possible to give an analytic description of
the corresponding window function.

To perform these measurements, I used the bispectrum code described in Chapter
3, where the auxiliary field was computed from the spherical mock catalogs and from a
random mock catalog accounting for the same footprint. This means that the densities
nsphere
d and nsphere

r correspond to nMinervabox
d and nbox

r over the volume of the sphere, and
vanish outside. I produced these mocks by populating cosmological boxes with the same
characteristics of Minerva and Pinocchio ones with a uniform distribution of objects, with
Nbox
r = 50×Nbox

d . Out of these, I extracted a spherical volume, of same geometry as the
one specified above, to mimic a random mock accounting for the survey footprint of the
corresponding measurements.

We first check the effect of the ideal footprint on the bispectrum measurements by
comparing the mean of the periodic box to the one of the sphere. Results, shown in Figure
6.2, suggest that the typical suppression induced by the window on large scales is very
difficult to detect, if not for very large surveys for which statistical noise is extremely small.
In fact, the total effective volume of Minerva spheres, V ∼ 2.1 × 10−4 Gpc3 h−3, is not
sufficient and the effect is only observable in the case of Pinocchio spherical mocks.
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A check of the accuracy of our convolution model to correctly reproduce bispectrum
measurements on the Pinocchio spherical mocks is shown in Figure 6.2. In this picture, our
theoretical model for the bispectrum is evaluated using the model parameters determined
from a likelihood analysis run over the 10000 Pinocchio boxes, and is convolved through
our mixing matrix approach using an analytical estimate of three-point correlation function
of the footprint. The convolution step makes use of the the 2DFFTLog algorithm1 [54] to
compute the two-dimensional Hankel transform needed to evaluate the W term inside of
equation (6.3). Figure 6.2 shows the ratio of the measurements on the ideal volume to the
convolved model for all configurations up to kmax = 0.09 Mpc−1 h. The error bars correspond
to the error on the mean of the 10000 Pinocchio mocks, while the blue dots highlight
specific configurations, as those with k3 > 10 kf , selected and analysed in the analysis of
[64]. From this plot, we notice that our method recovers quite well the measurement on
the spherical mocks. The agreement is of the order ≤2-3% and the result shows a marginal
residual dependence on shape.

The application of this method for convolving theoretical predictions of the bispectrum
was also applied to a full likelihood analysis. Results were obtained by using two different

1github.com/xfangcosmo/2DFFTLog
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methods to evaluate the W term inside of equation (6.3). The two, however, give differences
of the order of 2σ in the determimation of local bias parameters, suggesting that further
investigation is required.

Despite this fact, we want to emphasize that the main result of this work was to show
that our mixing matrix method allows for a fast treatment of convolution inside likelihood
analyses such that does not significantly change the run-time for a typical Markov chain.
This is a major result and will have great impact on future analyses, especially those aiming
at studying the redshift space bispectrum multipoles, for which the effect of the survey
window function is expected to be more relevant.

6.2 Joint analysis of power spectrum and bispectrum in redshift-
space

This project corresponds to the natural extension of the work carried out in paper [136] which
is the main focus of this dissertaion. At present, we are already involved in the development
of this analysis whose results will be published by the end of 2022. In principle, most of the
tools are already there. The model for the one-loop power spectrum multipoles has been
implemented this year in the PBJ code. As it is the case in real space, a full consistent
analysis in redshift space, including cosmological parameters, requires the computation
of all loop-corrections at every step of the MCMC. Computing 28 loop integrals using
standard numerical integration can become numerically expensive, and for this reason an
efficient implementation is required. This can be obtained by the approach of [109], where
all mode-coupling type integrals can be written as a function of just seven “building-blocks”
integrals, linearly combined using some numerical coefficients, and where the propagator
type integrals can be written with some fast Fourier convolution implementation. The
tree-level bispectrum multipoles were already implemented and tested by myself in this work.
However, some problems must still be solved. In particular, we want to perform this analysis
changing, during each step of the MCMC chain, not only the bias and stochastic parameters
but also cosmological ones. This introduces a new bottleneck in the computing time of our
likelihood code, the evaluation of the linear power spectrum used to compute predictions.
In order to alleviate this problem we are now implementing an emulator recipe, which is
a fast method to produce linear power spectra through neural network-based numerical
interpolators that usually need some kind of training based on N-body simulations. These
kind of tools allow to speed-up the whole computation of the likelihood by two orders of
magnitude compared to most typical Boltzmann solvers as CAMB [102] or CLASS [99]
which typically require O ∼ sec to solve cosmological equations and compute a linear power
spectrum. This advantage comes at expense of a small downgrade in accuracy and of a
restriction in the parameter space which is limited by the training set values. Our specific
implementation is based on the Bacco emulator [8], which can compute a linear power
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spectrum in about one millisecond with 0.2% (0.5%) accuracy over redshifts z ≤ 3 (z ≤ 9),
and scales 10−4 Mpc−1 h ≤ k ≤ 50 Mpc−1 h.

In figure 6.3 we show a preliminary result from this analysis. Here, we put on the
spotlight the effect of adding one-at-a-time the bispectrum monopole and quadrupole to
the power spectrum multipoles analysis. I do not aim at commenting the full picture,
however I just want to focus the attention of the reader on the contour of the joint b1 and
f posteriors. The bispectrum-only contours related to these two parameters were barely
consistent with the combined, expected values of f and b×1 . We note that the addition of
the power spectrum multipoles in this case, alleviates this tension. Naively, we can say that
such result does not come as a surprise since the value of b1 should be much more sensitive
to the amplitude of the power spectrum on large scales than to the bispectrum. Indeed, if
we look at the power-spectrum-only contours, we note that the area comprised in the purple
lines is perfectly centered on the expected value for the linear bias. On the other hand, the
bispectrum contours of Chapter 5 appeared to be much more sensitive to the value of the
linear growth rate. Further investigations are naturally needed, and we expect the result of
this analysis to appear in a dedicated paper which will be submitted by the end of 2022.
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Chapter 7
Conclusions

The work presented in this dissertation relates to the current effort from the scientific
community to improve the methods to exploit the information content encoded in the
observed large-scale structure distribution of matter in the Universe. This information is
extracted from spetroscopic galaxy redshift surveys through measurements of correlation
functions of some type of tracer assumed to sample the matter distribution through some
physically-motivated model, characterized by bias. These measurements, are usually fed to a
likelihood code along with theoretical predictions, developed in the context of perturbation
theory. Joint posteriors between model parameters, resulting from likelihood analyses,
describe the confidence regions for these quantities and allow us to constrain their value.
This approach is broadly used by the scientific community, as shown at the end of Chapter 2,
and in Chapter 4 and 5, to evaluate cosmological and bias parameters. We now feel impelled
to highlight once more the novelty of our work and its importance in this panorama.

The main focus of this dissertation has been the estimate and the analysis of the galaxy
bispectrum in spectroscopic redshift surveys, and the study of the impact of the information
encoded in its multipoles on likelihood analyses aiming at extracting constraints on bias
b1, b2, bG2 and cosmological parameters f from halo N -body simulations. The advance of
this work is that it is one of the first studies about the constraining power of the bispectrum
multipoles in redshift space in which a direct comparison with real measurements of N -body
simulations is made, with previous works being mostly limited to forecast studies or to the
use of synthetic measurements built through analytical templates [77]. A major result is
the fact that our analysis confirms the results from these pioneering works [61, 28] in the
importance of going beyond the analysis of the bispectrum monopole. In particular, we find
that the model at tree-level in PT provides a valid description of the measurements, within
the errors defined by the full volume of our simulations, up to a maximum wavenumber
of 0.08 Mpc−1 h for the monopole, 0.06 Mpc−1 h for the quadrupole, and 0.045 Mpc−1 h

for the hexadecapole. As in the power spectrum case, the inclusion of the bispectrum
quadrupole greatly improves the posteriors from the monopole alone, while the addition of
the hexadecapole leaves the contours almost untouched. The robustness of this outcome
relies on the exceptional cumulative volume of the simulations we analysed and on the large
number of mocks utilized to compute the numerical covariance matrix. In this regard, another
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major result is that the Gaussian covariance model for the cross-multipoles bispectrum
provides a good approximation to the numerical estimate we used. We tested the variance
of the Gaussian covariance model in terms of likelihood results, showing that contours
for joint parameter posteriors do not show any appreciable difference with the variance
of the numerical estimate. Moreover, the subsequent comparison with the full numerical
covariance run does only display a small variation. This work resulted in a paper that
has been submitted on April 26th. Its results will be key to interpret the analysis of the
joint analysis of the power spectrum and bispectrum in redshift-space which will study the
constraining power that the bispectrum multipoles add on top of the anisotropic power
spectrum information content. This project is just started and will end up in a publication
which will be likely submitted by the end of this year.

These studies, together with Paper I and Paper II, are applied to boxes with periodic
boundary conditions. This represents an ideal set-up that singles-out the complications
introduced by observational systematics affecting real spectroscopic surveys. In this sense,
the relevance of this work will extend also to the possibility of using our results as reference
for studying the impact of these systematics all the way down to their ripercussion on bias
and cosmological parameter constraints. This will be achievable thanks to the complete data
analysis pipeline that we built over these years within the Trieste group. This pipeline is
now partecipating to a challenge within the Euclid Higher-Order Statistics Working Group.
Purpose of the challenge is to compare constraints on model parameters for a variety of
likelihood codes, in order to provide a robust analysis of current codes and models used by
the scientific community. The results of this project will be published in a dedicated study.

Last but not least, this type of test was also particularly important for the bispectrum
multipoles estimator itself: the code I am developing is now being used as an official code
of the Euclid collaboration, of which I am a member. The low number of bispectrum
estimator implementations does not allow for a comprehensive validation against eternal
codes, as it happens for the monopole or for the power spectrum multipoles. Therefore, our
results can be considered as a further validation of the code against theoretical tree-level
multipoles predictions. The work I have been doing in the Euclid Collaboration about the
implementation and validation of the power spectrum and bispectrum codes will be part of
a dedicated official publication of the Euclid Consortium, to be published at the end of this
year.

Having explained the relevance of our work in the context of LSS studies, I conclude
by clarifying the role that these topics will play in the near future. In particular, their
importance is soon justified in light of future surveys as Euclid [96] or DESI (Dark Energy
Spectroscopic Instrument) [43] which will provide a large amount of data that needs to be
exploited to the best of our capabilities. These data will allow us to study DE and DM, the
two dominant energy components whose nature in still poorly understood, and shed light
on the recent deviations of cosmological parameters measured from local observations from
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Type 1a supernovae and weak lensing measurements from the Planck cosmology.



Appendix

A.1 Approximations for the bin-averaged theoretical predic-
tions

A.1.1 Power spectrum

Within a Fourier bin, the theoretical model for the power spectrum can be expanded in
Taylor series around some wavenumber q0 included in the same bin as

P (q) =

∞∑

n=0

1

n!
P (n)(q0)(q − q0)n, (1)

so that its bin-average can be written as

Pbin(k) =
1

NP (k)

∑

q∈k

∞∑

n=0

1

n!
P (n)(q0)(q − q0)n =

1

NP (k)

∞∑

n=0

1

n!
P (n)(q0)

∑

q∈k
(q − q0)n . (2)

By defining the quantities

µn(k) =
1

NP (k)

∑

q∈k
(q − q0)n, (3)

we can write the bin-average of the power spectrum as

Pbin(k) =

∞∑

n=0

1

n!
P (n)(q0)µn(k) . (4)

This expression does not involve the evaluation of the power spectrum and its derivatives at
each value of q = |q|, and the quantities µn(k) can be pre-computed.

If we choose for q0 the effective wavenumber keff defined in eq. (4.39), the generic µn(k)

reduces to the central n-th moment of the discrete distribution of Fourier wavenumbers in
the bin. The zero-th order term in the infinite expansion eq. (4), reduces to the standard
effective power spectrum of eq. (4.40), since µ0(k) = 1. The first order contribution vanishes
since µ1(k) = 0. The first, non-vanishing correction to the zero-th order term is then
given by the second-derivative term, with µ2(k) being the variance of the distribution of
Fourier wavenumbers inside the bin. Therefore, we can approximate the bin-averaged power
spectrum, truncating the expansion to include up to the second order, as

P
(2)
bin(k) ' P (keff) +

1

2
P ′′(keff)µ2(k). (5)
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Figure 1: Left panel: relative difference between the bin-averaged theoretical model of the
halo power spectrum and the model evaluated at the effective wavenumbers keff (in blue),
the model evaluated using eq. (5) based on a Taylor expansion about keff (in green), and
the model averaged approximating the discrete sums with continuous integrals (in red); in
gray, the relative standard error on the mean (estimated from the mocks) of the full dataset
of 298 N-body simulations. Right panel: same comparison for the bispectrum case.

In order to have a well-behaved, continuous n-th derivative, it is required that the
starting power spectrum is interpolated with at least an (n+ 1)-th order spline. This means
that a cubic spline interpolation of the theoretical model of the power spectrum is sufficient
for our purposes. The quantities keff and µ2(k) are evaluated only once, and therefore the
computational cost of this approach is of the same order of the usual effective approach,
while providing a great improvement in accuracy. This is shown in the left panel of figure
1, where the relative difference with the fully bin-averaged power spectrum is compared
with the one of the effective prediction. As a reference, we also compare it with the integral
approximation of the exact bin-average, and with the relative statistical uncertainty of our
dataset.

A.1.2 Bispectrum

In the case of the bispectrum, due to its shape-dependence, the Taylor expansion approach is
model dependent. For this reason, in the following it is more convenient to assume explicitly
the structure of the tree-level model, eq. (4.34), that we adopted for the galaxy bispectrum.
Introducing the generic kernel K̃, we can write the model in the form

B(q1,q2,q3) = K̃(q1,q2)PL(q1)PL(q2) + cyc. . (6)
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We also make use of the following notation for averages over the triangular bin with sides
(k1, k2, k3)

〈f(q1,q2,q3)〉4 ≡
1

NB(k1, k2, k3)

∑

q1∈k1

∑

q2∈k2

∑

q3∈k3

δK(q123)f(q1,q2,q3) . (7)

Then, inside the triangle bin, we can expand the product of the power spectra in Taylor
series around the sorted effective wavenumbers defined in eq.s (4.41)

PL(ql)PL(qm) =
∞∑

u=0

∞∑

v=0

1

u! v!
P

(u)
L (keff,l)P

(v)
L (keff,m)(ql − keff,l)

u(qm − keff,m)v, (8)

where (q1,q2,q3) are relabeled as (ql,qm,qs) (ordered from the longest to the shortest),
and the full expression for the bin-average of the bispectrum model becomes

Bbin(k1, k2, k3) =

∞∑

u=0

∞∑

v=0

1

u! v!
P

(u)
L (keff,l)P

(v)
L (keff,m)

〈
K̃(ql,qm)(ql − keff,l)

u(qm − keff,m)v
〉
4

+cyc.

(9)
At zero-th order, we have that the approximation to the full bin-average of the bispectrum
is simply

B
(0)
bin(k1, k2, k3) '

〈
K̃(ql,qm)

〉
4
PL(keff,l)PL(keff,m) + cyc. . (10)

Notice that this expression does not reduce to the bispectrum evaluated at effective wavenum-
bers, since it includes the exact bin-average of the kernel. At higher order, new terms
appear, where the bin-average now applies to the product of the kernel with powers of
Fourier wavenumbers. Truncating the full expansion, retaining terms up to u+ v = 2, this
approximation requires to precompute 18 averages for each kernel, in addition to the three
effective wavenumbers.

The shot-noise contribution does not require the computation of any extra term, since
the averages appearing are already computed for the constant kernel relative to the quadratic
bias operator,

Bbin
shot−noise(k1, k2, k3) ' 1 + α1

n̄
b21

[
PL(keff,l) +

1

2
P ′′L (keff,l)

〈
(ql − keff,l)

2
〉
4

]
+ cyc.+

1 + α2

n̄2
.

(11)

As shown in the right panel of figure 1, this method provides generally a better accuracy
(of at least one order of magnitude) compared to the standard effective method with sorted
wavenumbers and to the integral approximation of the exact bin-average.

A.2 Analytical evaluation of the bispectrum multipoles

The orientation of the {k1,k2,k3} triangle w.r.t. the LOS in the model for the redshift-space
bispectrum Bs(k1,k2,k3, n̂), eq. (5.5), is expressed entirely in terms of products of powers
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of the cosines µi ≡ k̂i · n̂ that can be factorised in each contribution.

The integrals defining the bispectrum multipoles in eq. (5.24) are therefore limited
to angle-averages of such combinations, with the additional factors from the Legendre
polynomials corresponding to additional powers of µ1. We denote these integrals as

Iαβγ =
1

4π

∫ +1

−1
dµ1

∫ 2π

0
dξ µα1 µ

β
2 (µ1, ξ)µ

γ
3(µ1, ξ) , (12)

where
µ2(µ1, ξ) = µ1µ12 −

√
1− µ2

1

√
1− µ2

12 cos ξ (13)

and
µ3(µ1, ξ) = −k1µ1 + k2µ2(µ1, ξ)

k3
, (14)

having introduced µ12 ≡ k̂1 · k̂2. Since the angle integration of eq. (12) is to be intended as a
generic integration over all orientations, it is easy to see that it should satisfy the following
property

Iα,β,γ(k1, k2, k3) = Iσ(α,β,γ)[σ(k1, k2, k3)] , (15)

where σ(...) represents a generic permutation applied, at the same time, to its indices and
arguments1 We write, for illustration purposes the first few as

Iα00 =
1

1 + α
for α even (vanishing otherwise) , (16)

Iα01 = − k2
1 + k2

3 − k2
2

2(2 + α) k1 k3
for α odd (vanishing otherwise) , (17)

Iα11 =
(2 + α) k4

1 − α (k2
2 − k2

3)2 − 2 k2
1 (k2

2 + k2
3)

4(1 + α)(3 + α)k2
1 k2 k3

for α even (vanishing otherwise) , (18)

Iα02 =
4 k2

1 k
2
3 + α (k2

1 + k2
3 − k2

2)2

4(1 + α)(3 + α)k2
1 k

2
3

for α even (vanishing otherwise) . (19)

We can group all contributions to the bispectrum multipoles according to the source of
quadratic nonlinearity, that is

B`(k1, k2, k3) = B
(F2)
` +B

(b2)
` +B

(S2)
` +B

(G2)
` +B

(mixed)
` . (20)

These contributions can be expressed in terms of the Iαβγ

B
(F2)
0 = 2 b31 I000 F2(k1, k2; k3)PL(k1)PL(k2) + 2 perm.+

+ 2 b21 f (I200 + I020)F2(k1, k2; k3)PL(k1)PL(k2) + 2 perm.+

1Notice that in general is not true that Iα,β,γ(k1, k2, k3) = Iσ(α,β,γ)(k1, k2, k3), so if we write, e.g.,
I200 + I020 we implicitly mean I200(k1, k2, k3) + I020(k1, k2, k3) corresponding to the sum of two different
quantities.
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+ 2 b1 f
2 I220 F2(k1, k2; k3)PL(k1)PL(k2) + 2 perm. , (21)

B
(b2)
0 = b21 b2 I000 PL(k1)PL(k2) + 2 perm.+

+ b1 b2 f (I200 + I020)PL(k1)PL(k2) + 2 perm.+

+ b2 f
2 I220PL(k1)PL(k2) + 2 perm. , (22)

B
(S2)
0 = 2 b21 bG2 I000 S(k1, k2; k3)PL(k1)PL(k2) + 2 perm.+

+ 2 b1 bG2 f (I200 + I020)S(k1, k2; k3)PL(k1)PL(k2) + 2 perm.+

+ 2 bG2 f
2 I220 S(k1, k2; k3)PL(k1)PL(k2) + 2 perm. , (23)

B
(G2)
0 = 2 b21 f I002G2(k1, k2; k3)PL(k1)PL(k2) + 2 perm.+

+ 2 b1 f
2 (I202 + I022)G2(k1, k2; k3)PL(k1)PL(k2) + 2 perm.+

+ 2 f3 I222G2(k1, k2; k3)PL(k1)PL(k2) + 2 perm. , (24)

B
(mixed)
0 = −b31 f

(k3

k1
I101 +

k3

k2
I011

)
PL(k1)PL(k2) + 2 perm.−

− b21 f2
[k3

k1
(I301 + 2I121) +

k3

k2
(I031 + 2I211)

]
PL(k1)PL(k2) + 2 perm.−

− b1 f3
[k3

k1
(I141 + 2I321) +

k3

k2
(I411 + 2I231)

]
PL(k1)PL(k2) + 2 perm.−

− f4
(k3

k1
I341 +

k3

k2
I431

)
PL(k1)PL(k2) + 2 perm. . (25)

Here the permutations are intended to apply as well on the Iαβγ integrals. The shot-noise
contribution to the monopole is given by

B
(shot-noise)
0 =

1

ñ

{
b21 I000

[
PL(k1) + PL(k2) + PL(k3)

]
+

+ b1f
[
I200 P (k1) + I020 P (k2) + I002 P (k3)

]
+

+ f2
[
I400P (k1) + I040P (k2)P + I004P (k3)

]}
+
I000

n̄2
(26)

Then the quadrupole and hexadecapole, defined as

B2(k1, k2, k3) =

∫ +1

−1
dµ1

∫ 2π

0
dξB(k1, k2, k2, µ1, ξ)

[1

4

√
5

π
(3µ2

1 − 1)
]

(27)

B4(k1, k2, k3) =

∫ +1

−1
dµ1

∫ 2π

0
dξB(k1, k2, k2, µ1, ξ)

[ 3

16

√
1

π
(35µ4

1 − 30µ2
1 + 3)

]
(28)

can be readily written starting from eq.s (21)-(25), replacing the Iαβγ integrals with the
quantities

J (2)
αβγ ≡

1

4

√
5

π
(3 Iα+2β γ − Iαβ γ) , (29)

in the quadrupole case and with

J (4)
αβγ ≡

3

16
√
π

(35 Iα+4β γ − 30Iα+2β γ + 3Iαβ γ) , (30)
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for the hexadecapole.
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