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Da piccolo, incontrai un vecchio che viveva in una casa di pietra.  

Mi ricordo che mi raccontò una bella storia, dove una goccia d’acqua spruzzata dal 

respiro di una balena era arrivata su un gabbiano, il quale, sbattendo le ali, la trasportò 

fino a una nuvola e, che allora, la goccia d’acqua quando piovve, cadde, andando a 

nutrire gli orti della terra, gli alberi e i cespugli della foresta, per poi finire nel fiume che 

l’attraversava e grazie al quale i pesci avevano una dimora e gli uomini e gli altri 

animali potevano dissetarsi, e che questo fiume accarezzava i ciottoli e riempiva la terra 

per poi sfociare in mare, il luogo da cui proveniva la goccia di balena.  

 

Sorrise e mi disse che questo è il principio della vita, della storia infinita della vita che 

si nutre di sé, e che tutte le gocce del mare racchiudono questo segreto così semplice e 

che anch’io, dopotutto, ero nato da una balena. 
 

 

C.T.P. 

 

 

 

 

 

 

 

Disse che aveva perso la voglia di studiare  

Voleva solo viverlo 

Per questo e per altro 

Divenne mare. 
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Thesis abstract   
 
Species distribution models (SDMs) have been widely used in ecology, especially in recent 

decades in the marine context - in this particular case, in fisheries science. We know that 

demersal species are very important for the marine ecosystem and the fishing industry and 

should be managed accordingly. A growing number of studies highlight the importance of 

spatial management for rebuilding stocks and protecting ecosystem resources and 

biodiversity. SDMs could assist fisheries management in spatial operations. In this study, I 

focused on different aspects of species distribution and defined a procedure to develop an 

ensemble of models combining different modeling approaches. I combined Generalized 

Additive Models, Random Forest, and the Gradient Boosted method for ten demersal 

species, two life stages (adult and juvenile fish), and two different indices such as kilograms 

per km2 (kg/km2) and number of individuals per km2 (n/km2). I used data from two surveys 

conducted in the Adriatic and Ionian Seas: Mediterranean International Trawl Survey 

(MEDITS) and Sole Monitoring (SOLEMON). In detail: 

 

- In Chapter 2, I analyzed biomass indices (kg/km2) for European hake, common sole, mantis 

shrimp, red mullet, and common cuttlefish using a series of generalized additive models 

(GAMs) with and without abiotic variables. The results show that the geostatistical model 

used to estimate the distribution of different demersal species based on trawl data is 

improved when additional environmental variables (oceanographic variables) are included. 

 

- In Chapter 3, I analyzed the density index (n/km2) by defining a new procedure for 

developing an ensemble of models that resulted from combining 5 different approaches 

(General Additive Models (Tweedie, Delta, and Gaussian), Random Forest, and Gradient 

Boosting methods). I implemented spatial training and testing datasets to evaluate the best 

performance of 9 models against a set of indicators. These models include various 

combinations of covariates, ranging from the simplest model (depth, year, and 

spatiotemporal variables) to the most complex model (which includes oceanographic 

variables and fishing effort). The results show the improvement (smaller difference between 

modeled and observed data) for the models with environmental variables using the European 

hake (Merluccius merluccius) in the Adriatic and Ionian Seas as an example. 

 

- In Chapter 4, I used the ensemble of species distribution models (e-SDM) described in 

Chapter 3 to determine the hot spot of juvenile and adult aggregation of ten species, using 

density indices (n/km2) derived from MEDITS and SOLEMON and geographic data (depth, 

Latitude, longitude, and month), relevant 3D oceanographic variables (temperature, salinity, 

chlorophyll-a, dissolved nutrients and oxygen, particulate organic carbon, pH), and fishing 

effort (from the vessel monitoring system). 

 

- In Chapter 5, I extended the ensemble species distribution models (e-SDM) described in 

Chapter 4 to assess the future distribution of ten demersal species in the study area and to 

determine aggregation areas for four different scenarios (2012, 2018, 2035, and 2050) and 

the two life stages. I estimated projected future changes in aggregation centroids, density 

distributions, and centroids for the 10 species in the study area by GSA (Geographic Sub 

Area, 17, 18, and 19). The results allow prediction of areas gained and lost under future IPCC 

RCP 8.5 climate conditions and provide the basis for determining potential range shifts for 

the 10 species.
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Introduction: The Mediterranean Sea 

 

The impact of human activities, especially fishing, on the Mediterranean Sea has been 

significant. Stocks have collapsed, and eutrophication phenomena and invasive species have 

appeared throughout the basin since the 1980s (FAO, 2022). The marine ecosystem is being 

greatly affected, and this stress could have major impacts on species distribution and 

abundance, biodiversity, and ecosystem services (Pereira et al., 2010; Worm et al., 2007). 

 

We must also consider the perspective of climate change, which is contributing to drastic 

changes in environmental conditions in the Mediterranean Sea (Reale et al., 2022; Solidoro 

et al., 2022). The impact of climate change on political and economic aspects is important, 

and the Intergovernmental Panel on Climate Change (IPCC, 2022) has provided much 

evidence over the years. 

The ocean is critical to regulating the Earth's climate and sequesters about 25% of CO2 (Le 

Quéré et al., 2018). To assess future climate change, the IPCC proposes several scenarios for 

the impacts of human activities, simulating possible warming levels compared to pre-

Industrial Revolution levels. The scenarios are called Representative Concentration Pathways 

(RCPs - +2.6 W/m2, +4.5 W/m2, +6.0 W/m2, and +8.5 W/m2), measured as radiative 

forcing (W/m2 - watts per m2). 

These potential changes have implications for ocean circulation (Liu et al., 2017); ocean 

warming has been observed since the 1960s (Cheng et al., 2017), with surface temperatures 

increasing by about 0.7 °C from 1900 to the present (Huang et al., 2015). In addition, changes 

in dissolved oxygen affect global carbon and nitrogen cycles (IPCC, 2022), and global 

warming is the cause of ongoing deoxygenation in the open ocean (Breitburg et al., 2018). It 

is estimated that primary production will decline by 6% by 2100 (Kwiatkowski et al., 2017). 

 

All of these aspects of climate change could affect marine life in the Mediterranean and 

consequently fisheries, for example, by altering the future distribution of resources (Moullec 

et al., 2019a) and the rapid spread of invasive species (Giakoumi et al., 2019; Tsirintanis et 

al., 2022). The Mediterranean Sea is a biodiversity hotspot where invasive species are 

increasing, and various management measures are still under discussion (Bahri et al., 2021), 

for example, for invasive species such as the silver-cheeked toadfish (Lagocephalus sceleratus). 

 

The Mediterranean Sea is characterized by a long history of human pressures, with changes 

in ecosystem condition from the second half of the last century to the present day, largely 

documented by numerous studies (Coll et al., 2008; Fortibuoni et al., 2017; Piroddi et al., 

2020). The basin is characterized by a multispecies fishery and only 8 species account for 

more than 62% of the total landings (FAO, 2022), such as the pelagic fishes sardine (Sardina 

pilchardus) and anchovy (Engraulis encrasicolus), and 6 demersal fish species such as European 

hake (Merluccius merluccius), deep-sea red shrimp (Parapenaeus longirostris), squid cuttlefish (Sepia 

officinalis), octopus (Octopus vulgaris), blue and red shrimp (Aristeus antennatus), and red mullet 

(Mullus barbatus) (Figure 1.1). The demersal species targeted by trawl gear are heavily impacted 

by fishing and have high fishing mortality on juveniles and a large amount of discards (Maina 

et al., 2018; Tsagarakis et al., 2014). 
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Figure 1.1: main 8 commercial species reaching over 62% of landings values in the Mediterranean Sea (6 are demersal 

species) 
 

In the Mediterranean (and Balck Sea), the General Fisheries Commission for the 

Mediterranean and the Black Sea of the Food and Agriculture Organization (GFCM-FAO) 

is responsible for all marine waters, adopting binding and non-binding decisions that apply 

to all Mediterranean and Black Sea countries. The area of application is divided into five 

subregions: western, central and eastern Mediterranean, Adriatic Sea and the Black Sea. 

These binding recommendations are then transposed into European Union or national 

legislation by all contracting parties, such as the European Union's Common Fisheries Policy 

(CFP), which provides for a reduction in fishing effort in European member countries from 

2002.  

The 23 contracting parties (EU and non EU) are: Albania, Algeria, Bulgaria, Croatia, Cyprus, 

Egypt, European Union, France, Greece, Israel, Italy, Lebanon, Libya, Malta, Monaco, 

Montenegro, Morocco, Romania, Slovenia, Spain, Syria, Tunisia, Turkey. The GFCM also 

includes 6 non-contracting parties: Bosnia-Herzegovina, Georgia, Jordan, Republic of 

Moldova, Saudi Arabia, Ukraine.  

Contracting parties contribute to the GFCM budget and finance its activities. The 

cooperating non contracting parties are not formally affiliated with the GFCM but actively 

participate in the activities of the GFCM, attend the meeting of the Commission and commit 

to fully implement all recommendations of the GFCM. 

Despite the efforts of the relevant agencies, many stocks in the Mediterranean are overfished 

(see Box 1), and some estimated reductions in fishing effort in 2020-2021 toward the 2026 

maximum sustainable yield (MSY-see the Overview of Fishing Pressure subsection) are 

significant, e.g., in the Adriatic, a 12% reduction in otter trawling and a 16% reduction in 

beam trawling (FAO,2022). 

 

In the face of climate change, invasive species, temperature, oxygen, and nutrient changes, 

and past and ongoing overfishing in the Mediterranean, resource status assessment is 

essential. The main assessment carried out by GFCM-FAO is based on the stock assessment 

method, and the number of stocks assessed has increased significantly since 2008 and will 

reach 62 in 2020 (FAO, 2022), covering spatial and temporal information for the entire 

Mediterranean Sea. In addition, the determination of the fishing footprint is carried out to 
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assess the spatial extent of bottom fishing, taking into account the area of the seabed 

exploited by bottom gears in space and time, in order to identify the location and intensity 

of fishing activities through mapping (Amoroso et al., 2018). 

 

At GFCM-FAO, temporal and spatial measures are also taken, such as reducing fishing 

pressure during the spawning season or increasing protection during the migrations of some 

endangered species. These measures are sometimes incorporated into multi-year plans. For 

example, following the concept of ecosystem approach to fisheries, GFCM-FAO has 

introduced the fisheries restricted areas (FRA - for the Adriatic Sea subsection of Chapter 1  

Overview of fishing pressure and management regulation in the study area), established to 

protect essential fishing habitats (EFH) and/or vulnerable marine ecosystems (VME) in the 

Mediterranean Sea. A fisheries restricted area (FRA) is a geographically defined area where 

certain fishing activities are temporarily or permanently prohibited or restricted in order to 

improve exploitation patterns and conservation of certain stocks, habitats and deep-sea 

ecosystems. Monitoring of this area within and adjacent to it is critical and is one of the main 

objectives of the GFCM, which has identified in its decisions, including multi-year 

management plans (see next sub-section Overview of fishing pressure and management 

regulation in the study area) some important points for this spatial management: 

  

1) regular collection of fishery-independent data 

2) regular collection of fisheries-related data, focusing on key stocks protected by the FRA; 

3) collection of socioeconomic data to assess the effects of changes in the size and 

composition of landings from fisheries affected by the FRA; 

4) Collect local ecological knowledge from fishermen and stakeholders directly affected by 

the FRA;  

5) Preparation of periodic assessments of the status of fisheries affected by the FRA by the 

existing expert. 

 

Among others, FRAs have been established for the conservation and management of the 

demersal stocks, including European hake in the Jabuka/Pomo Pit (Adriatic Sea) and 

deepwater shrimp in the three FRAs of the Strait of Sicily. 

 

Key GFCM management measures (GFCM Compendium, 2021b) are summarized as 

follows: 

 

 Establish spatio-temporal measures, including Fisheries Restricted Areas (FRAs), to 

improve the status of key species and/or protect sensitive ecosystems. 

 Monitoring of established FRAs. 

 Mapping of FRAs established by GFCM countries within their national waters 

(nFRAs). 

 Identify VME indicators and EFHs that will be compiled into a regional database of 

sensitive benthic species and habitats to support scientific advice. 

 Collect information on VME indicators, habitats, and taxa through direct 

observations and the use of protocols for reporting encounters and trials in deep-sea 

bottom fisheries. 

 Mapping fisheries footprints using the vessel monitoring system (VMS), automatic 

identification system (AIS), local ecological knowledge, and other tools. 
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In addition to demersal species, small pelagic species are also regulated by GFCM for all 

countries in the affected area (especially the Adriatic Sea), with the main objective of restoring 

and maintaining a stable population of exploited species by reaching the level of MSY (MSY 

- Schaefer, 1954). When we talk about fisheries, it is important to remember the concept of 

MSY, which in ecology consists in the highest theoretical equilibrium yield that can be 

achieved from a stock under existing environmental conditions (Fath, 2018). The concept of 

MSY aims to maintain the maximum growth rate of the population size so that the 

population can continue to be productive indefinitely despite fishing. 

The yield (or catch) of an ecosystem is determined by two main factors, one is the "top-

down" effect, which consists of fishing, and the other is the "bottom-up" effect, which 

consists of primary production (PP) (Conti et al., 2012). In addition, the recent 

implementation of the landing obligation for EU countries (only for European countries - 

European Commission EC, 2013, GFCM compendium, 2021b) aims to apply technical 

measures to discourage the catch of undersized commercial species, through the closure of 

some areas where, for example, juveniles accumulate (Hot Spot of Juvenile, see Chapter 4, 

Figure 4.2 - 4.3). Regulations such as the aforementioned landing requirement, seasonal 

closure, or mesh size are primarily based on specific assumptions, as juvenile fish are 

particularly vulnerable in the nursery area and reducing fishing mortality on immature fish is 

a prerequisite for sustainable fisheries. 

 

The scientific community has developed the ecosystem approach to fisheries (EAF) (Sinclair 

& Valdimarsson, 2003), which involves managing the ecosystem rather than a single stock. 

The EAF is more complex and it is not clear if it works well for the single species approach, 

especially due to data availability (Russo et al., 2019). 

The data used in the GFCM area, which consists of 23 countries (EU and non-EU), come 

primarily from the Data Collection Reference Framework (DCRF), i.e is the entire collection 

of fisheries data since 2000 based on catch and landings monitoring 

(https://www.fao.org/gfcm/data/dcrf/en/), including fishing effort and survey-derived 

fishery data, i.e., the MEDITS and SOLEMON survey data used in this work. 

 

The effort data are derived from the vessel monitoring system (VMS) and the automatic 

identification system (AIS) (Zhao et al., 2014). The former is used on commercial fishing 

vessels with an EU license longer than 12 m to track and monitor fishing vessel activity, 

determine the location of the vessel at a given time, and periodically transmit this information 

to a shore-based monitoring station. The VMS consists essentially of an antenna and receiver 

(GPS), a computer (which may be built-in or provided by the user), and a transmitter and 

antenna suitable for communication between the vessel and the flag center. The use of VMS 

is mandatory and required by the European Union, where vessels are required to report catch 

on entry, weekly catch, transhipment, port of landing, and catch on exit. 

AIS are collision avoidance devices used by vessels on board to report position, trachics and 

speed with high frequency radio transmission. 

The AIS is not mandatory on smaller vessels (< 15m), but many use it simply for its safety 

benefits. It shows all other vessels in the vicinity the vessel's position and the routes these 

vessels are taking, reducing potential collision risks. 

In recent years, private companies have developed satellites that can receive AIS, increasing 

its range. This has led to some confusion with VMS, leading some to believe AIS can be used 

for fisheries management (Fournier et al., 2018). 

https://www.fao.org/gfcm/data/dcrf/en/
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New strategies and a shared vision are needed to restore marine resources and promote 

sustainability. 

One of the objectives of this work was to explore modeling approaches based on statistical 

methods in the field of species distribution models (SDMs) using fishery-independent data 

in combination with environmental variables to represent the " best' distribution of some of 

the main commercial demersal species in the Adriatic and Ionian Seas. 

 

With these objectives in mind, I consider different modeling approaches, input data and 

scenarios under climate change conditions, map the hotspots and areas of overlap between 

species to understand the distribution range of these species, and consider this work as an 

opportunity to incorporate SDMs in the assessment of stock management in the study area 

and the Mediterranean Sea as a future challenge to improve spatial management in this area. 
 

Overview of fishing pressure and management regulation in the study area  

 
The Adriatic and Ionian Seas have a great diversity of fisheries that have developed over a 

long history in this area, where the exploitation of resources began a thousand years ago 

(Farrugio et al., 1993). In addition, the great biodiversity of the area, the high productivity 

and the long time series of data (Fortibuoni et al., 2017) represent important added values 

of the study area. It's well known that the northern and central Adriatic Sea is intensively 

exploited by fisheries (Fig. 1.2) and many species are overfished (Fortibuoni et al., 2017; 

Russo et al., 2019). 
 

 
 

Figure 1.2: Left panel: number of fishing vessels in the three GSA belonging to the Adriatic and the Ionian Sea. 

Right: percentage of the total number of fishing vessels for all GSA in Mediterranean Sea. (source FAO, 2022). In 

red is the highlighted GSA 17.  

 

The Adriatic Sea alone contributes 15% of the total Mediterranean catch, which ranges from 

170000 to 180000 tonnes (see Fig. 1.3). Moreover, landings (in tonnes) in the Adriatic Sea 

are dominated by Italy - 56.8% - and Croatia - 39.1% - followed by the other Adriatic 

countries such as Albania (3.5%), Montenegro (0.5%) and Slovenia (0.1%) (FAO, 2022). 

In the Ionian Sea, particularly in GSA 19 (see Fig. 1.4), which is also referred to as the 

Western Ionian Sea (the others being the Southern ( GSA 21) and Eastern (GSA 20) Ionian 

Seas), bottom shrimp fisheries for red king prawns (Aristaemorpha foliacea) and blue and red 

shrimp (Aristeus antennatus) are the main activities, with Italy accounting for about 58% of 
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the total fleet (FAO, 2022). The number of vessels (Fig. 1.2) operating in the western Ionian 

Sea is about 1500, which represents the small number in the study area. 

 

 

 
Figure 1.3: Average annual landings by GSAs for years 2016-2018. Source (FAO, 2022).  

 

  

The recommendations proposed by GFCM-FAO for conservation and management 

measures in the study area of this work, the Adriatic and Ionian Seas, concern in particular: 

 

Adriatic Sea (GSA 17 & 18):  

The GFCM recommendation provides multi-year management plans (MMPs) for 

sustainable demersal fisheries that ensure consistent long-term yields within maximum 

sustainable yield (MSY) and low risk of stock collapse to maintain a stable fishery.  

For example, the Adriatic MMPs propose the following:  

 

- Precautionary approach to fisheries management 

- Ensure exploitation rates of key stocks (e.g., hake, Nephrops, or mullet) are at MSY levels 

by 2026 

- Help eliminate discards, reduce bycatch (unwanted catch), and landings obligations 

- Protect nursery and spawning areas and key fish habitat for demersal stocks  

 

Especially considering the last point, the integration of modelling tools for the spatial 

distribution of species could be an important tool to highlight and assess the basic areas for 

some important groundfish stocks, in order to protect and conserve nursery and spawning 

areas that are essential for some species in the Adriatic Sea (e.g., hake, Norway lobster, or 

mullet). 

The GFCM recommendation specifically aims to keep fishing mortality of exploited stocks 

within the Fmsy level (fishing mortality at MSY) and recommends numerous technical 

measures, such as the minimum conservation reference size for European hake, the 

minimum conservation reference size for deepwater red shrimp (20 mm carapace length - 

CL) or Norway lobster (70 mm total length -TL), and for red mullet (11 cm TL) and sole 

(20 cm TL). In addition, as mentioned above, the GFCM recommends the establishment of 

FRA and the conservation and monitoring of the current Jabuka/Pomo pit, which also 

proposes a new possible FRA in the southern part of the Adriatic Sea (GFCM Compendium, 

2021b). 
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Regulation of FRA in the Jabuka/Pomo Pit was adopted by a GFCM recommendation in 

2017 and made permanent by another GFCM recommendation in 2021, which includes 

regulations for bottom fishing and pelagic fishing throughout the year in the core area, and 

spatial and temporal restrictions in the other adjacent areas 

 

 
Figure 1.4: Jabuka/Pomo Pit FRA in the center of the Adriatic Sea, in the GSA 17. In light blue, the area of 

study corresponds to the GSA 17, 18, and 19.  

 

The decision to establish the FRA in the Jabuka/Pomo Pit area was due to the critical 

situation of Norway lobster and European hake catches, which had declined until 2015, 

before the closure (see Box 1). After the defined period, in 2016, there was a visible increase 

in catches in the Pomo Pit area, which is considered by GFCM-FAO as a "win-win" situation 

for marine biodiversity restoration and benefits for fishermen (FAO, 2020b). Currently, 138 

vessels (63 Croatian and 75 Italian) operate in the area where fishing is restricted. Another 

FRA is located in the Bari canyon (see Fig. 4.4, chap. 4) in the southern Adriatic Sea, where 

fishermen and researchers hope to achieve similar results (FAO, 2022). 

 
Table 1.1: percentage of the fleet segment in the different subregions of the Mediterranean Sea (source FAO, 2022) 
 

Fleet segment group West Med 
(%) 

Central Med 
(%) 

Adriatic Sea 
(%) 

Eastern Med 
(%) 

Smale scale vessels 73.8 86.8 78.2 86 

Trawlers and beam trawlers 10.8 5.0 13.1 5.7 

Purse seiners and pelagic trawlers 13.1 2.8 3.0 3.2 

Other fleet segments 2.3 5.3 5.6 5.1 

Total 100 99 100 100 
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Ionian Sea (GSA 19-20-21):  

The GFCM recommendation establishes an MMPs for sustainable demersal fisheries, 

particularly red king prawns and blue and red shrimp, that ensure consistent yields over the 

long term at maximum sustainable yield (MSY) and low risk of stock collapse to maintain a 

stable fishery. Some examples of recommendations include: 

 

 the MMPs should maintain fishing mortality at MSY levels for key species (Aristeus 

antennatus and Aristaemorpha foliacea) 

 Develop a future management plan to reduce the risk that, in the absence of a 

meaningful scientific assessment, management of the stock will remain sustainable. 

  Address illegal, unreported, and unregulated (IUU) catches in the area for key stocks 

(e.g., giant red shrimp and blue and red shrimp) through operational targets 

 

Again, the GFCM recommendation specifically aims to keep the fishing mortality of the 

exploited stock within the Fmsy level (Fishery mortality at MSY), but also to closely monitor 

landings and catches for management purposes, as mentioned above, effective assessment 

and intensive control of IUU. 

 

Other regulations for both the Adriatic and Ionian Seas concern technical measures (Bellido 

et al., 2015), such as: 

 

1) regulations on fleet and gear characteristics, especially related to fleet access to fishing 

grounds: In this case, there are controls on fishing times per day and week, as well as 

spatial and seasonal restrictions (see the information on species of concern in the 

Methodology: species distribution models and input data) in specific seasons or areas. 

2) Regulations on which species may be caught: In this case, the composition of 

catches (allowed or prohibited species), minimum landing sizes and quotas, and 

catch limits are controlled  

 

Despite the application of CFP, EAF, and DCF in the Mediterranean (and Adriatic), the 

main demersal and pelagic stocks exploited by European fleets have exploitation rates about 

three times higher than the estimated fishing mortality rate for MSY (FMSY), with a similar 

pattern for all GSAs and species (Cardinale et al., 2017). In Box 2, I have provided key 

information on the 'status' of the stock in the Adriatic and Ionian Seas (GSAs 17, 18, and 

19). 

The implementation of SDM in this context also aims to understand and incorporate a 

potential new fisheries management tool in the Adriatic and Ionian Seas that adds value to 

the fisheries management of the study area (see also Chapter 4). 
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Box 1: Synthesis of ‘status’ of demersal species in the Adriatic and Ionian Sea by GFCM-

FAO stock assessment models  

 

European hake in GSA 17 and 18: is the third most economically valuable species in the 

Mediterranean Sea (FAO, 2020b), caught primarily by bottom trawlers operating on the 

continental shelf (GFCM-FAO, 2021e). In addition, European hake is caught by longlines, 

mainly in Croatia and the Italian part of GSA 18, where the largest specimens are caught 

(GFCM-FAO, 2021e). 

Catch increased from 2000 to 2006, then declined to the present. The 2019 management 

plans include some objectives such as ensuring fishing at MSY levels before 2026 or 

protecting nursery and spawning areas as essential fish habitat (EFH) and reducing discards 

by reducing unwanted catches and improving selectivity (GFCM-FAO, 2021e) 

The assessment of European hake will be conducted using the stock synthesis method (SS3 

- (Methot & Wetzel, 2013) by the GFCM and the expert for each GSA, also taking 

intoaccount the age and length composition of the data, which come from the participating 

countries: Italy, Croatia, Albania and Montenegro.The biomass of European hake in GSAs 

17 and 18 shows a fairly stable trend at the beginning of the time series, in 1994, but fluctuates 

over the time series and is considered in overexploitation (SAC, 2022). 

 

European hake in GSA 19: Landings decline from 2006 to 2012, but the trend is stable through 

2018 (GFCM-FAO, 2020a). 

The MEDISEH project (Telesca et al., 2013) conducted a survey to identify key nursery 

areas, which identified nursery areas in Otranto and Santa Maria di Leuca, but did not identify 

spawning areas (GFCM-FAO, 2020a). 

The trend in biomass and exploitation rate derived from stock assessment models is fairly 

stable for GSA 19 over the years, but is considered in overexploitation with relatively high 

biomass (SAC, 2022). 

 

Red mullet in GSAs 17 and 18: The species is fished primarily in Italy and Croatia by beam 

trawl (OTB), where landings declined in both GSAs (data from 2006 to 2019 for Italy and 

from 2013 to 2019 for Croatia in GSA 17 and data from 2002 to 2019 for GSA 18 (GFCM-

FAO, 2020b). Management plans for 2019 include technical measures such as a minimum 

size for conservation (11 cm) or a ban on fishing gear within three nautical miles. 

The stock assessment estimates an increase in spawning stock biomass (SSB) and recruitment 

in recent years. Only a short-term forecast was made for 2020-2022, showing a declining 

trend in SSB (GFCM-FAO, 2020b). The stock is considered in overexploitation (SAC, 2022).  

 

Red mullet in GSA 19: the time series of landings has declined sharply from 2002 to 2020, and 

management prescriptions are based on technical measures. The MEDISEH project 

identified spawning areas near the Calabrian coast. 

The assessment is done using XSA (Extended Survivor Analysis - (Shepherd, 1999) and the 

results show a declining trend in catch, spawning biomass and recruitment. The stock is 

considered in overexploitation with a relatively intermediate biomass (SAC, 2022). 

 
Norway lobster in GSA 17 and 18: is a species of importance mainly in the Adriatic Sea due to 

its ecological characteristics, with a subpopulation living in the Jabuka/Pomo Pit area 

(Froglia & Gramitto, 1981); for this reason, the spatial assessment is considered complicated. 
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The catches derived in particular from the OTB and the time series of landings show 

fluctuating trends from 2013 to 2018 in Croatia, a decrease for Italy in GSA 17 and for 

Albania in GSA 18 (GFCM-FAO, 2019a). 

Management regulations include technical measures such as a minimum conservation size, a 

fishing ban (30-45 days in summer), and a ban on fishing gear within three nautical miles. 

The Nephrops assessment is conducted using the Surplus Production model in Continuous 

Time (SPiCT - Pedersen & Berg, 2017), which combines information from GSA 17 and 18. 

Results indicate that biomass has been declining since the 1970s, particularly since 2010, and 

the stock is considered overfished. 

 
 Anglerfish in GSA 17 and 18: It's a species exploited by multispecies fisheries (GFCM-FAO, 

2019b), but mainly by bottom trawls. It's a benthic species whose distribution depends 

especially on depth and sediment type (Vrgoč et al., 2004). Landings data are quite confusing, 

mainly because of the similarity between two species (Lophius budegassa and L. piscatorius), and 

the trend has been constant since the 1960s, with no significant declines. 

Management regulations include technical measures such as no minimum landing size and a 

ban on trawling within three nautical miles and during 45 days in summer. 

Stock assessment is conducted using C-MSY (Froese et al., 2017) based on the Monte Carlo 

method. The results show a stable biomass trend into the 80s. Due to the high uncertainty 

of the CMSY model, the results should be considered qualitative (GFCM-FAO, 2019b), and 

the final trend considering the 2015-2018 time windows shows increasing fishing mortality 

and decreasing biomass. The stock is considered overexploited.   

 

Deep water red shrimp in GSA 17 and 18: It's a target species in the central and southern Adriatic 

Sea, fished by multispecies trawls, especially by Italy and Croatia, with an increasing trend in 

landings from 1998 to 2016 (GFCM-FAO, 2017). Management rules are based on technical 

measures such as distance from the coast (> 3 nautical miles) and depth (> 50m) or rules on 

mesh size of nets. In addition, a biological protection zone (ZTB) was established in 2009 in 

the area off Bari. 

The MEDISEH project discovered spawning and nursery areas, especially in the Eastern 

Adriatic and along the Croatian coasts. 

The assessment is conducted by Assessment for all (a4a) and the results show an increase in 

spawning biomass from 2012 to 2016 and a decreasing trend in fishing mortality from 1998 

to 2016, but the stock is still in overexploitation (SAC, 2022) 

 

Common sole in GSA 17: It's one of the most important species in the northern Adriatic (Grati 

et al., 2013; Scarcella et al., 2011), fished mainly by beam trawls from Italy (56%) and set 

gillnets (~20%) from Italy, Slovenia and Croatia (GFCM-FAO et al., 2021c). Total landings 

show a fluctuating trend from the 1950s to the present, but on average are quite stable. 

Management regulations are based on technical measures such as minimum landing size (20 

cm) or prohibition of fishing within three nautical miles. 

Stock assessment is conducted by SS3 and the results show a decline in spawning stock 

biomass from the 1960s to 2020 with a concomitant increase in fishing mortality. The stock 

is considered overexploited with low fishing mortality (SAC, 2022). 

 
Cuttlefish in GSA 17: total landings reconstructed from another data source (Fortibuoni et al., 

2017; GFCM-FAO, 2021d) show a declining trend from the 1970s to 2018, it's a species used 

especially by OTB and TBB on the Italian and Slovenian sides. 
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Management regulations stipulate that fishing gear may not be deployed within three nautical 

miles, that there is no minimum landing size, and that temporal bans are mandatory in 

summer (GFCM-FAO, 2021d). 

The assessment is conducted with C-MSY and the final result shows a decrease in biomass 

and an increase in fishing mortality until 2010, but with a decrease in the present. 

Nevertheless, the stock is considered overfished and in overexploitation (SAC, 2022). 

 

Mantis shrimp in GSA 17: It's a species with significant landing values among crustaceans in 

the Adriatic ports of GSA17. It's not a target of specialized fisheries, but is exploited by 

multispecies trawl and gillnet fisheries, especially in Italy. Little information is available for 

Croatia (GFCM-FAO, 2021f). The trend in landings is upward from the 1950s to 2018 for 

the Italian side of GSA 17. The assessment is conducted using the SS3 method and the results 

show a decrease in spawning stock biomass from the 1950s to the present and an increase in 

fishing mortality (GFCM-FAO, 2021f). Nevertheless, the stock is considered overexploited 

with low fishing mortality (SAC, 2022). 

 

No GFCM stock assessment is present for European horse mackerel and southern squid. 

 

Possible role of spatial models in the management of fisheries  

Fisheries management strategies in the Mediterranean and Adriatic Sea, which I reported in 

the ‘Overview of fishing pressure and management regulation in the study area’, are limited 

to control of fishing capacity, fishing effort, or technical and seasonal measures such as 

closing the fishery in summer or regulating mesh size. Spatio-temporal measures are also 

implemented, such as FRA, for the mentioned Jabuka/Pomo Pot area, but in this work I 

have considered some new important points that can emphasise the role of spatial 

management for the species in the study area, such as: 

 

 All species involved are modelled including environmental variables that are 

fundamental in terms of climate change 

 The area of overlap of more than one species, is especially important in the case of 

multi-targeting and activities of fishing vessels such as in the Adriatic and Ionian Seas 

 Assessment of the main aggregation area in time and space for both life stages, adult 

and juvenile fish, which are usually not considered or not considered in a spatial 

context (except for the important role of FRA). 

 

The distribution of marine species and their habitats is a complex and complicated "puzzle" 

that is interconnected at many levels (Nagelkerken et al., 2015). Knowledge and applications 

of the spatial approach are increasing to achieve sustainable use of resources and to assess 

the importance of marine habitat, especially when we talk about different life stages, such as 

adult or juvenile populations. 

The Global Deal for Nature proposes the protection of 30% of the planet to address global 

impacts (Dinerstein et al., 2019), and in the Mediterranean, the coherent goal of protecting 

30% of the sea by 2030 (O'Leary et al., 2016) includes the identification of new sites for the 

establishment of fisheries closed areas. 

 

We know that the spatial structure of populations is influenced by the marine environment, 

including fish behaviour or fishing patterns. In this context, spatiotemporal models can help 
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understand local distributions by linking them to habitat variables. Examining distributional 

shifts is critical to supporting ocean management, and spatially stratified models can account 

for the following factors population dynamics (Thorson, 2019; Thorson et al., 2021). Spatial 

population models have increasingly identified population changes to manage human 

impacts on marine resources. For exploited species, changes in spatial structure may be 

important to localize shifts across habitat gradients that could affect population resilience 

and vulnerability to harvests (Ciannelli et al., 2013). One of the greatest challenges in fisheries 

research is to stabilize broad-scale population models with fine-scale management strategies 

to avoid dramatic changes in population structure, although biotic and abiotic factors can 

control the dynamics of expanding species (Kerr & Goethel, 2014). In the 20th century, the 

spatial structure of marine populations was often ignored in fisheries assessments, 

particularly due to a lack of data (Jamieson & Campbell, 1998), but the following study has 

highlighted the importance of spatial structure and improved spatial modeling procedures. 

SDMs aim to predict the spatiotemporal distribution of resources, considering spatial 

complexity as an input to management recommendations. Many geostatistical techniques are 

included in the SDM branch, and since the last century, many of them use and consider not 

only environmental predictors, but also interactions between subpopulations and spatial fleet 

dynamics (Jamieson & Campbell, 1998). SDMs based on geostatistical methods (such as 

GAM or Kriging) can incorporate analysis of distributional shifts, taking into account the 

underlying correlation structure of spatial data, including centroid, density hotspot, or 

population density (Thorson et al., 2016). In addition, spatial planning and fisheries 

management assessments should consider climate change projections, and SDMs can help. 

Much research in recent decades has emphasized how changing oceanographic conditions 

lead to population redistribution through area expansion or contraction (Nye et al., 2009; 

Thorson et al., 2016). 

All approaches that address spatial models include barriers to fisheries management 

recommendations based on three elements in particular: i) data, ii) models, and iii) 

management. 

(i) Data: Much of the data included in SDM lacks spatial information and uncertain 

population structure, largely due to survey dynamics and inter- and intra-annual sampling 

variability that could be accounted for. In addition, data still need to be spatially explicit, 

which implies new improvements in genetic research structure and tagging information. 

(ii) Models: require performance uncertainties, and the ability to evaluate operational 

management strategies (MSEs) is central to assessing the robustness of management 

frameworks for evaluation. 

(iii) Management: in this case, there may be a mismatch between the scientific assessment of 

the spatiotemporal scale and the policy decision of the relevant committee, and 

communication between stakeholders and scientists and between stakeholders and managers 

is essential. It's important to ensure transparency in translating scientific recommendations 

and results into policy actions. 

 

Assessing spatial dynamics requires knowledge of what type of spatial structure is present 

and, if present, how to determine conservation purpose (Kerr et al., 2017). In addition, using 

data at the same resolution at which they were collected in SDMs can provide direct 

information that can be linked to other spatial variables, as oceanographic satellite imagery 

and spatial techniques can use the same data as a spatially aggregated model that provides 

greater information content. (Thorson et al., 2017). 

All of the approaches presented aim to incorporate spatial models into the management 

process to take action based on scientific advice, such as closed areas (e.g., FRA), establishing 
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marine protected areas (MPAs), or setting regional quotas (La Valley & Feeney, 2013). In 

addition, spatial models are a powerful way to assess species co-occurrence or prevent 

bycatch of threatened species (Cosandey-Godin et al., 2014; Turner et al., 2016). Despite the 

importance of incorporating these models into fisheries management, communication 

among fishermen, stakeholders, policy makers, and scientists remains complicated and 

necessary to incorporate spatial considerations as a basis for management recommendations.   

 
The main question is: How can SMDs be incorporated into management processes?  

In order to develop a useful species distribution model and use it as a method to understand 

spatial dynamics, it could be essential to include guidelines to better understand the main 

process underlying inclusion in management recommendations. The following flowchart 

could be a good representation of the processes: 

 

 
Figure 1.5: flow diagram illustrating steps for developing a good inclusion of SDMs into spatial management purposes. 
In the grey first step of SDMs processes, in blue is the validation process, in orange is stakeholder inclusion, and in 
green is the final management evaluation. 

 
Following the initial processes of the diagram, starting with the use of survey data and the 

available environmental level, I have developed in this thesis different modeling approaches 

in the field of SDMs, for several species and life stages, a starting point in the process of 

evaluating spatial management, explained in particular in Chapter 4 and Chapter 5, also in 

relation to forecasts and climate change. 

As I reported in the subsection Introduction: The Mediterranean Sea, the spatial measures 

taken by GFCM-FAO in the Mediterranean Sea mainly concern the establishment of FRA, 

the identification of vulnerable marine ecosystems or the mapping of the fishing footprint 

by VMS. All these actions are based on scientific advice provided by working groups and a 

pool of experts, but species distribution models are rarely included in the processes of spatial 

assessment of resources. SDMs have evolved over the years into a powerful tool for 
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understanding species occurrence, co-occurrence, and habitat assessment (Turner et al., 

2016), but these methods and approaches are not used, for example, as a direct tool to inform 

spatiotemporal quotas, and management prescriptions are based on quantitative observations 

such as catch and effort. The GFCM requires data such as:  

         

 Catch data per species 

 Landing data per species 

 Fishing activities and fishing effort  

 Fishing fleet (e.g., number of fleet, gross tonnage, length overall, kW/hour, days at 
sea, fishing gear) 

 Economic value (species value or operating costs) 

 Biological information such as length, species, maturity, length, or sex data. 
 

All of this information collected by Contracting Parties and cooperating non-Contracting 
Parties will be included in the Data Collection Reference Famework platform, and any 
information not covered by the GFCM recommendations, such as that collected by 
researchers, may be shared within the GFCM Working Groups and Scientific Advisory 
Committees (SAC) to contribute to the scientific advice. The reason why SDMs can be 
implemented in these processes is precisely because of this last point. Following the 
workflow shown in Figure 1.5, the main objective of this work is to provide a basis for the 
introduction of SDMs into the management process, where the steps include validation 
processes, stakeholder engagement, and information sharing in scientific advisory 
committees and the GFCM working group. 
 

Methodology: species distribution models and input data 

 

Understanding how life is distributed in the environment is a fascinating goal, but it becomes 

of overwhelming importance when the distribution of resources and their variability is key 

to managing resource use. 

Several studies (Brodie et al., 2020; Guillaumot et al., 2020; Zurell et al., 2020) are devoted 

to explaining and predicting what factors determine species distributions. Biotic, abiotic, and 

distribution are the three basic factors (see Box.2) that determine the occupation of a given 

site by a species (Araújo et al., 2019; Barve et al., 2011; Hutchinson, 1957). It's not easy to 

understand the complex of processes, i.e., the importance of the three factors, in explaining 

the distribution of species, as well as how they respond to changes in the environment and 

the importance of combining the three main factors. 

 

Species Distribution Models (SDMs, (Guisan & Zimmermann, 2000), are widely used in 

biology and ecology to map the potential distribution of species based on geoposition and 

environmental data (Brodie et al., 2020), including abiotic and biotic factors, to provide a 

probability of occurrence (in presence and absence) or an index of species density in space 

and over time. SDMs have been used in both terrestrial and marine contexts, with an 

increasing number of studies in the latter case since 2005 (Robinson et al., 2017). 

Examples of SDMs include various studies such as potential impacts of climate change on 

species (Chefaoui et al., 2018; Kearney et al., 2010), the distribution of invasive or unknown 

species (Barbet-Massin et al., 2018), scenarios for fisheries policy and management (Baudron 

et al., 2020), or habitat suitability of marine megafauna (Brodie et al., 2018). The central 

element of SDMs is the concept of niche, which has evolved in the ecological literature since 

1917 (Grinnell, 1917) and has passed through milestones such as Hutchinson (Hutchinson, 
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1957). This concept is often confused with other terms such as habitat or environment, and 

in this introduction I'll clarify this definition following M. Kearney (Kearney, 2006): 

 

“Habitat: a description of a physical place, at a particular scale of space and time, where an organism either 

actually or potentially lives” 

 

A habitat, therefore, can be described without any reference to an organism, instead, a niche 

is:  

 

“Niche: a subset of those environmental conditions which affect a particular organism, where the average 

absolute fitness of individuals in a population is greater than or equal to one.” 

 

This definition is the one used in this work. It is not the purpose of this paper to focus on 

the concept of niche or to discuss the differences between past and present definitions of 

this concept, but a brief explanation is necessary and due, especially in the context of models. 

The ecological niche is a concept (see Box 2) that does not distinguish between aquatic and 

terrestrial environments, but of course variables differ between the two, and in an aquatic 

ecosystem an important dimension includes, for example, temperature, dissolved oxygen, 

habitat structure, predators, and nutrients. 
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Box 2: factors that influence the species distribution 

   

 The species requires important conditions to occupy a site and maintain stable 
populations 

 The species must physically reach a site (Barve et al., 2011). 

 The abiotic environmental conditions must be physiologically suitable for the 
species. 

 The biotic environment must be suitable, i.e., there must be interactions with 
resources that allow the species to survive. 

 
The first condition corresponds to the ability of the species to move from one place to 
another and is related to the biogeographic history of the species, i.e., the limitation of 
dispersal depends on its place of origin and other factors such as barriers to migration, biotic 
and abiotic vectors, or dispersal events. The second condition depends on abiotic conditions 
such as temperature or topography, i.e., the abiotic variables at the species' location are within 
the range of environmental conditions that the species needs to grow and maintain stable 
populations, also referred to as basic niches (Hutchinson, 1957). The third condition 
concerns biotic interactions (interactions with other organisms), which are influenced by the 
environment and its influence on all organisms at the local site. The abiotic conditions under 
which a species can survive, including interactions with other species, are called the realized 
niche and are what we observe when we study the distribution of a species. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.6: Three factors that influence the species distribution. The realized niche is the intersection of the green, blue 
and yellow circles 

 

 

Moreover, there are two main directions in SDM: correlative and mechanistic methods. The 

first, used in this dissertation, correlates the presence/absence or density of a species in 

different areas based on environmental variables (e.g., temperature, topography, pH, etc.). A 

mechanistic approach, on the other hand, could incorporate physiological data, e.g., through 

an experiment conducted in the laboratory, and also consider the fitness of the species of 

concern, which could influence their distribution and abundance (Robinson et al., 2017). 

Finally, there is another method that integrates correlative and mechanistic approaches, 

called the hybrid model, which is based on environmental predictors, a niche population 

model, and physiological responses to climate factors (see Fordham et al., 2013).  

Actual geographic 

distribution 

Biotic Abiotic 

Dispersal 
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In this work, I focused on a correlative approach to predicting the spatial distribution of 

demersal species in the study area, including under conditions of climate change, using 

statistical association between model-derived spatial environmental data (see Chapter 2, 

Chapter 3, Chapter 4) and occurrence records to implicitly assess the processes limiting 

species distributions. It is well known that in the correlative approaches, the parameter 

responses are not predefined and are modeled implicitly, which is simpler than mechanistic 

approaches that have a limitation due to the non- stable conditions (Plagányi et al., 2011, 

2014). 

Within the correlational approach of SDMs, many statistical techniques are commonly used, 

from regression methods (linear models, LMs, generalized linear models, GLMs, or 

generalized additive models, GAMs; (Hastie & Tibshirani, 1986), to machine learning 

methods (random forest, RF or neural network models, NNMs, (Breiman et al., 2018; Evans 

et al., 2011). Various techniques are therefore applied to hypothesize drivers of species 

distribution even at non-sampled sites, especially for climate change scenarios in ecological 

forecasts. Many of the aforementioned techniques can be implemented in open-source 

programs such as MaxEnt and BIOCLIM (see, e.g., (Elith et al., 2006; Phillips et al., 2006) 

or in R packages, and some implementations are user-friendly and it is very easy to obtain 

output results. 

We must not be confused by the concept that a simple script model application means an 

understanding of the assumptions and limitations of that model, because there are many 

important considerations during model development, starting with the collinearity of our 

covariates (variables used to predict response variables, in this work, the covariates represent 

abiotic conditions), furthermore, the predictive performance of the model depends not only 

on the actual mathematical approach, but also on the characteristics of the species or the 

link between species and environment (Santika & Hutchinson, 2009), the sample size, the 

objective of the study, and the spatial scales (Wisz et al., 2008). 

In this dissertation, I applied several SDMs techniques to evaluate the process behind each 

model and to interpret the results and limitations of the applied approaches. In the following 

section, I explain the main factor underlying SDMs and present some information about the 

species involved in the present work. 

 

Abiotic factors: Environmental variable 

 
The abiotic variables (e.g., temperature, nutrients, light) that affect a species' niche are all 

non-living factors. Understanding the underlying interaction between the environment and 

species is critical and has become even more important with the impacts of climate change 

(Parravicini et al., 2015). In the concept of ecological niche, it's the niche itself that allows 

species to live and exist in their environment, in which they play a unique role. We know 

that many factors can limit the occurrence of a species that aren't abiotic factors, such as 

competition, predator-prey relationships, parasitism, and others. Such factors weren't 

considered in this work, and the focus of the SDMs used here was also to understand and 

highlight the importance of environmental variables in terms of predicting and extrapolating 

outcomes. 

The aquatic environment, particularly at the marine and ocean levels, is influenced by many 

external factors, ranging from natural factors such as wind, freshwater nutrient inputs, or 

oxygen to anthropogenic stressors such as pollutants or fisheries (Lewis, 2009). 

The most important abiotic factors are temperature, salinity, nutrients, oxygen, solar energy, 

turbidity, water level, waves, tides, and substrate. It's well known that temperature, the range 

of which is highly restricted in aquatic environments (the minimum is 0° in seawater), is 
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fundamental to the ecology of phytoplankton, zooplankton, and associated predators at the 

trophic level (Lewis, 2009); in fact, temperature is a very important variable for most 

organisms, and living organisms require a certain range to grow, survive, and reproduce. In 

addition, temperature is critical for migration patterns and feeding, which are interrelated, 

and if temperature increases (e.g., due to climate change), many species may be affected and 

unable to adapt, possibly leading to a northward shift (Parravicini et al., 2015; Pereira et al., 

2010)-see Chapter 5). 

Regarding salinity, many species are adapted to live in a different area (euryhaline species), 

such as sea bass or gilthead sea bream, or species that live in the intertidal zone (intertidal 

species), while other species live in a specific salinity (stenohaline), such as some Gadidae 

species (e.g., haddock). 

Since nutrients such as nitrate, phosphorus, and carbon are the most important, building 

macromolecules that organisms need to grow and live, such as DNA, RNA, proteins, amino 

acids, or carbohydrates, are crucial for an organism. Different aquatic habitats have low (e.g., 

coral reefs) or high (temperate waters) concentrations of these substances, which also 

depends on latitude, upwelling, or river discharge, making an area less or more productive 

accordingly. For example, in the study area of this work, especially in the northern Adriatic 

Sea, there are many river inputs and nutrient discharges that vary in the long term and 

interannually (Cozzi & Giani, 2011).  

Oxygen is the element essential for respiration, photosynthesis, and chemical processes and 

is produced by algae, phytoplankton, and marine plants such as phanerogams (e.g., 

Poseidonia oceanica). Oxygen levels are affected by many factors, such as pollution and 

increased bacterial activity in the case of eutrophication (Glibert & Burford, 2017; Glibert, 

2017), resulting in low oxygen levels, or in the case of a healthy ecosystem with high oxygen 

levels and a good balance between respiration, consumption, and production through 

photosynthesis.  

The Mediterranean Sea (MS) is a semi-enclosed sea with a high variability in different 

characteristics, such as biogeochemical, physical or biological. Several studies have 

investigated the variability of the MS, ranging from biogeochemical data, for which long-

term studies at the basin scale have been presented (Cossarini et al., 2021), to chlorophyll 

data retrieved from satellites (Colella et al., 2016), to interannual variability of oxygen trends 

(Li & Tanhua, 2020). This type of data can provide a robust spatiotemporal record of ocean 

features and describe the state and evolution of biogeochemical and physical features. 

Understanding the key processes underlying marine variables is essential because ecology, 

physiology, and economic activity are intimately linked to the balance of the marine 

ecosystem, which requires knowledge of resource status and trends. 

If climate change projections are also taken into account, abiotic variables such as 

temperature or oxygen will change drastically, including stratification processes and water 

formation (Adloff et al., 2015; Soto-Navarro et al., 2020), and by the end of the 21st century 

the site MS could be warmer and drier according to global simulations (IPCC, 2022). In this 

context, all sub-basins of MS are affected by the future evolution of environmental 

conditions, including the Adriatic and Ionian Seas. 

All these disturbances could have an impact on the distribution of species, especially on the 

basin with high biodiversity (Dulčić & Lipej, 2015), and economic activities, such as fishing 

and tourism, could also be strongly affected. The ecological niche defines the relationship 

between speciesand habitat, and this relationship can provide information about the ecology 

of a species at different scales (local or global), but is also useful for conservation and 

management purposes (Thorson et al., 2017). 
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In this work, physical and biogeochemical variables for the study area were extracted from 

two databases covering the Mediterranean Sea and available as part of the Copernicus Marine 

Environment Monitoring Service (CMEMS,https://marine.copernicus.eu/access-data; 

(Simoncelli et al., 2019; Teruzzi et al., 2019). 

 

The CMEMS dataset for the analysis and prediction of the biogeochemistry of the 

Mediterranean Sea consists of daily/monthly 3D fields of different variables generated by 

the coupled transport-biogeochemistry model OGSTM-BFM (Lazzari et al., 2010, 2016) and 

the variable data assimilation scheme 3DVARBIO (Teruzzi et al., 2014, 2018) for surface 

chlorophyll. 

The biogeochemical flux model (BFM) focuses on the biogeochemical cycling of carbon and 

nitrogen, phosphorus, and silicon and describes the interaction within and between the living 

organic and non-living organic compartments (Cossarini et al., 2021). 

The datasets used here cover the period 1999-2018 with a spatial resolution of 1/16° and 72 

uneven vertical levels. 

The variables considered in this work were: water surface temperature (°C), water bottom 

temperature (°C), dissolved oxygen (mmol/m3) at the bottom, and water column averages 

for nitrate (mmol/m3), phosphate (mmol/m3), chlorophyll-a (mg/m3), particulate organic 

carbon (mg/m3), and pH, as well as surface salinity. 

These variables were included because of their ecological importance to the selected 

demersal fish species and because of their importance in creating favourable conditions for 

productive habitat. 

 

Abiotic factors: Effort 

Fishing effort was estimated for 2008-2018 by integrating vessel monitoring system (VMS) 

and automatic identification system (AIS) data. The disaggregated VMS and AIS data include 

vessel-specific "pings" with information on vessel identity, position, speed over ground, and 

course. The VMS and AIS datasets were merged at the level of individual Italian and Croatian 

flag vessels using the VMS baseline platform (Russo et al., 2016; Russo et al., 2014), and no 

other VMS data are available from other countries (e.g., no VMS data from Montenegro or 

Albania are used in this work). Fishing trips were then interpolated and fishing positions (i.e., 

hauls) were separated from other non-fishing behaviors (steaming, resting, etc.). Fishing 

effort was estimated by vessel/cell for bottom otter trawls (OTB) and beam trawls (TBB) 

and expressed as total trawl time (in hours) per year with a spatial resolution of 1/16. 

Fishing effort was used as a variable across years, with the 'footprint' of this covariate 

assumed to be a proxy for the dynamics of the resource, based on the concept that fishermen 

follow the resource and know the best fishing grounds in the area.  

 

Input survey data 

MEDITS: Mediterranean International Bottom Trawl Survey 

 

The Mediterranean Sea is a complex system with a variety of specific areas where, due to the 

small extent of the continental shelf along most coasts, benthic and demersal resources are 

exploited mainly near the shore. 

Demersal fish are most affected by fisheries at the national level, and survey programs to 

assess the status of exploited stocks are essential. MEDITS (Mediterranean International 

Bottom Trawl Survey) provides basic information on benthic and demersal species, such as 

population structure (e.g., kg/km2) and demographic structure (length and size of major 
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commercially exploited species), by surveying continental shelves and upper slopes of the 

Mediterranean Sea on a global scale. 

A protocol developed in early 1994 was adopted for all EU countries in the Mediterranean 

Sea, covering the design of the survey, the sampling device (characteristics and handling), 

the information collected, the management of the data, up to the production of common 

standardized analyzes of the data, taking into account the characteristics of the areas covered 

by the survey (Bertrand & Relini, 2000). 

The MEDITS survey program was updated in 2002 (Bertrand et al., 2002). The main 

objective of the survey is to cover the entire trawlable area in the Mediterranean Sea from 

10 to 800 m depth off the coast of the country participating in the project. in 1996, the area 

was extended to cover almost the entire Adriatic Sea (including Slovenian, Croatian and 

Albanian waters), the study area of my work. In addition, MEDITS has been involved in the 

collection of fisheries data in the European communities since 2002 (DCF, Anon, 2000). 

Sampling is stratified and based on random stations (or hauls) within strata, with strata 

following the bathymetric range: 10, 50, 100, 500 and 800 m, also taking into account the 

geographical sub-area (GSA) defined by the General Fisheries Commission for the 

Mediterranean (GFCM, Fig. 1.7) 

 

 
 

Figure 1.7: GSA (Geographic Sub Area) in the Mediterranean Sea. Longitude on x-axes, the latitude on y-axes. 
 

More than 500 species are caught under MEDITS, but the most common are 38 (Table 1.2), 

ranging from fish to mollusks, which are identified in the MEDITS protocol as the most 

important from a commercial and biological perspective. For each of these species, there are 

indices of total number of individuals, length frequency distribution, sex (including sexual 

maturity stage), and total weight. For all other sampled fish, crustacean, and mollusk species, 

the total number and total weight for each haul are provided. 

The net is a bottom trawl (Dremière et al., 1999) used for experimental fishing and its 

characteristics allow it to be used over the entire depth range and under the various 

conditions found in the study area. To increase the catch of demersal fish species, it has a 

vertical opening that is slightly larger than that of the professional gear most commonly used 

in the area. The mesh size on the codend is 20 mm (stretched mesh - Fig. 1.8). A device to 

track the geometry of the fishing gear has been systematically used only on board some of 

the sampling vessels since the beginning of the survey series. Finally, an algorithm that 

accounts for warp length and depth has been implemented to standardize the estimate of 

swept area during MEDITS surveys (MEDITS, 2007). Surveys are conducted each year 

during the spring and summer months, using the same vessel for each area as much as 
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possible. The duration of the hauls is set at 30 minutes for depths less than 200 m and 60 

minutes for depths greater than 200 m.  

All collected data will be analyzed and an index on biomass (kg/km2) and number of 

individuals (n/km2) per square kilometer will be produced, using statistical methods 

approved by the MEDITS Steering Committee and included in a special software (Souplet, 

1996). Table 1.1 lists the 38 target species from MEDITS and in bold the 7 species from 

MEDITS that were included in this work; images of these species are shown in Figure 1.8, 

downloaded from https://www.sibm.it/SITO%20MEDITS/principalemedits.htm. In 

conclusion, the MEDITS program is the best monitoring program over the years, able to 

provide very long data on bottom and demersal fish species, especially in our study area, the 

Adriatic and Ionian Seas, where more than 150 (on average) positions are surveyed every 

year thanks to the efforts of the biologists and technicians of this monitoring program. 

 
Table 1.2: Most important species targeted by MEDITS. In bold, the species used in this work (fig. 1.8) 

 
Scientific name CODE Common name 

    English 

Aspitrigla cuculus ASPI CUC Red gurnard 

Boops boops BOOPBOO Bogue 

Citharus linguatula CITH MAC Spotted flounder 

Eutrigla gurnardus EUTR GUR Grey gurnard 

Galeus melastomus GALU MEL Blackmouth catshark 

Helicolenus dactylopterus HELI DAC Rockfish 

Lepidorhombus boscii LEPM BOS Four-spotted megrim 

Lophius budegassa LOPH BUD Black-bellied angler 

Lophius piscatorius LOPH PIS Angler 

Merluccius merluccius MERL MER European hake 

Micromesistius poutassou MICM POU Blue whiting 

Mullus barbatus MULL BAR Red mullet 

Mullus surmuletus MULL SUR Striped red mullet 

Pagellus acarne PAGE ACA Axillary seabream 

Pagellus bogaraveo PAGE BOG Blackspot seabream 

Pagellus erythrinus PAGE ERY Common pandora 

Sparus pagrus SPAR PAG Common seabream 

Phycis blennoides PHYI BLE Greater forkbeard 

Raja clavata RAJA CLA Thornback ray 

Scyliorhinus canicula SCYO CAN Smallspotted catshark 

Solea vulgaris SOLE VUL Common sole 

Spicara flexuosa SPIC FLE Picarel 

Spicara smarts SPIC SMA Picarel 

Trachurus mediterraneus TRAC MED Mediterranean horse mackerel 

Trachurus trachurus TRAC TRA Atlantic horse mackerel 

Trigla lucerna TRIG LUC Tub gurnard 

Trigloporus lastoviza TRIP LAS Streaked gurnard 

Trisopterus minutus capelanus TRIS CAP Poor-cod 

Zeus faber ZEUS FAB John dory 

Selacians2     

      

Aristaeomorpha foliacea ARIS FOL Giant red shrimp 

https://www.sibm.it/SITO%20MEDITS/principalemedits.htm
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Aristeus antennatus ARIT ANT Blue and red shrimp 

Nephrops norvegicus NEPR NOR Norway lobster 

Parapenaeus longirostris PAPE LON Deep-water pink shrimp 

      

Eledone cirrhosa ELED CIR Horned octopus 

Eledone moschata ELED MOS Musky octopus 

Illex coindetti ILLE COI Broadtail squid 

Loligo vulgaris LOLI VUL European squid 

Octopus vulgaris OCTO VUL Common octopus 

Sepia officinalis SEPI OFF Common cuttlefish 
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Figure 1.8: MEDITS species involved in this work. From left to right: Merluccius merluccius, Mullus barbatus, 
Nephrops norvegicus, Lophius budegassa, Illex coindetii, Parapenaeus longirostris and Trachurus trachurus. 
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Figure 1.9: Type of gear used by MEDITS. Illustrator Alberto Gennari (source: FAO, 2020a),  

 

 

SOLEMON: Sole Monitoring in the Adriatic Sea.  

 

The SOLEMON (Sole Monitoring) survey is the only beam trawl survey (Fig. 1.10) 

conducted in the Adriatic Sea since 2005 and aims to collect data on the distribution and 

abundance index (kg/km2 or n/km2) of commercially exploited soil species specific to sole 

(Solea solea, Fig. 1.11). The program is coordinated by three countries, Italy, Croatia, and 

Slovenia. In addition to sole, other species of interest to the monitoring program include 

squid (Sepia officinalis - Fig. 1.11), mantis shrimp (Squilla mantis - Fig. 1.11), scallop (Pectinidae), 

queen conch (Aequipecten opercularis), turbot (Scophthalmus maximus), brill (Scophthalmus 

rhombus), and caramel shrimp (Melicertus kerathurus). The survey considers and reports 

information on latitude, longitude, depth, velocity, and duration, which are essential for 

developing the index of density or biomass. 

In addition, beginning in 2007, SoleMon surveys adopted an integrated approach and added 

other tasks such as monitoring seafloor debris and megazoobenthos to the original 

objectives, which remain priorities (SoleMon, 2019). 

Since 2009, SoleMon surveys have also been coordinated as part of ICES WGBEAM and 

included in the WGBEAM manual for offshore beam trawl surveys (SoleMon, 2019). 

In the Adriatic Sea, which is characterized by soft soils, a modified beam trawl called 

"Rapido" is used. It consists of a modified beam trawl (Hall-Spencer et al., 1999) with a rigid 

mouthpiece equipped with 46 iron teeth (6-7 cm long) in the lower part. Four runners are 

attached to the iron frame and a reinforced diamond mesh rubber net in the lower part to 

protect the polyamide net bag. The same gear is also used in the SOLEMON study 

The net has a length of about 2.7 m and can be used at depths from 5 to 100 m. The 

selectivity of the net is as low as possible to obtain good images of the sampled populations, 

including juveniles. Finally, the mesh size of the codend is 26 mm (stretch). The net is made 

of polyamide netting material (nylon). 
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Figure 1.10: Fishing gear used by the SOLEMON survey. Source (FAO, 2020a) 

 
Table 1.3: main target species from the SOLEMON survey. In bold species used in this work (Fig. 1.11) 

Species  Common name 

Solea solea  Common sole 

Solea aegyptiaca  Egyptian sole 

Platichthys flesus  European flounder 

Scophthalmus maximus  Turbot 

Scophthalmus rhombus  Brill 

Merluccius merluccius  European hake 

Mullus barbatus  Red mullet 

Raja asterias  Mediterranean starry ray 

Raja clavata  Thornback ray 

Parapenaeus longirostris  Deep rose shrimp 

Penaeus kerathurus  Caramote prawn 

Nephrops norvegicus  Norway lobster 

Squilla mantis  Mantis shrimp 

Sepia officinalis  Cuttlefish 

Pecten jacobaeus  Scallop 

Aequipecten opercularis / 
Flexopecten glaber  

Queen scallop 
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Figure 1.11. SOLEMON's main target species is used in this work. From left to right: common sole, cuttlefish, and 

mantis shrimp. 

 

 

Species involved  

Merluccius merluccius - European hake, bony fish: is one of the main targets of fisheries in the 

Adriatic Sea, accounting for 77% of landings in Croatia and 15% in Italy (Grati et al., 2018). 

It's one of the overfished species (Ulrich et al., 2019) affected by trawling in the area and is 

actually overfished and in the process of overfishing (SAC, 2022). It's considered a euritopic 

species, living at depths of 50 to 800 m, with juveniles living between 100 and 200 m and 

adults living between 100 and 150 m. It's also considered to be an euritopic species. In spring, 

adults migrate to shallow coastal waters to spawn, and juveniles show migratory patterns in 

search of food, while adults migrate to deeper waters in winter. It's important to highlight 

that the Jabuka/Pomo Pit area, thanks to its topography and oceanographic characteristics, 

is an environment with particular water exchange that influences nutrient cycling and local 

biodiversity (Marini et al., 2016). This area is the main nursery of the European hake (Druon 

et al., 2015, Arneri & Morales, 2000) 

Females become sexually mature throughout the year, but especially in spring/summer, from 

May to July (Candelma et al., 2021). The species prefers muddy bottoms, but also occurs in 

muddy-sandy or sandy bottoms. The European hake can grow up to 135 cm in length, but 

the usual catch length is between 10 and 60 cm. The diet consists mainly of crustaceans and 

amphipods for hake up to 15 cm (juveniles); adults begin predation on sardines (Sardina 

pilchardus), red mullet (Mullus barbatus), horse mackerel (Trachurus trachurus), and cannibalism 

of juvenile hake (Froglia, 1973; Ungaro et al., 1993). 

 

Mullus barbatus – red mullet, bony fish:  it's the main target of the beam trawl fishery (OTB), 

about 96% of the total landings in tons in 2019 in GSA 17 and 18, for all countries in the 

area (Italy, Slovenia, Croatia, Albania, Montenegro) where overfishing occurs (SAC, 2022). 

The minimum size for conservation is 11 cm total length, the fishery is closed for 30-45 days 
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in late summer, and trawling is prohibited within three nautical miles offshore or at depths 

of less than 50 m. The fishery is closed for 30-45 days in late summer. 

It's found mainly in the eastern Adriatic during the spring spawning season on the muddy 

bottom between 5 and 200 m depth (Bertrand & Relini, 2000), where it prefers shallow 

water. Juveniles migrate from the coast to the open sea in autumn, where they can be found 

throughout the Adriatic shelf (Vrgoč, 2000). The size of this species can reach 30 cm, 

especially in females (Relini et al., 1999), but the usual length in catches is between 10 and 

20 cm (GFCM-FAO, 2020b). Data obtained from the MEDITS survey may be critical for 

mullet because they have a short spawning season, usually in late spring, and recruitment 

occurs in the fall. Thus, in years when the survey ends in summer, there will be no or very 

few recruits (GFCM-FAO, 2020b). For this reason, this species was excluded from the 

results in some evaluations (e.g., Chapter 4, Fig. 4.4), especially for the juvenile life stage.  

It's a carnivorous species, and the diet consists of endo- and mesoepi-biontic organisms, 

such as Polychaeta, Lamellibranchiata, and Crustacea (Froglia, 1988). The main predators of 

the mullet are the anglerfish (Lophius budegassa), the stingray (Raja clavata), the St. Peter's fish 

(Zeus faber), and European hake (Merluccius merluccius). 

 

Nephrops norvegicus – Norway lobster, crustacean: it's mainly fished by bottom trawlers (OTB), 

Italy and Croatia. In addition, Norway lobster is caught in the northeastern channels of the 

Adriatic Sea and along the Croatian coast by small fishing vessels using traps. (GFCM-FAO, 

2019a). The guard size is 20 mm carapace length, and the Norway lobster fishery is closed 

for 30-45 days in late summer. Trawling is prohibited within three nautical miles of shore or 

at depths less than 50 metres. 

The species is distributed in depths from 30 to 400 m from the central to the southern part 

of the Adriatic Sea (Marano et al., 1998), in muddy bottoms where the species digs burrows 

to hide and lay its eggs. The oceanographic characteristics of the Jabuka/Pomo Pit area make 

it an ideal habitat for Norway lobster, especially with a high density of smaller individuals 

that grow slowly compared to other areas of the Adriatic (Froglia & Gramitto, 1981). 

Data obtained from the MEDITS survey may be critical, especially in Jabuka/Pomo Pit area,   

The individuals in Jabuka/Pomo Pit are smaller than the other individuals in the basin, but 

not necessarily juveniles, and the MEDITS survey may not capture all of the information on 

the two life stages in the area where juveniles are not detectable because they live in the 

burrowed burrow during the early life stage (see discussion Chapter 4).  

Maximum length is 26.5 cm (total length) (Crnković, 1965), and mature ovaries of females 

peak in spring and early summer (Froglia & Gramitto, 1981). Norway lobster feeds on other 

decapod crustaceans and small fishes that are part of the demersal communities in muddy 

bottoms. 

 

Trachurus trachurus – European horse mackerel, bony fish: it's a species that occurs on sandy-muddy 

bottoms, especially near the continental shelf, and is fished with trawls. Few studies have 

provided information on horse mackerel in the Adriatic Sea, but it's known that it's usually 

found between 20 m and 200 m, spawns in spring (Jardas, 1996) and feeds mainly on fish, 

crustaceans, amphipods and decapods (Tortonese, 1975). Maximum length is about 70 cm, 

but the usual length is 22 cm, with a maximum weight of about 2 kg (Smith-Vaniz, 1986). 

Sexual maturity is about 24.3 cm (Tortonese, 1975). 

 

Parapenaeus longirostris – deep rose shrimp, crustacean: of trawling in the Adriatic Sea, especially in 

the southern area along the coast of GSA 18, about 13% of the landings in this area 

(MiPAAF, 2011). Deepwater shrimp can grow up to 16 cm (males) and 19 cm (females) 
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(GFCM-FAO, 2017) and reach sexual maturity in the first year of life (Froglia, 1982). The 

main management rules are based on a limited number of fishing licenses and distance from 

shore or depth, i.e., more than three nautical miles from shore or more than 50 m depth. In 

2008, the management plan specified a reduction in the number of fleets and time at sea. In 

2009, two biological protection zones were established, off the coast of Bari and near the 

island of Tremiti (GFCM-FAO, 2017). In Montenegro, regulations are based on mesh size, 

limited number of fishing licenses or area restriction (no fishing zone up to 3 nautical miles 

(NM) off the coast or 8 NM for trawlers longer than 24 m LOA - Length Over All) (State 

Gazette of Montenegro, 8/2011).  

 
Lophius budegassa – Angler fish, bony fish: exploited by trawling, it's common throughout the 

basin, particularly in the southern area along the coast of GSA 18 and the northeastern edge 

of the Pomo/Jabuka Pit transit area (GFCM-FAO, 2019b). The anglerfish is a benthic 

species distributed at depths from 500 m to 1000 m, where it prefers sandy-muddy bottoms 

(SIBM, 2017) and depth preference depends on size, with juveniles often found in shallow 

waters. L. budegassa feeds on bottom-dwelling fishes, and is a predator that attracts prey 

with the modified first ray of the dorsal fin (Stagioni et al., 2013). Juveniles feed primarily on 

small benthic fishes, and adults prefer blennies. The anglerfish has a high commercial value, 

but there is a significant lack of information on black anglerfish in the Adriatic Sea, especially 

on distribution and growth (Stagioni et al., 2013). 

The spawning season lasts from February to June/July, with a maximum size of about 70 

cm and a combined length at first sexual maturity of about 27-30, 26.5 cm for males and 

30.5 for females (Ikica et al., 2015). Regarding management regulations, there is no minimum 

size, trawling is prohibited within three nautical miles or at depths less than 50 m, and the 

minimum mesh size is 16 mm (GFCM-FAO, 2019b). The ban is in effect for 45 days in 

summer, corresponding to the period with maritime compartments. 

 
Illex coindetii – southern squid, mollusc: like all squid, I. coindetii has a fast metabolism, short life 

span, and rapid growth (Petrić et al., 2021). Catches are from both artisanal and bottom trawl 

fisheries and are also considered bycatch from large-scale fisheries (Arkhipkin et al., 2021). 

In the Adriatic Sea, especially in the Croatian part, squid accounts for a large proportion of 

the total cephalopods caught and is generally considered a valuable resource throughout the 

basin (Eurostat, 2020). 

It's distributed from 100 m to 600 m and also reaches 1000 m depth (Petrić et al., 2021), 

females are larger than males, with average mantle length between 25 and 27 cm and 18 cm 

and 20 cm, respectively (Gonzalez & Guerra, 1996). It inhabits muddy, sandy, and detrital 

bottoms, migrating to shallow water in spring and returning to deep water in winter 

(Vecchione & Young, 2011). The species can spawn year-round, with peaks in summer and 

spring. Diet consists of fish, crustaceans (such as krill), and other cephalopods (Sánchez et 

al., 1998). 

 

Solea solea – common sole, bony fish: fished mainly by shear beam trawl (TBB) in GSA 17 and 

along the southern Italian coast, is one of the most important fish species in the northern 

Adriatic, with a landing value of more than 20 million euros (GFCM-FAO, 2021c). In 2019, 

56% of the catch in the Adriatic came from the Italian Rapido fishery, 20% from the Italian 

OTB fishery, 21% from the Italian and Slovenian set net fisheries, and 3% from the Croatian 

"Rampon" fishery. 
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It is a demersal species living on sandy and muddy bottoms (Tortonese, 1975), with evidence 

of genetic differentiation between stocks in GSA 17 and GSA 18 (FAO-ADRIAMED & 

Scarcella, 2014). Sole reproduction occurs from May to December (Tortonese, 1975), but in 

SOLEMON, reproduction in the central and northern Adriatic was found to occur from 

November to March, with a higher concentration of reproduction outside the western coast 

of Istria (Fabi et al., 2009). Length at first sexual maturity was estimated at 25.8 cm. 

Management regulations require a minimum size of 20 cm total length, fishing is prohibited 

within three nautical miles or at depths less than 50 m, fishing is closed for 30-45 days in late 

summer, and fishing is prohibited up to 6 nautical miles three months after the closure 

(GFCM-FAO, 2021c). 

 

Squilla mantis – mantis shrimp, crustaceans: it is not a target of a specific fishery, but a component 

of multispecies trawls and gillnets, the associated species in GSA 17 being Sepia officinalis 

(squid), Mullus barbatus (red mullet) or Eledone cirrosa (octopus). In the Adriatic, 80% of the 

landings come from the Italian side, especially from trawling (83%), 11% from gillnet fishing 

and 6% from 'rapido' (GFCM-FAO., 2021f). The species lives on the continental shelf, up 

to 200 m, but the maximum was measured at 367 m (Vasconcelos et al., 2017). It usually 

digs a burrow with two circular openings on the sandy-muddy bottom where it hides during 

the day (Froglia, 1996), so most catches are made during the night. 

In GSA17, females reach sexual maturity in their second year of life. Females with mature 

ovaries are observed in late winter in the central Adriatic (Froglia, 1996). Excreted females 

with still whitish glands are usually observed from April to September, when the sex ratio 

(M/F) is strongly in favor of males (Froglia, 1996). Management regulations do not specify 

a minimum length, fishing is prohibited within three nautical miles or at depths less than 50 

m, fishing is closed for 30-45 days in late summer, and fishing is prohibited up to a distance 

of 6 nautical miles three months after summer fishing closes (GFCM-FAO, 2021f).   

 

Sepia officinalis – cuttlefish, mollusc: it's caught mainly by otter trawl and beam trawl (OTB and 

TBB) in Italy, Croatia, and Slovenia, with 95% of landings in Italy, where the historical trend 

in catches is downward (GFCM-FAO, 2021d). 

Squid is common in the Adriatic Sea on the continental shelf, where the depth limit is about 

200 m (Guerra, 2006), and is considered a valuable resource. It's a species that prefers sandy 

and muddy bottoms, especially in areas covered with phanerogams (Relini et al., 1999). Its 

diet includes crustaceans, bony fish, mollusks, and bottom fauna such as polychaetes 

(Guerra, 2006). Squid show migration patterns: in winter they stay in the circalittoral zone 

where they become sexually mature, in spring the sexually mature animals migrate to shallow 

water to spawn, in summer the juveniles stay mainly in the infralittoral zone, and in autumn 

the recruits retreat to deeper water. The species can reach a maximum mantle length of 35 

cm, but the average squid length is between 15 and 20 cm. Cephalopods can respond quickly 

and "actively" to environmental changes by migrating in search of more favorable conditions 

(Armelloni et al., 2020). For this reason, it'll be critical to consider the effects of the 

environment on species distribution and recruitment success to inform fisheries 

management of cephalopods (ICES, 2019), including squid. (Froglia, 1996). Management 

regulations don't specify minimum lengths, fishing isn't allowed within three nautical miles 

or at depths less than 50 m, fishing is closed for 30-45 days in late summer, and fishing is 

prohibited up to 6 nautical miles 30 days after closure (GFCM-FAO, 2021d). 

 

Now follows the section on the outline of the work, with the summary for each chapter 

included in this work 
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Thesis’ outline 

Chapter 2  

Chapter 2 includes work published in the Journal of Operational Oceanography, in Ocean 

State Report 5, 2021. In this section, I examine the role of environmental variables using the 

GAM approach with MEDITS and SOLEMON data and analyze biomass indices (kg/km2). 

The role of this chapter is to highlight the difference between models with and without 

abiotic covariates, which is visible in the results of the chapter. 

Summary  

Demersal species play a fundamental role in fisheries, and understanding their distribution 

through bottom trawl surveys is critical to fisheries management. However, data from 

bottom trawl surveys need to be supplemented with additional variables (biogeochemical, 

physical, and fisheries) to enable an integrated approach aimed at mitigating the effects of 

change on estimates of the spatial distribution of species biomass. Here, we analyze biomass 

indices for European hake, sole, mantis shrimp, mullet, and common cuttlefish from 

scientific trawl surveys conducted in the Adriatic and western Ionian Seas using a suite of 

generalized additive models (GAMs) with and without additional variables. The results show 

that the geostatistical model for estimating the distribution of different demersal species 

based on trawl data is improved when additional environmental variables are included. Such 

an integrated approach has relevant potential implications for stock assessment and 

identification of essential fish habitats on which to base fisheries management. 

Chapter 3 

Chapter 3 contains the work presented at the 2021 MeteoSea conference that is linked to 
Scopus. This chapter presents the methodology used, focusing on merging survey data and 
environmental layers, training and testing the spatial approach, and error assessment between 
models using the European hake as an example. 

Summary:  
Marine species distribution models are widely used in ecology and fisheries science to support 
management of exploited marine resources. This study focused on defining a procedure for 
developing an ensemble model that combines 5 different modeling approaches. For each 
approach, we implemented spatial training and testing datasets to evaluate the best 
performance of 9 models against a set of indicators. These models include different 
combinations of covariates, ranging from the simplest model (depth, year, and 
spatiotemporal variables) to the most complex model (which also includes oceanographic 
variables and fishing effort). We applied this procedure to develop a robust ensemble of 
models that accurately describes the spatial and temporal distribution of European hake 
(Merluccius merluccius) in the Adriatic and Ionian Seas. 

Chapter 4 

Chapter 4 contains the work discussed in Fish and Fisheries. In this section, I examine the 

role of environmental variables using three modeling approaches: GAM, RF and GBM using 

MEDITS and SOLEMON data, analyzing density indices (n/km2). The role of this chapter 

is to incorporate an ensemble model developed for ten demersal species for two life stages 

and to consider the spatial management approach using SDMs. 

Summary:  

Spatial fisheries management is widely used to reduce overfishing, rebuild stocks, and protect 

biodiversity. However, the effectiveness and optimization of spatial measures depends on 
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correctly identifying ecologically meaningful areas, which can be difficult in the case of mixed 

fisheries. To apply a method generally to groups of target species, we developed an ensemble 

of species distribution models (e-SDM) that combines general additive models, random 

forest, and gradient-boosting machine methods, and integrates geopositional, oceanographic, 

and effort variables into a training and testing protocol. The determined best distributions 

for juveniles and adults are used to determine hot spots for fish aggregation and optimal 

fishing grounds for single or multiple target species. We applied e-SDM to juvenile and adult 

stages of 10 marine demersal species in the central areas of the Mediterranean Sea, where 

they account for 60% of total demersal landings. E-SDM combined density indices from two 

scientific bottom trawl surveys (MEDITS and SOLEMON) with geographic data (depth, 

latitude, longitude, and month), relevant 3D oceanographic variables (temperature, salinity, 

chlorophyll-a, dissolved nutrients and oxygen, particulate organic carbon, pH), and fishing 

effort (from vessel monitoring system). The e-SDM results were used to identify aggregation 

hotspots and optimal fishing grounds for each species and for the target species group of 

otter trawl and beam trawl fisheries. The results allowed us to review the effectiveness of 

existing fishery closure areas and identify optimal locations for new spatial management 

measures. 

Chapter 5 

Chapter 5 includes work on SDMs and climate change projection. In this section, I examine 

the role of future environmental variables through three modeling approaches, GAM, RF, 

and GBM, using MEDITS and SOLEMON data and analysis of density indices (n/km2). 

The role of this chapter is to include an assessment of range contraction/expansion of ten 

species in the lens of climate change. 

 

Summary:  

Predicting range shifts of marine species associated with climatic change is central to 

understanding biodiversity and spatial change, particularly in areas where resources are also 

critical to fisheries to ensure appropriate management. One of the most important tools for 

predicting future distribution is the Species Distribution Model (SDM), which uses 

environmental data to infer range limits and habitat suitability for a given species. In this 

work, we used correlative approaches to develop ensemble species distribution models (e-

SDM) to assess the future distribution of ten demersal species in the Adriatic and western 

Ionian Seas and to identify aggregation areas for four different scenarios (2012, 2018, 2035 

and 2050) for two life stages, adult and juvenile fish. The e-SDM was developed using three 

different approaches, i.e. generalized additive models (GAM), random forest (RF) and 

gradient boosting machine (GBM), combining data on the number of individuals per km2 

and relevant oceanographic variables from Copernicus Marine Service. We highlighted the 

hot spot of aggregation, past and future density distribution, density difference between 

scenarios, and centroid of density for species in the study area by GSA (Geographic Sub 

Area, 17, 18, and 19). We also incorporated an assessment of future areas gained and lost as 

new potential range shifts for the ten species. The results show that densities of some 

important commercial species such as hake, mullet, and monkfish are shifting northward and 

their distributions are changing. This highlights the need for fisheries in the area to consider 

climatic changes when planning management measures to assess future economic impacts. 

 

Chapter 6 
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Chapter 6 includes the final discussion and evaluation of the limitations, future perspective 

and implementation of this work. In the future, I would like to continue my work in the same 

field of SDMs and the possible implementation in a scientific advisory commission of the 

GFCM, hoping for a new spatial management approach, also based on my knowledge, as a 

community contribution in the important field of resource assessment in the Adriatic, Ionian 

or Mediterranean Sea. 
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Chapter 2 
SDMs for demersal species 

 Developing spatial distribution models for demersal species by the 
integration of trawl surveys data and relevant ocean variables 
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INTRODUCTION 

Marine fish and invertebrates that live and feed close to the marine seabed, i.e. the demersal 

species, play a fundamental role in fisheries. In the Mediterranean and Black Sea, these 

species constitute approximately 20% of the total landed weight (more than 220,000 

tons/year for the period 2018-2020, FAO, 2022) and 50% of the total landed value FAO, 

2022). In order to ensure the sustainability of exploitation, a set of fisheries management 

measures and restrictions are adopted also considering scientific information on the status 

of resources. Clearly, management actions are particularly relevant and impacting in large 

areas of the Mediterranean Sea where demersal resources play a central role in local fishing 

communities and economies, such as the Adriatic and Ionian seas. Therefore, it is of 

paramount importance to increase accuracy of scientific information used to inform 

management. 

Scientific bottom trawl surveys provide quantification of abundance and biomass (hereafter 

termed indices) by species, i.e. fishery-independent data, that are used for manifold purposes 

related to management: stock assessment (Cotter et al., 2009) , evaluation of spatio-temporal 

distribution of demersal resources (Carlucci et al., 2018), estimates of population and 

community densities (Spedicato et al., 2019), and the development of ecosystem models 

(Grüss et al., 2018; Moullec et al., 2019b). Sampling protocols of multiannual surveys are 

usually standardised for sampling design, gear geometry, sampling season, sampling locations 

to allow comparability of the trawl survey data across space and time. However, unavoidable 

small deviances (e.g. sampling period or sampling location) or changes (e.g. vessel) during 

sampling may affect the abundance and biomass indices obtained from trawl surveys. 

In order to test the potential benefits of using oceanographic and effort variables in addition 

to spatiotemporal covariates (latitude, longitude, depth, year and month) to improve species 

distribution models based on trawl survey data, Generalised Additive Models (GAMs) were 

chosen for their wide application and suitability with trawl survey data (Grüss et al., 2014; 

Lauria et al., 2017; Tserpes et al., 2019). GAMs allow to predict species abundance and 

biomass over the domain (Maunder & Punt, 2004; Potts et al., 2020; Rubec et al., 2016) and 

provide estimates useful for tuning stock assessment models (Cao et al., 2016; Orio et al., 

2017). Furthermore, GAMs are deemed appropriate for mapping species distribution that is 

useful in ecosystem models (Fulton et al., 2011; Grüss et al., 2018), or for identifying 

Essential Fish Habitats (Colloca et al., 2015; Druon et al., 2015). 

In addition to monitoring deviances, environmental changes and anthropogenic stressors 

may cause life-history responses, and their impacts on survey estimates are difficult to 

disentangle. Satellite data are successfully used to provide environmental variables (e.g. sea 

surface temperature; sea surface chlorophyll concentration) to be included in models to 

describe the spatial distribution of some pelagic species (Giannoulaki et al., 2008; 

Schismenou et al., 2017). However, these variables might be insufficient to model the 

distribution of demersal species, which may require additional oceanographic variables close 

to seabed such as those provided by the Copernicus Marine Environment Monitoring 

Service (CMEMS). The relative high number and the quality of the CMEMS products, as 

well as their high temporal coverage and spatial resolution, provide biogeochemical and 

physical oceanographic variables that can be useful to improve the analysis of abundance and 

biomass indices derived from trawl surveys (Sion et al., 2019; Tserpes et al., 2019). 

In addition, the displacement of fishing fleets derived from satellite-based tracking devices, 

such as Vessel Monitoring System (VMS) and/or Automatic Identification System (AIS), is 

a valuable source of information on the distribution and spatial aggregation of marine 
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resources (Bastardie et al., 2014; Russo, et al., 2014). The annual distribution of the fishery is 

indeed a good indicator of the distribution of the target resource, rather than a measure of 

the direct impact on it (which is a much longer-term impact). This also depends on the 

species. For two red shrimp species such as Aristeus antennatus and Aritaeomorpha foliacea, the 

distribution goes far beyond the fishing areas, an aspect that is very important for the 

management of these species. In this work I have not considered these two species, and 

further improvement may be interesting. I consider the species involved here as a good 

example of including fishing effort as a proxy in the area. Thus, the accuracy of the species 

distribution could be increased if fishing effort is included in the explanatory variables. In 

this work, therefore, I propose an integrated approach useful to fisheries management by 

combining trawl survey data, oceanographic variables and fishing effort estimates. Biomass 

indices of demersal fish from scientific trawl surveys carried out in the Adriatic Sea and in 

the Western Ionian Sea (Adriatic-Ionian macro-region, (EUSAIR, 2014) are analysed with a 

set of GAM approaches using as explanatory variables the relevant biogeochemical and 

physical variables from CMEMS products and the distribution of fishing effort from 

VMS/AIS data. The objective of the study is to contrast models with spatiotemporal 

variables only and with different sets of additional explanatory variables in order to explore 

the improvement on estimates of demersal species distribution when environmental 

variables and effort are included into species distribution models. 

 

MATERIAL AND METHODS 

I used data from the bottom trawl surveys conducted in the Adriatic Sea and North Western 

Ionian Sea, i.e. in the geographical sub-areas (GSAs) 17, 18 and 19 as defined by the FAO-

GFCM (General Fisheries Commission for the Mediterranean Sea). I used MEDITS 

(Mediterranean International Trawl Survey; Spedicato et al., 2019) data from 1994 to 2018 

that comprises on average 326 sampling sites (bathymetrical range 10–800 m) per year in the 

three GSAs and SOLEMON (Sole Monitoring; Grati et al., 2013; Scarcella et al., 2011) from 

2005 to 2018, that comprises on average 70 sampling sites per year in GSA 17 (bathymetrical 

range 10–100 m). Indices of demersal species biomass (kg/km2) were retrieved from the 

MEDITS dataset for European hake (Merluccius merluccius) and red mullet (Mullus barbatus) 

and from the SOLEMON dataset for common sole (Solea solea), mantis shrimp (Squilla mantis) 

and common cuttlefish (Sepia officinalis). 

For each species, GAMs were applied to fit biomass indices by sampling site, set as a response 

variable, while spatiotemporal variables, oceanographic variables and fishing effort were 

tested as covariates. Among the spatiotemporal variables I used geographic coordinates 

(latitude, longitude expressed in UTM coordinates), depth (m), month and year of the 

observations. Among all the variables available from the 3D monthly CMEMS 

Mediterranean reanalysis fields relevant oceanographic variables were considered on the basis 

of known ecological importance for chosen demersal species (Bitetto et al., 2019; Carlucci et 

al., 2009b) as well as proxies for productivity and favourable environments. The relevant 

oceanographic variables considered were the water temperature (°C) and dissolved oxygen 

(mmol/m3) at the sea bottom, water column averages of nitrate and phosphate concentration 

(mmol/m3), chlorophyll-a (mg/m3), particulate organic carbon (mg/m3), pH and salinity. 

These variables were derived from the CMEMS dataset that covers the period 1999–2018, 

has a spatial horizontal resolution of 1/16° and 72 unevenly vertical levels (Simoncelli et al., 

2019; Teruzzi et al., 2019). Furthermore, commercial trawling effort expressed as trawling 

time (in hours) per year at spatial resolution of 1/16° was estimated from VMS/AIS data for 

the period 2008–2018 (Russo, et al., 2014) and was tested as explanatory variable on the basis 
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of the evidence that fishing effort is a good track of species density. Although different time 

frames were initially adopted (depending on the available explanatory variables), here we 

report the analysis performed on the time frame 2008–2018 that allowed the complete 

overlap between trawl survey, CMEMS and effort datasets. The explanatory variables were 

preliminarily selected using the VIF approach (Variance Inflation Factor; Sheather, 2009) 

with a threshold of VIF<5 to avoid collinearity (Orio et al., 2017; Sion et al. 2019). 

The results of the VIF analysis identified for all the species the spatiotemporal variables, i.e. 

year, month, depth, latitude, longitude, to be included as explanatory variables. Furthermore, 

the VIF analysis by species allowed to include additional explanatory variables without 

collinearity extracted from CMEMS reanalysis and fishing effort: the VIF results emerged as 

being species-specific. Thus the complete model for European hake included the 

spatiotemporal variables (X and Y) and the bottom temperature (TMP_bot), bottom 

dissolved oxygen (Dox_bot), nitrate concentration (nit), salinity (sal), bottom particulate 

organic carbon (poc), and fishing effort (eff). For the red mullet the following explanatory 

variables were retained after VIF analysis in the most complete model: month, latitude, 

longitude, year, depth, pH, chlorophyll-a (Chl), sea surface temperature (TMP_sst), bottom 

dissolved oxygen, nitrate, salinity and effort. For the common cuttlefish, the complete set of 

variables after VIF included month, latitude, longitude, year, depth, bottom temperature, 

bottom dissolved oxygen, nitrate, phosphate (pho) and effort. For common sole the 

complete set of variables included month, latitude, year, depth, average phosphate, bottom 

temperature, bottom dissolved oxygen, salinity, average phosphate, pH and effort. For 

mantis shrimp the set of variables are month, latitude, year, depth, bottom temperature, 

bottom dissolved oxygen, salinity, particulate organic carbon, pH and fishing effort (more 

details in Supplemetary Material Chapter 2 Supplementary material S2 and Table 2.1). 

Table: 2.1. Best selected covariates for each species as final model. s indicates spline function. 

Species Final Model 

European 
Hake 

R ~ s(X)+s(Y)+s(Year)+s(Depth)+s(Tmp_Bot)+s(Dox_Bot)+s(nit)+s(sal)+s(poc)+S(eff) 

Red 
Mullet 

R~factor (month)+s(X)+s(Y)+s(Year)+s(Depth)+s(Chl)+s(ph)+s(Tmp_sst) +s(nit)+s(Dox_bot) 
+s(sal)+s(eff) 

Common 
Sole 

R~factor (month)+s(Y)+s(Year)+s(Depth)+s(pho) +s(ph)+ s(sal)+ s(Dox_bot)+ s(Tmp_bot)+s(eff) 

Mantis 
Shrimp 

R~factor(month)+s(Y)+s(Year)+s(Depth)+s(Sal)+s(Tmp_bot) +s(poc)+s(ph)+s(Dox_bot)+s(eff)  

Cuttlefih R~factor(month)+s(X)+s(Y)+s(Year)+s(Depth)+s(Tmp_bot)+s(Dox_bot)+s(nit)+s(pho)+s(eff) 

 

Different GAM distribution families were applied in order to demonstrate the potential 

benefits of using additional variables disregarding the model structure. GAMs were 

developed using Gaussian probability distributions with identity link on trawl survey biomass 

data log-transformed for all species, except common cuttlefish, for which better results were 

obtained by using square root transformation. GAMs were also applied using Tweedie 

probability distributions with lognormal link on untransformed biomass indices. 

Furthermore, the Delta-GAM approach was implemented in two steps: (i) a binomial 

occurrence model was used to fit presence/absence data (binomial family error distribution 

logit link function), (ii) a Gaussian distribution model with identity link function on 

transformed biomass for presence-only data (Grüss et al., 2014; Lauria et al., 2017). A grid 

of regular points with the same resolution of the selected CMEMS product (1/16°) and 

covering the study area was created to predict species biomass distribution by the selected 

models (Spedicato et al., 2019; Tserpes et al., 2019). For Delta-GAM the final spatial 
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distribution of species biomass as kg/km2 is obtained by multiplication of Gaussian and 

Binomial models’ predictions to the grid of the model’s domain (Grüss et al., 2014; Lauria et 

al., 2017). 

For each species and all GAMs distribution families (Delta, Gaussian and Tweedie), a back-

stepwise approach was used. This started from the most complete integrated approach, given 

by the spatiotemporal variables (geographical coordinates, depth, year, month) combined 

with all the most meaningful additional biogeochemical, physical and fishing effort variables 

identified by VIF analysis (model 0). Then the back-stepwise approach consisted in 

decreasing the number of explanatory variables by successively removing those with lower F 

statistics until the model with spatiotemporal variables only was obtained. Thus, the back-

stepwise approach resulted in a set of models having different explanatory variables to obtain 

the response variable (R = log kg/km2 or presence/absence) (see SM, chpaterS2). Each 

model was subjected to a calibration-validation process, thus it was fitted on a training dataset 

made by randomly choosing 70% of the data (calibration) and testing it on the remaining 

30% of records (validation). The training and testing were repeated using 50 runs on datasets 

randomly selected and without replacement. The best model was selected on the basis of 

measures of model performance evaluated through explained deviance (%ED) and 

prediction errors (AIC, Akaike Information Criterion) on the training datasets as well as 

correlation coefficient (R2) of the model predictions on the test dataset. 

For each model with decreasing number of explanatory variables (model 0, model 1, model 

2, etc.), the mean of each measure of model performance (%ED, AIC, R2) was calculated 

from the 50 runs and compared using  Tukey’s test (Tukey, 1949). This comparison allows 

to assess the improvement of performances when different sets of additional variables were 

used in the models. The best model was chosen based on AIC, but other measures of 

performance were reported to show their general consistency. 

The model chosen for each species was used to generate maps of biomass distribution 

(kg/km2) in the most important months (July and November for the MEDITS and 

SOLEMON species, respectively). These maps were used to identify areas of high biomass 

density (hotspots) in GSAs 17, 18, and 19. In addition, a set of spatial indicators (Woillez et 

al., 2009) allowed comparison of model performance in describing the spatial distribution of 

demersal species when additional explanatory variables were or were not included. The 

indicators are the dispersal area (SA), i.e., a measure of the area occupied by the population 

weighted by biomass; the latitude of the centroid of the data (CGY), which represents the 

mean geographic location of the population; the longitude of the centroid (CGX); the 

distance (D) between the centroid estimated from observations and the centroid estimated 

from predictions (Rufino et al., 2018; Woillez et al., 2009). Distributional statistics (first and 

third quartiles, median) and performance indicators (mean absolute error MAE and R2) were 

also estimated. Comparison of such indicators estimated from raw trawl survey data, from 

models based only on spatiotemporal variables, and from the selected best models using the 

full set of significant variables allows quantifying the improvement of the application of the 

integrated approach, i.e., embedding biogeochemical, physical, and fisheries factors in the 

species distribution models 
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RESULTS AND DISCUSSION 

For European hake, mantis shrimp and common cuttlefish the Delta-GAM models were 

performing better while for the red mullet and common sole the best results were obtained 

using the Gaussian model and Tweedie, respectively (details are reported in Supplementary 

material). Figure 2.1 shows measures of performance (%ED, AIC, R2) resulting from the 

back-stepwise approach applied to the most appropriate family of GAM models for each 

species (only Delta-Gaussian is reported in the figure for European hake, mantis shrimp and 

common cuttlefish; the full Delta-GAM results for these species are reported in 

Supplementary material). Results for the 50 trials of training/testing demonstrate the model 

improvements when using CMEMS and effort variables in GAMs (Tukey’s tests are reported 

in SM, Chapter 2 Supplementary material). 

For European hake, the average AIC for Delta-Gaussian increased from 5600 for the model 

including the complete set of variables (model 0, panel I) to 5700 for the minimal model with 

spatiotemporal variables only (model 6, panel I). Coherently, the average %ED decreased 

from 0.32–0.29, and R2 decreased from 0.24–0.23 from model with complete set of variables 

to model with spatiotemporal variables (Figure 2.1, panel I). For red mullet AIC increased 

from 6950 to 7340, %ED decreased from 0.57–0.47 and R2 decreased from 0.12–0.09 from 

the complete to the minimal model (Figure 2.1, panel II). For mantis shrimp AIC increased 

from 350 to 420, %ED decreased from 0.55–0.37, and R2 decreased from 0.44–0.38 from 

the complete to the minimal model (Figure 2.1, panel V). For common cuttlefish and 

common sole (panels III and IV) the differences in AIC and R2 are less marked when moving 

from the complete model (0) to the model with spatiotemporal variables (model 5 and 6) but 

yet the improvement is appreciable in terms of %ED. For all species analysed, the 

training/testing approach highlighted that best performances in terms of capabilities to 

represent trawl survey biomass data (ED% and R2) and performance indicators such as AIC 

were obtained when the integrated approach was used, i.e. when the spatial model for species 

distribution included biogeochemical, physical and fishing effort as additional explanatory 

variables (model 0). 

https://www.tandfonline.com/doi/full/10.1080/1755876X.2021.1946240?scroll=top&needAccess=true#F0018
https://www.tandfonline.com/doi/full/10.1080/1755876X.2021.1946240?scroll=top&needAccess=true#F0018
https://www.tandfonline.com/doi/full/10.1080/1755876X.2021.1946240?scroll=top&needAccess=true#F0018
https://www.tandfonline.com/doi/full/10.1080/1755876X.2021.1946240?scroll=top&needAccess=true#F0018
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Figure 2.1: Performances of the best GAMs in describing the distribution of demersal species for models using a 

decreasing number of explanatory variables. The best model was Delta-GAM for European hake, common cuttlefish 

and mantis shrimp (shown the Delta-Gaussian in panels I, III and V, respectively), Gaussian for red mullet (panel 

II) and Tweedie for common sole (panel IV). For all species the starting model represents the one (model 0) including 

all the covariates resulting from VIF analysis and including spatiotemporal variables, environmental CMEMS 

variables and fishing effort. Successively one variable at each step is removed to reach the minimal model (model 6 for 

European hake, common sole and mantis shrimp; model 7 for red mullet; model 5 for common cuttlefish) with 

spatiotemporal variables only. Box-plots synthesise results of the 50 runs of the training/testing procedure in terms of 

Akaike Information Criterion (AIC), explained deviance (dev-expl) on the 70% training dataset and correlation 

coefficient (R2) for the remaining testing dataset. 

For each demersal species the best model has specific significant covariates in addition to 

spatiotemporal variables. Bottom temperature, bottom dissolved oxygen, salinity, particulate 

organic carbon, and fishing effort resulted significant variables for European hake. The same 

variables and pH resulted significant for mantis shrimp. Chlorophyll-a, pH, sea surface 

temperature, bottom dissolved oxygen, nitrate and effort were significant for the red mullet. 

Bottom temperature, bottom dissolved oxygen, and phosphate for the common cuttlefish. 

Average phosphate and salinity were significant for common sole (more details in the SM – 

Chapter 2 Supplementary material). 

Figure 2.2 shows distribution maps for the years 2008–2018 as obtained by the best complete 

model for European hake and red mullet based on MEDITS trawl survey data. For European 

hake (Figure 2.2 , left panel) the maps highlight higher biomass in 2008 and 2018, hot spots 

of biomass (as high as 100 kg/km2) in the central-eastern part of the Adriatic Sea in recent 

years (particularly in 2018), low biomass of this species, especially in the northern part of the 

basin, and a prevalence of a north–south gradient. For the red mullet (Figure 2.2, right panel) 

results show that high biomass (up to 200 kg/km2, particularly in years 2017/2018) is 

associated to coastal strip in the western part of the basin, while in the eastern part biomass 

is more widely distributed with a prevalence of south–north gradients. The application of the 

https://www.tandfonline.com/doi/full/10.1080/1755876X.2021.1946240?scroll=top&needAccess=true#F0018
https://www.tandfonline.com/doi/full/10.1080/1755876X.2021.1946240?scroll=top&needAccess=true#F0018
https://www.tandfonline.com/doi/full/10.1080/1755876X.2021.1946240?scroll=top&needAccess=true#F0018
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best complete GAM model for common cuttlefish, common sole and mantis shrimp based 

on SOLEMON trawl surveys result in distribution maps reported in figure 2.3. The hot spot 

for common cuttlefish is consistently identified in the North-East Adriatic, in front of the 

Istrian peninsula, with highest biomass (peaks of 2000 kg/km2) especially in 2008 and 2014 

(figure 2.3, left panels). Common sole is showing higher densities along the North-western 

coast of the Adriatic, but high biomass is obtained also in the central part of the Northern 

Adriatic in recent years (2016–2018; central panels). The mantis shrimp resulted to be mainly 

distributed along the North-western coast in the area interested by the Po river plume with 

biomasses as high as 1500 kg/km2 especially in the years 2011, 2012, 2018 (figure 2.3, right 

panels). 

The spatial and temporal distributions shown are coherent with previous results (Sartor et 

al., 2017). For example, results from Sion et al. 2019 on European hake show for 2011 and 

2013 higher biomass values in the eastern-central Adriatic sea, while in 2015 a general lower 

biomass of this species was estimated, with similar outcomes to the ones I found in this 

paper (Figure 2.2). Tserpes et al. 2019 also highlights a biomass increasing trend for red 

mullet after 2008, which is in line with the recent stock assessment outcomes (GFCM-FAO 

et al., 2020; Ulrich et al., 2019, SAC, 2022). Similarly, Figure 2.2 highlights that this biomass 

increase corresponds to a spreading of the population in the study area. 

The set of indicators for evaluating performance of the complete (model 0) or spatiotemporal 

(model 6 or 7) models contrasted with observations show that the integrated approach 

embedding biogeochemical, physical and fishing effort variables has improved performance 

(Table 2.1). In particular, indicators in Table 2.1 suggest that models’ distribution statistics 

(quartiles and median) are closer to observed data when the integrated approach is used (i.e. 

the model 0). Exceptions are the first quartile for common sole, the third quartile for 

common cuttlefish, and the median for mantis shrimp. It is worth to note the relevant 

improvement of median values for hake and cuttlefish (+55% and +53%, respectively) when 

the spatial model of species distribution includes additional biogeochemical, physical and 

fishing effort data (Table 2.1). MAE and R2 showed that consistency of model to the data 

improves for all species (except R2 for European hake) when additional variables are 

included (Table 2.1). The spatial indicators used to evaluate the modelling results in terms of 

variations of the area occupied by the populations and their mean geolocation (Woillez et al., 

2009) show improvements for red mullet, common sole, and mantis shrimp when the models 

include additional biogeochemical, physical and effort variables. For all these species the 

centroids of spatial distribution and the spreading area of the best model (model 0) are closer 

to those estimated on the observed data than to models with no additional explanatory 

variables (model 6 or 7; Table 2.2). For European hake and common cuttlefish, the spreading 

area improved when additional explanatory variables are included, but not the centroid 

position. This result and some low improvements of model 0 with respect to the model with 

spatiotemporal variables only is possibly related to complex influences of other 

environmental factors such as seabed type and habitats on the spatial distribution of species 

(in particular for European hake and common cuttlefish). Overall, the approach quantified 

the relevance of biogeochemical and physical variables derived from CMEMS and fishing 

effort from VMS/AIS in improving the spatial distribution of demersal species based on 

trawl survey data. Results highlight species-specific improvements that should be considered 

also in relation to the use of spatial distribution model (Brodie et al., 2020) 

 

https://www.tandfonline.com/doi/full/10.1080/1755876X.2021.1946240?scroll=top&needAccess=true#F0018
https://www.tandfonline.com/doi/full/10.1080/1755876X.2021.1946240?scroll=top&needAccess=true#F0018
https://www.tandfonline.com/doi/full/10.1080/1755876X.2021.1946240?scroll=top&needAccess=true#F0018
https://www.tandfonline.com/doi/full/10.1080/1755876X.2021.1946240?scroll=top&needAccess=true#F0019
https://www.tandfonline.com/doi/full/10.1080/1755876X.2021.1946240?scroll=top&needAccess=true#F0019
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Table 2.2. Comparison among indicators calculated on observations, i.e., the original trawl survey data, on the results 
of the best GAM model without additional explanatory variables (model 6 or 7) and results of the best GAM model 
including additional biogeochemical and physical variables and effort (model 0). Distribution indicators (first and third 
quartile, median), performance indicators (MAE, R2), and spatial indicators such as Spreading area (SA), latitudinal 
centroid (CGY) longitudinal centroid (CGX) and distance of the centroid of the model to that of data are reported for 
the five demersal species analyzed. The column “improvement” reports the improvement in the indicator value when 
using the model with environmental variables concerning indicator calculated on results of the model without additional 
variables (observations-model 0/observations-model 6 or 7).  

Red mullet Cuttlefish 

  Observation

s 

Model 

7 

Model 

0 

improvemen

t 

Observation

s 

Model 

6 

Model 

0 

improvement 

1st.Qu 0 3.11 2.38 23% 0 9.2 6.13 33% 

Median 1.95 8.48 7.91 18% 133.48 116.22 125.45 53% 

3rd.Qu 23.55 20.36 23.88 19% 558.44 474.37 465.51 -10% 

R2 - 0.08 0.15   - 0.56 0.61   

MAE - 39.97 36.89   - 240.96 227.83 5.44% 

SA 701.6 1142.5 1094 11% 235.8 273.21 272.51 1.87% 

CGX 15.52 15.98 15.73 55% 13.3 13.29 12.28   

CGY 42.59 42.52 42.8 - 44.66 44.74 44.75 -12.50% 

distanc

e 

0 38.68 29.53 24%   9.43 10.2 -8.16% 

European hake Mantis shrimp 

  Observation

s 

Model 

6 

Model 

0 

improvemen

t 

Observation

s 

Model 

6 

Model 

0 

improvement 

1st.Qu 2.99 3.75 3.67 11% 0 2.65 1.22 54% 

Median 15.75 13.68 14.82 55% 36.91 25.23 24.5 -6% 

3rd.Qu 34.68 25.96 26.33 4% 326.95 90.19 115.48 10% 

R2 - 0.32 0.32   - 0.3 0.46   

MAE - 16.13 15.94   - 202.69 169.76   

SA 1552.02 2272.55 2263.34 1.30% 192.95 352.34 267.37 53% 

CGX 16.18 16.18 16.16 - 13.01 13.15 13.01 100% 

CGY 42.09 42.18 42.19 -11% 44.26 44.15 44.23 72% 

distanc

e 

0 10.89 11.83 -8.63%   16.99 2.93 82% 

Common sole 

  Observation

s 

Model 

6 

Model 

0 

improvemen

t 

1st.Qu 127.07 103.43 92.21 -47% 

Median 439.64 296.35 302.75 4.46% 

3rd.Qu 1155.34 717.12 728.82 2.66% 

R2 - 0.35 0.44   

MAE - 538.92 491.55   

SA 311.66 447.79 403.05 32% 

CGX 12.98 13.01 12.97 133% 

CGY 44.57 44.6 44.6 0 

distanc

e 

  16.99 2.83 83% 
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Figure 2.2: Yearly maps of estimated biomass (kg/km2) of European hake (left) and red mullet (right) in the Adriatic 

and Western Ionian Sea (GSA 17-18-19) obtained with the best GAM model applied on MEDITS trawl survey 

data for years 2008– and with all the additional environmental and effort variables (model 0). 

 

Key objectives of the Common Fisheries Policy (EC, 2013) are the achievement of MSY in 

the short term and the implementation of an ecosystem approach to fisheries management 

which is often based on fishery independent data. Furthermore, for EU (Italy) and non-EU 

countries contracting parties (Croatia, Montenegro, and Albania) involved in the area of 

study, the GFCM recommendations, and particularly with the objectives set out in the 

GFCM 2030 strategy, regarding sustainable fisheries and aquaculture in the Mediterranean 

and the Black Sea, consolidating a regional regulatory framework based on the 

implementation of management plans for key fisheries, fisheries restricted areas (FRAs) and 

measures to minimize the incidental catch of vulnerable species and maximize the 

productivity of commercial marine living resources. 

 

Thus I consider that the integrated approach proposed here represents an important step for 

incorporating anthropogenic (fishing effort) and other environmental stressors 

(biogeochemical and physical variables) into the advice for fisheries management. 

 

The improved models including environmental and effort variables, in fact, can be used for 

year by year evaluations of species distribution, for explaining and understanding species 

displacement. This is of paramount importance for a spatially based management of the 

resources that relies upon the identification of best fishing grounds, spawning or nursery 

areas, and generally aiming at defining fisheries managed areas (Lauria et al. 2017). The 

improved accuracy of species distributions based on environmental and effort variables as 

obtained in this study can potentially support co-management initiatives involving fisheries 

organisations and other stakeholders (e.g. those carried out by the Mediterranean Advisory 

Council, MEDAC). In particular, sharing such outcomes with the bottom trawl industry 

could lead to an increase in the awareness of the sector and consequently to the reduction of 

the alarming footprint of the fisheries in the Adriatic and Western Ionian Seas (Amoroso et 

al., 2018). 
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Figure 2.3. Yearly maps of estimated biomass (kg/km2) of common cuttlefish (left), common sole (centre) and mantis 

shrimp (right) in the Adriatic Sea (GSA 17-18) obtained with the best GAM model applied on SOLEMON trawl 

survey data for years 2008–2018 (Product Ref. 3.6.4) and with all the additional environmental and effort variables 

(model 0). 

 

Furthermore, it is largely acknowledged that most of the presently used stock assessment 

models are too simplistic since they often consider species populations without integrating 

the role of key environmental drivers, which is a challenging but crucial frontier in the time 

of global changes. Taking into consideration environmental factors is also pivotal for the 

MSY objective, as climate change impacts on the fish community would require moving 

below fishing mortality at FMSY to ensure sustainable exploitation of marine stocks 

(Travers-Trolet et al., 2020). An optimised approach for the analysis of trawl survey data is 

relevant for the stock assessments and advice provided by Scientific Advisory Committee for 

fisheries of the General Fisheries Commission for the Mediterranean Sea (SAC-GFCM) and 

the Scientific, Technical and Economic Committee for Fisheries (STECF) of the European 

Commission, as fisheries-independent data are essential for fishery management. The 

prediction of biomass indices on the whole domain over time with the integrated models 
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proposed here takes into account the influence of relevant oceanographic variables and could 

be appropriately used for tuning stock assessment models such as, for example, surplus 

production models that need the catch time series and the survey abundance aggregated 

indices. 

Since most analytical stock assessment models use survey indices by age or length as tuning 

indices, a further step for future insights is represented by the modelling in similar way also 

demographic indices, as length and/or age. Moreover, modelling of demographic indices can 

be useful also for progressing on the geolocation of sensitive life stages of the species, thus 

addressing further key questions of spatial fishery management. 

These spatial distribution models for demersal species were developed for the best extension 

of trawl survey data to the whole study area from 2008 to 2018. The approach developed 

here highlights the relevance of integrating oceanographic variables in the analysis of trawl 

survey data before their use as inputs in stock assessment (Cao et al., 2016) and ecosystem 

modelling (see for example, (Canu et al., 2010; Grüss et al., 2014, 2018). This approach sets 

the basis for providing projections of the potential effects on species distribution and 

biomass of future environmental changes. 

Applying the identified best GAMs models for making future predictions of species 

distribution is facilitated by the availability of oceanographic variables under future scenarios 

of climatic changes and appears strongly conditioned to assumptions on the future 

distribution of fishing effort that are also dependent from policies and regulations. Therefore, 

using the models developed here for making future scenarios might be considered with 

caution, needing further specific investigations of model validity to changed conditions. Yet 

the models can still provide a first order approximation of potential large scale effects, such 

as displacements of biomass centre of gravity and spreading area due, for example, to climate 

change. Although the relative distribution pattern might be well predicted by the model, 

many factors, such as recruitment success and species interactions for example are not 

included, thus efforts should be addressed in the future for testing additional modelling 

approaches and for improving the accuracy of these species distribution models. 

In conclusion, the present study aims at investigating the influence of environmental 

variables on the biomass distribution of the most important commercial fishery species in 

the Adriatic and Western Ionian basin by modelling the data obtained from trawl surveys 

using different GAM approaches. GAMs are commonly used because they have the 

advantage of accounting for spatial and temporal autocorrelation of the data. The approach 

used here robustly demonstrates in which cases oceanographic variables extracted from 

CMEMS products and effort from VMS/AIS, result in improving species distribution 

models. Although there is still room for improvements, the work presented here is a 

remarkable starting point for better understanding species-environment relationships and for 

understanding the benefits of integrating the CMEMS variables into the modelling of fishery 

independent data for predicting the species distribution in the Adriatic and Ionian basins. 
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Procedure in e-SDMs 
Defining a procedure for integrating multiple oceanographic 
variables in ensemble models of marine species distribution. 
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INTRODUCTION   

Species Distribution Models (SDMs, (Zimmerman & Guisan, 2000), are largely used in 

biology and ecology to map the potential distribution of species based on geopositional and 

environmental data (Brodie et al., 2020). SDMs are applied at different scales (local, regional, 

global), trying to represent species distribution, by implementing a range of methods on 

density (e.g. number of the individual), presence/absence, or biomass (Barcala et al., 2019). 

Many statistical techniques are commonly used in the SDMs, from regression method (linear 

models LMs, Generalised Linear Models, GLMs, or Generalized Additive Models, GAMs; 

(Maravelias et al., 2003; Olden & Jackson, 2002), to machine learning method (Random 

Forest, RF or neural networks models, NNMs, (Breiman et al., 2018). The model's predictive 

performance depends not only on the intrinsic mathematical approach but also on species 

characteristics or species and environment link (Santika & Hutchinson, 2009), sample size, 

the aim of the study, spatial scales (Wisz et al., 2008), and considering the availability of data.  

In marine systems, SDMs are increasingly applied for example, for explaining and predicting 

the expansion of invasive species (D’Amen & Azzurro, 2020), for showing the effects of 

climatic changes on ecologically key species (Franceschini et al., 2018), and for describing 

the distribution of exploited and vulnerable species using trawl survey data (Barcala et al., 

2019; Lauria et al., 2017). Scientific bottom trawl surveys provide quantification of 

abundance and biomass (hereafter termed indices) by species, i.e., fishery-independent data, 

that are used for manifold purposes related to management: stock assessment, evaluation of 

the spatio-temporal distribution of demersal resources (Carlucci et al., 2018), estimates of 

population and community densities (e.g., (Mérigot et al., 2019; Spedicato et al., 2019) and 

the development of ecosystem models (e.g., (Grüss et al., 2018; Moullec et al., 2019). Despite 

the sampling protocols of multiannual surveys are usually standardized for sampling design, 

gear geometry, sampling season, and sampling locations to allow comparability of the trawl 

survey data across space and time, some changes may unavoidably occur. For most of the 

uses described above, there is, thus, the need to evaluate the impact of these deviations (e.g., 

sampling period or sampling location) or changes (e.g., vessel) on the abundance and 

biomass indices obtained from trawl surveys (Thorson et al., 2015).   

Further, some approaches successfully include environmental changes and anthropogenic 

stressors as drivers to explain species distribution and infer future changes (Moullec et al., 

2019b; Robinson et al., 2017). Satellite data are successfully used to provide environmental 

variables (e.g. sea surface temperature; sea surface chlorophyll concentration) to be included 

in SDM (Giannoulaki et al., 2008; Schismenou et al., 2017), taking advantage of the growing 

effort provided by the Copernicus Marine Environment Monitoring Service (CMEMS; e.g., 

(Sion et al., 2019; Tserpes et al., 2019) in producing 3-dimensional oceanographic variables.   

The growing number of SDM applications and approaches would benefit from a robust 

methodological approach aiming at i) testing different SDM approaches coherently also 

through the development of ensembles of models; ii) developing statistically sound and 

robust protocols for training and testing SDMs over data also evaluating progressive 

inclusion of meaningful explanatory variables.  Furthermore, these models are deemed 

appropriate for mapping species distribution that is useful in ecosystem models (Grüss et al., 

2014), or for identifying Essential Fish Habitats (Druon et al., 2015). This work aims at 

presenting a robust statistical protocol applied to the development of an ensemble of SDMs 

for marine demersal species, integrating relevant oceanographic variables and indices of 

anthropogenic pressure (e.g., fishing effort). We use the European hake (Merluccius merluccius), 

an important species in the Mediterranean Sea (FAO, 2022), particularly in the Adriatic and 
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Ionian Sea to show the suitability of the proposed approach, combining scientific trawl 

surveys data, relevant biogeochemical and physical variables from CMEMS products and the 

distribution of fishing effort from VMS/AIS data. The procedure utilizes spatial training and 

test data sets, metrics, and statistics, trying different models and approaches, contrasting 

models with spatiotemporal variables only, and with different sets of additional explanatory 

variables to explore the improvement on estimates of the distribution of marine species.   

 

MATERIALS AND METHODS 

A. Study area  

The study area is the Adriatic Sea and the North-western (NW) Ionian Sea, situated in the 

northeast/east part of the Mediterranean Sea. The corresponding Geographic Sub  

Areas (GSA) are 17-18 and 19, as defined by the FAO GFCM (General Fisheries 

Commission for the Mediterranean Sea). Bathymetry data retrieved for our study ranged 

from 10 to 800 meters. The map of the distribution of the species ranged from 12’.00’’ E 

and 20’.00’’ E for longitude and 39.5’.00’’ N and 46’.00’’ N for latitude. The Northern 

Adriatic Sea is the shallower part of the Adriatic epi-continental shelf, with maximum depths 

of less than 70 m and a mean depth of 30 m, with seasonal variation of temperature and 

salinity conditions (Boldrin et al., 2005). The central part of the Adriatic basin is 

characterized by a meso-Adriatic depression, called Jabuka/Pomo Pit, reaching 260 m depth 

which is subjected to fishing activity restrictions coincident with a Fisheries Restricted Areas 

(FRAs) (FAO, 2022). The southern part of the basin (GSA 18) is characterized by a steep 

continental slope with the deepest bathymetry at 1250 m. The water mass circulation is 

characterized by a cyclonic gyre. (Civitarese et al., 2010). The NW Ionian Sea (GSA 19) is 

divided by the Taranto Valley into an eastern sector represented by a broad continental shelf 

and a south-western sector where the shelf is generally very limited and many submarine 

canyons are located along the coasts (Maiorano et al., 2010). GSA 19 covers a surface of 

about 16,500 km2 included between 10 and 800 meters in depth.  

  

B. Survey data  

The occurrence record for European hake was derived from the surveys conducted in the 

Adriatic Sea and NW Ionian Sea, in the geographical sub-areas (GSAs) 17, 18, and 19. I used 

MEDITS (Mediterranean International Trawl Survey) (Spedicato et al., 2019) data, which 

consists on average of 326 sampling sites per year in the three GSAs. I considered the period 

from 2008 to 2018 (a subset of the entire time series 1994-2018 MEDITS) due to the 

employment of the effort data (see C. effort data).  

I used density indices (n/km2, n=number of individuals, km2=squares kilometers) to 

represent the distribution of European hake, one of the most important and commercially 

exploited species by otter trawl fishery in the Adriatic Sea (Soldo, 2015). Moreover, this 

species was selected for its biological and ecological role (FAO, 2020b; Maiorano et al., 2010; 

Soldo, 2015; Zorica et al., 2020).  

  

C. Effort: see subsection of Chapter 1: Abiotic factors: Effort 
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D. Oceanographic variables  

Among all the available variables from the 3D monthly CMEMS Mediterranean reanalysis 

fields (Teruzzi et al., 2019) relevant oceanographic variables were considered based on 

known ecological importance for the chosen demersal species (Bitetto et al., 2019; Carlucci 

et al., 2018) as well as proxies for productivity and favorable environments. The relevant 

oceanographic variables considered were (with respective model abbreviation): i) water 

surface temperature (°C, TMP_sst), ii) water bottom temperature (°C, TMP_bot), iii) 

dissolved oxygen at the sea bottom and surface (mmol/m3, dox_bot), iv) water column 

averages of nitrate and phosphate concentration (mmol/m3, nit & pho), v) chlorophyll-a 

(mg/m3, chl), vi) bottom particulate organic carbon (mg/m3, poc), vii) pH at the sea bottom 

(ph), viii) surface salinity (sal). These variables were derived from the CMEMS dataset that 

covers the period 1999-2018, has a spatial resolution of 1/16° and 72 unevenly vertical levels 

(Simoncelli et al., 2019; Teruzzi et al., 2019), and we used the data from 2008 to 2018.   

  

E. Models  

To test the potential benefits of using oceanographic and effort variables in addition to 

spatiotemporal covariates (UTM coordinates – east and north, - E.utm & N.utm 

respectively, depth, year, and month) for improving species distribution models based on 

trawl survey data, Generalized Additive Models (GAMs), Random forest (RF) (Breiman et 

al., 2018), and Gradient Boosting machine, (GBM) (Schapire, 2003), were chosen for their 

wide application and suitability with this type of data (Grüss et al., 2014; Lauria et al., 2017; 

Tserpes et al., 2019). I fitted indices of n/km2 by sampling site, set as a response variable, 

while explanatory variables tested were: i) geoposition variables (haul survey position 

expressed in UTM, easting (E.utm), and northing (N.utm) in km, ii) additional 

oceanographic variables; iii) fishing effort variables (eff_OTB). Among the minimal 

combination of variables, I used geographic coordinates (in UTM), depth (m), and the year 

of the observations.   

To obtain an SDM I applied five different approaches that include: GAM, RF and GBM. In 

the case of GAM, I applied different distribution families to demonstrate the potential 

benefits of using additional variables disregarding the model structure.  GAMs were 

developed using Gaussian probability distributions with identity links on log-transformed 

density data. GAMs were also applied using Tweedie probability distributions with a log-

normal link on untransformed density indices. Furthermore, the Delta-GAM approach was 

implemented (See details in Chapter 2): RF is a Machine Learning technique that fits an 

ensemble of Classification Trees and combines their predictions into a single model 

(Breiman, 2001). For each tree in the forest, the algorithm starts selecting a subset from the 

training data, i.e., a bootstrap sample. The data not included in the current bootstrap sample 

are called Out-Of-Bag (OOB) records. For each bootstrap sample, a tree is grown by default 

to the maximum depth and left unpruned. This procedure is repeated ntree times, the latter is 

the total number of Classification Trees in the forest. Finally, the overall output of a RF is 

obtained based on the majority voting for classification tasks and by averaging the outcomes 

of all the trees for regression applications (Breiman et al., 2018). In this work I applied 5000 

trees on data log-transformed, with a minimum number of variables for each split equal to 

1/3 of the explained variable (R package randomForest), (Breiman et al., 2018). 

Finally, Generalized Boosted Regression Models (GBMs) are a type of ensemble learning 

method for regression and classification problems. They work by combining the predictions 

of multiple "weak" models, such as decision trees, in a manner that reduces the overall error. 

The basic idea behind GBMs is to iteratively train weak models, with each model trying to 

correct the mistakes of the previous model. The process starts by training a simple model 
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(such as a decision tree) on the data. The model's predictions are then used to compute the 

residuals (i.e., the difference between the true values and the predicted values). A new model 

is then trained on the residuals, and its predictions are added to those of the previous model. 

This process is repeated for several iterations, with the final model being the sum of the 

predictions of all the individual models. 

The key to GBMs is the use of boosting, which is a technique that iteratively improves the 

performance of the model by giving more weight to observations that were misclassified in 

previous rounds. This allows the model to focus more on the difficult examples in the 

dataset, leading to improved performance overall. 

For the GBM approach, I applied 10000 trees with a shrinkage of 0.01 (gbm package R, 

https://github.com/gbm-developers/gbm). The models used in this study have been 

already described and discussed in several publications (Breiman et al., 2018; Evans et al., 

2011; Friedman, 2001; Ridgeway, 1999), I refer the reader to this literature for further 

information.   

  

F. Protocol for training and testing an ensemble of integrated SDMs  

A grid of regular points with the same resolution as the selected CMEMS product (1/16°) 

and covering the study area was created to predict species density distribution by the selected 

models (Spedicato et al., 2019; Tserpes et al., 2019). The explanatory variables were 

preliminarily selected using the VIF approach (Variance Inflation Factor) (Sheather, 2009) 

with a threshold of VIF < 5 to avoid collinearity (see also Orio et al., 2017; Sion et al., 2019). 

The results of the VIF analysis include year, depth, northing, and easting coordinates, as 

explanatory variables and constituted the minimal spatiotemporal model (ST). Furthermore, 

the VIF analysis allowed the inclusion of additional explanatory variables without collinearity 

extracted from CMEMS reanalysis and fishing effort. Thus the complete model is shown in 

table 3.1. For each approach (Delta, Gaussian, Tweedie, RF, and GBM), a forward stepwise 

approach was used. This started from the simplest model given by the minimal 

spatiotemporal explanatory variables (model A, with northing, easting, depth, and year) to 

combine it with all the most meaningful additional biogeochemical, physical, and fishing 

effort variables (from model C to L), identified by VIF analysis. Then the forward– stepwise 

approach consisted of increasing the number of explanatory variables by successively adding 

those with higher F statistics (derived from summary statistics of the fitting models, F-test 

ANOVA) until obtaining the model with full explanatory variables. Thus, the forward-

stepwise approach resulted in a set of models having different explanatory variables of the 

response variable. Each model was subjected to a calibration-validation process, thus it was 

fitted on a spatial training dataset made by randomly choosing 70% of the data (calibration) 

and testing it on the remaining 30% of records (testing). The training and testing were 

repeated using 5 spatially data-set (fig. 3.1) on datasets randomly selected and without 

replacement, using the BlockCV package (Valavi et al., 2019). The best model was selected 

based on measures of model performance such as explained deviance (%ED) and prediction 

errors (AIC, Akaike Information Criterion) of the training datasets; correlation coefficient 

(R2) and mean absolute error (MAE) of the model predictions on the testing dataset (fig. 

3.2). Furthermore, the validation process includes an application of the best model for each 

approach on the observed data (fitting and prediction on the same data) and an evaluation 

of MAE and R2. Finally, I obtained an ensemble model where each best model for each 

approach is weighted on the respective R2 derived from the validation process. The 

ensemble model is used to obtain maps of the density distribution (n/km2) for each year 

that allow identifying areas of high biomass density (hot-spots) in the GSAs 17, 18, and 19.   

https://github.com/gbm-developers/gbm
https://github.com/gbm-developers/gbm
https://github.com/gbm-developers/gbm
https://github.com/gbm-developers/gbm
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I represent in this work the ensemble model with spatial temporal variables, with and without 

effort, and environmental variables, to highlight the relative differences between the two 

approaches.   

  

G. Errors  

The predicted values on a grid of regular points (with the same resolution of the selected 

CMEMS product 1/16°) covering the study area are compared with the data surveys. The 

model error from the ensemble model is defined as the percentage value of the absolute 

difference, eq.1:   

                           (1)  

Where j is the j-th year of the predicted values, n the number of data for j-th year, 𝑦𝑖 is the 

predicted value on the grid and 𝑥𝑖 is the survey data, i is the i-th value of the haul survey or 

predicted value. 

 

RESULTS  

I identified the best model for each approach (table 3.1). Our results showed that the best 

model includes different environmental variables based on the respective approach, 

identified by the spatially training and test data set, in which each fold is running by 9 

different models. Furthermore, the metrics for the best model for each approach, for the 

entire data set of European Hake, are shown in table 3.2.  

 

 

Figure 3.1. Spatially training and testing example for European hake of spatial blocks (from package BlockCV 

R). Left panel: subdivision of the study area in blocks for 5 fold. Central panel: test blocks for fold 1, Right panel: 

training plot for the remaining fold: 2,3,4,5.  
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Table 3.1.  The best model for each approach. acronymous: R= response variables: presence/absence for delta-binomial, 

n/km2 for tweedie, log-n/ km2 for others models. spline function for GAM models is indicated as s(…). for the other 

acronyms see cap. models and effort.    

Approach  Best model 

Delta-binomial R ~ s(E.utm, N.utm) + s(year) + s(depth) + s(TMP_bot) + s(dox.bot) +  

s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho)  

Delta-gaussian R ~ s(E.utm, N.utm) + s(year) + te(TMP_bot, depth) + s(dox.bot) + s(eff_OTB) 

+ s(sal) + s(poc) + s(nit) + s(pho)  

Gaussian R ~ s(E.utm, N.utm) + s(year) + s(depth) +    s(TMP_bot) + s(dox.bot)+ 

s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho).   

Tweedie R ~ s(E.utm, N.utm) + s(year) + s(depth) +  s(TMP_bot) + s(dox.bot) +  

s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho)  

RF R ~ (E.utm) + (N.utm) + (year) + (depth) + (TMP_bot) + (eff_OTB)  

GBM R ~ (E.utm) + (N.utm) + (year) + (TMP_bot) + (depth) + (dox.bot) + (eff_OTB) 

+ (sal) + (poc) + (nit) + (pho)  

Figure 3.2. Example of result from delta-binomial approach for the 9 models running for the 5 spatially training and 

testing fold. AIC=Akaike information criterion on testing data set. Dev.expl= Explained deviance on testing data 

set. MAE.pred= Mean absolute error for predicting test fold. The red dotted line coincides with the best model for each 

metric (For AIC and MAE, small is better, and vice versa doe dev.expl) On x-axes the models the model used, see 

bottom table).  

 

Table 3.2: all formulas used for training and test routine. All the abbreviation is explained in the previous sub-

chapter of chapter 3 (D. Oceanographic variables). Between formula tested is included a model with depth and 

temperature interaction (model H)  

  
Model Formula 
A   PA ~  s(E.utm,N.utm)+s(year)+ s(depth) 

B PA ~ s(E.utm,N.utm)+s(year)+ (depth)+s(TMP_bot) 

C PA ~  s(E.utm,N.utm)+s(year)+ s(depth)+s(dox.bot) 

D PA ~  s(E.utm,N.utm)+s(year)+ s(depth)+s(TMP_bot)+s(eff_OTB) 

E PA ~  s(E.utm,N.utm)+s(year)+ s(depth)+s(dox.bot)+s(eff_OTB) 

F PA ~  s(E.utm,N.utm)+s(year)+ s(depth)+s(TMP_bot')+s(dox.bot) + s(eff_OTB)+s(sal) 

G PA ~  s(E.utm,N.utm)+s(year)+ s(depth)+s(TMP_bot)+s(dox.bot) + 

s(eff_OTB)+s(sal)+s(poc) 

H PA ~  s(E.utm,N.utm)+s(year)+ s(depth')+s(TMP_bot)+s(dox.bot) + 

s(eff_OTB)+s(sal)+s(poc)+s(nit)+s(pho) 

I PA ~  s(E.utm,N.utm)+s(year)+ te(TMP_bot,depth)+s(dox.bot) + 

s(eff_OTB)+s(sal)+s(poc)+s(nit)+s(pho) 
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Table 3.3.  Metrics for each approach for spatiotemporal model (ST) and spatiotemporal model plus effort and 

environmental variables (ST + ENV). In the first column: AIC= Akaike Information Criterion, Dev.expl.: 

Explained deviance. MAE= Mean absolute error. The red text highlight the best performance between the two 

approaches.   
METRICS & MODEL ST  ST + ENV  METRICS & MODEL  ST  ST + ENV  

AIC      Dev.expl.      

DELTA  2470/5783.98  2279.57/5700.50  Delta  55%  58.25%  

GAUS  15217.27  14808.36  Gaus  60.5%  64.8%  

TW  32841.32  32448.76  TW  50.2%  55.8%  

RF  X  X  RF  82.12%  83.19%  

GBM  X  X  GBM  74%  77%  

MAE  

VALIDATION  

    

DELTA  117.43  112.67  

GAUS  167.27  160.84  

TW  144.70  135.42  

RF  86.44  59.51  

GBM  153.61  142.86  

 

Fig.3.2 shows the results of the delta-binomial approach. In this case, it is visible how model 
H could be selected as the best model (for dev.expl also model I) for this approach. Following 
this procedure, the best model identified by the spatially training and test procedure is 
running on the entire dataset, and the metrics results are shown in Table 3.3. It’s evident how 
the model with environmental variables and effort performed better with respect to the 
spatiotemporal one. Between the model tested I included also an interaction between depth 
and temperature, with tensor smoothing (te in the formula of the model I) considering the 
two variables strongly correlated from the oceanographic point of view, but not in 
collinearity analysis running before to fit the models. Nonetheless, the best model, in terms 
of the diagnostic used (AIC, dev.expl, R2 and MAE) is model H, which include also depth 
and bottom temperature but not in terms of interaction between them. 
Furthermore, the final prediction map (fig. 3.3), shows the density distribution in terms of 
the number of individuals per square kilometer for the two ensemble models with or without 
additional environmental variables. It is evident how for some years (2016-2017-2018) the 
density increase, especially for the central basin. The index reaches ~800/900 number of 
individuals per square kilometer, especially along the Croatian coast and Jabuka-Pomo Pit 
area in the center of the Adriatic Sea.   
 
DISCUSSION  

I have presented here a procedure for developing ensemble models of species distribution, 

including a protocol for training and test data set. The procedure adopts models with an 

increasing number of explanatory variables from spatiotemporal only to spatiotemporal plus 

environmental and fishing effort variables to describe the spatial structure. Results highlight 

the differences when abiotic factors and effort are introduced in the models.  

Using a statistical approach implementing a series of performance indicators I have shown 

through the 9 models for each approach that using additional explanatory variables improves 

the capacity of the model to explain data. This procedure results in a decrease (on average, 

fig. 3.4) of the errors between observed survey data and predicted data. I know that species 

are not homogeneously distributed across space and time, thus this kind of approach can be 

used to better understand the process of respective pattern distribution. Including 

spatiotemporal and environmental covariates in SDMs can produce improved results that 

facilitate extrapolation of this procedure to areas not included or to future simulations under 

climatic changes (see also Panzeri et al., 2021). For these reasons, this robust methodology 

can be easily exported in a different context to improve the knowledge about the process 
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driving species’ distribution and highlight hot spot areas useful for fisheries management 

purposes.    

 

 

Figure 3.3. Distribution map of European hake in the Adriatic Sea for Ensemble model spatiotemporal (ST, left 
panel) and spatiotemporal plus environmental and effort variable (ST+Env, right panel).    

 

Figure 3.4. Result from evaluated mean error process (y-axes) over years (x-axes) for ensemble spatio-temporal model 
(ST) and spatio-temporal model plus environmental covariates and effort (ST +Env). 

Furthermore, a final evaluation of all models applied and the ensemble model approach, all 

with the environmental variable included (after the evaluation of best performance between 

the model with or without the env variable, plot 3.4), is visible in figure 3.5 with value on 

table 3.4, where x-axes show the approaches used (delta, gaus, TW, RF, GBM, and ENS – 

for acronyms see plot legend) and y-axes the absolute mean percentage error (mean(pred-

obs/obs*100), see eq.1 of this chapter) overs years and overs space (longitude and latitude 

values of the prediction grid) between predicted values and observed survey values. Each 
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model includes the point range bar as 25° (under the point) and 75° (over the point) 

percentile of the difference distribution between predicted and observed values. The 

ensemble model used it’s a compromise between all models applied, considering the 

smoothing approach of GAM and the ‘tree’ approach of machine learning. The idea behind 

choosing the ensemble of the model is to minimize the final error but is evident how, being 

weighted on the R2 over the different models, the best solution could be random forest or 

Delta GAM, but I conder that nowadays no one model could be applied for all data and a 

good compromise between different approach is the best solution to grasp information from 

each type of model, trough smoothing and machine-learning approaches.  

 

 
Figure 3.5: the absolute mean percentage error between predicted values on grid and observation data (y-axes) over time 

(years) and space (latitude and longitude), for each model (mod x-axes: delta=delta, gaus=gaussian, TW=tweedie, 

RF= random forest, GBM, generalized boosted method, ENS= ensemble). The error bar range indicates the 25° and 

75° percentile under and over the point respectively. 

 

Table 3.4: values of the mean percentage error and quartile range for each approach between prediction and observation, 

shown in Figure 3.5. In the column: % error, Quart25= 25° percentile of % error distribution, Quart75=75° 

percentile of % error distribution.  

 

 % error  Quart25 Quart75 

Delta 20.42 6.30 24.13 

Gaus 30.27 19.40 44.94 

Tw 21.62 7.05 27.45 

Rf 17.54 4.81 23.06 

Gbm 33.35 19.40 44.94 

Ens 17.81 4.88 23.25 

 

  

∑ (
|𝑝𝑟𝑒𝑑𝑖−𝑜𝑏𝑠𝑖|

𝑜𝑏𝑠𝑖
 )∗100𝑛

𝑖=1

𝑛
 eq.1 

Where pred are predicted values and 

obs observed values, for each i point 

of the grid. 
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Chapter 4 
 

 

Spatial management 
 Identifying priority areas for spatial management of mixed fisheries 

using an ensemble of multi-species distribution models 

(under review) 
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INTRODUCTION 

 

Spatial management of fisheries is considered one of the pillars to achieve sustainable 

exploitation of marine renewable resources (Grorud-Colvert et al., 2021). In the 

Mediterranean Sea, for example, fisheries are largely managed through effort control, and, 

for rebuilding overexploited stocks, current management is mostly based on technical 

measures on selectivity and temporal bans (Bellido et al., 2020) as well as on spatial closures 

(Claudet et al., 2008; Pérez-Ruzafa et al., 2017; Scarcella et al., 2014) and other spatial-based 

measures (OECM, (Gurney et al., 2021). The global deal for nature suggests the protection 

of 30% of the Earth for contrasting global impacts (Dinerstein et al., 2019), and the coherent 

objective of protecting 30% of the sea by 2030 (O’Leary et al., 2016), in the Mediterranean 

also entails defining new locations for the establishment of Fisheries Restricted Areas (FRA). 

There is a wide consensus that such restricted areas, to provide the best trade-off between 

benefit on stock status and effects on fisheries, must be highly relevant for target species by 

protecting sensitive ontogenetic phases of the population, i.e., spawning and nursery grounds 

(Colloca et al., 2015; Dambrine et al., 2021; Laman et al., 2018). Thus Essential Fish Habitat 

(EFH) for adults in spawning seasons can be considered relevant for spatialized temporary 

fishing bans aiming at reducing fishing mortality (Russo et al., 2020; Russo et al., 2016), whilst 

EFH for juveniles can be useful to strengthen recruitment (Matić-Skoko et al., 2020). 

Mapping areas where aggregation of juveniles and adults are associated or dissociated, 

moreover, provides valuable information for fishers as an effective tool to avoid catching 

undersize specimens and as a strategy for indirectly increasing fishing selectivity and 

smoothing socio-economic impacts of the landing obligation (Dolder et al., 2018; Milisenda 

et al., 2021).  

Abundance and biomass data over space, as obtained from scientific bottom trawl surveys, 

are of paramount importance for setting appropriate EFH for demersal resources (Colloca 

et al., 2015). However, even if standard sampling protocols are used in scientific surveys, 

spatial and temporal mismatches among hauls might occur and different modeling 

approaches have been developed for interpolation-extrapolation of trawl survey data 

(Thorson et al., 2015). Species Distribution Models (hereafter SDMs) are widely used to infer 

the potential species distribution (either as presence/absence or abundance) based on 

geopositional and environmental data (Brodie et al., 2020). SDMs are applied to describe 

single species distribution at different scales (local, regional or global), by implementing a 

range of methods on density (e.g. number of individuals), presence/absence, or biomass    

(Barcala et al., 2019). In the demersal fishery context, SDMs are increasingly applied to 

describe the distribution of exploited and vulnerable species (Lauria et al., 2017) or to develop 

conservation measures (Colloca et al., 2015). These models are deemed appropriate for 

mapping species distribution that is essential for identifying EFH (Druon et al., 2015; Luan 

et al., 2018; Sion et al., 2019a), as well as for protecting marine ecosystems (Fanelli et al., 

2021; Fulton et al., 2011; Grüss et al., 2014). 

Several approaches are used to develop SDMs including linear models (LMs), Generalized 

Linear Models (GLMs), Generalized Additive Models (GAMs) (Maravelias et al., 2003; 

Olden & Jackson, 2002), machine learning methods such as Random Forest (RF) or artificial 

neural networks (ANN) (Breiman, 2001). Although some approaches to model species 

distribution and infer future trajectories are better suited for including environmental 

changes and anthropogenic stressors as drivers (Moullec et al., 2019; Robinson et al., 2017), 

a general model is seldom applicable to different species (Colloca et al., 2015) since predictive 

performance depends not only on the intrinsic mathematical approach but also on sample 
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size (Wisz et al., 2008) and the links between species distribution and environment (Santika 

& Hutchinson, 2009). Therefore, an ensemble of approaches might be a solution to account 

for different species-specific conditions (see previous discussion in Chapter 3) represented 

by the quality of data, explanatory variables, and specific trawl survey coverage and help in 

moving beyond previous approaches (Colloca et al., 2015). The ensemble approach can 

provide the basis for generalizing the integration of trawl survey data with other variables 

(geoposition, oceanographic and biogeochemical drivers, fisheries drivers) to obtain the best 

extrapolation of the hauls information to the whole domain under study, the position of hot 

spots of aggregation and, ultimately, to determine both optimal fishing grounds (OFG) and 

EFH (e.g., Thorson et al., 2015) for multiple species, the target of mixed fisheries. 

In this work, I followed a protocol developed in Chapter 3 for training and testing an 

ensemble of species distribution models (e-SDM of meaningful explanatory variables. The 

e-SDM is used for describing EFH for 10 demersal species in the central part of the 

Mediterranean Sea (Adriatic and North Western Ionian Seas) that constitute approximately 

60% of the demersal landings in the area. The objective is to provide a robust determination 

of areas that are ecologically meaningful to increase the efficacy of spatial fisheries 

management by identifying EFH for juveniles and adults of marine species. Areas where 

species-specific EFH are overlapping, enable to identify priority areas for spatial 

management of the two main and typically mixed fisheries of the area, i.e., the bottom otter 

trawl and the bottom beam trawl, for the sake of rebuilding multiple exploited demersal 

stocks. Results also provide a basis for evaluating FRAs established or under evaluation. 

 

MATERIALS AND METHODS 

 

The ensemble of SDM (e-SDM) & Protocol for model training and testing 

For the ensemble of model and for the training and test routine I followed the same protocol 

developed in chapter 3 (Procedure in e-SDMs - Chapter 3) 

 

The evaluation of the error is quite difference respect the equation 1 in chapter 3 (see Chapter 

3). The values predicted on each grid point of the domain with the e-SDM were compared 

with the surveys data to calculate the average relative residual as:  

 

𝐴𝑅𝑅𝑖 = (
|𝑦𝑖−𝑥𝑖|

𝑥𝑖
 ) ∗ 100                             (Eq. 1)  

 

Where  𝑥𝑖 is the survey data and 𝑦𝑖 is the model prediction on the grid and, i is the i-th value 

of the haul survey. The spatial distribution of the residual is mapped by interpolation using 

the Inverse Distance Weighting (IDW) for each year to extend the residuals to the whole 

domain assuming that the measured values closest to the prediction location have more 

influence than the farther points (Lauria et al., 2017). Yearly maps of relative residuals were 

averaged into a single average map of relative residuals by juveniles and adults of each species. 

 

Hot spot detection  

EFH for each species and stage were identified using the Getis-Ord Gi* index (Gi hereafter) 

(Getis and Ord, 1992) applied on the e-SDM prediction over the years, i.e.,  
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𝐺𝑖𝑠,𝑖,𝑗,𝑙 =
∑ 𝑤𝑖,𝑗𝑥𝑗

𝑛
𝑗=1 −𝑋 ∑ 𝑤𝑖,𝑗

𝑛
𝑗=1

𝑆√[
𝑛 ∑ 𝑤𝑖,𝑗

2𝑛
𝑗=1 −(∑ 𝑤𝑖,𝑗

𝑛
𝑗=1 )

2

𝑛−1
]

                  (Eq. 2) 

Where 𝐺𝑖𝑠,𝑖,𝑗,𝑙 is Gi for species (s) at the grid point of coordinates (i,j) and life stage (l, adults 

or juvenile), 𝑥𝑗 is the attribute value for feature j, 𝑤𝑖,𝑗 is the spatial weight between features 

i and j, n is equal to the total number of features,  𝑆 is the standard deviation of previous 

parameters. The spatial weight 𝑤𝑖,𝑗 was set equal to 8 (number of cells around our cell in 

analysis to calculate distance weight) after evaluation of several alternatives (w=4,6,8,16). The 

hot spots were defined as those grid points with Gi values above the third quartile, and hot 

spots for mixed fisheries (separately for OTB and TBB) were identified as grid points defined 

as hot spots for multiple species. Furthermore, the difference of Gi values for adults and 

juveniles by each species were used to identify the optimal fishing grounds (OFG), i.e., the 

areas with potentially high selectivity for adults (Gi adult - Gi juvenile >> 0) and the worst 

fishing ground where juveniles concentrate more than adults (Gi adult - Gi juvenile << 0). 

Gi differences between adults and juveniles cumulated among species allowed obtaining 

general maps of gradients of potential selectivity by gear as a tool for defining best and least 

opportune fishing grounds.  

 

Study area 

The e-SDM approach was tested in the central Mediterranean Sea, namely the Geographic 

Sub Areas (GSA) 17-18 and 19 as defined by the FAO-GFCM (General Fisheries 

Commission for the Mediterranean Sea) corresponding to the Adriatic Sea and the North 

Western Ionian Sea (Figure 4.1). This spatial domain is rich in spatial heterogeneity 

connected with large gradients in oceanographic drivers and climatic factors (Artegiani et al., 

1997; Carlucci et al., 2018; Cushman-Roisin et al., 2001; D’Onghia et al., 2012, 2016; Davolio 

et al., 2017; Grilli et al., 2020). The northern Adriatic Sea is the shallow part of the Adriatic 

epi-continental shelf, with a maximum depth of around 70 m and a mean depth of 30 m. Its 

physical and biogeochemical features are strongly influenced by the runoff of important 

rivers including the Po. In the central part of the Adriatic Sea, a depression with a maximum 

depth of 260 m (Jabuka/Pomo pit) is characterized by the local discontinuity in the 

oceanographic conditions and is defined as a large FRA since 2017 (FAO, 2020). The 

southern part of the Adriatic (GSA 18) is characterized by a steep continental slope reaching 

depths of approximately 1250 m. The north-western Ionian Sea (GSA 19) acts as a cross-

road basin connecting the Levantine basin, the Strait of Sicily, and the southern Adriatic Sea, 

where the so-called Adriatic Deep Water (ADW) spreads into the Ionian bottom layers 

(Budillon et al., 2010). The Adriatic and Ionian oceanographic features are notably interlinked 

and are subjected to relevant decadal variability associated with the reversal of the Northern 

Ionian Gyre  (Reale et al., 2017).  

The species focus of the work are the most important species exploited by the bottom trawl 

fishery (otter or beam trawl) in the Adriatic and western Ionian Sea (Farrugio et al., 2015; 

GFCM-FAO, 2020) and are monitored in scientific surveys. Key commercial demersal 

species are European hake (Merluccius merluccius, Merlucciidae), Norway lobster (Nephrops 

norvegicus, Nephropidae), red mullet (Mullus barbatus, Mullidae), Blackbellied angler fish 

(Lophius budegassa, Lophiidae), European horse mackerel (Trachurus trachurus, Carangidae) and 

shortfin squid (Illex coindetii, Ommastrephidae). In deeper areas (depth>200 m) of the 
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Southern Adriatic and North Western Ionian the deep-water rose shrimp (Parapenaeus 

longirostris, Penaidae) is also among the main commercial targets of otter trawlers. Common 

sole (Solea solea, Soleidae), mantis shrimp (Squilla mantis, Squillidae), and common cuttlefish 

(Sepia officinalis, Sepiidae) are extremely important for the fisheries economy of the northern 

Adriatic Sea where the vast shallow trawlable area is exploited by different towed gears 

including the beam trawl (Pranovi et al., 2000). These species constitute ~60% of the total 

demersal fish landings in the GSAs 17, 18, and 19. Although the exploitation status of these 

10 demersal species is evolving positively, many of them are still overexploited (FAO, 2022, 

SAC, 2021) and the Regional Fisheries Management Organization (i.e., the GFCM) is 

envisaging the determination of new actions to include in the next multiannual plans, 

including spatial management areas (Carlucci et al., 2018; Colloca et al., 2017; Maiorano et 

al., 2010). 

 

 

Figure 4.1: The study area of the Adriatic and north-western Ionian Sea covering the GSAs 17-18-19 (delimited by 
green dotted lines) with bathymetric layers up to 2000 m. Position of hauls for MEDITS (grey dots, years 1999 -
2018) and SOLEMON (red squares, years 2005-2018) trawl surveys are shown. Main geographical features and 
countries surrounding the domain are indicated, i.e., Italy (ITA), Slovenia (SVN), Croatia (HRV), Bosnia-
Herzegovina (BIH), Montenegro (MNE), Albania (ALB). The map also reports established FRAs according to 
FAO (2020).  

 

Input data 

Trawl Survey data 

Indices of demersal species density (number of individuals for a unit of area or N km-2) by 

haul for the years 2008-2018 were retrieved from the MEDITS bottom otter trawl 

(Mediterranean International Trawl Survey; (Spedicato et al., 2019) and from SOLEMON 

beam trawl (Sole Monitoring; (Grati et al., 2013; Scarcella et al., 2011). The dataset consisted 

of an average 326 MEDITS hauls per year in the GSA 17-19 and an average of 70 

SOLEMON hauls per year in GSA 17. By considering the efficiency of gear in catching each 
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species, MEDITS trawl survey data were used for European hake, red mullet, angler fish, 

European horse mackerel, Norway lobster, deep-water rose shrimp, and shortfin squid, while 

SOLEMON data were used for common sole, mantis shrimp and common cuttlefish. Adult 

and juvenile abundances were considered separately using a species-specific cut-off size 

based on the biological information reported in Table 4.1.   

 

Table 4.1: Demersal species considered in the analysis and the size threshold between the adult and juvenile stage 

defined based on cited literature. CL= carapace length, ML= mantle length, TL=total length.  

 

Species Common name Size class 

limit (cm) 

Source 

Merluccius 

merluccius 

European hake 14 TL (Flamigni, 1983) 

Mullus barbatus Red mullet 9-10  TL (Jukić & Piccinetti, 1981) 

Nephrops 

norvegicus 

Norway lobster 2.5 CL (Froglia & Gramitto, 1988) 

Parapenaeus 

longirostris 

Deep-water rose 

shrimp 

1.5 CL https://www.faoadriamed.org/html/Species 

Lophius budegassa Blackbellied angler 

fish 

33 TL (Carlucci et al., 2009; Jardas, 1985) 

Illex coindetii Shortfin squid 15 ML https://www.faoadriamed.org/html/Species 

Trachurus 

trachurus 

European horse 

mackerel 

14 TL https://www.faoadriamed.org/html/Species 

Solea solea Common sole 19 TL (Colloca et al., 2015) 

Squilla mantis  Mantis shrimp 2.5 CL (Colella et al., 2016) 

Sepia officinalis Cuttlefish 10 ML https://www.faoadriamed.org/html/Species/SepiaOffici

nalis.html 

 

 

Oceanographic variables 

Physical and biogeochemical variables for the Adriatic Sea and North Western Ionian were 

extracted from two databases covering the Mediterranean Sea and available within the 

Copernicus Marine Environment Monitoring Service (CMEMS, 

https://marine.copernicus.eu/access-data; (Simoncelli et al., 2019; Teruzzi et al., 2019) The 

datasets are the results of the combination of modeled and satellite data through advanced 

assimilation techniques (reanalysis) and cover the period 1999-2021 with a spatial resolution 

of 1/16° and 72 unevenly vertical levels. The variables considered in this work were water 

surface temperature (°C, TMP_sst), water bottom temperature (TMP_bot, °C), dissolved 

oxygen (mmol/m3) at the bottom and surface (dox_bot and dox_sur respectively), water 

column averages of nitrate (nit, mmol/m3), phosphate (pho, in mmol/m3), chlorophyll-a (chl, 

mg/m3), particulate organic carbon (poc, mg/m3) and pH, as well as surface salinity. These 

variables were considered because of their ecological importance for the chosen demersal 

species (Bitetto et al., 2019; Carlucci et al., 2018; von Schuckmann et al., 2021) and for their 

importance in offering favourable conditions for a productive habitat.  

 

 

https://marine.copernicus.eu/access-data
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Effort data 

The effort was estimated for the period 2008-2018 by integrating Vessel Monitoring System 

(VMS) and Automatic Identification System (AIS) data. VMS and AIS disaggregated data 

include vessel-specific sets of “pings” containing information on vessel identity, position, 

speed over ground, and heading. VMS and AIS datasets were merged at the scale of 

individual Italian and Croatian flagship vessels (no other countries’ VMS data was available 

in the area of study) using the VMS base platform (Russo et al., 2016; Russo et al., 2014). 

Fishing trips were then interpolated and the fishing set positions (i.e. hauls) were separated 

from other non-fishing behaviors (steaming, resting, etc.). The fishing effort was estimated 

by vessel/cell for bottom otter trawls (OTB) and beam trawls (TBB) and expressed as total 

trawling time (in hours) per year with a spatial resolution of 1/16o.  

 

Results 

The Variance Inflation Factor analysis resulted in non-collinearity (VIF < 5) for latitude 

(UTM), longitude (UTM), depth, year, bottom temperature, bottom oxygen, nitrate, 

phosphate, salinity, particulate organic carbon, and both OTB and TBB effort covariates for 

all species. For red mullet, non-collinearity was also found for surface temperature and 

chlorophyll-a. Table 4.2 shows all models and covariates chosen for each life stage and 

species after training and test steps (see also the Supplementary material). The set of 

diagnostic indicators, i.e., %ED, AIC, MAE, showed that models using spatio-temporal, 

oceanographic and effort variables (complete model) performed better than models 

including only spatio-temporal variables (see Supplementary Material, Table S4.2). Results of 

the validation of the complete models are shown in Table 4.2 through the R2, whose values 

are used for weighting the elements of the model ensemble 

 
Table 4.2: Performances of the best SDM identified for each approach (Delta, Gaussian, Tweedie, Random Forest, 

and gradient boosting machine method). Performances are evaluated using the R2 statistics for adults and juveniles of 

each species.   
 

European hake Adult Juvenile Angler fish Adult Juvenile 

Delta 0.41 0.38  0.23 0.26 

Tweedie 0.33 0.33  0.24 0.27 

Gaus 0.1 0.13  0.22 0.19 

RF 0.82 0.77  0.79 0.71 

GBM 0.18 0.16  0.29 0.22 

Red mullet   

European horse 

mackerel   

Delta 0.18 0.09  0.14 0.05 

Tweedie 0.16 0.07  0.21 0.05 

Gaus 0.07 0.019  0.06 0.004 

RF 0.53 0.55  0.79 0.47 

GBM 0.06 0.06  0.2 0.01 

Norway lobster   Mantis shrimp   

Delta 0.28 0.19  0.54 0.57 

Tweedie 0.3 0.31  0.52 0.63 

Gaus 0.22 0.14  0.32 0.44 

RF 0.78 0.72  0.81 0.8 

GBM 0.28 0.29  0.56 0.53 

Shortfin squid   Common sole   

Delta 0.31 0.28  0.55 0.41 

Tweedie 0.33 0.24  0.56 0.46 

Gaus 0.18 0.12  0.5 0.39 

RF 0.78 0.67  0.89 0.82 
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GBM 0.24 0.12  0.58 0.68 

Deep-water rose 

shrimp   

Common 

cuttlefish   

Delta 0.25 0.26  0.62 0.60 

Tweedie 0.32 0.21  0.6 0.61 

Gaus 0.1 0.14  0.44 0.47 

RF 0.79 0.77  0.86 0.85 

GBM 0.11 0.22  0.58 0.56 

 

 

Hot spots of aggregation 

The Gi calculated on the e-SDM results and averaged over years for adults and juveniles is 

shown in Figure 4.2 and 4.3 for otter trawl and beam trawl target species, respectively. These 

maps show hot spots of aggregation across stages and species, highlighting the EFH for each. 

The Gi for the OTB species (those better sampled by MEDITS otter trawl survey, Fig.4.2) 

show that adults of the European hake are mainly concentrated in the eastern part of the 

Adriatic Sea, along the Croatian, Albanian and Montenegrin coasts (Fig. 4.2A). Similarly, the 

juveniles are located in the east-central part and along the South Adriatic Pit (Fig 4.2B). 

Adults of Red mullet showed hot spots distributed in the southern Croatian and Montenegrin 

coast (Fig. 4.2C) and juveniles also have hot spots in shallow areas in the North-Apulian 

region, close to the Gargano promontory, and along the Montenegrin coast (Fig. 4.2D). 

Adults and juveniles of the Norway lobster show high abundance areas located in the 

Jabuka/Pomo Pit area, in the Kvarner (Croatia) and along the South Adriatic Pit (Fig. 4.2E 

and 4.2F). Both adults and juveniles of blackbellied angler fish are mainly concentrated in 

the eastern part of the South Adriatic Pit, along the Montenegrin coast and in the western 

part along the south Apulian coast (Fig. 4.2G and 4.2H). The hot spots for the deep-water 

rose shrimp are located in the south part of the basin and in the western Ionian region, along 

the Calabrian coast (Fig. 4.2I and 4.2L). Shortfin squid adults showed hot spots located in 

the Croatian coast and Kvarner island, in the east part of the basin (Fig. 4.2M) while hot 

spots for juveniles are concentrated in the south part of the basin, along the Apulian region 

and Montenegrin coast (Fig. 4.2N). The European horse mackerel hot spots resulted in the 

south-east part of the Adriatic Sea, close to the southern Croatian coast and Montenegro 

area, also in the western part around the South Adriatic Pit for both adults (Fig. 4.2O) and 

juveniles (Fig. 4.2P).  

Figure 4.3 shows the areas of aggregation for adult and juvenile of the target species of beam 

trawlers, i.e., Common sole, Common cuttlefish and Mantis shrimp. Adults of the Common 

sole are mainly concentrated in front of the Istria peninsula and northward of the Po River 

Delta (Fig. 4.3A), while juveniles are especially concentrated in the southern part of the Po 

River Delta (Fig. 4.3B). Both adults and juveniles of the cuttlefish have hot spots of 

aggregation located in front of the Istrian peninsula, with the highest values for juveniles 

(Fig. 4.3C and 4.3D). The Mantis shrimp life stages are both mainly located in the southern 

zone of the Po River Delta (Fig. 4.3E and 4.3F). 
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Figure 4.2. Maps of the hot spots indicating the Essential Fish Habitat for each stage and each demersal species 
sampled with otter bottom trawl and investigated using MEDITS trawl survey data. EFH is identified by the high 
values of the Getis index value for adult (left panel) and juvenile (right panel). 
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Figure 4.3. Maps of the hot spots indicating the Essential Fish Habitat for each stage and each demersal species 
investigated using SOLEMON beam trawl survey data. EFH is identified by high Getis index value, for adults (left 
panel) and juveniles (right panel). 
 

Figure 4.4 summarizes the hot spots of aggregation for juveniles and adults of multiple 

species by main target gear, excluding red mullet. Adults of species targeted mainly by otter 

trawl (European hake, Norway lobster, European horse mackerel, Blackbellied angler) have 

common hot spots in the east part of the basin, along the Croatian and Montenegrin waters 

with large areas where up to 5 species share the EFH (Fig. 4.4A). Similar areas are also 

common hot spots for a subset of juveniles of these species (Fig. 4.4B). Cumulative hot spots 

for the groups of demersal species targeted mainly by beam trawl (Common sole, Cuttlefish 

and Mantis shrimp) are located in the northern Adriatic Sea: a narrow central strip in the 

Northern Adriatic represents an area where hot spots cumulate for the adults of these species 

(Fig. 4.4C), while for juveniles (Fig. 4.4D) the most relevant hot spots are located in front of 

the Po river and along the western coast, just south of it. The eastern Adriatic shores, 

especially in the southern Adriatic, have great potential to be EFH for adults of several OTB 

species (left). For juveniles, the gradients are less pronounced and highlight the importance 

of the Jabuka/Pomo Pit, the northeast Adriatic area influenced by the Po river as well as the 
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Puglia region and Albanian coasts. For TBB, the areas with cumulative hot spots are those 

in front of the Po river for juveniles and closer to the Istria peninsula for adults. 

 

 

Figure 4.4: Results of overlapping EFH for adults (left panels, A and C) and juveniles (right panel, B and D) for 
the species main targets of otter trawls (OTB, panels A and B) and beam trawlers (TBB, panels C and D). Values 
refer to the number of species having Gi greater than the third quartile in each grid cell. Delineated new FRAs under 
discussion in green (1a: Northern Adriatic Sanctuary;) and already established FRA in blue (2a: Jabuka/Pomo Pit; 
2b: Lophelia reef, 2c Bari canyon) 
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Potential selectivity in the fishing grounds 

Gi index differences between adults and juveniles for demersal species are presented in 

Figure 4.5. Red areas are those with positive differences and preferred fishing grounds are 

indicated where the selectivity for adults of the species should be high. For example, the 

Kvarner Gulf is the OFG for Norway lobster and the central eastern Adriatic for Shortfin 

squid, Red mullet, European horse mackerel and European hake. The southern Adriatic 

coastal strip is the OFG for the Cuttlefish, and the area in front of Istria, in the Northern 

Adriatic Sea, is the OFG for Sole. Conversely, the areas with negative differences indicate 

places that should be avoided by fisheries, because the aggregation of juveniles overwhelms 

the aggregation of adults and thus are considered poorly selective fishing grounds. These 

areas include the Jabuka/Pomo Pit for Norway lobster, the northern-eastern Adriatic for 

Cuttlefish, the north-western Adriatic for Mantis shrimp, and the north strip coast of Istria 

for Sole. (Figure 4.5). The Jabuka/Pomo Pit area is quite sensitive (see limitations and 

transferability of approach in this chapter) to data on Norway lobster and future 

improvements are needed, or to evaluate whether or not the inclusion of this species could 

be an advantage for this type of approach in the SDMs. 

Cumulated Gi for the species target of the two mixed fisheries (Figure 4.6) indicate large 

areas in the eastern part of the Adriatic Sea that should be OFG for otter trawl because they 

are areas where Gi for adults prevail over those for juveniles, while the Gulf of Manfredonia 

and the Jabuka/Pomo Pit area are areas to avoid (Fig. 4.6A). For beam trawl, an area in the 

northern Adriatic Sea, south of Istria, is identified as the OFG, while the Gulf of Trieste and 

an area off the Po river mouth should be the least selective areas (Fig. 4.6B).  

 

 

Figure 4.5: Gi difference between adult and juvenile values: reddish areas indicate prevalence of adults and bluish 
prevalence of juveniles. It can be seen how the most important area of adult (red colour) is located in the eastern area of 
the basin, especially for the MEDITS survey species, particularly for European hake, Red mullet, Shortfin squid and 
European horse mackerel. Some specific areas are optimal fishing grounds, such as the Kvarner zone for Norway lobster 
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and south Croatian and Montenegrin coasts for Blackbellied angler fish. In the north-east part are highlighted important 
and better fishery areas for Sole, Cuttlefish and Mantis shrimp (SOLEMON species), especially in the Istria region 
(adults of Common sole), Gulf of Trieste (juveniles of Cuttlefish) and south Po River Delta (juveniles of Mantis 
shrimp). 
 

 

Figure 4.6: Gi differences between adults and juveniles for the species target of the two bottom trawl gears (A: OTB 
for MEDITS, B: TBB for SOLEMON). The darker the red indicates areas with a greater prevalence of adults and 
the darker the blue areas with a greater prevalence of juveniles. 

 

Discussion 

Although the new EU Common Fisheries Policy (https://ec.europa.eu/info/research-and-

innovation/research-area/environment/oceans-and-seas/eu-common-fisheries-policy_en) 

is largely based on the adoption of spatial measures (such as FRAs) and has among its main 

objectives the protection of increasingly larger portions of marine environments, there is a 

surprising shortage of metadata and analyses related to the distribution of exploited species. 

This lack of large-scale processing and modeling is even more striking when compared to 

the availability of considerable environmental data in open-access Copernicus and Emodnet 

platforms. One of the reasons for this problem is surely the great effort required to collect 

and analyze biological data in combination with other spatial information. In this context, 

the application of an ensemble of models to fit spatially explicit abundance data of marine 

demersal species, integrating also oceanographic and effort data, highlighted the potential of 

this approach for spatial fisheries management.  

The first result of this study is that the capability of models to explain the survey data had a 

minimal but significant improvement by including oceanographic variables and effort data: 

such a result was consistent across models and species (Supplementary material, Chapter 4 

Supplementary material). Similarly, to other attempts (Thorson et al., 2015), the 

improvement is not outstanding, also because of the inherent high variability of species 

distribution, yet this improvement has the potential to facilitate extrapolation to unsampled 

areas and allow for better future projections based on climate simulations. Results highlight 

the different capabilities of different SDM approaches in explaining the species and stages 

distribution, and looking at individual model performance, the random forest is generally 
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better in terms of explained deviance and R2 compared to the other models. However, the 

ensemble of models weighted with R2 assures robustness, good performances, and avoids 

distortions (Melo-Merino et al., 2020) and especially the e-SDM has the notable benefit of 

being a methodology that can be generalized for all species, ensuring accurate distributions. 

Average distributions from e-SDM by species represent an update of previous findings ( 

(Colloca et al., 2015), and hot spots identified with e-SDM by species are coherent with EFH 

obtained in previous works (such as (MEDISEH, 2013), in particular for the adult phase of 

European hake, red mullet, deepwater rose shrimp, Norway lobster, and shortfin squid. 

However, as an effect of the introduction of oceanographic parameters as explanatory 

variables, hot spot areas identified based on e-SDM results showed greater continuity than 

hot spots identified in MEDISEH project, which were more accurate punctual and directly 

connected with trawl survey hauls.  

The identification of the hot spot areas for each species, based on the combination of the 

best models for each approach combined into an ensemble, is a replicable, robust, and 

valuable protocol to define both the essential fish habitats of a single species and the 

overlapping areas of species aggregation (Fig. 4.4), also useful to identify where to place 

MPAs or FRAs in the future (Angeletti et al., 2021; ISMAR-CNR et al., 2018).  

The results of this study confirm the importance of the Pomo/Jabuka pit area, fully 

supporting the maintenance of the fishery restricted area (GFCM-FAO, 2018), especially for 

some life stages of the commercially important species such as European hake (adults) and 

Norway lobster (juveniles/adults), but also for shortfin squid (adults). Furthermore, the 

results from e-SDM enable identifying overlapping hot spots for adults of target species of 

TBB in the north-east part of the Adriatic basin, close to the tip of the Istrian peninsula (Fig. 

4.4), which coincides roughly with the area previously proposed and named as the ”Northern 

Adriatic Sanctuary” (Grati et al., 2013; Scarcella et al., 2011). Nevertheless, the area in front 

of the Istria peninsula represents a more selective spot for the presence of adults, i.e., it is 

also an OFG for TBB (Fig. 4.6), thus suggesting the need for additional cost-benefit analyses 

to confirm the effectiveness of this proposed FRA. Furthermore, the deep areas in front of 

the Puglia region are also identified as hot spots, that support the established FRA in the Bari 

Canyon.  

The hot spot results suggest new potentially important areas be protected, such as the area 

in front of the Po River Delta which is important for juvenile stages of mantis shrimp and 

common sole (Fig. 4.3). It is worth noting that off the south-eastern coasts of the basin (Fig. 

4.2 and Fig. 4.4) there is a wide and highly important area for several demersal adult species 

targeted by OTB vessels, while the northern part of the GSA17, in front of the Po river 

mouth, is highly important for juvenile stages of species caught with TBB. These seem to be 

ecologically significant areas: these grounds might be considered in the future as they appear 

biologically optimal areas for establishing new areas of management.  

Furthermore, contrasting adults and juveniles hot spots allow for identifying the optimal 

fishing grounds by species (Fig. 4.5) and fisheries (OTB and TBB) (Fig. 4.6). Maps obtained 

from e-SDM enable identifying areas (in red) with high potential for catching adults while 

avoiding juveniles (thus increasing selectivity of the fisheries operations). Conversely, areas, 

where juveniles are predominant (dark blue), are thus areas where fisheries should be avoided 

both for the low presence of adults and high presence of juveniles, with a potentially large 

proportion of catches subjected to landing obligation (Celić et al., 2018). Figure 6 shows that 

red-colored areas, i.e., areas where there is a high aggregation of adults, are mainly in the 

eastern part of the Adriatic Sea for OTB and basically in a strict regime of landing obligation 

while the western part of the Adriatic basin has lower selectivity. For TBB, a central area in 

front of the Po river proved more selective, i.e., where more adults are aggregating (Fig. 4.6). 
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Thus, although the main large areas of aggregation confirm previous results (Colloca et al., 

2015), our results in terms of EFH (Fig. 4.6) highlight the relevant role of the southern and 

eastern Adriatic Sea as relevant fisheries management areas both for overlapping hot spots 

(Fig. 4.4A, 4.4B) and for the prevalence of adults (Fig. 4.6A). 

It is worth noting that the spatial definition of FRA should consider additional aspects that 

go beyond the biologically significant areas as identified in this work. In fact, for a full 

evaluation of best management areas also social and economic impacts should be considered, 

as well as indirect ecological impacts induced by setting spatial fisheries restrictions. 

Identified EFH and OFG might be areas where to focus analyses of other social, economic 

and political aspects (e.g. impacts from other sources; costs for enforcement; the presence 

of hampering activities, etc.) to establish optimal spatial management measures as foreseen 

by the Multiannual Management Plans (GFCM Compendium, 2021b). Therefore, the 

identification of areas of overlapping EFH is just the first step for the identification of 

potential EFH and OFG of ecological significance. Additional information on fisheries 

activities, costs for the implementation, control, and effectiveness, all need to be evaluated 

before fully establishing new management rules. For instance, trophic cascade effects of 

fisheries management in identified EFH and OFG might be evaluated with complex 

multispecies models (e.g., EwE, Ecospace: (Agnetta et al., 2019), while socio-economic 

effects of areas identified for management using e-SDM might be evaluated with opportune 

bioeconomic tools (e.g., Bemtool, (Bitetto et al., 2019; D’Andrea et al., 2020). Such ecosystem 

approaches might also help in assessing if spatial fisheries management should be considered 

together with other measures for reducing the effort to reach the ecological and economic 

sustainability of fisheries.  

Nevertheless, the combined overlapping EFH provides a general indication on where 

management actions are potentially having the best ecological efficacy on marine 

populations, considering the prevalence of mixed fisheries in the area, which is already an 

innovative and useful result for management. 

 

Limitations and transferability of the approach 

Species have relevant movements according to the season and inter-annual spatial dynamics 

cannot be fully grasped by the annual trawl sampling, which is an inherent limitation of the 

data used that cannot be overcome with the e-SDM approach. Therefore, the EFH are more 

relevant for the species whose important aggregation phases (reproduction for adults, 

nursery for juveniles) coincide with the sampling period (summer for MEDITS (Tsikliras et 

al., 2010) and fall for SOLEMON species) (Scarcella et al., 2014). Overall, ontogenetic shifts 

and movements are fairly well-represented for all species except Mullus barbatus, whose results 

may appear inconsistent with biological available knowledge, due to the mismatch between 

the survey and the maximum recruitment period in the area (Tsikliras et al., 2010). This is 

why the overlapping hot spots in Fig. 4.4 are calculated excluding the red mullet. 

The data on Norway lobster may also be critical due to differences at the subpopulation level 

of this species in the Jabuka/Pomo Pit area. The individuals in Jabuka/Pomo Pit are smaller 

than the other individuals in the basin, but not necessarily juveniles, and the MEDITS survey 

may not capture all of the information on the two life stages in the area where juveniles are 

not detectable because they live in the burrowed burrow during the early life stage.  

Furthermore, the selectivity of the net used in the trawl survey is also a limitation for the 

representativeness of catches of smaller individuals or species with more or less benthic 

habitus. I used the two distinctive trawl surveys to partly overcome this issue, but clearly, the 

selectivity of the gear used in scientific trawl surveys can influence both the juveniles'/adults’ 

data. Overall, the generally higher relative bias of e-SDM for juvenile species should be 
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considered a result of the lower selectivity for juveniles in the trawl survey which derives 

from their generally lower predictability in e-SDM.  

The e-SDM approach allows for training and testing models with different numbers of 

explanatory variables that could be readily applied to identify the distribution of species and 

possibly pinpoint the most opportune areas for fisheries management in other systems. This 

should be done with caution where the coverage of scientific trawl surveys is limited: 

although the availability of explanatory variables allows for inferring hot spots even in areas 

where trawl surveys are not carried out, such extrapolation could be highly inaccurate. 

Application of the approach to pelagic species also seems promising, although it is expected 

that the high intra- and inter-annual variability, connected to recruitment, would increase the 

uncertainty of the e-SDM estimates. Furthermore, although the considerable movements of 

these species might decrease the reliability of annual or average maps of hot spots, the use 

of the e-SDM approach and hot spot detection focusing on key months might contribute to 

informing management also for the small pelagic spatial planning.  

The spatial resolution of 1/16 of degree used is quite good for a basin-wide analysis but 

further analyses might be done at a higher resolution to better identify local EFH, also 

considering recent advancements in the CMEMS products (Cossarini et al., 2021; Escudier 

et al., 2021) and the larger spatio-temporal coverage of effort data. Furthermore, the 

approach might be improved by including variables representing benthic habitats (or other 

bottom features, e.g., rugosity), which can help increase the accuracy of the e-SDM and 

improve the definition of effective areas for fisheries management. Although the inclusion 

of oceanographic variables in the e-SDM approach helps trace abundances and distributions 

to a specific month, future approaches should target high frequency and all-year-round data 

coming, for example, from the combined use of logbooks and VMS/AIS data. It is however 

not a given that such fishery-dependent data, although having high-frequency temporal 

coverage, would give more robust results than scientific-based fishery-independent information 

provided by trawl surveys.  

Furthermore, the inclusion of oceanographic parameters in the e-SDM allows for future 

considerations of management areas in the context of climate change (Thorson et al., 2015). 

For instance, an e-SDM implementation based on projections of oceanographic data 

regarding different emission scenarios (Representative Concentration Pathway or RCP4.5 o 

RCP8.5, (Taylor et al., 2012), could be an opportunity to understand the potential changes 

in the area of aggregation of species, or the center of gravity along the basin, considering the 

environmental variables the most important driver for these kinds of models and approach, 

avoiding the distortion due to the geoposition of the survey, that are impossible to prevent 

or extrapolate. Therefore, the importance of the physical and biogeochemical variables is 

strongly addressed also for these future purposes. Thus, although this work has improved 

the spatial resolution of SDM and is based on a longer time series than previous works 

(Colloca et al., 2015), it also has the potential to set the basis taking into account climate 

changes in future EFH and thus in fisheries spatial management.  
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Introduction 

Assessing and predicting the spatial and temporal distribution of marine species is one of the 

current challenges in times of climate change, as the increasing spread of invasive species and 

the pole shift of organisms are among the causes of current changes in biodiversity 

(Parravicini et al., 2015; Pereira et al., 2010). Because the range and distribution of species 

could change in response to climate change (Baudron et al., 2020; Pinsky et al., 2020; Román-

Palacios & Wiens, 2020), understanding such changes could help define less affected 

management areas in the future or optimize existing ones, especially with respect to species 

that are commercially important to fisheries (Melo-Merino et al., 2020; Pinsky et al., 2020). 

Ocean warming is accelerating, and recent observations confirm that it has accelerated 

rapidly in recent decades (Cheng et al., 2018, 2019; IPCC, 2022). This is particularly true for 

the Mediterranean Sea, a semi-enclosed basin widely recognized as an important hotspot for 

marine biodiversity (Cuttelod et al., 2009) as well as for climate change (Darmaraki et al., 

2019; Giorgi, 2006). Climate projections for the basin show an overall warming of seawater 

associated with general acidification, deoxygenation, and a decrease in biomasses and 

nutrients in the water column (Reale et al., 2022; Solidoro et al., 2022; Soto-Navarro et al., 

2020). In addition, the increase in frequency and intensity of marine heat waves (Darmaraki 

et al., 2019; Frölicher & Laufkötter, 2018) will impact the marine ecosystem and biodiversity 

(Lejeusne et al., 2010; Marbà et al., 2015; Smale et al., 2019), with potential consequences for 

fisheries and aquaculture. In particular, the Adriatic and Ionian sub-basins of the 

Mediterranean Sea, which are closely connected, show changes such as an increasing 

northward shift of thermophilic species (Dulcic & Grbec, 2000; Dulčić et al., 2011) together 

with rarity or disappearance of cold-water species (Boero & Bonsdorff, 2007; Templado, 

2014), especially in the Adriatic Sea, whose further northward migration is prevented due to 

its nature as a dead end (Ben Rais Lasram et al., 2010). Moreover, possible future changes in 

climatic conditions in these two sub-basins would favor an increase in invasive species such 

as Siganus luridus or Lagocephalus sceleratus (D'Amen & Azzurro, 2020), which could affect 

the dynamics of the local food web (Occhipinti-Ambrogi, 2007). 

A great diversity of fisheries characterizes the sub-basin, where resource exploitation began 

a thousand years ago (Farrugio et al., 2015). In addition, the great biodiversity, high 

productivity and collection of long-term data series (Fortibuoni et al., 2017) represent 

important added values of the study area. In the northern and central Adriatic Sea, intensive 

fishing leads to overfishing of many species such as hake, Norway lobster, and red mullet 

(Fortibuoni et al., 2017; Russo et al., 2019). 

Therefore, temporal and spatial monitoring of demersal (and commercial) species is essential 

to understand the status and health of the ecosystem, especially in this area where overfishing 

has increased (Colloca et al., 2013; EU Commission, 2018; FAO, 2020b), particularly in the 

context of climate change. In the Adriatic and Ionian Seas, current management policies are 

mainly based on technical measures with temporal or spatial prohibitions (Bellido et al., 2020; 

Claudet et al., 2008; Scarcella et al., 2014), such as control of fishing capacity, reduction of 

fishing effort, or temporary or permanent closure (Cardinale et al., 2017), as in the 

Pomo/Jabuka Pit area. 

From this point of view, despite the lack of data at specific times of the year, modeling the 

spatial distribution of marine species is important to develop appropriate management and 

conservation measures. 

To address the challenge of climate change and species distribution shifts, the number of 

ecological niche models and so-called species distribution models (SMDs) has increased in 

recent decades (Robinson et al., 2017). These models, also known as correlative or empirical 

approaches, typically correlate occurrence (presence/absence) or biomass/density data with 
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environmental variables (as explicit/covariant variables) to predict species distributions, 

including in response to climate change (Kearney & Porter, 2009). 

The implementation of SDMs aims to understand and incorporate a potential new tool for 

fisheries management in the Adriatic and Ionian Seas, where spatial planning and 

management should be considered, especially in a context where many fisheries activities, 

species and countries are involved. The distribution of marine species and their habitat is a 

complex and complicated "puzzle" that is interconnected at many levels (Nagelkerken et al., 

2015). Knowledge and applications of spatial approaches are increasing to achieve 

sustainable use of resources, assess the importance of marine habitat, especially when we talk 

about different life stages such as adult or juvenile populations, and incorporate future 

predictions. 

Some approaches are better suited to incorporate environmental changes in the present and 

in the future. An ensemble of approaches may be one solution to address the different 

species-specific scenarios, following current approaches (Moullec et al., 2019; Robinson et 

al., 2017), and going beyond others (Colloca et al., 2015). In this work, I develop an ensemble 

species distribution model (e-SDM) that follows the protocol developed in previous work 

(Chapter 2 and Chapter 3) and incorporates a main approach such as Generalized Additive 

Models (GAM - (Hastie & Tibshirani, 1986) and two main machine learning approaches, 

Random Forest (Breiman, 2001) and Gradient Boosted Machine (Friedman, 2001). I evaluate 

changes in the distribution of ten groundfish species over four 5-year time windows: the 

recent past (2008:2012, hereafter 2012), the present (2014:2018, hereafter 2018), and two 

future time windows (2031:2035, hereafter 2035 and 2046:2050, hereafter 2050), the latter 

under Representative Concentration Pathway (RCP) 8.5 (Taylor et al., 2012). I analyzed 

hotspot areas for species and time windows, focal areas in different time windows, and 

gained/lost/preserved areas of target species. 
 

Material and method  

Study area 
FAO-GFCM (General Fisheries Commission for the Mediterranean) designates the 

Northern Adriatic Sea, the Southern Adriatic Sea, and the Ionian Sea as Geographic Subarea 

(GSA) 17, 18, and 19, respectively. The Northern Adriatic Sea is a relatively shallow basin 

(mean depth 30 m, maximum depth about 70 m). The Southern Adriatic Sea (SAS, GSA 18; 

Fig. 2.1) is characterized by complex topography with a steep continental slope reaching up 

to 1250 m, muddy bottoms, relict sands, and rocky bottoms (Alfirević, 1981), as well as 

canyons and cold-water coral megahabitats (D'Onghia et al., 2012). Between the northern 

and southern Adriatic Sea is a deep depression called the Jabuka/Pomo Pit area (maximum 

depth 260 m), which is subject to restrictions and recommendations for fishing (FAO, 

2020b). 

The Adriatic Sea is the main source of dense water for the eastern Mediterranean (Cardin et 

al., 2011) and is connected by the Strait of Otranto to the Ionian Sea (IS), which is located 

in the central part of the Mediterranean and connects the western and eastern Mediterranean 

basins. In particular, the western part of the IS (hereafter WIS - GSA 19) is a kind of crossing 

point for the different water masses that are part of the Mediterranean thermohaline 

circulation (MHTC): Modified Atlantic Water (MAW) moving eastward, Levantine 

Intermediate Water (LIW) moving westward, and Adriatic Deep Water (ADW) propagating 

to the deepest layers of the Ionian Sea (Budillon et al., 2010; Reale et al., 2017). 

The study area is very rich in spatial heterogeneity with a large gradient of climatic factors 

(D'Onghia et al., 2012; Grilli et al., 2020) and a complex system of water circulation that 

influences the inversion of the Northern Ionian Gyre (NIG) from anticyclonic to cyclonic 
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(and vice versa), influenced by the bimodal oscillation system (Civitarese et al., 2010). The 

latter is very important in the area for the transport of organic matter (Boldrin et al., 2009), 

affecting biotic communities and biodiversity (Civitarese et al., 2010) and primary 

productivity (Lavigne et al., 2018). 

In addition, the study area is characterized by important and specific biocenoses and facies, 

such as the facies of Atrina pectinata in the Adriatic Sea and white coral in IS (Cerrano et al., 

2015). 

There are numerous fishing activities, fish farming and anthropogenic pressures in the area 

(Pranovi et al., 2016; Punzo et al., 2017): In particular, the Adriatic Sea is heavily exploited 

by trawl and beam trawl fisheries (Colloca et al., 2013, 2017; Pranovi et al., 2000). In the 

Jabuka-Pomo Pit area, the situation is developing positively after 2017, although several 

demersal species such as European hake (Merluccius merluccius) and Norway lobster (Nephrops 

norvegicus) are still overfished (Colloca et al., 2017; FAO, 2020b; GFCM-FAO, 2018) (Colloca 

et al., 2017; GFCM-FAO, 2018; FAO, 2020).  

 
The SDM ensemble  
See in Procedure in e-SDMs Chapter 3 
 

Input data 
Trawl Survey data 
See Chapter 4 input data. 
 
Temporal evolution of thermohaline and biogeochemical properties in the Adriatic and Ionian Sea  
The mean values of thermohaline and biogeochemical properties in the Adriatic and Ionian 

Seas in the four time windows selected for analysis were derived from reanalysis and climate 

simulation data. 

Thermohaline and biogeochemical properties in the Adriatic and Ionian Seas were taken 

from operational models for the Mediterranean Sea (Simoncelli et al., 2019; Teruzzi et al., 

2019), which have a spatial resolution of 1/16° and 72 non-uniform vertical levels. Data for 

the period 1999-2019 were extracted from two reanalysis datasets available for the 

Mediterranean Sea under the Copernicus Marine Environment Monitoring Service 

(CMEMS, https://marine.copernicus.eu/access-data). Future climate projections for the 

period 2005-2100 were produced using the same modeling system MFS16- OGSTM-BFM 

under a specific emission scenario (RCP8.5; see (Reale et al., 2022). The anomalies of future 

simulations, calculated as the difference between the value of each variable in each of the 

two future time windows (2035 or 2050) and the current climate simulation period (2005-

2020), were added to the current time value (2018) to avoid trends and false seasonal signals. 

The variables considered in this work were: Sea surface temperature (°C, TMP_sst), bottom 

temperature (TMP_bot, °C), dissolved oxygen (mmol m-3) at the bottom and surface 

(dox_bot and dox_sur, respectively), average nitrate (nit) and phosphate (pho) 

concentrations in the water column (in mmol/m3 ), chlorophyll-a (chl, mg m-3 ), particulate 

organic carbon (poc, mg m-3 ), average water column pH, and surface salinity (sss). These 

variables were included because of their known importance to the selected groundfish 

species (Bitetto et al., 2019; R. Carlucci et al., 2018) and their general ecological significance. 

 
Effort data 
See Chapter 3 - C. Effort data  

 

Future projections, Hot spot, and Centre of Gravity  
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After running the best model derived from the training and testing routine for the period 

(2008-2018), I used the fitted model to simulate the density of groundfish species on a regular 

longitudeand latitude grid. I calculated an average of the density index over the years for each 

scenario (2012, 2018, 2035, and 2050) and developed the final ensemble model by weighting 

the density obtained using the three approaches (Eq. 1) by the corresponding R2 (Table 5.1). 

The final results include a density map (see Section S5 in the Supplementary Material, Figure 

S5.2). 

.  

 

𝑑𝑥,𝑦,𝑒𝑛𝑠 =  
∑(𝑑𝑥,𝑦 ∗  𝑅𝐺𝐴𝑀

2 + 𝑑𝑥,𝑦 ∗ 𝑅𝑅𝐹
2 + 𝑑𝑥,𝑦 ∗  𝑅𝐺𝐵𝑀

2 )

(𝑅𝐺𝐴𝑀
2 +  𝑅𝑅𝐹

2 + 𝑅𝐺𝐵𝑀
2 )

            𝑒𝑞. 1 

 

 

Here, 𝑑𝑥,𝑦  are the density values at each point in the range (x,y) as the mean over the years 

for each scenario, and 𝑅2 is the value derived from Table 5.1 for each model (GAM, RF, 

GBM). I also calculated the relative density anomaly between 2018 and 2035 or 2050 as: 

 

Ay = 
𝑑2035/50 ,𝑥,𝑦−𝑑20180,𝑥,𝑦

𝑑2018 ,𝑥,𝑦+ 𝑑2035/50,𝑥,𝑦

2

               𝑒𝑞. 2      

 

.  

In addition, I used the density distribution of the Getis ord-Gi* (Getis & Ord, 1992) to 

highlight the hotspot between the past and future periods. For the best graphical 

representation, I chose a third quartile threshold for the 4 hotspot scenarios. 

For each time window, species, age, and GSA, I also performed a centroid analysis (COG). 

The dimension of each COG (Figure 5.4) depends on the median of the 2012 positive Getis 

ord-Gi* values, which were used as a reference point for filtering the other time windows, 

dividing the number of filtered cells for each time period and GSA by the total number of 

cells in the area (Eq. 3), highlighting potential changes in COG and density over space and 

time. 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑀𝑒𝑑𝑖𝑎𝑛(𝐺𝑒𝑡𝑖𝑠2012,𝑔𝑠𝑎 > 0) 

                                                                                                                  𝑒𝑞. 3 

𝑆𝑦,𝑔𝑠𝑎 =𝑙𝑜𝑔 𝑙𝑜𝑔 (
𝑛𝐶𝑒𝑙𝑙𝑠𝑦,𝑔𝑠𝑎 >𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑛𝐶𝑒𝑙𝑙𝑠20𝑥𝑥,𝑔𝑠𝑎
)                  

 

Where 𝑛𝐶𝑒𝑙𝑙𝑠 is the dimension of the grid (3681 cells) of the four time periods (where 𝑦  = 

2012 or 2018 or 2035 or 2050) after application of the threshold (median of the positive 

Getis ord-Gi* values of 2012) for each GSA (𝑔𝑠𝑎 𝑖𝑛 𝑒𝑞3). 

I represented also the values over a third quartile (>= 75 %) derived from Getis ord-Gi* 

statistic, to highlight the most important aggregation area for all four scenarios. From these 

values we calculated the potential ‘gained-loss-preserved’ area considering the difference of 

occupancy point between 2018 (the most recent year of our period) and the future scenario 

2050, that is, the grid’s cell that, after Getis ord-Gi* >= 75%, are present (gained), not present 

(lost) or conserved for both between the last year of available survey data (2018) and 2050-

time window (fig. 5.5). 
 

Results 

The summary of the AIC and the deviation explained by the three approaches are 

summarized in Table S5.1 (Supplementary Material). The machine learning approaches (RF 
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and GBM) are on average better than the approach of delta- GAM, and the explained 

deviation and R2 are higher. In the validation results (Table 5.1), the R2 is higher for the RF 

and GBM approaches, especially for RF, with values above 0.60 for all species except adult 

and juvenile mullets. One of the best fits is observed for squid with RF and GBM for both 

life stages (R2= 0.90), followed by juvenile squid (GBM - 0.95) and Norway lobster with 0.80 

and 0.72 for adults of RF and GBM, respectively, and 0.77 and 0.89 for juveniles of RF and 

GBM, respectively. 

Density values estimated by e-SDM in the four time windows for the 10 groundfish species 

are shown in the Supplementary Material, while Figure 5.1 illustrates the adult European 

hake distribution results. The density of adult hake increases in both time windows, especially 

in the Kvarner area, and for juveniles in the Jabuka/Pomo Pit area in the center of the 

Adriatic Basin. This is also confirmed by the hot spot (> 75%) (Figure 5.2  

Chapter 5 Supplementary material). Figure 5.3 also confirms the decrease of biomass along 

the central Croatian coast (blue values) and a strong increase towards the north, off the 

Istrian peninsula (red values), indicating that there is a potential movement of resources in 

terms of biomass in the future basin suitability area, with a loss of habitat from the central-

eastern part of the Adriatic. 

In addition, data from COG (Figure 5.4) show that there is a northward shift along the 

Croatian coast, particularly for adult fish in GSA 17, and a southward shift in GSA 19. Adult 

red mullet (Figure S5.2) accumulated off the Istrian Peninsula in both time periods, although 

outliers indicate high potential variability in this species. The difference map (Figure S5.3) 

shows very high values (> 0, red area) for the entire basin, but a negative difference for the 

western coast of the Adriatic (< 0, blue area). Norway lobster shows no particular changes 

in density in both juvenile and adult stages (S5.2), with a small change in the map COG 

(Figure 5.4), showing a northward (eastward) shift in GSA 17A with decreasing density (< 0, 

blue area, Figure S5.3) was found in the Jabuka/Pomo Pit area and increasing density at the 

edges of the Otranto Depression in GSA 18 (> 0, red area, Figure S5.3), but data on Norway 

lobster need to be carefully examined because the MEDITS trawl survey can provide only 

limited information on juveniles of this species. The small animals in the Jabuka/Pomo pit 

are not necessarily juveniles (see discussion in Chapter 6). There is a dramatic decline in adult 

southern squid in 2035 and 2050 along the southern Croatian coast in GSA 18 (< 0, blue 

area in Figure S5.3) and on the eastern Croatian coast in the juvenile stage (Figure S5.3). The 

hotspots for adult and juvenile fish in GSA 17 and 19 do not show significant changes, but 

a shift to the east is observed for adult fish in GSA 18. 

For both adult and juvenile anglerfish, the map shows a decline in density (Figure S5.3) along 

the shorelines of GSA 18 (Kvarner area), with COG moving northward in GSA 17 (Figure 

5.4). For adult deepwater shrimp, the positive values (red values, > 0 - Figure S5.3) for both 

life stages are observed along the east coast of the Adriatic Sea and the negative values (blue 

values, < 0) along the west coast. For juvenile deepwater shrimp, a sharp decrease in density 

is observed in the coming years (blue values, Figure S5.3), especially on the west coast of the 

basin, and an increase in the Kvarner area and the northeastern part of the basin. The COG 

of deep-water shrimp shows a southward change only for the adults of GSA 19. 

As for SOLEMON species, sole shows an increase in density in the Kvarner area mainly 

along the western coast of the basin and off the Istrian peninsula, although the COG does 

not show any particular changes in hot spots for either life stage (Figure S5.4). The mantis 

shrimp show a dramatic decrease around the Istrian peninsula, both for adults and juveniles, 

and an increase only for juveniles (red values, Figure S5.3) in the Kvarner area, although also 

in this case COG (Figure 5.4) shows no particular changes. 
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Finally, the density difference between adult and juvenile squid (Figure S5.3) will decrease 

along the northwest coast of the basin, with significant changes at hot spots for both life 

stages. 
 

Fig. 5.5 shows the gained-lost-sustained area for all species between 2018 and 2050. The red 

areas are the gained area, say the hot-spot area (shape Getis ord-Gi* values) above the third 

quartile, which is only available for the year 2050. It is clear that for some species, such as 

anglerfish, European horse mackerel, European hake, red mullet, and common sole for 

adults, and the same species plus shortfin squid for juveniles, a new potential area is 

"colonised" with species shifting northward. In addition, species such as anglerfish and red 

mullet for adults and juveniles show a westward shift. A green area shows the lost area, 

particularly visible for anglerfish, European horse mackerel, European hake, and Norway 

lobster for adults, and anglerfish, red mullet, shortfin squid, and Norway lobster for juveniles, 

with potential habitat loss primarily in the southern Adriatic (see anglerfish and European 

hake adults, Figure 5.5) or on the west coast for species such as red mullet. The protected 

area (blue area, Figure 5.5) is the "protected hot spot' for both years, 2018 and 2050, where 

habitat fragmentation is observed for some species (such as anglerfish, European hake, 

European horse mackerel, Norway lobster for both life stages) due to the area lost or gained 

as a result of shifting the listed species to the west or north.  

Finally, when considering both the MEDITS and SOLEMON surveys, I highlighted 

overlapping areas where Figure 5.6 summarises juvenile and adult aggregation hotspots for 

multiple species by major target gear for each scenario. Adult species caught mainly by otter 

trawls (left panel, MEDITS survey species such as European hake, Norway lobster, 

European horse mackerel, Blackbellied angler, and red mullet) have common hot spots in 

the eastern part of the basin, along the Croatian and Montenegrin waters with large areas 

where up to 5-6 species share habitats. Increasing abundance of these MEDITS species is 

observed between the different scenarios, especially in juveniles near the Istrian peninsula 

and Po delta in 2035 and 2050, but also along the Montenegrin coast. The abundance of 

SOLEMON (right panel, Figure 5.6), adults and juveniles, increases northward in the future 

scenarios along the northern Italian coast, but also along the Montenegrin and Albanian 

coasts (3 species = brown-red area). 

 

Table 5.1: Results of R2 from the validation process, for adults and juveniles of the studied species (common name, 
alphabetic order). These values are used for the weighted e-SDM. (see the cap. ‘The SDM ensemble’ in material and 
method) 

Adult  GAM RF GBM Juvenile GAM RF GBM 
Anglerfish 0.21 0.81 0.68 Anglerfish 0.18 0.72 0.47 

Common sole 0.21 0.67 0.89 Common sole 0.16 0.60 0.70 

Cuttlefish 0.65 0.90 0.90 Cuttlefish 0.42 0.72 0.95 

Deep rose shrimp 0.27 0.73 0.41 Rose shrimp 0.24 0.75 0.53 

Eu. Horse mackerel 0.11 0.73 0.81 Eu.Horse 
mackerel 

0.40 0.59 0.21 

European hake 0.30 0.80 0.50 European hake 0.41 0.75 0.53 

Mantis shrimp 0.43 0.76 0.85 Mantis shrimp 0.40 0.77 0.87 

Norway lobster 0.27 0.80 0.72 Norway lobster 0.17 0.77 0.89 

Red mullet 0.13 0.57 0.30 Red mullet 0.12 0.40 0.50 

Shortfin squid 0.20 0.70 0.56 Shortfin squid 0.27 0.74 0.44 
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Figure 5.1: distribution density in 
n/km2 for European hake adults 
in the study area for the four 
scenarios. The results of the others 
species are in the supplementary 
material.  

 

Figure 5.2: hot spot area 
(>75%) from Getis ord-Gi* 
values (res=result in the legend) 
for the adult of European hake 
in the study area for the four 
scenarios in analysis.  

 

Figure 5.3: example of 
difference (eq.1) 
between 2018 density 
of adult European 
hake and the two 
future scenarios, 2035 
left panel and 2050 
right panel. Negative 
values (blue) indicate a 
decrement in density, 
and red values an 
increase.   
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Figure 5.4: COG analysis for the adult (left) and juvenile (right) for each GSA (light blue= GSA17, yellow= 

GSA18, grey=GSA19) and species for the 4 scenarios (blue=2012, green=2018, orange=2035, red=2050) 

based on Getis ord-Gi* values, with value ‘size’ depending on eq. 3.  
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Figure 5.5: gained, lost and preserved area for each species for the year 2050 for adult (above panel) and juvenile (below 
panel). Each area is composed of grid cells not overlapping (gained), overlapping (preserved) and absent (lost) from the 
Getis ord-Gi* values >75° percentile, between the most recent scenario 2018 and the future scenario 2050.   
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Discussion 

Warming of the Mediterranean Sea could lead to significant changes in population dynamics, 

genetic loss (Chefaoui et al., 2018), invasion of alien species (Azzurro et al., 2019), or 

reduction and expansion of the range of species, as we show in this work. MS and the Adriatic 

Sea have been extensively studied under climate change, with food web structure (Albouy et 

al., 2014), the local trophic status (Sfriso et al., 2019), the overall effect of climate on future 

biodiversity, the comparison of SDMs and multispecies trophic models (OSMOSE - 

(Moullec et al., 2022) or the biotic response to long-term climatic changes (Scarponi et al., 

2022) have been considered. No study in the Adriatic and Ionian Seas has examined the 

distribution of species under climate change conditions with this resolution of environmental 

levels (CMESM products) and with an ensemble approach of different models, including 

fishery-dependent data as covariates and fishery-independent data as response variables from 

two types of surveys (MEDITS and SOLEMON). The survey data used in this work 

represent a very long time series of the dynamics of commercial species in the Adriatic and 

Ionian Seas and provide a good and satisfactory estimate of the distribution of the population 

in terms of abundance and density, representing a good 'picture' of the realized niche. To 

emphasize this concept, in this study I developed a quantitative (distribution in terms of 

n/km2 or density differences, Fig. S5.2 and Fig. S5.3, respectively) and qualitative (CoG and 

area gained/lost, Fig. 5.4 and 5.5, respectively) representation of the future potential 

distribution of the main commercial species in the Adriatic Sea, using for the first time in 

this area the RCP projection from CMEMS data developed by Reale M. et al. 2022. The 

species of interest in this work live in a temperate zone, specifically in a dead-end basin where 

displacement and migration are limited. Different patterns between northern and southern 

species were observed in our results. Southern/central species such as anglerfish, European 

horse mackerel, southern squid, Red mullet, and European hake are expected to disperse 

northward in both life stages in the future (Figure 5.5), especially along the eastern coast of 

the Adriatic Sea. Species that are more established in the northern area, such as sole, mantis 

shrimp, and squid, do not show any particular changes in area or CoG increase. This suggests 

that the northward shift in density and CoG distribution is more pronounced in the central 

and southern portions of the study area. For the central/southern species, the density (Figs. 

S5.2 and S5.3) increases towards the north, especially along the Croatian coast, e.g., for 

European hake for both life stages, anglerfish, and also European horse mackerel, which is 

concentrated in the area of Quarnero and the Istrian peninsula. The northward expansion of 

the area occupied by the above species indicates polarity between species with temperature 

affinity, i.e. shifts expected from warming sea temperature (Poloczanska et al., 2016). 

In this study, I highlight that the main commercial species, representing 15% of the total 

landings in the area, may change their location and density in the near future, likely affecting 

fishing activities and seasonal patterns. Considering the 4 species that are experiencing 

significant changes in density and hotspots (Figure S5.4), I assume that hake, red mullet, 

monkfish, and horse mackerel for adults and red mullet, monkfish, and horse mackerel for 

juveniles (including red mullet, but as I pointed out in Chapter 4, it is not well covered in the 

MEDITS survey) are the stocks that will be most affected by climate change in the next few 

years and that will 'conquer' new areas in the north, with unpredictable commercial and 

economic impacts. Northern species, on the other hand, are unlikely to be impacted by 

fisheries, but will be stressed by the 'invasion' of central/southern species. Summarizing the 

hotspots (above the third quartile, Figure S5.4) for juvenile and adult accumulation of 
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multiple species may help us understand future prospects for fisheries grounds and 

management measures, particularly in the FRA area or in the potential new FRA zone. Figure 

5.6. shows the number of species surveyed for the MEDITS and SOLEMON surveys in 

total (abundance) for each grid cell, showing a loss of diversity, especially for juveniles in the 

southern part of the basin, and increasing abundance of species in the northern part of the 

study area. 

 
Figure 5.6: Results of overlapping hot-spot for MEDITS species (left panels, adults and juveniles) and SOLEMON 
species (right panel, adults and juveniles). Values (legend title: Freq = frequency) refer to the number of species having 
Gi greater than the third quartile in each grid cell for the three main scenarios, 2018 (first-panel row), 2035 (middle 
panel row), and 2050 (bottom panel row).  
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juveniles of both surveys and illustrates the overlap FRA in the study area.

 

Figure 5.7: Results of overlapping hot-spot for adults species (left panels) and juveniles species (right panel). Values 
(legend frequency adults or juveniles) refer to the number of species having Gi greater than the third quartile in each grid 
cell for the 2050 scenarios. Overlapping FRA and important managing area are visibile, as Jabuka/Pomo Pit area 
(dark blue), Bari and Lophelia FRA (green and red respectively) and Sole sanctuary (light blue).  

Figure 5.7 shows the future range of all species (except mullet-see Chapter 4) for adults and 
juveniles of both surveys and illustrates the overlap FRA in the study area.  
A possible representation of the future range of the species could be beneficial to improve 

the spatial management of the area. In this context, we know that fisheries management in 

the studied area is based on different approaches, including the adoption of spatial measures 

such as FRA. Possible future changes in the suitable area, as I have evaluated in this work, 

could lead to a change in the fishery area for the species concerned and directly affect the 

port and fishing activity in the Adriatic and Ionian Seas. 

Considering mainly the MEDITS species for which a change in range is expected, the 

increase in abundance of species near the Istrian Peninsula and the Po Delta (Figs. 5.6) could 

affect fishing grounds in this area, or conversely, the decline of some species in the central 

part of the Adriatic, especially juveniles (Fig. 5.6 - Juveniles), could change the effort and 

number of vessels operating in this area, leading to a change in port operations and fisheries 

management. 

Successful establishment of a particular species in a new area depends not only on biotic and 
abiotic characteristics, but also on dispersal ability, sex ratio, demographic structure, and 
adaptability to new environmental conditions. In addition, we do not know whether species 
arriving at a new site with similar conditions, due to expansion of suitable range in the future 
and reduction of current range, are likely to succeed in establishing species that have not yet 
"settled." 
The limitations of this study are primarily the data used, which are from a spring-summer 
trawl survey, and the interannual dynamics, which cannot be fully represented. The use of 
the same models includes the limitations and advantages mentioned in Chapter 4 regarding 
the inclusion of oceanographic variables related to climate change to evaluate the 
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management area under future climatic conditions. Fishing effort could also be a limitation 
of the models, as this covariate is unpredictable in future years. The decision to use the fishing 
effort covariates in this work as well is due to their importance as a proxy for resource 
dynamics and distribution. The area is heavily impacted by fisheries and it is important that 
it continues to be exploited in the future.  
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Disentangling the role of Environmental data  

 

Although the integration of environmental covariates into marine species distribution models 

is increasingly used (Essington et al., 2022; Goodman et al., 2022; Thorson et al., 2015), 

application to pelagic resources is often considered in the Mediterranean (Giannoulaki et al., 

2008), mainly because of easier accessibility and broader coverage of surface and submarine 

oceanographic variables. In this work, the implementation of environmental covariates 

estimated from 3D Copernicus fields improved the accuracy of the models (expressed in 

terms of diagnostic values such as AIC, explained error, and prediction error) and was used 

in all applications (see Training and Testing Routine, Chapter 2, Chapter 3, Chapter 4). As 

expected, the covariates are specific to the individual species and life stages, with some of 

these covariates being significant (see bottom temperature or oxygen for species such as 

European hake or red mullet, see, e.g., Table S2.3 and S2.18, respectively) and other variables 

having no significant effect on modelled biomass (see results for sole in Table S2.7 in the 

Supplementary Material). Variables used in SDMs should be biologically significant and 

meaningful for each demersal species and are selected based on the physiological fitness of 

the species (Zimmerman & Guisan, 2000). Notably, different environmental variables can 

lead to different model predictions and performance (Johnson & Gillingham, 2005). 

However, collinearity among environmental variables is problematic because the statistical 

model cannot disaggregate the role of correlated variables, which could lead to overemphasis 

of their effects. For this reason, combining many environmental variables or factors during 

the training and testing routine is essential, and the first step is to remove a highly correlated 

variable, for example, by analysing an indicator such as the variance inflation factor (Sheather, 

2009) or by Pearson and Spearman tests (Dormann et al., 2007). 

In this work, I used a number of different environmental predictors ranging from 

temperature, oxygen, and chlorophyll to particulate organic carbon and basic nutrients such 

as nitrate and phosphate, and combined survey datasets with these measurements over the 

period from 1999 to 2018 (MEDITS and SOLEMON survey datasets). Before using these 

variables in the training and testing routine (see Chapter 3 and Chapter 4), collinearity analysis 

was performed (VIF and Pearson). 

All of the feedback analyses applied in Chapter 2, Chapter 3, and Chapter 4 were critical to 

understanding the role of environmental factors in explaining past data, but the application 

of this type of model was also extended to future scenarios (Chapter 5), which are so 

important in the current issue of climate change because changes in oceanographic variables 

can cause fish dispersal or concentration (Hilborn & Walters, 1992). 

 

In addition, environmental factors are fundamental to fish colonisation, and drastic climatic 

changes could lead to a change in biomass and distribution trends, and a possible predator-

prey relationship should also be considered, such as a climatic influence on forage fish 

dynamics (see, e.g., Suca et al., 2021), which is important for some predators (such as hake), 

or a shift northward, e.g., to polar regions (see Baudron et al., 2020). 

In this context, the development of SDM based on survey data with long time series is crucial 

to show the possible changes in a sub-Mediterranean basin such as the Adriatic and Ionian 

Seas, which is so important from a fisheries perspective (FAO, 2020b). 
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Estimating the potential future distribution of species  

 

In Chapter 5, I estimated the potential range changes that could affect the major commercial 

species in the Adriatic and Ionian Seas, as shown in Figures 5.4, 5.5, and 5.6. Climatic changes 

in the Mediterranean have been well and extensively studied for decades, and a recent study 

highlighted that acidification, oxygen depletion, nutrients, and biomass could change under 

a warming scenario (Reale et al., 2022), with significant changes expected in the coming years. 

Understanding how the species could change the aggregation area in this context (see Figure 

5.4 - 5.5 - 5.6), and assessing the impacts on adults and juveniles, is central to the study area, 

where fishing activities, port, landings, and economic activities associated with fishing are 

critical. 

The analysis (Chapter 5) indicated that not all species will be affected under future 

environmental conditions altered by climate change. Particular emphasis was placed on 

differences in species such as red mullet and anglerfish or European horse mackerel that will 

result in relevant habitat change, with large areas currently considered hotspots becoming 

much less relevant for these species and instead more likely to be distributed in northeastern 

areas near the Istrian Peninsula and Quarnero Islands (Figure 5.5). Other species such as 

adult southern squid and Norway lobster were unaffected by predicted environmental 

changes (Figure 5.5), a result that may reflect the high adaptive capacity of these species. 

Overall, it appears that northern species (e.g., common sole, cuttlefish) are not greatly 

affected by climate change-induced impacts, as the centre of gravity shows no relevant 

changes (Figure 5.4). For species such as European hake, or red mullet and anglerfish, the 

prediction showed that a northward shift is likely, leading to an equalisation of the future 

area between northern and central-southern species in the Adriatic. These results are the first 

in the studied area using an ensemble approach following a protocol developed in this thesis 

(Chapter 3 and Chapter 4). 

The spatio-temporal information resulting from this type of model could be integrated into 

the spatial fisheries management of the area, as I indicated in the introduction and in Chapter 

2 and Chapter 4. Managing this information, such as species occurrence, area where multiple 

species congregate, efforts to maintain hot spots with juvenile fish, highlighting biodiversity, 

and possible future changes in the distribution or spread of invasive species, is critical in an 

ever-changing world, and fisheries stakeholders and policy makers should consider this 

aspect as well. In the next subsection, "Discussion," I will explore this possibility. 

 

Contribution to the management processes  

 

Stock assessment in the Adriatic and Ionian Seas is conducted by two major international 

committees, SAC of the GFCM (Scientific Advisory Committee to the General Fisheries 

Commission for the Mediterranean) and STECF (Scientific, Technical and Economic 

Committee for Fisheries), which evaluate stock assessment models in a single species context 

(Ulrich et al., 2019). These committees use information on catch, survey data, landings, 

discards, and fishing activities for stock assessment tools for selected key commercial species. 

Stock assessments typically produce estimates of at-sea biomass, spawning stock biomass 

and recruitment, and fishing mortality over time. These estimates form the basis for 

establishing reference points such as biomass at MSY (for MSY, see the introductory chapter 

Overview of fishing pressure and management regulation in the study area) and fishing 

mortality at MSY: comparison of these reference points with the current situation of 

individual stocks allows determination of exploitation status, which forms the basis for 
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management recommendations. All of this information is important for understanding stock 

status, but it depends not only on good fishery-dependent data (catch and effort), but also 

on fishery-independent information such as trawl survey indices used to tune stock 

assessment tools. Trawl survey data are already used to reconcile stock assessment tools 

whenever possible, but often using simple weighted averages of densities or geostatistical 

interpolation. 

The potential inclusion of oceanographic variables in SDM and comparison between indices 

(e.g., biomass trend or centroid) could provide a great opportunity to better understand the 

ecological dynamics of key commercial resources (and discarded or threatened species) and 

provide more accurate biomass trends to support stock assessment models. 

 

SDM approaches are considered a good starting point to provide the most accurate map of 

distribution, hotspots, density index, and correlation with environmental variables with stock 

assessment results to evaluate macro or regional areas of interest for management. For 

example, SDM results have been useful in demonstrating the ecological importance of several 

demersal species in the Croatian coast or central Adriatic. With respect to the Pomo/Jabuka 

Pit, the model developed in this work confirms the importance of this part of the Adriatic 

(FAO, 2022) as an important hotspot for adult hake, juveniles and adult Nephrops, 

highlighting the overlap of areas with multiple species (hake - lobster - squid - anglerfish, 

Figs. 4.4 and 5.6) and demonstrating how SDMs can continue to support decision-makers 

who need to assess the relevance of new regulated areas. 

SDMs use location (georeferenced data) and information about environmental conditions to 

predict distribution and estimate the relationship between the variables used using a variety 

of different mathematical and statistical approaches. The predictive map produced as the 

main output of SDMs can provide reproducible and detailed information that expert opinion 

cannot. For these and other reasons, the integration of SDMs into stock assessment, fisheries 

management, spatial fisheries management, and policy evaluation is becoming increasingly 

important. 

 

The literature identifies 2 main limitations to the use of SDMs in management decisions: 

 

1. SDMs are complicated to interpret, e.g., variation in the quality of the data input 

and the model used can lead to different predictions of the distribution. In this 

case, a cautious interpretation of the results is required, evaluating the 

representation of the potential (basic niche) or actual (realized niche) distribution 

(Guisan et al., 2013; Morisette et al., 2017). 

2. The second criticism concerns model development and evaluation, which require 

the involvement of experts and ecological modelers, including questioning and 

interpretation of results (Addison et al., 2013; Morisette et al., 2017). 

 

Establishing guidelines is fundamental to incorporating SDMs into management processes, 

especially in a context with economically important values such as in the fisheries sector. It 

is not my intention to propose new guidelines in this context, and following the examples of 

Araújo et al. (2019), Guisan et al. (2013), and Morisette et al. (2017), I can argue that some 

of the results highlighted in this work could be useful for resource assessment in an important 

fishery area such as the Adriatic and Ionian Sea, considering these approaches as a starting 

point for policy management assessment. 
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Following Figure 1.5 in Chapter 1, sharing this information with the GFCM working group 

and SAC could be a way to evaluate spatial management from three important perspectives: 

 

1. SDM experts could improve the knowledge of "stock assessors' and vice versa  

2. Information sharing between SDM experts, stock assessors, and stakeholders 

could improve the assessment of key commercial species in the study area, e.g., 

following this work as a case study (Adriatic and Ionian Seas) 

3. Management assessment could consider different aspects, approaches and 

expertise, especially in relation to climate change. 

 

 
Figure 6.1: example of inclusion of this work as a case study in the working group, SAC and stakeholder evaluation 

of GFCM-FAO.  

 

The idea of managing spatial assessment using an SDM approach that takes into account the 

assemblage of many species at the same time or the co-occurrence of key species (see future 

multispecies perspective) could be fundamental in such an important study area as the 

Adriatic and Ionian Seas. 

 

One of the objectives was to identify and propose the use of SDMs for the assessment and 

management of multispecies fisheries, taking into account environmental and effort variables 

in an area so strongly influenced by fisheries. In addition, SDMs can be considered as long-

term strategies for EAF that also have visible economic and marine conservation benefits. 

In addition, local knowledge of the area can be useful in minimizing mismatches between 

conservation and fisheries objectives. Identifying hotspots, defined as geographic areas with 

consistent biological composition that are subject to known fishing pressure, is a first step 

toward incorporating the SDM approach into practical fisheries management, including 

consideration of different life stages such as adult and juvenile fish. 

 

This study shows that in the Adriatic and Ionian Seas there are many target species of 

demersal fisheries and high biodiversity throughout the area, highlighting the need to adopt 

management plans that consider the spatial distribution of resources. The selectivity of the 

bottom trawl fishery is low, bycatch is significant in the area, and the co-occurrence and 

exploitation of multiple target species is evident, and SDM can help identify important target 

species and key aggregation areas for fishing in time and space. The example FRA of 
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Jabuka/Pomo Pit for hake and Nephrops shows that pressure on these species is decreasing 

and catches are increasing (FAO, 2021). 

The results of this work also highlight the need for spatial fisheries management that takes 

into account both fisheries and the protection of specific species and biodiversity areas 

(example of the west coast of the Adriatic Sea in Croatia and Montenegro, see Fig. 4.4). 

One way to achieve this protection could be, for example, not to fish some areas for a certain 

period of time in order to restore the stock, which could allow spatial management of fishing 

activities such as trawling, alternating areas designated for fishing with areas designated for 

conservation. 

Following Russo et al. (2019b) or Dimarchopoulou (2018), we know that the application of 

spatial management and spatial/temporal fishery closures has led to recovery of fish stocks. 

The management approach proposed here is a starting point for a new assessment of spatial 

management in the GFCM and SAC assessment processes, aiming to optimize knowledge 

of the area as a case study where fisheries resources are 'under pressure' and strong recovery 

is needed. 

 

All these processes in the world of SDM have some limitations, especially in terms of 

modeling steps, evaluation of performance, uncertainty and sensitivity of models, and 

differences between implemented approaches.  

Some studies argue that SDMs rarely predict the 'true' biology of real populations (Lee-yaw 

et al., 2022), especially depending on the focus of the study, distinguishing different 

categories such as occurrence and abundance studies, population fitness/performance 

studies, and genetic diversity studies. 

Lee-yaw et al. (2022) consider that especially for the first two branches of studies, i.e., SDM 

occurrence and abundance studies, the prediction and extrapolation of results are quite good, 

and several studies also evaluated the performance of the implemented models. In this work, 

I have used several approaches that address calibration and prediction of occurrence and 

density data, evaluation of environmental variables, and a final representation of the demersal 

fish species in the study area. These are the reasons why I think this is useful for various 

aspects of fisheries science, from resource assessment to qualitative and quantitative 

outcomes to a management perspective, as I said earlier. Of course, as with all studies and 

modeling approaches, there are limitations to the method presented, which I will explain in 

the next subsection. 

 

Limitations 

The current literature is replete with examples of correlative species distribution models, and 

in the last 20 years, mostly on marine species (Melo-Merino et al., 2020). As I have previously 

reported, these models have been used in a variety of study areas, from climate change 

(Kearney, 2006) to recovery actions and conservation decisions (Guisan et al., 2013) to 

extrapolation of data (Guillaumot et al., 2020) to define a standard protocol for SDMs (Zurell 

et al., 2020). The techniques vary and examine habitat suitability (with presence or 

presence/absence data) or abundance of animals or plants (e.g., count or density data), but 

we need to remember some limitations of these types of approaches. As I discussed in 

Chapter 4, the species sampled in this study are sampled during the summer (MEDITS) or 

winter (SOLEMON) seasons, and infra- and inter-annual dynamics are not fully explained 

because of sampling design limitations. One of the main problems associated with SDMs is 

that all sample data are incomplete and biased. The survey or sampling campaign is limited 

to a specific time period (season or time of day) and a specific area of space, and therefore 
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represents a subset of all potential distributions of a given species or ensemble of species (in 

my case). In this context, it is important to keep in mind that sampling bias may result in not 

capturing all information about a species and the environmental gradient in which it occurs. 

For example, an occurrence site could be exceptional because of the unusual habitat of that 

species, confusing the user about the actual conditions under which a population or species 

is viable. For this reason, good resolution of the model and grid of predictions is useful to 

match the spatial occurrence of the species and environmental variables used. The data used 

in this work from the survey carried out in the Adriatic and Ionian Seas represent good 

information on the spatial and temporal dynamics of the resources, clearly limited to a 

specific season, taking into account the two main seasons of reproduction and spawning of 

the resources concerned (see Chapter 4), and using the best available resolution of the 

environmental covariates coming from CMEMS products, this product having been recently 

improved (Cossarini et al., 2021), which is useful for the future perspective of my work (see 

next chapter Future perspective). I also believe that for species such as mullet and Nephrops, 

the MEDITS survey is not so representative and that some bias in the data could occur, 

especially when we consider the survey season due to the discrepancy between the survey 

and the maximum recruitment period in the area, as in the case of mullet, where shifts and 

movements are not quite well represented. In the case of Norway lobster, the data may be 

uncertain due to differences at the subpopulation level for this species in the Jabuka/Pomo 

Pit area, as I pointed out in the discussion in Chapter 4 

 

Another issue affecting SDMs is the correct 'taxonomy' used to identify this species, building 

a large and useful database of georeferenced sightings, and avoiding putative information or 

incorrect taxonomy (Lozier et al., 2009). Again, I consider the data used to be a good 

representation of the species in question in terms of taxonomy and maturity stage 

determination. A long and qualified time series of survey data fully represents the aspect of 

the resources involved used in another study (Colloca et al., 2015; Lauria et al., 2017), data 

that I analyzed with confidence knowing the work of the experts involved in the surveys, as 

well as the standardized procedures used and the relative ease of identifying the species 

covered in this species. 

 

The prevalence of the data, i.e., the percentage of presence/absence of a given species at the 

sampling site, could also be a limitation in the modeling process. The percentage of 

prevalence between 20% and 75% can provide good results (McPherson et al., 2004), but 

prevalence is not a factor, and if there are good covariates in the development of the models 

and if accurate training is performed, the modeling processes can be considered accurate 

(Jiménez-Valverde & Lobo, 2006). 

 

For adults of European hake, red mullet, common sole, cuttlefish mantis shrimp, and for 

juveniles of European hake, red mullet, southern squid, European horse mackerel, common 

sole, cuttlefish, and mantis shrimp, the prevalence of the data reaches and exceeds the 40% 

mark, and for the other species it ranges from 25% to 40%, with the exception of Norway 

lobster and anglerfish, all limitations already presented in the discussion in Chapter 4. I 

therefore consider that the data used for almost 8 out of 10 species are a good representation 

of the occurrence of these resources in the Adriatic and Ionian Seas. For two species, adult 

anglerfish and juvenile and adult Norway lobster, the survey, in this case MEDITS, is not as 

representative, and all results need further improvement, but, as discussed earlier, this type 

of approach is useful to understand the basic dynamics of this species, also taking into 
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account the assessment of the error resulting from the modeling processes (Supplementary 

Material S4). 

 

 

 
 Figure 6.2. percentage of prevalence data (presence) respect the total dimension of the sample, for each species (x lab) 

and age  

 

In addition, a minimum sample size of more than 30 is recommended (Wisz et al., 2008), 

and in our case the size always exceeds 1000 data points for each species and life stage. 

Therefore, the available information considered over the years is a very complete data set 

well suited for this type of approach. 

Regarding the projection of the model output, the final prediction or extrapolation results in 

the form of a distribution map, habitat suitability map, and probability of presence/absence 

in the expansion area, we need to keep in mind and understand that the projection grid 

should cover the area accessible to our species of interest in the available time period, and 

that the background data (prediction/extrapolation grid) should be limited to the same area 

(Barve et al., 2011), because if the background data are outside the sampling of the staging 

area, the results could be biased and the assessment metrics inflated (VanDerWal et al., 2009). 

All data used in this study are in a fully sampled area, over time and space, with the final 

representation being a good snapshot in time of year of the resource, in terms of predicting 

outcomes and not an extrapolation, say a final and exhaustive 'interpolation' between the grid 

and the most determined environmental variable (CMEMS) with a full survey dataset of 

demersal resources. 

 

We don't know all of the factors behind a species' ability to disperse, at least not in this 

context and area, as variables other than climate can also influence and control dispersal, but 

I consider the multivariate and multimodal approach used here to be a fully explanatory study 

of the location, distribution, and potential approach to evaluating the management of the 

resource in question. 

Based on the idea that there is no single approach that works best for all species at every 

spatial and temporal scale, I considered using multiple modeling approaches by combining 

them into an ensemble. Based on the idea that each model (when fitted) can capture some 
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features of the species distribution, I combined all models and weighted them based on the 

correlation coefficient. 

 

The statistical models applied generated a functional relationship between data and covariates 

that is assumed to be correct, but it's not easy to meet these assumptions, especially in some 

cases such as climate change conditions (Elith & Leathwick, 2009) (Elith et al., 2006). Other 

assumptions in SDMs are those of the presence-only model, where the generation of pseudo-

absence is necessary (see, e.g., the MAXENT model), but the interpretation of the results 

isn't straightforward. In this work, using survey data, there is a lot of absence data, meaning 

that the species is absent or very rare at this site over the several years of the survey. In my 

case, the Tweedie family or delta approach are the two types of models that specifically 

account for the presence of many zeros and work well with this type of data. Of course, 

these models aren't the best for all types, and the machine learning approach such as the 

Random Forest ended up being better at representing the data than other approaches (see 

Chapter 4- Discussion). 

We must remember that no two models give identical results, and this is the main reason 

why I chose to use weighted ensemble models. An ensemble model can help identify the 

differences between models (Araújo & New, 2007; Roura-Pascual et al., 2009) and identify 

the uncertainties that arise from the different choices made during the modeling process and 

highlight where one model performs better and other models don't. All models used are 

subject to uncertainties, e.g., due to sampling design, precision, and predictor resolution 

(Stohlgren et al., 2010), but the ensemble of models is a good application, especially when 

weighted based on the diagnostics of each model implemented in the modeling processes. 

The novelty of the approach consists in the systematic application of the SDM models in the 

form of an ensemble of different models on trawl survey data of the Adriatic and Ionian Seas 

containing a large set of environmental variables, and in the evaluation of the different 

performances in terms of diagnostic parameters such as AIC, MAE, R2, for different models 

in a spatial training and testing routine, for two life stages (adult and juvenile fish), with a 

prediction and evaluation of past, present and future projection that it's something new in 

the field of study, taking into account all the assumptions and limitations that I've previously 

reported. 

 

Future perspective  

In this last chapter I will present all the aspects concerning the possible improvement of the 

models and approaches I have applied in this thesis. First, I would like to highlight some 

important points that I can further develop in the future, namely: 

 

1. Improving the resolution of covariates, considering the final distribution of 

species and the correlative results between environmental variable and response 

variable (presence/absence or density). 

2. Introducing the concept of dispersion in SDMs. 

3. Applying the Bayesian approach or a statistical method such as Gaussian Markov 

Random Field, used in some approaches and packages in R, with a 'background' 

script based on Template Model Builder (TMB) to investigate the possible 

improvement of my models in a multispecies context. 

4. Application of the same model I used here, but to new species, including pelagic 

species and not just demersal species. 

5. Application of SDMs with 'new' data, such as genetic information. 
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I will briefly review the previous points to illustrate the possibility of extending my models, 

which I was unable to introduce during the three years of work on this dissertation due to 

time constraints. 

 

1. Use of new resolution of the covariates of the model applied 

 

As mentioned earlier, the predictor variables used here were derived from CMEMS products, 

and the resolution used in this work is 1/16° (see Chapter 3 and Chapter 4). With this 

resolution, the final grid used to predict the results (see the final distribution map in the 

previous chapter) consists of "cells" or "pixels" of about 6 km per side, which was the best 

resolution when I started this work. Continued improvement in modeling processes 

(Cossarini et al., 2021) has led to a new resolution of CMEMS variables, which is now 1/24°, 

with a grid cell of about 4 km. The possible new pooling of data between my response 

variables (presence/absence or density) and these new high-resolution covariates could lead 

to an improvement in the models, perhaps an increase in the significance of certain variables 

or an increase in the explained variance of the fitted model. We must also keep in mind that 

the computational time required for prediction on a high-resolution grid is longer, but can 

be managed with remote approaches and code refinement. 

The results presented here are robust and complete to what I have presented, but 

improvement could be a satisfying exercise from a modeling standpoint and for improving 

understanding of the relationship between species and environmental variables in the field.  

 

2. Dispersal: species movement   

 

Understanding how the species are distributed and especially the dynamics of the range of 

expansion, also considering the climate change scenario, is of paramount importance. 

Implementing dispersal into SDMs remains an exception rather than the rule, and recent 

SDMs and research have begun to include transitory habitats (Huang et al., 2020) or species 

and taxa present simultaneously (Lehtomäki et al., 2019).  

When we talk about species movement, we usually refer to the dispersal ability of the 

organism (animals and non-sessile) and use the term 'dispersal' instead of movement because 

it is the accessibility of habitats by species or a population that is considered, not the 

movement itself (Datry et al., 2016; Elith et al., 2006). Dispersal ability depends not only on 

the characteristics of an organism but also, and more importantly, on the nature of the 

habitat type. Habitats, except in rare cases, are not clearly delineated areas that do not have 

a constant boundary over time and where communities always remain stable. This 

characteristic also depends on the scale at which the habitat is observed and where our points 

of occurrence are located. For SDMs, a well-defined area in space is better than complex 

areas, which clearly depends on the characteristics of the ecosystem studied and the species 

involved. For example, in species such as Norway lobster in the Adriatic Sea, larval dispersal 

and recruitment to the benthic stage depend on environmental variables, and it is especially 

important to assess dispersal characteristics in an SDM.  

Furthermore, in SDMs, movement is described as post-hoc inference of movement with a 

dichotomous response: a habitat is accessible or not (Guisan et al., 2006). In this case, prior 

knowledge of an organism's characteristics may be required to provide a good description 

of movement and to distinguish between movement due to migration or habitat 

displacement, rather than movement related to biological traits. Quantifying dispersal is not 
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straightforward, but is necessary to improve predictions and quantify uncertainty (Holloway 

et al., 2016). Not many software tools have been developed in the literature to understand 

dispersion dynamics, and they do not implement the latest methods for accurate modeling. 

Some R packages that have been developed include components of dispersal rate in terms 

of species-specific or occurrence and background subsamples, for example, 'MIGCLIM' and 

'ecospat" (Di Cola et al., 2017; Engler et al., 2012). However, there is no SDM software that 

can efficiently implement environmental subsampling and integrate dispersal capability to 

assess changes in habitat suitability for many species and climate models. 

It is well known that fish are generally mobile species and that movement can be very 

important to their dispersal, including from a fisheries management perspective. 

In this work, I did not use dispersal properties, which could be a new aspect for further 

improvements of the presented model. The data used in my work include many aspects 

derived from abiotic variables and fishing effort, but without the dispersal aspect. 

Considering the definition of "niche" (see General Introduction - Introduction), I can 

consider the models presented as a fine snapshot of the state of the species involved over 

space and time, in correlative and diversified approaches. Given the limitations of these 

processes, I contend that the implementation of the capacity for movement may present a 

new challenge for subsequent work. 

 

3. Application of new modeling approaches in a single and multi-species context 

 

SDMs continue to evolve, and new modeling approaches and packages in R have been 

introduced to the community, such as VAST (Thorson, 2019; Thorson & Barnett, 2017), 

HMSC (Ovaskainen et al., 2017; Tikhonov et al., 2020), and sdmTMB (Anderson et al., 

2022). 

 

 VAST - Vector Autoregressive Spatio-Temporal model - is a model developed with 

TMB (Template Model Builder - package TMB - (Kristensen et al., 2016) using 

Laplace approximation and stochastic partial differential equation (SPDE - (Lindgren 

et al., 2011) was developed. VAST also works in a multispecies context used in 

fisheries or for land ecology studies (Thorson et al., 2016; Thorson & Barnett, 2017). 

There is a growing literature on joint-species distribution models (JSDM), and VAST 

includes a geostatistical method to account for spatial similarity and density-

dependent processes. The VAST package is also used for management purposes 

(Thorson 2019) or to improve the estimated abundance index (Thorson et al., 2015). 

In summary, VAST is largely used in the context of single or multiple species analysis, 

but contains a very advanced mathematical approach and an R package that is not 

user-friendly, so collaboration with the developer is required. 

 

 HMSC - Hierarchical Model of Species Communities - is a flexible framework for 

customizing JSDMs that allows the integration of species information in the form of 

presence/absence or density data and environmental covariates, as well as features 

such as phylogenetic relationships in a spatiotemporal context. As far as I know, 

HMSC is not widely used in marine contexts, and in fact only two main studies have 

used this model in marine species (Kenchington et al., 2019; Zhang et al., 2020) in 

Finnish and Chinese waters, respectively. No JSDMs have been applied in the 

Adriatic and Ionian Seas, with the exception of ecosystem models such as Ecopath 

with Ecosim, which have been applied in the Adriatic (Celić et al., 2018; Libralato et 
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al., 2010) or in other parts of the Mediterranean (Agnetta et al., 2019; Coll & 

Libralato, 2012), but where the approach, results and 'philosophy' of the model are 

quite different. The HMSC is a model with fixed, random, or spatial autocorrelation 

effect and Bayesian approaches with a very high predictive performance tested 

between more than 30 JSDMs (Norberg et al., 2019). Implementing these models in 

my study area could be a significant improvement, as this is the first study of JSDMs 

in this area and with this new approach. 

 

 sdmTMB - Species Distribution Model with Template Model Builder -, sdmTMB is 

an open-source R package that allows rapid implementation of complex nonlinear 

random effects (latent variable) models like the established AD Model Builder 

(ADMB) package and also provides easy access to parallel computation. Estimation 

with TMB is done using maximum marginal likelihood. SdmTMB does not include 

assessment of multiple species co-occurrence or density dependence, but it is a very 

easy model to run and very fast. In addition, the user can include as a covariate, for 

example, prey abundance, to simulate whether the response variable (our analyzed 

species) might change with respect to this density-prey covariate. Despite a very fast 

coding and user interface, the diagnostic and performance results take time to study 

and understand all the processes based on the Bayesian and Gaussian Markov 

random field with SPDE, which is the mathematical-statistical core of this model. 

 

Exploring the possible improvement of the models I use here using these kinds of 'new' 

approaches could be an opportunity for me and the field of study. Not many cross-species 

models using SDMs have been developed in this field. For this reason, in these years of work, 

after a thorough investigation of different approaches in the field of SDMs, a new approach 

using these models in a multi-species context could be a challenge that I would like to take 

on. 

 

4. Application of presented models on new species 

 

The models presented in this thesis concern only demersal fish species, in particular some of 

the most important species from a commercial point of view (see Chapter 4). The MEDITS 

and SOLEMON surveys collect information on hundreds of species, although groundfish 

species and bottom species clearly predominate due to the nature of the gear used and the 

objective of the surveys. Other species could be important to analyze and compare with the 

results presented here, e.g., from the MEDITS survey: species such as whiting (Merlangus 

merlangus), common pandora (Pagellus erythrinus), Atlantic mackerel (Scomber scomber), or 

European squid (Loligo vulgaris) could be very interesting species that are not frequently 

studied despite their commercial importance. For the SOLEMON survey, we must consider 

that trawling is an interesting type of fishery because, thanks to the nature of the gear, it can 

catch some species that are difficult to reach with other gears, although it is one of the 

fisheries with the greatest impact in the entire Mediterranean Sea (Colloca et al., 2017). The 

SOLEMON survey catches interesting species such as scallops (Pettinidi), brill (Scophthalmus 

rhombus), purple moray (Bolinus brandaris) or queen scallop (Aequipecten opercularis), which are 

ecologically interesting and also commercially important (Fortibuoni et al., 2017; Ulrich et 

al., 2019). Some of the mentioned species are not very mobile, such as pectinidi or dyer 

moray, and it could be very interesting to analyze the relationship between environmental 

variables and the location of these resources over time and space, especially considering their 
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low ability to move and also the fact that these species are not assessed mainly due to lack of 

data and biological information (Armelloni et al., 2021). 

Moreover, pelagic species and not only demersal species such as anchovies (Engraulis 

encrasicolus) or sardines (Sardina pilchardus) have been studied, but there are still no studies on 

SDMs. One of the main problems is data collection, and the eco-survey program (Leonori 

et al., 2011; MEDIAS Handbook, 2019) is one of the most important fishery-independent 

activities to obtain information on this migratory species, especially on the Italian side, and 

sharing information for Italy and Croatia could be an opportunity. Indeed, due to the 

migratory nature of anchovies and sardines in the Adriatic Sea, it is not easy to obtain 

information on these pelagic species, and the application of SDM could be an interesting 

challenge to assess the status of the resource, which has been widely studied and evaluated 

(FAO, 2020b). For this reason, a comparison between the current assessment, eco-survey, 

and SDMs is a great opportunity to understand the dynamics, status, and biomass of the two 

stocks. CMEMS products and satellite products (e.g., chlorophyll data) can provide useful 

information that can be used as predictors in the SDMs, taking into account the first layer 

and the sea surface or up to 200-250 m where species are more abundant. 

 

5. Application of SDMs with ’new’ information about species 

 

What types of data can be included in the SDMs? 

We have seen that the SDMs model works with presence/absence data or only presence and 

pseudo-absence data (MAXENT - (Elith et al., 2011), density data in the form of biomass 

(e.g., Chapter 2) or count data (number of individuals, e.g., Chapter 3, Chapter 4, Chapter 5), 

and index (e.g., kg/km2). 

 

What about genetic data? 

The use of genetic markers is not widespread, and the representation of spatial genetic 

structure is not straightforward (Hampe et al., 2010). When we talk about SDMs, especially 

those that use presence/absence data and lead to prediction of habitat suitability-which is 

not the same as probability of occurrence-these models assume that a species has a single 

niche and all individuals respond equally to changes in abiotic conditions. However, there is 

evidence that many species are organized in a different genetic lineage that may be adapted 

to a local condition (Hereford, 2009; Leimu & Fischer, 2008), with potential adaptation to 

respond to environmental change (Shaw & Etterson, 2012). Many of the studies conducted 

are on plant genetic structure, and the use of genetic information in SDMs with marine 

species is not widespread. Some of the future applications and challenges in SDMs are the 

applications of the models discussed in this paper using survey-derived information, such as 

the survey of a genetic sample, environmental DNA, say, in situ information about the DNA 

of a particular species present (or not) at a particular survey site. If one has information about 

the DNA in a particular area and knows whether or not the species is present there, one 

could model that presence/absence information, not from the fish caught directly during the 

survey, but from the "genetic' presence of that species at "that point." Collecting the data, 

analyzing the genetic code and assuming that the species is 'really" present are difficult, but 

represent a new challenge in the development of SDMs 'world'. In the Adriatic and Ionian 

Sea area, no model with this kind of information is currently used, but the main problem is 

obviously the collection and sequencing of the genetic data that are collected. 
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Conclusion 
 

'The main purpose of all fishing models is to understand and inform decision-makers about the possible 

consequences of fishing activities themselves.'  

 

(Hollowed et al., 2000). 

 

The PhD project focused on the spatio-temporal dynamics of some demersal fish species in 

the Adriatic and Ionian Seas in order to develop SDMs incorporating abiotic (environmental 

variables) and human activity dynamics (proxy for fishing effort) in the mentioned area. The 

spatial models considered are statistical models such as GAM, Random Forest and GBM. 

The objective was to use statistical models to study the dynamics of some demersal fish 

species such as hake, mullet and sole, in order to evaluate their distribution in relation to 

environmental variables and sampling activities. The available data come from experimental 

fishing campaigns conducted in the Adriatic and Ionian Seas, such as MEDITS 

(Mediterranean International Trawl Survey) and SOLEMON (Sole Monitoring), including 

data from 1999 to 2018. In particular, the more statistical approaches used served to highlight 

the most sensitive areas for certain species, mainly based on size (juveniles and adults), in 

order to subsequently use several SDM approaches. The results suggest that the applicability 

of these models could be implemented in the fisheries management of the area, considering 

the importance of the species of concern from an ecological and commercial perspective. In 

light of climate change, understanding the potential "shift" of species in the area is central to 

good spatial assessment and management of resources, improving knowledge in the sector. 

The main idea behind the project was to understand the capabilities of SDMs in the area and 

in this fisheries context, to explore different options and approaches, and to model the main 

dynamics of the affected species. 

Many results have come out of this work, and I wanted to pick out the ones that are most 

important to me, with the understanding that any new potential improvements and studies 

that come out of this work could be useful to fisheries science. I know that new approaches 

will be possible in the future as research continues in this area that examines the ecology, 

biology, distribution, and resulting fisheries management of the area under consideration. 

If I get the chance, I would like to go in that direction. 
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Chapter 2 Supplementary material  
 

Description   

This supplementary material is providing all details for the choices of the most appropriate 

approach, identification of the set of variables that result in the best model through 

training and testing, and a descriptive summary of the best model and its properties. The 

above is reported for each species (European hake, common sole, mantis shrimp, 

common cuttlefish ad red mullet). Therefore, the document is organized by species and 

for each, a set of sections are reported as in the following:  

 Identification of the most appropriate approach: these sections have briefly presented 

the results of different GAM families (Delta-GAM, Tweedie, and Gaussian) applied to the 

trawl survey data for the species and compared using mean absolute error (MAE) and 

correlation coefficient (R2). These comparisons are done for the model with the full set of 

variables identified by the VIF (see Materials and Methods in the paper) and for the minimal 

model with geopositional variables only.    

Best models identification: in these sections are identified the most appropriate 

approach adopted on models with different explanatory variables. 50 runs with training 

(70% of the data) and testing (the remaining 30% of the data) selected randomly are used 

implementing a back-stepwise, i.e., from the complete model with all explanatory variables 

identified by VIF (model 0) to the minimal geopositional model (model 5,6 or 7 depending 

on the species). The variables used in each model are described and the measures of the 

model’s performance (explained deviance (%ED); Akaike Information Criterion (AIC) of 

the training datasets; correlation coefficient (R2)) derived from 50 runs of the training and 

test analysis are reported in the box plots. The results of Tukey’s test are also reported.  

Spline and residual best model: in this section, we show the spline curve derived from 

the best model chosen, delta (binomial and Gaussian) for European hake, common 

cuttlefish and mantis shrimp, Gaussian for red mullet, and Tweedie for common sole.    

Summary of the model: in this section are reported the summary table of the best model 

(mod 0) for the respective best approach for each species. The summary is derived from 

software R, where the models are run and the final results are mapped.    
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1. European hake  

 1.1. Identification of the most appropriate approach  

Table S2.1: performance statistics for the different approaches tested in both the model with the complete set of relevant 

oceanographic variables selected by VIF and the model with minimal geopositional variables.  

  

With all additional variables  
(model 0)  
  

Minimal geopositional  
variables (model 6)  
  

  MAE  R2  MAE  R2  

DELTA-GAM  16.13853  0.306771  16.28943  0.297505  

Tweedie  16.74836  0.342713  16.92313  0.331782  

Gaussian  16.24252  0.308074  16.38106  0.298852  

  

The most appropriate approach among those GAMS tested was thus identified in the 

Delta-GAM approach.  

  

1.2. Best models identification  
Several  Delta-GAM models with different explanatory variables were analysed in the 

training and testing procedure.   

Model_0 <- R~β+ 

factor(month)+s(Y)+s(X)+s(year)+s(depth)+s(TMP_bot)+s(dox_bot)+s(nit)+s(sal)+s(poc)+s(eff)  

Model_1 <- R~β+ 

factor(month)+s(Y)+s(X)+s(year)+s(depth)+s(TMP_bot)+s(dox_bot)+s(nit)+s(sal)+s(poc)  

Model_2 <- R~β+ factor(month)+s(Y)+s(X)+s(year)+s(depth)+s(TMP_bot)+s(dox_bot)+s(nit)+s(sal)  

Model_3 <- R~β+ factor(month)+s(Y)+s(X)+s(year)+s(depth)+s(TMP_bot)+s(dox_bot)+s(nit)  

Model_4 <- R~β+ factor(month)+s(Y)+s(X)+s(year)+s(depth)+s(TMP_bot)+s(dox_bot)  

Model_5 <- R~β+ factor(month)+s(Y)+s(X)+s(year)+s(depth)+s(TMP_bot)  

Model_6 <- R~β+ factor(month)+s(Y)+s(X)+s(year)+s(depth)  

  

Where the response variable R = log kg/km2 (delta-gaussian) or presence/absence (delta-

binomial) in the DELTA model. Delta-GAM box plots are reported in the main text. 

  

Table S2.2: Tuckey test delta binomial and delta Gaussian for European hake  

                  
delta-binomial mod 0 mod 1 mod 2 mod 3 mod 4 mod 5 MOD 6 

aic c b b b b ab a 

dev.expl. a b bc b b c d 

r2 a a a a a ab a 

delta gaussian        

aic b ab ab ab ab ab d 

dev.expl. a ab ab b bc cd d 

r2 a a a a a a a 
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1.3. Splines, summary and residuals of the best model (model 0)  
In the following, the results of the Delta-GAM applied to European hake (splines, 

residuals and summary): results for Delta-binomial.  

  

   
Figure S2.1: spline for the best model (model 0) of delta binomial for European hake   

Table S2.3: Summary tables delta-binomial mod 0 European Hake  

  Estimate  Std.Error  z.value  p.value  

Intercept  3.69  0.45  8.13  3.97*e-16***  

Factor(month) 6  0.009  0.39  0.02  0.98  

Factor(month) 7  -0.07  0.46  -0.16  0.86  

Factor(month) 8  -0.39  0.48  -0.81  0.41  

Factor(month) 9  -0.23  0.51  -0.46  0.64  

Factor(month) 10  -0.19  0.69  -0.28  0.77  

Factor(month) 11  0.76  0.53  1.44  0.14  

Covariates  Edf  Ref.df Chi.sq  p.value  

 

X  6.64  9  119.89  < 2e-16***  
Y  8.30  9  42.05  2.65e-07***  

Year  6.30  9  100.02  <2e-16***  

Depth  8.83  9  363.35  <2e-16***  

TMP_bot  2.50  9  20.65  8.53e-06***  

Dox_bot  2.64  9  10.31  0.004**  

Nit  0.00  9  0.00  0.89  

sal  0.00  9  0.00  0.79  

poc  0.00  9  0.00  0.23  
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eff  3.55  9  37.62  5.11e-09***  

Diagnostic    

R2  0.55  

Dev.expl  55.9%  

UBRE  -0.54  

  

  

  
Figure S2.2: residual derived from model 0, delta binomial, for European hake  

In the following, the results of the Delta-GAM applied to European hake (splines, 

residuals and summary): results for Delta-gaussian.  

  
Figure S2.3: spline for the best model (model 0) of delta gaussian for European hake  

 

Table S2.4: Summary tables delta-gaussian mod 0 for European hake 
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  Estimate  Std.Error  t.value  p.value  

Intercept  2.90  0.11  24.64  <2e-16  

Factor(month) 6  0.07  0.11  0.64  0.52  

Factor(month) 7  0.11  0.12  0.95  0.34  

Factor(month) 8  0.06  0.13  0.51  0.60  

Factor(month) 9  0.27  0.14  1.81  0.06  

Factor(month) 10  0.32  0.16  2.00  0.04*  

Factor(month) 11  0.30  0.14  2.032  0.04*  

Covariates  Edf  Ref.df F  p.value  

 

X  5.37  9  9.29  <2e-16***  
Y  7.80  9  18.97  <2e-16***  
Year  6.83  9  26.27  <2e-16***  
Depth  6.51  9  12.24  <2e-16***  
TMP_bot  8.87  9  0.23  0.08  
Dox_bot  4.42  9  1.42  0.007**  
Nit  4.53  9  0.00  0.74  
Sal  3.94  9  1.37  0.005**  
Poc  3.77  9  1.11  0.01*  
Eff  3.97  9  2.76  1.03e-05***  

Diagnostic    

R2  0.30  

Dev.expl  31.6%  

GCV  0.76  
  

  
Figure S2.4: residual derived from model 0, delta GAUSSIAN, for European hake  
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2. Common Sole  

2.1. Identification of the most appropriate approach  
Table S2.5: performance statistics for the different approaches tested in both the model with the complete set 

of relevant oceanographic variables selected by VIF and the model with minimal geopositional variables.  

  

With all additional variables  
(model 0)  
  

Minimal geopositional  
variables (model 6)  
  

  MAE  R2  MAE  R2  

DELTA-GAM  483.2629  0.510396  491.4670  0.511032  

Tweedie  437.3220  0.577585  444.4685  0.550458  

Gaussian  482.0236  0.510482  489.6441  0.511277  

  

The most appropriate approach among those GAMS tested was thus identified in the 

Tweedie GAM approach.  

  

2.2. Best models identification   
Several Tweedie models with different explanatory variables were analysed in the training 

and testing procedure.   

  
Model_0 <- R~β+ factor(month)+s(Y)+s(year)+s(depth)+s(pho) +s(ph)+ s(sal)+ s(dox.bot)+ 

s(TMP_bot)+s(eff)  

 

Model_1 <- R~β+ factor(month)+s(Y)+s(year)+s(depth)+s(pho) +s(ph)+ s(sal)+ s(dox.bot)+ s(TMP_bot)  

Model_2 <- R~β+ factor(month)+s(Y)+s(year)+s(depth)+s(pho) +s(ph)+ s(sal)+ s(dox.bot)  

Model_3 <- R~β+ factor(month)+s(Y)+s(year)+s(depth)+s(pho) +s(ph)+ s(sal)  

Model_4 <- R~β+ factor(month)+s(Y)+s(year)+s(depth)+s(pho) +s(ph)  

Model_5 <- R~β+ factor(month)+s(Y)+s(year)+s(depth)+s(pho)  

Model_6 <- R~β+ factor(month)+s(Y)+s(year)+s(depth)  

  

Where the response variable is R =  kg/km2 . The box-plot of Tweedie model is reported 

in the main text.  

 

Table S2.6: Tuckey test Tweedie for common sole  

Tweedie Mod 0 Mod 1 Mod 2 Mod 3 Mod 4 Mod 5 Mod 6 

AIC a a a a a a a 

Dev.Expl. a a a a a a a 

R2 a a a a a a a 

  

2.3. Splines, summary and residuals of the best model (model 0)  
In the following, the results of the Tweedie-GAM applied to common sole (splines, 

residuals and summary)   
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Figure S2.6: spline for the best model (model 0) of tweedie for common sole   

  

Table S2.7: Summary tables Tweedie, mod 0, for common sole  

  Estimate  Std.Error  t.value  p.value  

Intercept  6.09  0.21  28.61  <2e-16***  

Factor(month) 2  -0.46  0.39  -1.15  0.24  

Factor(month) 10  0.006  0.24  0.02  0.97  

Factor(month) 11  0.07  0.22  0.32  0.74  

Factor(month) 12  0.08  0.22  0.38  0.70  

Covariates  Edf  Ref.df  F  p.value  

Y  6.64  9  25.55  <2e-16***  

Year  3.48  9  13.74  <2e-16***  

Depth  7.25  9  34.92  <2e-16***  

Pho  2.09  9  1.24  0.001**  

Ph  0.80  9  0.64  0.005  

Sal  1.70  9  0.64  0.01**  

Dox_bot  0.59  9  0.21  0.06  

Tmp_bot  0.02  9  0.004  0.19  

Eff  0.0002  9  0.00  0.70  

 

R2  0.56  

Dev.expl  62.6%  

-REML  3783.4  

Diagnostic     
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Figure S2.7: residual derived from model 0, tweedie, for common sole  

    

3. Mantis Shrimp  

  

3.1. Identification of the most appropriate approach  
  

TableS2.8: performance statistics for the different approaches tested in both the model with the complete set 

of relevant oceanographic variables selected by VIF and the model with minimal geopositional variables.  

  

With all additional variables  
(model 0)  
  

Minimal geopositional  
variables (model 6)  
  

  MAE  R2  MAE  R2  

DELTA-GAM  185.1325  0.328499  208.8765  0.209921  

Tweedie  192.2052  0.436241  215.6992  0.355822  

Gaussian  186.4174  0.319229  206.8905  0.229974  

  

  

The most appropriate approach among those GAMS tested was thus identified in the 

Delta-GAM approach.  

  

  

3.2. Best models identification and Tukey test  
Several delta-GAM models with different explanatory variables were analysed in the 

training and testing procedure.   

Model_0 <- R~β+ factor(month)+s(Y)+s(year)+s(depth)+ s(sal)+s(TMP_bot) 

+s(poc)+s(ph)+s(dox.bot)+s(eff)  

Model_1 <- R~β+ factor(month)+s(Y)+s(year)+s(depth)+ s(sal)+s(TMP_bot) +s(poc)+s(ph)+s(dox.bot)  

Model_2 <- R~β+ factor(month)+s(Y)+s(year)+s(depth)+ s(sal)+s(TMP_bot) +s(poc) +s(ph)  

Model_3 <- R~β+ factor(month)+s(Y)+s(year)+s(depth)+ s(sal)+s(TMP_bot) +s(poc)  

Model_4 <- R~β+ factor(month)+s(Y)+s(year)+s(depth)+ s(sal) +s(TMP_bot)  
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Model_5 <- - R~β+ factor(month)+s(Y)+s(year)+s(depth)+ s(sal)  

Model_6 <- R~β+ factor(month)+s(Y)+s(year)+s(depth)  

  

Where the response variable R = log kg/km2 (delta-gaussian) or presence/absence (delta-

binomial) in the DELTA model. Since the Gaussian part of the Delta-GAM is reported in 

the main text, here we reported only results for Delta-binomial on presence/absence data. 

    

  

 
Figure S2.8: box plot from training and test analysis of delta-binomial model for mantis shrimp.  

Table S2.9: Tuckey test delta binomial and delta gaussian for mantis shrimp  

delta-binomial mod 0 mod 1 mod 2 mod 3 mod 4 mod 5 

aic a B c d d f 

dev.expl. a B c c d f 

r2 a ab bc cd cd d 

delta gaussian       

aic a B c d d f 

dev.expl. a B c c d f 

r2 a ab bc cd cd d 

 

3.3. Splines, summary and residuals of the best model (model 0)  
In the following, the results of the Delta-GAM applied to mantis shrimp (splines, residuals 

and summary): results for Delta-binomial.  
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Figure S2.9: spline for the best model (model 0) of delta-binomial approach for mantis shrimp.  

Table S2.10: Summary tables delta binomial, mod 0, for mantis shrimp  

 

Intercept  1.39  1.55  0.89  0.37  

Factor(month) 2  -0.99  2.023e+07  0.00  1.00  

Factor(month) 10  -3.34  1.75  -1.90  0.05  

Factor(month) 11  -0.60  1.68  -0.35  0.72  

Factor(month) 12  0.52  1.60  0.32  0.74  

Covariates  Edf  Ref.df  Chi.sq  p.value  

Y  1.88  9  29.46  6.38e-09***  

Year  7.60  9  25.72  0.0003***  

Depth  5.80  9  33.52  5.75e-07***  

Sal   3.63e-06  9  0.00  0.55  

TMP_bot  0.58  9  2.61  0.02*  

Poc  6.76  9  49.91  3.90e-08***  

pH  7.79e-05  9  0.00  0.26  

Dox_bot  4.39  9  13.26  0.004**  

Eff  3.82  9  18.23  0.0003***  

  
R2  0.62  

Dev.expl  58.8%  

UBRE  -0.32  

  

  Estimate   Std.Error   z .value   p.value   

        

Diagnostic     
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Figure S2.10: residual derived from model 0, delta binomial, for mantis shrimp   

 In the following, the results of the Delta-GAM applied to mantis shrimp (splines, residuals 

and summary): results for Delta-gaussian.  

 

  

 

 
    Figure S2.11: spline for the best model (model 0) of delta-gaussian approach for mantis shrimp   
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Table S2.11: Summary tables Delta-gaussian, mod 0 for mantis shrimp  

  Estimate  Std.Error  t.value  p.value  

Intercept  3.62  1.30  2.78  0.005**  

Factor(month) 10  0.66  1.76  0.37  0.70  

Factor(month) 11  1.20  1.32  0.91  0.36  

Factor(month) 12  2.11  1.26  1.66  0.09  

Covariates  Edf  Ref.df  F  p.value  

Y  8.34  9  11.65  <2e-16***  

Year  6.11  9  1.75  0.009**  

Depth  7.18  9  5.73  2.95e-09***  

Sal   3.60  9  2.21  6.46e-05***  

TMP_bot  0.82  9  1.58  7.98e-06***  

Poc  3.19  9  1.61  0.0008***  

pH  0.54  9  0.22  0.04*  

Dox_bot  0.64  9  0.16  0.07  

Eff  0.91  9  0.20  0.12  

Diagnostic    

 

R2  0.44  

Dev.expl  48.5%  

GCV  1.58  

 
  

    

  
Figure S2.12: residual derived from model 0, delta gaussian, for mantis shrimp   
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4. Common Cuttlefish  

  

4.1. Identification of the most appropriate approach  
  

Table S2.12: performance statistics for the different approaches tested in both the model with the complete set of 

relevant oceanographic variables selected by VIF and the model with minimal geopositional variables.  

  

  

With all additional variables  
(model 0)  
  

Minimal geopositional  
variables (model 6)  
  

  MAE  R2  MAE  R2  

DELTA-GAM  232.8418  0.55711464  234.9617  0.550559  

Tweedie  283.4962  0.4186344  289.2299  0.384666  

Gaussian  236.7232  0.56298136  238.3843  0.556386  

  

The most appropriate approach among those GAMS tested was thus identified in the 

Delta-GAM approach.  

  

4.2. Best models identification and Tukey test  
Several delta-GAM models with different explanatory variables were analysed in the 

training and testing procedure.   

Model_0 <- " R~β  

factor(month)+s(X)+s(Y)+s(year)+s(depth)+s(TMP_bot)+s(dox.bot)+s(nit)+s(pho)+s(eff)"  

Model_1 <- " R~β factor(month)+s(X)+s(Y)+s(year)+s(depth)+s(TMP_bot)+s(dox.bot)+s(nit)+s(pho)"  

Model_2 <- " R~β factor(month)+s(X)+s(Y)+s(year)+s(depth)+s(TMP_bot)+s(dox.bot)+s(nit)"  

Model_3 <- " R~β factor(month)+s(X)+s(Y)+s(year)+s(depth)+s(TMP_bot)+ s(dox.bot)+"  

Model_4 <- " R~β 

factor(month)+s(X)+s(Y)+s(year)+s(depth)+s(TMP_bot)"  Model_5 <- 

" R~β factor(month)+s(X)+s(Y)+s(year)+s(depth)"  

  

Where the response variable R = log kg/km2 (delta-gaussian) or presence/absence (delta-

binomial) in the DELTA model. Since the Gaussian part of the Delta-GAM is reported in 

the main text, here we reported only results for Delta-binomial on presence/absence data 

(Figure S4.1)  
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FigureS2.13: box plot from training and test analysis of delta-binomial model for common cuttlefish.  

Table S2.13: Tuckey test delta-binomial and delta-gaussian for common cuttlefish   

delta-binomial mod 0 mod 1 mod 2 mod 3 mod 4 mod 5 

aic a a a a ab b 

dev.expl. ab a ab abc c c 

r2 a a a a a a 

delta gaussian       

aic a a a a a a 

dev.expl. ab a ab abc bc c 

r2 a a a a a a 

 

4.3. Splines, summary, and residuals of the best model (model 0)  
In the following, the results of the Delta-GAM applied to common cuttlefish (splines, 

residuals, and summary): results for Delta-binomial.  
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FigureS2.14: spline for the best model (model 0) of delta-binomial approach for common cuttlefish.   

  

Table S2.14: Summary tables Delta-binomial mod 0 common cuttlefish  

  Estimate  Std.Error  z.value  p.value  

Intercept  -0.45  1.26  -0.36  0.71  

Factor (month) 2  4.13  1.50  2.75  0.005**  

Factor(month) 10  3.27  1.49  2.19  0.02*  

Factor(month) 11  1.81  1.38  1.31  0.18  

Factor(month) 12  2.22  1.24  1.78  0.07  

Covariates  Edf  Ref.df  Chi.sq  p.value  

X  7.4  9  32.44  1.09e-05***  

Y  8.16  9  81.48  3.87e-16  

Year  5.86  9  13.84  0.019*  

Depth  7.00  9  84.90  <2e-16***  

TMP_bot  1.85  9  7.49  0.007**  

Dox_bot  1.20e-05  9  0.00  0.57  

Nit   5.96e-03  9  0.006  0.28  

Pho  4.78  9  9.51  0.05*  

Eff  6.75e-01  9  1.51  0.12  

Diagnostic    

 

R2  0.59  

Dev.expl  55.8%  

-UBRE  -0.33  
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Figure S2.15: residual derived from model 0, delta binomial, for common cuttlefish.  

In the following, the results of the Delta-GAM applied to common cuttlefish (splines, 

residuals and summary): results for Delta-gaussian.  

  

  
Figure S2.16: spline for the best model (model 0) of delta-gaussian approach for common cuttlefish.   

  

Table S2.15: Summary tables Delta-gaussian, mod 0, for common cuttlefish.  

  Estimate  Std.Error  z.value  p.value  

Intercept  23.20  4.63  5.01  7.7e-07***  

Factor (month) 2  5.00  4.94  1.01  0.31  
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Factor(month) 10  -5.28  4.96  -1.06  0.28  

Factor(month) 11  -2.51  4.89  -0.51  0.60  

Factor(month) 12  0.09  4.48  0.02  0.98  

Covariates  Edf  Ref.df  F  p.value  

X  7.26  9  8.28  2.09e-14***  

Y  8.27  9  23.14  <2e-16***  

Year  7.05  9  2.61  0.0009***  

Depth  4.86  9  2.63  2.41e-05***  

TMP_bot  9.80e-01  9  0.71  0.004**  

Dox_bot  7.12  9  1.87  0.01*  

Nit   3.61e-01  9  0.005  0.70  

Pho  3.20e-05  9  0.00  0.39  

Eff  3.65  9  0.61  0.17  

Diagnostic    

 

R2  0.52  

Dev.expl  56.6%  

GCV  82.9  

 
  

  
Figure S2.17: residual derived from model 0, delta gaussian, for common cuttlefish.  
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5. Red mullet  

5.1. Identification of the most appropriate approach  
  

Table S2.16: performance statistics for the different approaches tested in both the model with the complete set of 

relevant oceanographic variables selected by VIF and the model with minimal geopositional variables.  

  

  

With all additional variables  
(model 0)  
  

Minimal geopositional 
variables (model 6)  
  

  MAE  R2  MAE  R2  

DELTA-GAM  36.774  0.118  39.016  0.108  

Tweedie  40.373  0.242  45.546  0.155  

Gaussian  36.987  0.119  39.275  0.109  
The most appropriate approach among those GAMS tested was thus identified in the 

Gaussian approach.  

5.2. Best models identification and Tukey test  
  

Several Gaussian models with different explanatory variables were analysed in the training 

and testing procedure  

Model_0 <- " R~β  factor(month)+s(X)+s(Y)+s(year)+s(depth)+s(CHL)+s(ph)+s(TMP_sst) 

+s(nit)+s(dox.bot) +s(sal)+s(eff)"  

Model_1 <- " R~β  factor(month)+s(X)+s(Y)+s(year)+s(depth)+s(CHL)+s(ph)+s(TMP_ sst) 

+s(nit)+s(dox.bot) +s(sal)”  

Model_2 <- " R~β  factor(month)+s(X)+s(Y)+s(year)+s(depth)+s(CHL)+s(ph)+s(TMP_ sst) 

+s(nit)+s(dox.bot)"  

Model_3 <- " R~β  factor(month)+s(X)+s(Y)+s(year)+s(depth)+s(CHL)+s(ph)+s(TMP_ sst) +s(nit)"  

Model_4 <- " R~β  factor(month)+s(X)+s(Y)+s(year)+s(depth)+s(CHL)+s(ph)+s(TMP_ sst)”  

Model_5 <- " R~β  factor(month)+s(X)+s(Y)+s(year)+s(depth)+s(CHL)+s(ph)”  

Model_6 <- " R~β  factor(month)+s(X)+s(Y)+s(year)+s(depth)+s(CHL)  

Model_7 <-  " R~β  factor(month)+s(X)+s(Y)+s(year)+s(depth) "  

  

Where the response variable is R = log kg/km2 in the Gaussian model. The Gaussian box-

plot is reported in the main text.  

Table S2.17: Tuckey test Gaussian for red mullet  

Tweedie Mod 0 Mod 1 Mod 2 Mod 3 Mod 4 Mod 5 

AIC ef e d c b a 

Dev.Expl. b c d e f a 

R2 a a ab ab ab b 

 

5.3. Splines, summary and residuals of the best model (model 0)  
  

In the following, the results of the Delta-GAM applied to red mullet (splines, residuals 

and summary) for gaussian model.  
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Figure S2.18: spline for the best model (model 0) of gaussian approach for red mullet.   

  

  
FigureS2.19: residual derived from model 0, gaussian, for red mullet.  

 

Table S2.18: Summary tables Gaussian mod 0, for red mullet.  

  Estimate  Std.Error  t.value  p.value  

Intercept  3.11  0.30  10.32  <2e-16***  

Factor (month) 11  -0.78  0.41  -1.91  0.055 .  
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Factor(month) 5  -0.79  0.35  -2.22  0.02*  

Factor(month) 6  -1.01  0.33  -3.05  0.002**  

Factor(month) 7  -1.26  0.36  -3.50  0.0004***  

Factor(month) 8  -1.02  0.35  -2.28  0.0045**  

Factor(month) 9  -0.37  0.34  -1.10  0.27  

Covariates  Edf  Ref.df  F  p.value  

Y  8.66  9  109.55  <2e-16***  

X  8.33  9  35.73  <2e-16***  

Year  7.01  9  16.48  <2e-16***  

Depth  8.55  9  77.92  <2e-16***  

CHl  7.49  9  19.38  <2e-16***  

pH  7.38  9  17.46  <2e-16***  

TMP_sst  7.29  9  11.63  <2e-16***  

Nit   8.66  9  7.53  2.75e-12***  

Dox_bot  1.83  9  4.85  1.39e-13***  

sal  0.96  9  0.24  0.08  

Eff  7.22  9  27.17  <2e-16***  

Diagnostic    

 

R2  0.64  

Dev.expl  65.4%  

GCV  1.41  
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Chapter 4 Supplementary material  
 

 

Table S4.1: Best model and choosing covariates for each approach and species, for adult and juvenile 

 

Merluccius 

merluccius 

Best model adult Best model juvenile 

Best model 

Delta-binomial 

PA ~ s(X.utm, Y.utm) + s(year) + s(depth) +     s(TMP_bot) 

+ s(dox.bot) +  s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

PA ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, 

depth) + s(dox.bot) + te(TMP_sst, depth) + 

s(eff_OTB) + s(sal) +  s(poc) + s(nit) + s(pho) 

Best model 

Delta-gaussian 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, depth) 

+ s(dox.bot) + s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + 

s(depth) +s(TMP_bot) + s(TMP_sst) + 

s(dox.bot) + s(eff_OTB) + s(sal) 

Best model 

Gaussian 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + s(depth) +     

s(TMP_bot) + s(dox.bot)+ s(eff_OTB) + s(sal) + s(poc) + 

s(nit) + s(pho).  

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + 

s(depth) + s(TMP_bot) + s(TMP_sst) 

+s(dox.bot) + s(eff_OTB) + s(sal) 

Best model 

Tweedie 

N_km2 ~ s(X.utm, Y.utm) + s(year) + s(depth) +  s(TMP_bot) 

+ s(dox.bot) +  s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

N_km2 ~ s(X.utm, Y.utm) + s(year) + s(depth) 

+s(TMP_bot) + s(TMP_sst) +  s(dox.bot) + 

s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

Best model RF log.N_km2 ~ (X.utm) + (Y.utm) + (year) + (depth) + 

(TMP_bot) + (eff_OTB) 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + 

(depth) + (TMP_bot) + (TMP_sst) + (eff_OTB) 

Best model 

GBM  

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + (TMP_bot) + 

(depth) + (dox.bot) + (eff_OTB) + (sal) + (poc) + (nit) + 

(pho) 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + 

(TMP_bot) + (TMP_sst) + (depth) + (dox.bot) + 

(eff_OTB) + (sal) + (poc) + (nit) + (pho) 

   

Mullus barbatus    

Best model 

Delta-binomial 

PA ~ s(X.utm, Y.utm) + s(year) + te(TMP_sst, depth) + 

te(CHL,  

    TMP_sst) + s(eff_OTB) + s(sal) + s(nit)+s(pho) 

PA ~ s(X.utm, Y.utm) + s(year) + te(TMP_sst, 

depth) + te(CHL,  

    TMP_sst) + s(eff_OTB) + s(sal) + s(nit) + 

s(pho) 

Best model 

Delta-gaussian 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + s(depth) + 

s(TMP_sst)+ s(CHL) + s(eff_OTB) + s(sal) + s(nit) + s(pho) 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + 

s(depth) + s(TMP_sst) + s(CHL) + s(eff_OTB) 

+ s(sal) +   s(nit) + s(pho) 

Best model 

Gaussian 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + te(TMP_sst, depth) 

+  

    te(CHL, TMP_sst) + s(eff_OTB) + s(sal) + s(nit) +  s(pho) 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + 

te(TMP_sst, depth) +  

    te(CHL, TMP_sst) + s(eff_OTB) + s(sal) + 

s(nit) +  s(pho) 

Best model 

Tweedie 

N_km2 ~ s(X.utm, Y.utm) + s(year) + te(TMP_sst, depth) + 

te(CHL,TMP_sst) + s(eff_OTB) + s(sal) + s(nit) + s(pho) 

N_km2 ~ s(X.utm, Y.utm) + s(year) + 

te(TMP_sst, depth) + te(CHL,  

    TMP_sst) + s(eff_OTB) + s(sal) + s(nit) + 

s(pho) 

Best model RF log.N_km2 ~ (X.utm) + (Y.utm) + (year) + (depth) + (CHL) 

+ (eff_OTB) 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + 

(depth) + (TMP_sst) +    (eff_OTB) 
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Best model 

GBM  

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + (depth) + 

(TMP_sst) + (CHL) + (eff_OTB) + (sal) + (nit) + (pho) 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + 

(depth) + (TMP_sst) +     (CHL) + (eff_OTB) + 

(sal) + (nit) + (pho) 

   

Nephrops 

norvegicus  

  

Best model 

Delta-binomial 

PA ~ s(X.utm, Y.utm) + s(year) + s(depth) + s(TMP_bot) + 

s(dox.bot) + s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

 

PA ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, 

depth) + s(dox.bot) + s(eff_OTB) +  s(sal) + 

s(poc) + s(nit) + s(pho) 

Best model 

Delta-gaussian 

log.N_km2 ~ s(X.utm, Y.utm) + s(year)+te(TMP_bot, depth) 

+   s(dox.bot) + s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + 

s(depth) +  s(TMP_bot) + s(dox.bot) + 

s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

 

Best model 

Gaussian 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, depth) 

+ s(dox.bot) + s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + 

te(TMP_bot, depth) +  

    s(dox.bot) + s(eff_OTB) + s(sal) + s(poc) + 

s(nit) + s(pho) 

Best model 

Tweedie 

N_km2 ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, depth) + 

s(dox.bot) + s(eff_OTB) +s(sal) + s(poc) + s(nit) + s(pho) 

N_km2 ~ s(X.utm, Y.utm) + s(year) + s(depth) 

+s(TMP_bot) + s(dox.bot) +  

    s(eff_OTB) + s(sal) 

Best model RF log.N_km2 ~ (X.utm) + (Y.utm) + (year) + (depth) + 

(TMP_bot) +     (eff_OTB) 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + 

(depth) + (TMP_bot) +  

    (eff_OTB) 

Best model 

GBM  

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + (TMP_bot) + 

(depth) +(dox.bot) + (eff_OTB) + (sal) + (poc) + (nit) + (pho) 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + 

(TMP_bot) + (depth) +  

    (dox.bot) + (eff_OTB) + (sal) + (poc) + (nit) 

+ (pho) 

   

Lophius budegassa    

Best model 

Delta-binomial 

PA ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, depth) + 

s(dox.bot) + s(eff_OTB) +  s(sal) + s(poc) + s(nit) + s(pho) 

PA ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, 

depth) + s(dox.bot) + s(eff_OTB) + s(sal) + 

s(poc) + s(nit) + s(pho) 

Best model 

Delta-gaussian 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + s(depth) + 

s(TMP_bot) + s(dox.bot) +  

    s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + 

s(depth) + s(TMP_bot) + s(dox.bot) + 

s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

Best model 

Gaussian 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + s(depth) +  

s(TMP_bot) + s(dox.bot) +  

    s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + 

s(depth) + s(TMP_bot) + s(dox.bot) +  

s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

Best model 

Tweedie 

N_km2 ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, depth) + 

s(dox.bot) + s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

N_km2 ~ s(X.utm, Y.utm) + s(year) + 

te(TMP_bot, depth) + s(dox.bot) + s(eff_OTB) 

+  s(sal) + s(poc) + s(nit) + s(pho) 

Best model RF log.N_km2 ~ (X.utm) + (Y.utm) + (year) + (depth) + 

(TMP_bot) +  (eff_OTB) 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + 

(depth) + (TMP_bot) +     (eff_OTB) 

Best model 

GBM  

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + (depth) + 

(TMP_bot) +(dox.bot) + (eff_OTB) + (sal) + (poc) + (nit) + 

(pho) 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + 

(depth) + (TMP_bot) +     (dox.bot) + (eff_OTB) 

+ (sal) 
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Parapenaeus 

longirostris  

  

Best model 

Delta-binomial 

PA ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, depth) + 

s(dox.bot) + s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

PA ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, 

depth) + s(dox.bot) + s(eff_OTB) + s(sal) + 

s(poc) + s(nit) + s(pho) 

Best model 

Delta-gaussian 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + s(depth) + 

s(TMP_bot) + s(dox.bot) +  

    s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + 

s(depth) + s(TMP_bot) + s(dox.bot) + 

s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

Best model 

Gaussian 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + s(depth) +  

s(TMP_bot) + s(dox.bot) +  

    s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + 

s(depth) +  s(TMP_bot) + s(dox.bot) + 

s(eff_OTB) + s(sal) 

Best model 

Tweedie 

N_km2 ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, depth) + 

s(dox.bot) + s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

N_km2 ~ s(X.utm, Y.utm) + s(year) + 

te(TMP_bot, depth) + s(dox.bot) + s(eff_OTB) 

+ s(sal) + s(poc) + s(nit) + s(pho) 

Best model RF log.N_km2 ~ (X.utm) + (Y.utm) + (year) + (depth) + 

(TMP_bot) + (eff_OTB) 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + 

(depth) + (TMP_bot) +  

    (eff_OTB) 

Best model 

GBM  

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + (depth) + 

(TMP_bot) +(dox.bot) + (eff_OTB) + (sal) + (poc) + (nit) + 

(pho) 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + 

(TMP_bot) + (depth) + (dox.bot) + (eff_OTB) + 

(sal) + (poc) + (nit) + (pho) 

Illex coindetii    

Best model 

Delta-binomial 

PA ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, depth) + 

s(dox.bot) + s(eff_OTB) +s(sal) + s(poc) + s(nit) + s(pho) 

PA ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, 

depth) + s(dox.bot) + s(eff_OTB) +s(sal) + 

s(poc) + s(nit) + s(pho) 

Best model 

Delta-gaussian 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + 

te(TMP_bot,depth)+ s(dox.bot)+ s(eff_OTB) + s(sal) + 

s(poc) + s(nit) + s(pho) 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + 

s(depth) +  s(TMP_bot) + s(dox.bot) +  

s(eff_OTB) + s(sal) + s(poc) + s(nit ) + s(pho) 

Best model 

Gaussian 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + s(depth) +    

s(TMP_bot) + s(dox.bot) +  

    s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + 

s(depth) +  s(TMP_bot) + s(dox.bot) +  

s(eff_OTB) + s(sal) + s(poc) + s(nit ) + s(pho) 

Best model 

Tweedie 

N_km2 ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, depth) + 

s(dox.bot) + s(eff_OTB) +  s(sal) + s(poc) + s(nit) + s(pho) 

N_km2 ~ s(X.utm, Y.utm) + s(year) + 

te(TMP_bot, depth) + s(dox.bot) + s(eff_OTB) 

+  s(sal) + s(poc) + s(nit) + s(pho) 

Best model RF log.N_km2 ~ (X.utm) + (Y.utm) + (year) + (depth) + 

(TMP_bot) +     (eff_OTB) 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + 

(depth) + (TMP_bot) +     (eff_OTB) 

Best model 

GBM 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + (depth) + 

(TMP_bot) + (dox.bot) + (eff_OTB) + (sal) + (poc) + (nit) + 

(pho) 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + 

(depth) + (TMP_bot) +     (dox.bot) + (eff_OTB) 

+ (sal) 

Trachurus 

trachurus 

  

Best model 

Delta-binomial 

PA ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, depth) + 

s(dox.bot) + s(eff_OTB) +s(sal) + s(poc) + s(nit) + s(pho) 

PA ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, 

depth) + s(dox.bot) + s(eff_OTB) +s(sal) + 

s(poc) + s(nit) + s(pho) 



Chapter 4 Supplementary material                                                                                
Material and info 

 

162 

Best model 

Delta-gaussian 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, depth) 

+   s(dox.bot) + s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + 

s(depth) + s(TMP_bot) + s(dox.bot) + 

s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

Best model 

Gaussian 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + s(depth) + 

s(TMP_bot)+ s(dox.bot) +  

    s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + 

s(depth) + s(TMP_bot) + s(dox.bot) + 

s(eff_OTB) + s(sal) + s(poc) + s(nit) + s(pho) 

Best model 

Tweedie 

N_km2 ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, depth) + 

s(dox.bot) + s(eff_OTB) +s(sal) + s(poc) + s(nit) + s(pho) 

N_km2 ~ s(X.utm, Y.utm) + s(year) + 

te(TMP_bot, depth) + s(dox.bot) + s(eff_OTB) 

+s(sal) + s(poc) + s(nit) + s(pho) 

Best model RF log.N_km2 ~ (X.utm) + (Y.utm) + (year) + (depth) + 

(TMP_bot) +  (eff_OTB) 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + 

(depth) + (TMP_bot) +  (eff_OTB) 

Best model 

GBM 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + 

(depth)+(TMP_bot)+(dox.bot)+ (eff_OTB) + (sal) + (poc) + 

(nit) + (pho) 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + 

(depth) + (TMP_bot) +     (dox.bot) + (eff_OTB) 

+ (sal) 

Solea solea    

Best model 

Delta-binomial 

PA ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, depth) + 

s(dox.bot) + s(eff_TBB) + s(sal) + s(poc) + s(nit) + s(pho) + 

s(ph) + s(grain) 

PA ~ s(X.utm, Y.utm) + s(year) + s(depth) + 

s(TMP_bot) + s(dox.bot) +  

s(eff_TBB) + s(sal) + s(poc) + s(nit) + s(pho) + 

s(ph) +   s(grain) 

Best model 

Delta-gaussian 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, depth) 

+  s(dox.bot) + s(eff_TBB) + s(sal) + s(poc) + s(nit) + s(pho) 

+ s(ph) + s(grain) 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + 

te(TMP_bot, depth) +  

    s(dox.bot) + s(eff_TBB) + s(sal) + s(poc) + 

s(nit) + s(pho) + s(ph) + s(grain) 

Best model 

Gaussian 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, depth) 

+  s(dox.bot) + s(eff_TBB) + s(sal) + s(poc) + s(nit) + s(pho) 

+ s(ph) + s(grain) 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + 

s(depth) +   s(TMP_bot) + s(dox.bot) +   

s(eff_TBB) + s(sal) + s(poc) + s(nit) + s(pho) + 

s(ph) + s(grain) 

Best model 

Tweedie 

N_km2 ~ s(X.utm, Y.utm) + s(year) + s(depth) +  

s(TMP_bot) + s(dox.bot) + s(eff_TBB) + s(sal) + s(poc) + 

s(nit) + s(pho) + s(ph) +   s(grain) 

N_km2 ~ s(X.utm, Y.utm) + s(year) + s(depth) + 

s(TMP_bot) + s(dox.bot) +  

    s(eff_TBB) + s(sal) + s(poc) + s(nit) + s(pho) 

+ s(ph) +  s(grain) 

Best model RF log.N_km2 ~ (X.utm) + (Y.utm) + (year) + (depth) + 

(TMP_bot) + (dox.bot) + (eff_TBB) + (sal) + (grain) 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + 

(depth) + (TMP_bot) +     (dox.bot) + (eff_TBB) 

+ (sal) + (poc) + (nit) + (pho) + (ph) +    (grain) 

Best model 

GBM  

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + (depth) + 

(TMP_bot) +(dox.bot) + (eff_TBB) + (sal) + (poc) + (nit) + 

(pho) + (ph) +   (grain) 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + 

(TMP_bot) + (depth) +     (dox.bot) + (eff_TBB) 

+ (sal) + (poc) + (nit) + (pho) + (ph) +     (grain) 

Squilla mantis     

Best model 

Delta-binomial 

PA ~ s(X.utm, Y.utm) + s(year) + s(depth) + s(dox.bot) + 

s(eff_TBB) + s(grain) 

PA ~ s(X.utm, Y.utm) + s(year) + s(depth) + 

s(TMP_bot) + s(dox.bot) +  

    s(eff_TBB) + s(sal) + s(poc) + s(ph) +  s(grain) 

Best model 

Delta-gaussian 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + te(TMP_bot, depth) 

+  s(dox.bot) + s(eff_TBB) + s(sal) + s(poc) + s(nit) + s(pho) 

+ s(ph) + s(grain) 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + 

te(TMP_bot, depth) +  

    s(dox.bot) + s(eff_TBB) + s(sal) + s(poc) + 

s(nit) + s(pho) + s(ph) + s(grain) 
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Best model 

Gaussian 

log.N_km2 ~ s(X.utm, Y.utm) + s(year)s(depth) + 

s(TMP_bot) + s(eff_TBB) + s(grain) 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + 

s(depth) +   s(TMP_bot) + s(dox.bot) +  

s(eff_TBB) + s(sal) + s(poc) + s(ph) + s(grain) 

Best model 

Tweedie 

N_km2 ~ s(X.utm, Y.utm) + s(year) + s(depth) + s(TMP_bot) 

+ s(dox.bot) +  

    s(eff_TBB) + s(sal) + s(poc) + s(nit) + s(pho) + s(ph) +  

s(grain) 

N_km2 ~ s(X.utm, Y.utm) + s(year) + s(depth) 

+s(TMP_bot) + s(dox.bot) +     s(eff_TBB) + 

s(sal) + s(poc) + s(nit) + s(pho) + s(ph) + s(grain) 

Best model RF log.N_km2 ~ (X.utm) + (Y.utm) + (year)+(depth) + 

(TMP_bot) +     (eff_TBB) + (grain) 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + 

(depth) + (TMP_bot) +  

    (dox.bot) + (eff_TBB) + (sal) + (grain) 

Best model 

GBM  

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + (depth) + 

(TMP_bot) + (dox.bot) + (eff_TBB) + (sal) + (poc) + (ph) + 

(grain) 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + 

(depth) + (TMP_bot) +  

    (dox.bot) + (eff_TBB) + (sal) + (poc) + (ph) + 

(grain) 

 

Sepia oficinalis    

Best model 

Delta-binomial 

PA ~ s(X.utm, Y.utm) + s(year) + s(depth) +  s(TMP_bot) + 

s(dox.bot) +  s(eff_TBB) + s(sal) + s(poc) + s(nit) + s(pho) + 

s(ph)+    s(grain) 

PA ~ s(X.utm, Y.utm) + s(year) + s(depth) + 

s(TMP_bot) + s(dox.bot) +  

    s(eff_TBB) + s(sal) + s(poc) + s(ph) +   s(grain) 

Best model 

Delta-gaussian 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + s(depth) + 

s(TMP_bot) + s(dox.bot) +  

    s(eff_TBB) + s(sal) + s(poc)+ s(ph) +  

    s(grain) 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + 

te(TMP_bot, depth) +  

    s(dox.bot) + s(eff_TBB) + s(sal) + s(poc) + 

s(nit) + s(pho) + s(ph) + s(grain) 

Best model 

Gaussian 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + s(depth) +  

s(TMP_bot) + s(dox.bot) +  

    s(eff_TBB) + s(sal) + s(poc) + s(nit) s(pho) + s(ph) +  

s(grain) 

log.N_km2 ~ s(X.utm, Y.utm) + s(year) + 

s(depth) +  

    s(TMP_bot) + s(dox.bot) +  

    s(eff_TBB) + s(sal) + s(poc) + s(ph) +  s(grain) 

Best model 

Tweedie 

N_km2 ~ s(X.utm, Y.utm) + s(year) + s(depth) +    

s(TMP_bot) + s(dox.bot) +  

    s(eff_TBB) + s(sal) + s(poc) + s(nit) 

  + s(pho) + s(ph) + s(grain) 

N_km2 ~ s(X.utm, Y.utm) + s(year) + s(depth) + 

s(TMP_bot) + s(dox.bot) +  

    s(eff_TBB) + s(sal) + s(grain) 

Best model RF log.N_km2 ~ (X.utm) + (Y.utm) + (year) + (depth) + 

(TMP_bot) +  

    (dox.bot) + (eff_TBB) + (sal) + (poc) + (nit) + (pho) + (ph) 

+  

    (grain) 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + 

(depth) + (TMP_bot) +     (dox.bot) + (eff_TBB) 

+ (sal) + (poc) + (ph) + (grain) 

Best model 

GBM  

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + (depth) + 

(TMP_bot) + (dox.bot) + (eff_TBB) + (sal) + (grain) 

log.N_km2 ~ (X.utm) + (Y.utm) + (year) + 

(depth) + (TMP_bot) +     (dox.bot) + (eff_TBB) 

+ (sal) + (poc) + (nit) + (pho) + (ph) +   (grain) 
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Table S4.2: resume table for each species, approach and source data (A= MEDITS, B=SOLEMON) for adult 

and juvenile of the best model spatio-temporal + environmental and spatio-temporal only.  

A, 
ADULTS 

Species 

Metrics 

& 

Model ST ST + ENV Species 

Metrics 

& 

Model ST ST + ENV 

Merluccius 

merluccius AIC   

Mullus 

barbatus  AIC   

 Delta 2470/5783.98 

2279.57/5700.5

0  Delta 2144.16/4747.96 1996.27/4711.30 

 Gaus 15217.27 14808.36  Gaus 14960.85 14674.75 

 TW 32841.32 32448.76  TW 26051.88 25786.97 

 RF X X  RF X X 

 GBM X X  GBM X X 

 

Dev.ex

pl.    

Dev.ex

pl.   

 Delta 55% 58.25%  Delta 51.75% 54.7% 

 Gaus 60.5% 64.8%  Gaus 61.4% 64.6% 

 TW 50.2% 55.8%  TW 60.8% 65.6% 

 RF 82.12% 83.19%  RF 79.7% 81.05% 

 GBM 74% 77%  GBM 62.00% 68.00% 

 

MAE 

validati

on    

MAE 

validati

on   

 Delta 117.43 112.67  Delta 159.76 156.37 

 Gaus 167.27 160.84  Gaus 208.24 193.97 

 TW 144.70 135.42  TW 202.17 188.48 

 RF 86.44 59.51  RF 132.41 96.28 

  GBM 153.61 142.86   GBM 208.18 187.68 

Norway 

lobster AIC   

Lophius 

budegas

sa AIC   

 Delta 2196.14/1854.38 

2084.90/1827.7

1  Delta 1603.81/231.77 1568.71/225.65 

 Gaus 12743.48 12566.76  Gaus 8089.52 8022.34 

 TW 10692.52 10604.12  TW 5602.34 5609.86 

 RF X X  RF X X 

 GBM X X  GBM X X 

 

Dev.ex

pl.    

Dev.ex

pl.   

 Delta 33.18% 37.1%  Delta 38.8% 40.5% 

 Gaus 37.2 40.7%  Gaus 19% 21.2% 

 TW 56.2% 60.8%  TW 37.1% 40.8% 

 RF 56.9% 58.29%  RF 25.02% 25.02% 

 GBM 49.7% 55.2%  GBM 28.1% 34.5% 

 

MAE 

validati

on    

MAE 

validati

on   

 Delta 17.62 17.14  Delta 3.39 3.31 

 Gaus 17.47 17.21  Gaus 3.39 3.37 

 TW 20.06 19.15  TW 3.35 3.26 

 RF 13.45 11.00  RF 2.72 2.46 

  GBM 16.85 16.64   GBM  3.33           3.30 

Parapenae

us 

longirostris AIC   

Illex 

coindetii AIC   

 Delta 2544.85/5247.91 

2447.89/5116.5

3  Delta 

1832.513/2282.0

64 

1725.173/2231.2

67 

 Gaus 17167.51 16951.65  Gaus 9620.091 9497.957 

 TW 28141.39 27825.22  TW 12289.34 12209.77 

 RF X X  RF X X 

 GBM X X  GBM X X 

 

Dev.ex

pl.    

Dev.ex

pl.   

 Delta 47.3% 51.35%  Delta 39.1% 43.75% 

 Gaus 56.1% 58.9%  Gaus 55.5% 57.8% 

 TW 60.7% 66.1%  TW 55.9% 59.4% 
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 RF 76.09% 77.58%  RF 72.26 72.89% 

 GBM 51.2% 56.3%  GBM 49.2% 54.3% 

 

MAE 

validati

on    

MAE 

validati

on   

 Delta 506.86 500.45  Delta 18.67 17.99 

 Gaus 599.02 590.74  Gaus 19.23 18.98 

 TW 660.79 589.25  TW 20.82 20.04 

 RF 440.04 305.51  RF 13.42 10.53 

  GBM 604.94 554.59   GBM 19.38 18.85 

Trachurus 

trachurus AIC   

 Delta 

1941.624/2638.9

73 

1817.748/2630.

21 

 Gaus 11384.1 11218.45 

 TW 13224.76 13086.21 

 RF X X 

 GBM X X 

 

Dev.ex

pl.   

 Delta 36.55% 41.15% 

 Gaus 49% 52.2% 

 TW 63.1% 67.6% 

 RF 61.91% 63.4% 

 GBM 50.1% 55.6% 

 

MAE 

validati

on   

 Delta 85.11 83.35 

 Gaus 85.45 84.60 

 TW 112.87 100.64 

 RF 70.75 60.90 

  GBM 84.44 82.84 

 

 

JUVENILE 

Species 

Metrics 

& 

Model ST ST+Env Species 

Metrics 

& 

Model ST ST+Env 

Merluccius 

merluccius AIC   

Mullus 

barbatus  AIC   

 Delta 

1327.50/5307.

11 

1167.79/5247.

99  Delta 

1970.25/5572.0

2 1854.43/5463.01 

 Gaus 13195.64 12948.99  Gaus 16274.07 15756.64 

 TW 27137.82 26970.76  TW 29644.05 29242.2 

 RF X X  RF X X 

 GBM X X  GBM X X 

 

Dev.ex

pl.    

Dev.ex

pl.   

 Delta 57.7% 61.5%  Delta 56.05% 59.55% 

 Gaus 65.8% 68.5%  Gaus 59.1% 64.9% 

 TW 63.2% 65.8%  TW 67.2% 72.5% 

 RF 84.71% 86.14%  RF 82.36%        84.51% 

 GBM 67.00% 72.00%  GBM 60.00% 70.00% 

 

MAE 

validati

on    

MAE 

validati

on   

 Delta 254.77 251.86  Delta 1047.28 1024.26 

 Gaus 304.73 292.14  Gaus 1216.51 1241.63 

 TW 297.08 290.26  TW 1619.55 1444.20 

 RF 205.05 153.31  RF 882.22 695.06 

  GBM 284.33 275.07   GBM 1198.61 1108.46 

Norway 

lobster AIC   

Lophius 

budegas

sa AIC   

 Delta 888.56/582.12 859.00/569.92  Delta 

3048.83/1760.0

4 2983.02/1734.36 

 Gaus 8004.63 7821.69  Gaus 12747.46 12681.88 

 TW 5343.63 5292.23  TW 12153.9 12033.97 
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 RF X X  RF X X 

 GBM X X  GBM X X 

 

Dev.ex

pl.    

Dev.ex

pl.   

 Delta 34.7% 39.45%  Delta 31.45% 34.15% 

 Gaus 26.2% 30.5%  Gaus 29.8% 31.4% 

 TW 62.1% 69.5%  TW 40.3% 45.2% 

 RF 54.3% 54.6%  RF 42.94% 42.86% 

 GBM 40.87% 44.62%  GBM 41.7% 45.82% 

 

MAE 

validati

on    

MAE 

validati

on   

 Delta 4.34 4.23  Delta 11.41 11.23 

 Gaus 4.83 4.79  Gaus 11.05 10.98 

 TW 5.02 4.72  TW 12.19 11.62 

 RF 3.88 3.49  RF 8.36 6.76 

  GBM 4.61 4.61  GBM 10.83 10.74 

Parapenae

us 

longirostris AIC   

Illex 

coindetii AIC   

 Delta 

1839.91/3506.

65 

1737.17/3459.

44  Delta 

2886.635/5889.

34 

2709.038/5841.3

01 

 Gaus 13414.98 13278.76  Gaus 16502.91 16256.42 

 TW 17677.51 17587.34  TW 32093.92 31881.61 

 RF X X  RF X X 

 GBM X X  GBM X X 

 

Dev.ex

pl.    

Dev.ex

pl.   

 Delta 48.35% 51.9%  Delta 50.65 53.75% 

 Gaus 57.3% 59.2%  Gaus 56.8 59.9% 

 TW 66.4% 69%  TW 53.7 57.3% 

 RF 76.37% 77.83%  RF 78.83% 79.66% 

 GBM 51.2% 56.3%  GBM 53.2% 58.3% 

 

MAE 

validati

on    

MAE 

validati

on   

 Delta 170.69 168.15  Delta 320.19 304.60 

 Gaus 179.32 179.05  Gaus 399.08 384.48 

 TW 221.87 212.41  TW 403.53 378.57 

 RF 144.27 109.75  RF 252.47 169.49 

  GBM 176.71 170.11   GBM 379.81 378.43 

Trachurus 

trachurus AIC   

 Delta 

2542.39/5660.

29 

2364.47/5633.

43 

 Gaus 16588.01 16274.05 

 TW 27392.71 27202.61 

 RF X X 

 GBM X X 

 

Dev.ex

pl.   

 Delta 34.7% 37.7% 

 Gaus 49.4% 54% 

 TW 52.3% 56.6% 

 RF 67.95% 68.6% 

 GBM 53.1% 59.1% 

 

MAE 

validati

on   

 Delta 715 710 

 Gaus 728.27 723.06 

 TW 1081.99 1029.33 

 RF 626.51 555.58 

  GBM 723.80 718.33 
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B 

ADULT 

Species 

Metrics 

& 

Model ST ST + Env Species 

Metrics 

& 

Model ST ST + Env 

Solea solea AIC   

Squilla 

mantis AIC   

 Delta 

274.14/1690.

81 

260.73/1667.

53  Delta 

335.08/1099.

28 

307.82/1061.

75 

 Gaus 2592.94 2555.25  Gaus 2685.18 2626.36 

 TW 9741.83 9720.53  TW 5929.22 5882.07 

 RF X X  RF X X 

 GBM X X  GBM X X 

 

Dev.ex

pl.    

Dev.ex

pl.   

 Delta 60.3 64.35  Delta 57.95% 61.4% 

 Gaus 67.2% 69.4%  Gaus 65.8% 68.6% 

 TW 62.2% 65%  TW 63.8% 65.5% 

 RF 71.12% 69.21%  RF 72.96% 74.28% 

 GBM 74.00% 77%%  GBM 64.00% 70.00% 

 

MAE 

validati

on    

MAE 

validati

on   

 Delta 297.85 284.54  Delta 258.29 247.93 

 Gaus 315.86 304.07  Gaus 302.17 292.70 

 TW 303.24 291.74  TW 

 

277.02 271.73 

 RF 201.08 167.61  RF 198.41 159.63 

  GBM 279.46 272.50  GBM 277.74 251.39 

Sepia 

officinalis AIC       

 Delta 

449.31/1078.

49 

421.68/1036.

87     

 Gaus 2584.59 2526.42     

 TW 6041.61 5980.47     

 RF X X     

 GBM X X     

 

Dev.ex

pl.       

 Delta 51.95% 56.3%     

 Gaus 68.8% 72.3%     

 TW 62.1% 66%     

 RF 66.8% 69.4%     

 GBM 60% 64%     

 

MAE 

validati

on       

 Delta 86.88 79.40     

 Gaus 91.53 96.10     

 TW 99.18 86.51     

 RF 61.09 53.76     

  GBM 85.34 79.69         

 

JUVENILE 

Species 

Metrics & 

Model ST ST +Env Species 

Metrics & 

Model ST ST +Env 

        

Solea solea AIC   

Squilla 

mantis AIC   

 Delta 

100.57/913.

26 

56.66/881.7

4  Delta 

369.30/1251.

27 

322.50/1211.

34 

 Gaus 1294.22 1258.64  Gaus 2763.17 2673.62 

 TW 4396.64 4363.85  TW 6348.66 6241.78 

 RF X X  RF X X 

 GBM X X  GBM X X 

 Dev.expl.    Dev.expl.   

 Delta 73.5% 81%  Delta 57.57% 63.5% 
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 Gaus 81% 83%  Gaus 67.1% 71.4% 

 TW 72% 75.3%  TW 64.3% 71.4% 

 RF 78.37% 76.41%  RF 73.3% 72.78% 

 GBM 87.00% 90.00%  GBM   

 

MAE 

validation    

MAE 

validation   

 Delta 568.67 569.21  Delta 313.63 284.34 

 Gaus 566.61 564.08  Gaus 337.93 327.19 

 TW 571.25 554.36  TW 327.21 283.21 

 RF 458.83 390.47  RF 230.55 196.22 

  GBM 465.59 415.47   GBM 322.26 300.59 

Sepia 

officinalis AIC       

 Delta 

465.55/970.

64 

422.80/927.

41     

 Gaus 2487.49 2401.32     

 TW 5557.61 5452.47     

 RF X X     

 GBM X X     

 Dev.expl.       

 Delta 56.3% 61.8%     

 Gaus 67.4% 72.1%     

 TW 66% 72.9%     

 RF 65.7% 69.45%     

 GBM 73.00% 78.00%     

 

MAE 

validation       

 Delta 111.49 99.70     

 Gaus 118.33 113.50     

 TW 115.40 102.75     

 RF 84.86 68.67     

  GBM 109.04 97.55     

 

 

The distribution of Average relative residuals between data observed and predicted data is 

shown in Figure S4.1. Considering all species on average, the relative residual is around 40%. 

More in detail, for adults of European hake the relative error is on average, 25-30% in the 

entire area, and higher error is shown in the southern area of the basin, especially close to 

the Calabrian region, while for Juvenile the relative error map is generally high (on average 

90%). For Red mullet for both Adults and Juveniles results show on average 20-25% error 

and as high as 35% error for some spots in the Pomo Pit area. The e-SDM applied to the 

Norway lobster showed approximately 37 % relative error on average for the adults’ entire 

area, and some spots with higher values in the south part of the basin, while the model 

showed much higher error for the Juveniles. The relative error for both adults and juveniles 

of Black-bellied angler was high, i.e., on average approximately 90% and 75%, respectively. 

High error for this species was found in the north and central part of the Adriatic Sea while 

juveniles showed the highest relative error in the north and smallest values in the southern 

part of the basin. The e-SDM was predicting European horse mackerel with low error values 

both for adults and juveniles (approximately 20%) and  Deep-water rose shrimp with an 

average relative error of 20% and 50% for adults and juveniles respectively. For Shortfin 

squid the relative error of the e-SDM was approximately 50% on average both for adults and 

juveniles.  e-SDM showed good performances for Mantis shrimp for which an average error 
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of approximately 20% was calculated for areas shallower than 100 m from SOLEMON 

survey for both adults and juveniles; for common sole an average relative error of 50% for 

adults and 15% for juveniles was obtained while for Cuttlefish relative estimated error was 

30% and 20% for adults and juveniles, respectively. 
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Fig.S4.1: Relative average residual map for adult (panel A) and juvenile (panel B) for each species from IDW 

interpolation and equation 1.  
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Chapter 5 Supplementary material  

 
In the following plot I represented the relative importance of each covariate for each model and life 

stage: 

 

Figure S5.1: variance importance (y-axes) in percentage for each covariate (x-axes), models (different colors), and 

species. 
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Table S5.1: Metrics for each species, life stage, and approaches used in chapter 5. 

A: ADULTS     
MEDITS       

Species Metrics & Model Results  Species Metrics & Model Results 

Merluccius merluccius AIC   Mullus barbatus  AIC  
 Binomial 2833.27   Binomial 4953.05 
 Delta-gaus 5985.59   Delta-gaus 9133.83 
 RF X   RF X 
 GBM X   GBM X 
 Dev.expl.    Dev.expl.  
 Binomial 48.5%   Binomial 47.2% 
 Delta-gaus 50.7%   Delta-gaus 42.6% 
 RF 74.7%   RF 71.19% 
 GBM 77%   GBM 65% 

Norway lobster AIC   Lophius budegassa AIC Result  

 Binomial 4054.30 
 

 Binomial 
3010.9

9 

 Delta-gaus 3708.30 
 

 Delta-gaus 
2077.1

3 
 RF X   RF X 
 GBM X   GBM X 
 Dev.expl.    Dev.expl.  
 Binomial 39.3%   Binomial 17.7% 
 Delta-gaus 22%   Delta-gaus 39.1% 
 RF 56.16%   RF 23.62 
 GBM 56%   GBM 35.3% 

Parapenaeus longirostris AIC   llex coindetii AIC  
 Binomial 4745.51   Binomial 4100.44 
 Delta-gaus 8857.28   Delta-gaus 4806.87 
 RF X   RF X 
 GBM X   GBM X 
 Dev.expl.    Dev.expl.  
 Binomial 48.3%   Binomial 43.4% 
 Delta-gaus 36.4%   Delta-gaus 18.6% 
 RF 72.9%   RF 65.28% 
 GBM 52%   GBM 55% 

Trachurus trachurus AIC   
 Binomial 3199.43  
 Delta-gaus 4056.98  
 RF X  
 GBM X  
 Dev.expl.   
 Binomial 45.5%  
 Delta-gaus 26.1%  
 RF 59.2%  
 GBM 62.3%  
    
SOLEMON    

Solea solea AIC   Squilla mantis AIC  
 Binomial 276.24   Binomial 573.96 
 Delta-gaus 1366.43   Delta-gaus 1090.62 
 RF X   RF X 
 GBM X   GBM X 
 Dev.expl.    Dev.expl.  
 Binomial 74.6%   Binomial 55.4% 
 Delta-gaus 34.1%   Delta-gaus 43.1% 
 RF 69.86%   RF 61.9% 
 GBM 75%   GBM 80.2% 

Sepia officinalis AIC   
 Binomial 690.75  
 Delta-gaus 1479.99  
 RF X  
 GBM X  
 Dev.expl.   
 Binomial 45.2%  
 Delta-gaus 59.5%  
 RF 64.7%  

 GBM 64%  
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B: JUVENILE 

MEDITS 

Species Metrics & Model Results Species Metrics & Model Results 

Merluccius merluccius AIC  Mullus barbatus  AIC  
 Binomial 1861.17  Binomial 1980.88 
 Delta-gaus 5325.47  Delta-gaus 2460.68 
 RF X  RF X 
 GBM X  GBM X 
 Dev.expl.   Dev.expl.  
 Binomial 62.4%  Binomial 50.3% 
 Delta-gaus 41.6%  Delta-gaus 46.9% 
 RF 79.16%  RF 65.35% 
 GBM 72.2%  GBM 60.2% 

Norway lobster AIC  Lophius budegassa AIC Result  

 Binomial 1704.46  Binomial  
6141.9

4 

 Delta-gaus 1316.84  Delta-gaus 
9495.5

6 
 RF X  RF X 
 GBM X  GBM X 
 Dev.expl.   Dev.expl.  
 Binomial 49.9%  Binomial 21.6% 
 Delta-gaus 27.3%  Delta-gaus 18.4% 

 RF 53.5%  RF 
37.14

% 
 GBM 45%  GBM 44% 

Parapenaeus 
longirostris AIC  llex coindetii AIC  
 Binomial 4109.97  Binomial 5360.32 
 Delta-gaus 13109.67  Delta-gaus 9719.76 
 RF X  RF X 
 GBM X  GBM X 
 Dev.expl.   Dev.expl.  
 Binomial 40.8%  Binomial 42.1% 
 Delta-gaus 20.6%  Delta-gaus 44.2% 
 RF 47.63%  RF 70.43% 
 GBM 53.2%  GBM 55% 

Trachurus trachurus AIC  
 Binomial 4914.66 
 Delta-gaus 10254.2 
 RF X 
 GBM X 
 Dev.expl.  
 Binomial 45% 
 Delta-gaus 21.7% 

 RF 64.2% 
 GBM 59% 

 
SOLEMON   

Solea solea AIC  Squilla mantis AIC  
 Binomial 69.77  Binomial 560.51 
 Delta-gaus 850.21  Delta-gaus 1243.8 
 RF X  RF X 
 GBM X  GBM X 
 Dev.expl.   Dev.expl.  
 Binomial 67.7%  Binomial 56% 
 Delta-gaus 25.8%  Delta-gaus 49% 
 RF 32.31%  RF 63.04 
 GBM 86.8%  GBM 80% 

Sepia officinalis AIC  
 Binomial 462.13 
 Delta-gaus 790.92 
 RF X 
 GBM X 
 Dev.expl.  
 Binomial 55.6% 
 Delta-gaus 43.2% 
 RF 63.48% 

 GBM 77.3% 



Chapter 4 Supplementary material                                                                                
Material and info 

 

175 

 

 

     

     



Chapter 4 Supplementary material                                                                                
Material and info 

 

176 

 

 

 



Chapter 4 Supplementary material                                                                                
Material and info 

 

177 

 



Chapter 4 Supplementary material                                                                                
Material and info 

 

178 

 
Figure S5.2: density distribution (n/km2) for each species (title of the plot), scenario (title of the panel), and age 

(plot’s title: adult or juvenile) 
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Figure S5.3: density (n/km2) difference between scenario 2018 and future scenarios 2025 and 2050, for each 

species and life stage (see plot’s title) 
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Figure S5.4: hot spot identified by Getis ord-gi* and filtered over the third quartile, for each scenario (2012, 2018, 

2035, and 2050), species, and life stage (see plot’ title). 

 

 

 

 

 

 

 

 


