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A B S T R A C T

This paper presents an integrated framework for management of aquifers threatened by saltwater intrusion (SI).
In this framework, SEAWAT model is used for simulating the density dependent groundwater flow. Three meta-
models based on the artificial neural network (ANN), M5 tree and random subspaces model (RSM) are devel-
oped, as surrogate models for SEAWAT to accurately simulate the groundwater response to different pumping
and recharge scenarios. Various patterns of recharge to and discharge from aquifer are used to generate a
database for training the mentioned surrogate models. To decrease the number of training parameters, the
aquifer area is divided into different zones using k-means clustering technique (KMC). Additionally, a con-
junctive model (CM) using a combination of the three surrogate models is proposed to enhance the accuracy of
the simulation. It is then integrated with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) with the
objectives of maximizing pumping rates and minimizing SI length. Next, the socially optimal scenarios are
selected from the obtained Pareto-front using the Nash bargaining theory. The performance of the proposed
model is evaluated by applying it to the Kahak aquifer, Iran, which is subjected to SI. The results show that the
conjunctive model using KMC technique predicts SI length with a comparable accuracy and results in 95%
reduction in runtime compared to a simulation-optimization (SO) model.

1. Introduction

Optimal management of coastal aquifers is challenging due to the
non-linear nature of SI, which is considered as a major threat for
groundwater quality. Most management models include a SI simulation
model to simulate the temporal and spatial distribution of groundwater
head and salinity in the aquifer. The numerical or analytical simulation
models are coupled with optimization algorithms (Bhattacharjya and
Datta, 2005; Banerjee et al. 2011) known as simulation–optimization
(SO) model. The objective of the SO models mostly include maximizing
profit and minimizing cost of pumping operation and these models
usually have many decision variables (Sreekanth and Datta, 2015).

The SI process can be simulated using analytical approaches based on
sharp interface assumption or variable density flow theory considering a
transition zone between saltwater and freshwater (Dausman et al. 2010).
The simulation in variable density models is mostly done using numerical
methods and based on field salinity data (Werner et al. 2013). Extensive
studies have been implemented on management of aquifers subjected to SI
using integration of density-dependent numerical codes with optimization
algorithms (Mantoglou and Papantoniou, 2008; Dhar and Datta, 2009; Gaur

et al. 2011). However, the iterative process of simulation–optimization to
converge to optimum solutions is time-consuming (Masoumi and Kerachian,
2008, Mahjouri and Kerachian, 2011, Christelis and Mantoglou, 2016a,b).
Surrogate models are efficient tools to decrease the computational time
needed for the repeated simulation–optimization (SO) process in the man-
agement of coastal aquifers (Rao et al. 2003).

The surrogate technique is generally used to approximate the finite
difference or finite element numerical code for solving density-dependent
flow equations in a SO process (Forrester and Keane, 2009). Substantial data
driven models such as ANN and modular neural networks (MNN) are re-
ported as fast and popular surrogate models in SI management problems
(Razavi et al. 2012; Bhattacharjya and Datta, 2005; Kourakos and
Mantoglou, 2009).

There are a variety of other data driven techniques for being used as
surrogate models in groundwater management problems subjected to SI
such as Genetic Programming (Sreekanth and Datta, 2010), Evolu-
tionary Polynomial Regression (Hussain et al. 2015), Radial Basis
Functions (Christelis and Mantoglou, 2016a,b), Fuzzy c-mean clustering
(Roy and Datta, 2017a,b) and M5 tree (Ranjbar and Mahjouri, 2018).
Also, many machine learning techniques such as Fuzzy C-Mean
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Clustering (Ay and Kisi, 2014), Kriging and support vector regression
techniques (Ouyang et al. 2017), iterative ensemble smoother (Chang
et al. 2017), support vector machine (Alagha et al., 2017) and multi-
variate adaptive regression spline ensembles (En-MARS) have been
extensively applied as a surrogate model in other SO problems (Roy and
Datta, 2017a,b). However, the appropriateness of the mentioned tech-
niques in terms of speed and accuracy should be examined for
groundwater management problems subjected to SI using SO models,
where SI is influenced by various uncertain decision variables. A review
on the performance of surrogate models was carried out by Ketabchi
and Ataie-Ashtiani (2015) which introduced Genetic Programming and
ANN as accurate and fast tools used in such problems.

A comparison between MNN and Genetic Programming in terms of
efficiency and robustness of SO solutions was made by Sreekanth and
Datta (2010). It was found that by combining multi-objective Genetic
Algorithm (MOGA) with Genetic Programming and MNN, only 2% of
the runtime of the embedded FEMWATER-MOGA model is needed. It
was also suggested that the GP can decrease the uncertainty of model
predictions in optimization problems.

To the best knowledge of the authors, the efficiency of the conjunctive
surrogate models with dynamic training has not been evaluated in saltwater
intrusion problems. In addition, The present paper evaluates the perfor-
mance of three machine learning-based algorithms (i.e. M5 tree, ANN and
random subspace model (RSM)) as surrogate models for SEAWAT. The
three models are trained using input–output samples provided by SEAWAT.
The aquifer area is divided into five zones using k-means clustering tech-
nique. In order to enhance the accuracy of surrogate models, a conjunctive
model using a linear function of the three surrogate models is developed.
The conjunctive model is coupled with a multi-objective optimization al-
gorithm, with the objectives of minimizing the SI length andmaximizing the
profit obtained from the agricultural zones, to find a Pareto-optimal front of
solutions. To assess the efficiency of the conjunctive model, a comparison
between the embedded SO model and the proposed surrogate models in
terms of computational time and accuracy is carried out. Finally, the Nash
bargaining theory is applied to select the stakeholders’ preferred scenarios of
utilizing the groundwater of Kahak aquifer adjacent to the Salt lake in Iran.
The novel contributions of this study are as follows: 1) development of an
efficient conjunctive surrogate model using a combination of three in-
dividual simulation models as surrogates for SEAWAT; 2) Developing a new
simulation–optimization-based methodology for managing saltwater intru-
sion in aquifers with high number of pumping wells; (3) Selecting socially
acceptable scenarios out of non-dominated solutions proposed by the opti-
mization model coupled with the conjunctive surrogate model using the
Nash bargaining theory; (4) Applying the methodology to a real aquifer
suffering from saltwater intrusion from a saline lake (namely, the Salt lake).

2. Material and methods

In this paper, the structures of the three data-driven models of ANN, M5
tree and RSM, which are used as surrogate models for SEAWAT, are opti-
mized. Furthermore, a conjunctive algorithm using a linear function of the
three surrogate models is developed to improve the individual performance
of the surrogate models. The ANN model used in this paper is a two-layer
perceptron. The architecture of the ANN is determined by trial and error.
Also, the optimal number of nodes and depth of the M5 tree is obtained to
predict the unseen data. In the RSM, different sub-spaces are generated to
decrease the effect of repeated features. Finally, the statistical performance
indices of the abovementioned models in calibration and validation phases
are calculated and compared. After the development of an efficient con-
junctive surrogate model, the structure of the multi-objective optimization
model is presented.

2.1. M5 Tree model

Model trees are used to solve nonlinear problems by dividing the input
area into sub-spaces and assigning a relationship to each sub-space

(Bhattacharya et al. 2007). For each sub-space, there is one equation, which
provides the outputs. The main preference of model trees to other simula-
tion algorithms such as ANN is that they present understandable and linear
relations. The M5 tree is one of the most popular tree-based models, which
assigns a linear equation to each sub-space. The M5 tree splits the input area
into many small spaces and fits the best regression model to each sub-space.
The splitting process can be explained by a recursive moving from top of the
tree to its leaves regarding decision roles as illustrated in Fig. 1a and Fig. 1b.

M5 tree algorithm computes the standard deviation reduction index
(SDR) for partitioning protion T of data that reaches a node (Witten
et al. 2006):

= ×SDR sd T T
T

sd T( ) | |
| |

( )
i

i
i
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where, Ti denotes ith set after splitting T and sd is standard deviation
function. The partitioning process is carried out for all nodes to create
many branches. Even though the prediction error is usually reduced by
increasing the number of branches, after reaching a specific number of
branches, the error starts to increase again. This is called pruning,
which happens when tree growth leads to over-training and the com-
plex tree cannot necessarily predict the unseen data. Therefore, a
stopping criterion should be considered to avoid growing a large tree.
The pruning step uses the Gini index (Hastie et al. 2009) which de-
termines the tree complexity corresponding to the generated error.

To have good predictions, the performance of the tree should not be
dependent on the training data sets. If with a small change of the values
in the training sets, the structure of the tree significantly changes, the
tree cannot be considered as a smooth tree (Hastie et al. 2009). The
smoothing criterion is to provide a tree that shows low sensitivity to
training data. The M5 tree model used in this paper is a pruning M5 tree
with optimized number of nodes for increasing the tree generalization.

2.2. Ann

In this paper, an ANN-based meta model is used as a surrogate
model for SEWAT. In this study, the recharge rates of aquifer (R),
pumping rates of five agricultural zones (Q1toQ5) and piezometric head
near the salt lake boundary are inputs of the model while, saltwater
intrusion length (SI) and piezometric head after one month are outputs.

The ANNs are popular machine learning algorithms with structures
like the behavior of neurons in the human brain. Performance of each
neuron can be as follows (Ayoubloo et al. 2010):

=
=

y f w x(
j

n
j j0 (2)

where, y and xj are output and input neurons, respectively, f is a non-
linear function and wj represents the weights. Generally, for classifica-
tion and training cases, f is considered as sigmoid function:

=
+

f
e
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In this paper, an ANN based on multi-layer perceptron (MLP) al-
gorithm is developed. To obtain an optimal structure for the ANN (the
number of layers and nodes), a trial and error process is used (Fig. 1c).
For each structure, the optimal values of weights are determined using
the gradient of weights ( wi) by calculating the error between predicted
(pi) and target (ti) values of instances as below:

=E t p1
2

( )i i
2

(4)

=w dE
dwi

i (5)

where, dE and dwi are the derivatives of error and weight, respectively.
The value of wi is multiplied by the learning rate and momentum
coefficient. This is especially done to avoid being trapped in local op-
tima.
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2.3. Random subspace model (RSM)

In data-driven models, the random subspace algorithm is classified
in the category of attribute- selection models where the error between
predicted and observed data is decreased by dividing the features into
many spaces (Breiman, 1996). The RSM algorithm is based on the fact
that the average error of randomly partitioned features (input and
output samples) is lower than that of a global training. We consider a
prediction model using simple linear regression including M sub spaces
and output (y) and input (x) data. A linear regression model in RSM
approach versus simple regression can be written as follows:

=
=

y x
M

y x( ) 1 ( )RSM
m

M

m
1 (6)

= +y x h x e x( ) ( ) ( )m m (7)

in which, m = 1, … , M, which denotes the number of sub-spaces and h
(x) represents the predicted value using simple regression.

Additionally, the error of RSM (ERSM) compared to average error of
each sub space (EAV ) is decreased with increasing the number of sub
spaces (M) as expressed below (Breiman, 1996):

Fig. 2. Calculated and observed groundwater heads from 2006 to 2012 in the two nearest observation wells to the Salt lake: a) observation well 16, b) observation
well 13.

Fig. 1. Partitioning of input area and assigning linear models using M5 tree and ANN a) dividing input area and assigning regression line; b) prediction using
generated linear relationships c) the structure of the optimal ANN.
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Therefore, this algorithm is a good alternative for many complex
models in which the number of attributes is more than the training
data. In this paper, the features are ranked according to the correlation
coefficient of their mean value for training samples.

2.4. Conjunctive surrogate models

In previous studies, conjunctive use of simulation models have been
reported as useful tool for modeling non-linear simulation problems. A
conjunctive surrogate mdoel combines the outputs of individual sur-
rogate models by weighting them to enhance the simulations done by
individual surrogate models (Ouyang et al., 2017, Hosseini and
Kerachian, 2017). Hence, in this paper a conjunctive surrogate model is
developed as a substitute for SEAWAT code. This conjunctive model is
based on minimizing error criteria (E):

= =E
k

out x out x dx m Rm1 ( ( ) ( ))con k ens
T0 2

(9)

where, m denotes the weight of each surrogate model, xout( ) and outcon
are observed and predicted values of input x, respectively. R stands for
the covariance matrix which are calculated as (Ouyang et al., 2017):

=R
n
1

ij
T

i j (10)

where, n is the number of training instances, i and j represent different
surrogate models and is the vector of errors. The conjunctive model
with the smallest discrepancy between predicted and observed values of
training samples is selected as the best meta-model. Based on literature,
the integration of ANN and M5 tree with other surrogate models will
increase prediction accuracy (Ouyang et al., 2017; Yasa and Etemad-
Shahidi, 2014). Moreover, the performance of weighted RSM for high
dimensional data can be significantly improved even with several
weaker models (Miraki et al., 2019). Therefore, in this paper, it is aimed
to identify the optimal relative weights for the models of M5, ANN, and
RSM to have a better combined surrogate model (conjunctive model).
During the training and validating phases of the conjunctive model, the
parameters of all individual models and their relative weights are op-
timized.

2.5. K-means Clustering (KMC)

K-means clustering technique is one of the most popular methods of
clustering which has been implemented for classification of data sets
regarding their feature vectors (MacQueen, 1967). In KMS, data points
are partitioned into clusters based on their Euclidean distance from the
center of each cluster. The number and radius of each cluster is de-
termined randomly and data are assigned to the closest clusters. This
iterative process continues to achieve the minimum cumulative error
for all data sets. Therefore, the efficiency of KMC is a function of
number of clusters and their radiuses (Milligan and Cooper, 1985).
Suppose k is the number of clusters for a dataset {x1, x2, …, xn}in which
each data is a vector with d dimensions { F1, F2, …, Fd}. KMC tries to
find the optimal value for k to minimize the cumulative error for each
cluster as expressed bellow:

=
=

J x c
i

k

x G
k i

1

2

k i (11)

where, J represents Euclidean distance between ith sample and ci (as
the center of cluster Gi). The values of Gi are determined using the
membership values (uij) as below:
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Then, uij with a binary value of 1 or 0 is used to determine the
cluster center as below:

=c
G

x1
| |i

i x G
k

k j (14)

uij = 1 or 0 indicate whether the sample is placed inside or outside
the cluster, respectively. In this paper, K-means clustering is used to
reduce the number of decision variables in the optimization model. The
method used for clustering wells is based on the fact that salinity
concentration in the observation wells depends on the distance from
pumping wells (Kourakos and Mantoglou, 2009).

2.6. Multi-objective optimization algorithm

In this paper, an optimization model is developed using the Non-
dominated Sorting Genetic Algorithm-II (NSGA-II) (Deb et al. 2002) which
is coupled with SEAWAT and surrogate models to find a Pareto front of non-
dominated solutions for the optimization problem. The NSGA-II generates
random values for decision variables and calculates corresponding values of
the objective functions based on the groundwater simulations done by
SEAWATmodel. The value of decision variables are updated in the selection
and crossover phases of the genetic algorithms. This repeated process of
simulation–optimization continues until obtaining non-dominated solutions.
The multi-objective optimization model can be formulated as follows:

= ×
=

minSI C l A bl nC( )/
i

n

i i i mean max
1 (15)

=
=

maxQ qt
i

m

i
1 (16)

subject to:

<C Ci max

<q qi max

in which, SI represents saltwater intrusion length or the location of
saltwater wedge considering 50% iso-concentration profile, n = 24 and
m= 69 are the number of observation and pumping wells, respectively,
Ci is salinity concentration (Total Dissolved Solids (TDS)) in cell i, Ai is
the area of ith cell, qi is the pumping rate of ith well which is located in
distance lifrom the coastline, b represents the mean length of the
coastline, lmean represent the mean distance of wells from the coastline
and < C2500mg/L 11000mg/Lmax and =q m day2700 /max

3 are con-
sidered as the maximum allowed salt concentration and pumping rate,
respectively. The maximum allowable TDS concentration varies with
the crop type, which is divided into four classes
C C C C( , , , ).max max max max1 2 3 4 The salinity class Cmax denotes TDS con-
centration<3000 mg/L, Cmax2 denotes TDS concentration between
2500 mg/L and 4000 mg/L, denotes Cmax3 denotes TDS concentration
between 4000 mg/L and 7000 mg/L and Cmax4 denotes TDS con-
centration more than 7000 mg/L and 11000 mg/L for Cmax4.

2.7. Conflict resolution

In order to incorporate the conflicting utilities of the stakeholders
(herein, the agricultural sectors), the Nash bargaining theory is utilized.
Using this theory, agricultural sectors aim at optimally sharing the total
benefit obtained from exploiting the aquifer. The stakeholders from
agricultural sectors intend to select the mostly approved scenario ac-
cording to the gained profit (Nikoo et al. 2016). If the feasible region of
solutions is bounded and convex, the Nash problem has a unique an-
swer. Considering the abovementioned criteria, the Nash solution can
be obtained as follows (Nash 1950):
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where, oi is the profit of ith stakeholder, ei is the utility of ith stake-
holder before bargaining, I is the number of stakeholders and M re-
presents the value of Nash function. For all scenarios on the Pareto
front, M is calculated and the scenario with minimum value of M is
selected as the Nash bargaining solution.

Fig. 3. Locations of the observation and pumping wells and the distribution of TDS concentration based on the current pumping rates.

Fig. 4. Sensitivity of TDS concentration in the observation wells to the pumping rate in the pumping wells.

Table 1
Range of variables considered for the surrogate models.

Parameter Range

Q m day( / )total 3 200 – 68,400
R m day( / ) 0.00001–0.000092
h m( )in 690–806

SI m( ) 105–620

h m( ) 680–720

Table 2
The calibrated values of aquifer parameters using the SEAWAT model (Ranjbar
and Mahjouri, 2018).

Parameter Symbol Value Unit

Longitudinal hydraulic conductivities Kxx 1 – 50 m/day
Horizontal anisotropy xy 1 m/day
Vertical anisotropy xz 8 m/day
Specific yield Sy 0.05 –
Porosity 0.31 –
Longitudinal dispersivity L 7 m
Transverse dispersivity T 1.5 m
Density difference ratio 0.025 –
Vertical recharge rate Vr 0.02 m/day
Reference hydraulic head hf 1.65 m
Molecular diffusion d0 ×6 10 7 m2/s
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2.8. Study area

The capability of the developed methodology is examined on an un-
confined aquifer, namely Kahak, located in Qom County near the Salt Lake
in Iran. The main part of the geological sediment in the Kahak aquifer is
permeable alluvial which is composed of conglomerates and fluvial terraces.
Over-exploiting the groundwater for agricultural uses has led to saltwater
intrusion to the aquifer. The location and the boundary conditions of the
aquifer are shown in Fig. 3. As seen in this figure, the eastern part of the
aquifer is mostly affected by saltwater with a concentration of the total
dissolved solids (TDS) of about 16,000 mg l/ and most of the east and west
boundaries are impervious. The recharge rate is non-uniform and varies
from 0.000063 to 0.000078m day/ . However, the sensitivity analysis on the
SI length indicates that 69 pumping wells, out of 1565, located adjacent to
the Salt Lake dominantly affect the SI (Ranjbar and Mahjouri, 2018, 2019).

Regarding a difference of 10 m between the upper and lower to-
pographic elevations, the SI is influenced only by the pumping activity
of the mentioned zone. Fig. 3 illustrates the computed contours of TDS
concentration for the present abstraction rates obtained using variable
density flow simulation model (i.e. SEAWAT). The 69 effective
pumping wells are illustrated in Fig. 3.

The sensitivity analysis has shown that salinity distribution in the ob-
servation wells depends mostly on pumping from nearby wells rather than
from distant ones (Kourakos andMantoglou, 2009). A sensitivity analysis on
the effect of pumping on TDS concentration in the observation wells is also
implemented (see below Fig. 4). The TDS concentrations near the

observation wells and mostly affected pumping wells adjacent to the ob-
servation wells are considered as inputs and outputs of the SEAWAT si-
mulation model, respectively. The locations of pumping wells and ob-
servation wells are shown in Fig. 3. The wells that have a considerable effect
on TDS concentration (i. e. more than 5%) in a specific observation point
are considered as sensitive wells.

3. Development of the models

3.1. Calibration of the numerical simulation model

The study area with dimensions of 15 km (length) × 8 km (width) is
discretized into 500 m × 500 m cells. Considering the geological and soil
characteristics, the study area is discretized into 5 layers with different
thicknesses. A simulation period of four years is considered which is divided
into 48 monthly time steps. The initial TDS concentration in the northern
boundaries near the Salt Lake is 12.5 (gr/L). The northern boundary (near
the Salt Lake) is simulated using a time variant specified head considering
hydraulic heads between 8 m and 12 m which vary with time. A 3rd order
total variation diminishing (TVD) numerical scheme is used to solve the
advection and dispersion equations for the TDS concentration in the
SEAWAT model. The coefficients of hydraulic conductivity and specific
yield of the groundwater are calibrated based on the transient condition in
the simulation model. The Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) between simulated and observed groundwater heads
in 24 observation wells are minimized. Results show an acceptable accuracy
in the validation phase after 2400 days, where the mean values of MAE and
RMSE in the two nearest observations wells to the Salt lake at the end of the
planning horizon (after 2400 days) are 1.52 m and 1.85 m, respectively (see
Fig. 2a and b). Fig. 3 illustrates the salinity contours in the aquifer for
September 2012.

3.2. Training process

The surrogate models are utilized to approximate the response of
the SEAWAT model to different pumping and recharge conditions. The
average value of groundwater head (h ) and average salinity con-
centration (SI) in four observation wells near the Salt lake are con-
sidered as the outputs of the surrogate models while the rates of dis-
charge from 69 pumping wells and the rates of recharge are the main
inputs. The outputs of the surrogate models are defined as follows:

= =SI
C
n

i
n

TDS i1 ( )

(18)

= =h
h

n
i
n

i1
(19)

Table 3
Basic range of the data for each cluster.

Well number Q (m3/
day)

r (m)■ Silhouette Value♢ Corresponding Cluster

1 472 1500 0.555918 5
2 715 3000 0.368701 5
3 787 3500 0.385491 5
4 235 6000 0.506376 2
5 1252 3000 0.470217 5
6 214 6000 0.505774 2
7 2093 2000 0.22874 5
8 2258 3500 0.450941 5
9 959 4500 0.554362 4
10 948 5000 0.71977 4
11 508 5500 0.130177 4
12 510 7000 0.651385 2
13 1080 1500 0.555918 5
67 0.97 10,000 0.644665 1
68 515 10,000 0.702108 1
69 515 10,000 0.702108 1

■ The Euclidian distance between a well and the nearest cluster center

Fig. 5. Silhouette graph for the five clusters corresponding to the final iteration a) Silhouette value versus the number of clusters b) convergence to a minimum
Euclidean distance.
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where, n = 4 is the number of observation wells parallel to the
shoreline, and CTDS and h are salinity concentration and groundwater
head in the ith well, respectively. The inputs include the abstraction
rate from 69 active pumping wells (Q), average recharge rate (R), in-
land head (hin) and salinity concentration at the beginning of a time
step (three months) (SIin). The input–output data sets consist of 998
instances with a random and relatively Gaussian distribution. In the
surrogate models, 75% (7 4 8) of the samples are considered for the

training phase and 25% of samples are considered for the validation
phase. To avoid overfitting to the observations, the training phase will
finish when the error in the testing phase starts to increase. The ranges
of input and output samples are presented in Table 1. The values of the
calibrated parameters of the SEAWAT model are shown in Table 2.

3.3. Development of the surrogate models

Three surrogate models are developed to approximate simulations

Fig. 6. The relations presented by MM5 tree for SI considering different ranges for dimensionless inputs.
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done using the SEAWAT model. Due to the large number of pumping
wells, the aquifer area is divided into several clusters and the wells is
each cluster are grouped. To do this, k-means clustering (KMC) tech-
nique is used which classifies the wells based on their Euclidean dis-
tances from the nearest observation well. Each surrogate model calcu-
lates the head and the TDS concentration in the observation wells
located inside each cluster. Then, total pumping from a cluster is con-
centrated in an equivalent distance (ES) (m) calculated as below:

=
×=

=
ES

Q Ln r
Q

( )i
n

i i

i
n

i

1

1 (20)

where, Qiand riare pumping rate and distance of ith well from the
cluster center and n is the number of wells located in the cluster. The
pumping and observation wells near the Salt Lake are illustrated in
Fig. 3 The optimum value of k is calculated based on the location and
pumping rates of 69 pumping wells as presented in Table 3. The per-
formance of KMC is investigated using the silhouette graph
(Rousseeuw, 1987).

The silhouette graph approach is used for interpretation and vali-
dation of clusters of samples. The number of clusters is calculated by
silhouette graph approach in MATLAB software and shown in Fig. 5a.
This graph is based on the minimum Euclidean distance obtained in
iteration 20 as indicated in Fig. 5b. As illustrated in Fig. 3a, more
samples in five clusters have a great silhouette value (i.e. 0.6).

After clustering the solution area of decision variables, a surrogate
model is applied to the cluster. Regarding the large value of Q com-
pared to other input variables, the logarithm of Q is used for training
the M5 tree. The splitting of nodes is done only for samples with the size
of 6% of total samples and more. This value for the bottom branch is
considered as 2% of total samples. The number of nodes and depth of
the tree is determined using trial and error to achieve the best perfor-
mance corresponding to the test data. The structure of the M5 tree is
shown in Fig. 6, in which the parameters and relations are illustrated in
nodes and rectangles, respectively. The relations between SI and input
parameters are defined using linear models (LMs). As shown in Fig. 6,
the value of saltwater intrusion length at the end of each time step SI( )
is a function of piezometirc head in observation wells near the salt lake
(Hm), saltwater intrusion at the beginning of time step (SI) and pumping
rate from five agricultural zones (i.e. Serajeh (Qs), Noran (Qn), Malekan
(Qma), Dolatabad (Qd) and Momenabad (Qm)).

Hornik et al (1989) recommended that for engineering problems,
ANN with a hidden layer can show the best performance. In this paper,
a two-layer perceptron is selected and the number of nodes in each

layer is determined through trial and error. The Levenberg-Marquardt
training algorithm with learning rate of 0.4 shows the lowest dis-
crepancy between the predicted and simulated data. The training pro-
cess is finished when the number of epochs reaches 1500, or the error
becomes less than a threshold value. The optimal weights and the
structure of the ANN are presented in Table 4.

Moreover, a random subspace model (RSM) is developed for prediction
corresponding to the 8 input variables. The size of 11 trees generated using
a random subspace varies between 59 and 163, and the total number of
nodes is 7080. As an example, the proposed SI by tree 1 and subspace 42 for
the specific range of input variables is shown in Table 5.

In order to improve the efficiency of the surrogate models, a con-
junctive algorithm using a combination of the predictions by the three
models is evaluated. The conjunctive model is defined as a linear
function of M5, ANN, and RSM predictions and can be written as fol-
lows:

= + +
+ +

P K P K P K P
K K KC

M ANN RSM1 5 2 3

1 2 3 (21)

where, PCdenotes prediction by the conjunctive model, PM5, PANN and
PRSM stand for predictions by the individual surrogate models of M5,
ANN and RSM, respectively and K1, K2 and K3 are constant coefficients
which show the relative weights of estimations by individual models.
To develop the conjunctivemeta-model, the general structure of the M5,
ANN, and RSM simulation models are assumed to be similar to those
obtained when training them individually. The optimal values of the
parameters of all individual models as well as K1, K2 and K3 coefficients
are obtained through a one-leave out cross validation process.

3.4. Optimization process

The conjunctive surrogate model (CM) which has been trained and
validated using the outputs of the SEAWAT model is linked with NSGAII
optimization model to find the optimum groundwater withdrawal sce-
narios through a 20-year planning horizon. Through the optimization
process, the SEAWAT model generates new values for the decision
variables (pumping rates from 69 wells) to update the surrogate
models. This repeated process is terminated when the values of decision
variables vary slowly. Also, to increase the accuracy, the numerical
model generates new samples around the global optimum value. In the
optimization model, the population size and the number of generations
are set to be 60 and 150, respectively. The population size in NSGAII is
400. Mutation and cross over coefficient are set as 90 and 55 percent,
respectively. To improve the efficiency of the selection step and
maintain the diversity of solutions, the crowding distance method (Deb
et al. 2002) is applied. Each solution is mutated by inserting Gaussian
distribution to create near solutions. This technique tries to replace the
current solution with neighboring solution. The values of input vari-
ables are between 150 and 1620 (m3/day) which vary with seasons.
The training data (998 samples) have a Gaussian distribution. As seen
in Fig. 7, the surrogate models are retrained using the input–output
data of the numerical model to improve its accuracy. Also, the surrogate
models are trained for different clustering schemes to find the best
number of clusters. Moreover, the optimization algorithm is updated
using the results of the surrogate models to increase the number of

Table 4
The values of parameters of the optimum ANN.

Weights Biases

=w 0.321,8 w2,8 = 0.61 … w8,14 = -2.12 1.45

w1,9 = -0.37 w2,9 = 5.42 … w9,14 = -1.29 4.35
w1,10 = -0.14 w2,10 = -0.02 … w10,14 = -1.62 −2.12

=w 1.171,11 w2,11 = 1.62 … w11,14 = 0.049 − 3.07
w1,12 = -0.42 w2,12 = 0.049 … w12,14 = 0.14 −3.74

Table 5
The values of SI corresponding to random tree 1 and space 42.

=SI 317.47 =SI 223.77 =SI 171.1 =SI 238.17 =SI 226.25 SI = 247.88

Q5 < 7875 Q1 ≥ 8525 Q4 ≥ 46550 Q1 ≥ 14025 Q5 ≥ 7875 Q1 ≥ 4675
Q1 < 14025 Q4 < 2025 Q4 < 61750 Q4 < 33250 Q1 < 15125 Q5 < 5625
Q2 < 4675 Q4 < 46550 Q5 < 675 Q3 < 21235 Q1 < 3575 Q1 < 8525
R < 0.000012 R < 0.000016 Q3 < 8552 R greater than 0.000056 Q5 < 12825 hin greater than 813
hin < 780 hin < 763 hin greater than 785 Q2 < 21675 R greater than 0.000073
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training samples around the optimum solution. If the convergence cri-
terion is satisfied, a Pareto font of optimal solutions is derived and the
value of the Nash product is calculated for each Pareto-optimal solution
(scenario of groundwater withdrawal).

3.5. Performance criteria

To evaluate the performance of the three mentioned surrogate
models, 198 testing datasets are selected. The performance of the
models is evaluated using the correlation coefficient (CC) and the mean
squared error (MSE) and the mean of absolute errors (ME) between
predicted and observed values as follows:

= =

= =

CC
p p s s

p p s s
( )( )

( ( ) ( ) )
i
n

i i

i
n

i i
n

i

1

1
2

1
2 0.5 (22)

= =MSE
s p
n

( )i
n

i i1
2

(23)

=
=

ME
n

p
s

1 log
i

n
i

i1 (24)

in which, pi and siare respectively predicted and simulated values for ith
sample, p and s represent mean values for the predicted and simulated
data, respectively and n is the number of testing samples.

Fig. 7. The flowchart of the proposed methodology for management of aquifers subjected to saltwater intrusion.

Fig. 8. The simulated and predicted SI (m) using the three surrogate models in the training phase.
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4. Results and discussion

4.1. Prediction of the SI length

Based on Figs. 8 and 9, an acceptable match can be seen between
the results of the ANN, M5 and RSM and those of the SEAWAT.
Moreover, the values of the statistical criteria in the validation phase
using 198 samples for the three surrogate models are presented in
Table 6.

Among the three surrogate models, M5 has the highest value of CC
and the lowest MSE in the training phase. Based on Fig. 9, for larger
values of SI , two models of RSM and M5 respectively underestimate
and overestimate SI . Also, ME and MSE indices increase with increasing
SI . However, forSI ≤ 320 m andh ≤ 750 m, the results of RSM are
more accurate than those of the other models. M5 and ANN models
show more accuracy in predicting SI and hvalues greater than 320 m
and 750 m, respectively. Generally, it can be concluded that the ANN
results are more accurate for data which are not in the training samples

and hence, the ANN model has a better generalization ability. To de-
velop the conjunctive model (CM), the structure of the three surrogate
models individual are considered to be fixed but the values of their
parameters and relative weights are optimized through a one-leave-out
cross validation process. For the conjunctive model, the optimal values
of K1, K2 and K3 are determined as 0.4, 0.3 and 0.3 (m/day), respec-
tively.

As shown in Figs. 10 and 11 and Table 6, the CC values for SI and h
prediction in the validation phase of the CM are 0.98 and 0.97, re-
spectively. Additionally, the conjunctive model has lower values of
error indices (i.e. MSE and ME of about 32%) comparing to the best
single surrogate model (i. e. M5 model) and can be selected as the final
surrogate model.

4.2. Management of groundwater extraction

Fig. 12a illustrates the obtained Pareto-optimal front considering
the two objective functions of for SEAWT-NSGAII and CM-NSGAII. The
horizontal axis of Pareto front shows the total discharge rates from the
pumping wells and the vertical axis shows the saltwater intrusion
length (SI) at the end of the 20-year planning horizon. As seen, the
slope of trade-off curve decreases with increase of pumping rates. Ac-
cording to Fig. 12, the maximum groundwater extraction is suggested to
be from wells far from the shoreline and near the optimum locations.
The results show that the trade-off curves generated by the two SO
models are relatively similar. However, for a limited number of sce-
narios, the results of CM-NSGAII are relatively overestimated. Ad-
ditionally, for scenarios which suggest high pumping rates, the dis-
crepancy between the results of the two approaches is low. The
required time for converging to optimum solutions, using CM-NSGAII
model on a PC with a configuration of Intel CoreTM 7 (considering 400

Fig. 9. The simulated and predicted h (m) using the three surrogate models in the testing phase.

Table 6
The values of the statistical indices for the three surrogate models and the
conjunctive model (CM).

Models CC (SI ) CC (h ) MSE (SI ) MSE (h ) ME (SI ) ME (h )

M5 (training) 0.96 0.96 484 30.25 16.54 2.98
ANN (training) 0.89 0.93 1369 222 29.7 13.5
RSM (training) 0.94 0.95 1602 46.24 27.65 4.45
CM (training) 0.99 0.99 377 22.50 12.46 2.29
M5 (test) 0.92 0.95 961 34.45 22.54 2.99
ANN (test) 0.88 0.92 1346 40.96 29.07 4.13
RSM (test) 0.84 0.92 2704 88.33 37.2 6.98
CM (test) 0.98 0.97 730 25.84 17.6 2.43

Fig. 10. The simulated and predicted values of a) SI and b) h (m) using the conjunctive model (CM) for 120 validation data.
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populations), is presented in Table 7. As seen in this table, the com-
putational time required for the CM-NSGAII model is only 5% of the
time that SEAWAT-NAGA-II requires to converge.

Also, for CM-NSGA-II, the major portion of the runtime is related to
the simulation using the SEAWAT code and the time used for generating

input–output datasets. During generating the datasets for the three
surrogate models, SEAWAT saves the data in a HDF5-format file for
MATLAB and this process increases the runtime of the SO model.
Overall, the multi-objective optimization algorithm using a combina-
tion of the conjunctive surrogate model (CM) and NAGA-II significantly
decreases the computational burden in the problem of management of
an aquifer under saltwater intrusion.

4.3. Conflict resolution

As seen in Fig. 3, water withdrawal from wells near the Salt Lake
(i.e. Momen and Dolat) has a significant impact on saltwater intrusion.
The values of the Nash product or Nash function (F value) for Pareto-

Fig. 11. Variation of the simulated SI (m) using the
models of M5, ANN, RSM, conjunctive and SEAWAT
based on 250 validation data.

Fig. 12. a) The obtained trade-off curve for the management solutions using CM-NSGA-II and SEWAT-NSGA-II, b) The values of Nash product (F) corresponding to
the optimal scenarios.

Table 7
Comparison of computational performance for different simulation–optimiza-
tion (SO) model.

SO model SEAWAT model calls CM calls Computational time (h)

SEAWAT-NAGAII 15,100 0 294
CM-NAGAII 280 14,200 14.2
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optimal scenarios are shown in Fig. 12b. According to this figure,
Scenario 4 with F value of 0.0128 is the most approved scenario by the
agricultural sectors. The total groundwater pumping rate of five agri-
cultural zones corresponding to Scenario 4 are 132, 77, 115, 838 and
458 million cubic meters over 20 years, respectively. Regarding the
allowed rate of extraction (about 1600 m3/day) for each zone, it can be
concluded that at least 50% of the water demands of the agricultural
zones is supplied.

Also, the value of SI for Scenario 4 is 6550 m that is about 87% of
the maximum SI (7500 m). However, the best scenario is selected
considering SI and profit simultaneously. For this purpose, four sce-
narios with large values of Nash product are evaluated in term of SI.
Fig. 13a illustrates the TDS contours ranging from about 1000 mg/L to
15000 mg/L corresponding to four scenarios with a the highest Nash
values. The distribution of the TDS for the agricultural zones is illu-
strated in Fig. 13a. As seen in Fig. 13b, the SI length for F = 0.011 is

Fig. 13. The contours of TDS concentration corresponding to different values of Nash product (F values) for the five agricultural zones.
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about 5300 m (see Table 8).
Interestingly, Fig. 13c with F = 0.0124 shows a bigger SI . However,

for the case with F = 0.0121, SI is 7800 m. According to the TDS
contours for the four scenarios, it can be concluded that the most pol-
luted area is located in Zone 4 where the TDS concentration is more
than 8000 mg/L. Therefore, the abstraction rate in this area should be
decreased to about 50%. As presented in Table 8, Scenario 2 with
F = 0.0124 and SI = 6400 m has the lowest pumping rate (74 million
cubic meters) from Zone 2 and can be selected as the final groundwater
withdrawal scenario.

5. Conclusions

In this paper, a new framework was proposed for the management
of aquifers threatened by saltwater intrusion. A conjunctive simulation
model was developed using the results of the three models of M5, ANN,
and RSM. This model was used as a surrogate for the numerical
groundwater simulation model (i.e. SEAWAT), which is a time con-
suming model when is coupled with an optimization model with a large
number of decision variables. To improve the performance of con-
junctive surrogate model (CM), the aquifer area was divided into dif-
ferent zones using K-Means clustering technique. To obtain optimal
scenarios for groundwater withdrawal, the CV was coupled with an
optimization model based on NSGA-II, namely, CV-NSGA-II. The opti-
mization problem had two conflicting objectives of maximizing
pumping rates and minimizing SI. Next, the Nash bargaining theory was
applied to obtain a socially optimal scenrario out of the non-dominated
solutions provided by the CV-NSGA-II. The analysis of performance
criteria showed that among the three single surrogate models, M5 and
ANN model had the best performance in the training phase. The results
also showed that for large values of SI , ANN and M5 models tended to
underestimate and overestimate SI , respectively. This flaw was elimi-
nated using CM-NSGAII, which uses a combination of the results of the
three surrogate models. There was a small discrepancy between the
Pareto-optimal curve generated by CM-NSGA-II and that of the original
SEAWAT-NSGA-II. Also, the proposed CM-NSGA-II model led to 95%
reduction in runtime of the simulation–optimization process. The re-
sults of applying the bargaining theory to the pareto-optimal scenarios
obtained using CM-NSGA-II showed that the most desirable scenario
had a Nash value of 0.0128. In addition, scenarios with the Nash value
of 0.1124 had maximum pumping rate from wells located far from the
shoreline. Therefore, groundwater withdrawal based on this scenario
can also increase the quality of extracted water for agricultural uses.

In this paper, only a linear combination of the three surrogate
models was considered. Future studies can assess the non-linear com-
binations of the surrogate models. Also, selecting robust management
scenarios out of the Pareto-optimal solutions incorporating the existing
uncertainties in aquifer parameters has a potential for future works.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.jher.2019.11.005.
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