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ABSTRACT
We consider unsupervised learning methods for characterizing the disordered microscopic structure of supercooled liquids and glasses.
Specifically, we perform dimensionality reduction of smooth structural descriptors that describe radial and bond-orientational correlations
and assess the ability of the method to grasp the essential structural features of glassy binary mixtures. In several cases, a few collective variables
account for the bulk of the structural fluctuations within the first coordination shell and also display a clear connection with the fluctuations
of particle mobility. Fine-grained descriptors that characterize the radial dependence of bond-orientational order better capture the structural
fluctuations relevant for particle mobility but are also more difficult to parameterize and to interpret. We also find that principal compo-
nent analysis of bond-orientational order parameters provides identical results to neural network autoencoders while having the advantage
of being easily interpretable. Overall, our results indicate that glassy binary mixtures have a broad spectrum of structural features. In the
temperature range we investigate, some mixtures display well-defined locally favored structures, which are reflected in bimodal distributions
of the structural variables identified by dimensionality reduction.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0128265

I. INTRODUCTION

Short-range order in liquids and glasses is evidenced by
a sharp peak in the radial distribution function, which defines
the first coordination shell. However, the spatial arrangement of
atoms and molecules within this coordination shell is more diffi-
cult to characterize.1,2 Conventional approaches to describe local
order beyond the two-body level include higher order correla-
tion functions,3 bond-orientational order parameters,4 and more
general structural descriptors based on geometrical5–7 or topolog-
ical constructions.8,9 Over the last decades, local structure analysis
provided evidence that some glassy colloidal suspensions and mul-
ticomponent alloys display nontrivial local arrangements, known
as locally favored structures (LFSs).1 These structures tend to be
more symmetric and stable than the bulk and also correlate to
some extent with the local fluctuations of particle mobility,10–13 i.e.,
dynamic heterogeneity. At present, however, there is no robust and

generally accepted operational definition of a system’s locally
favored structure.14

Unsupervised learning methods have recently emerged as a
promising alternative to characterize materials’ local structure.15,16

Starting from a high-dimensional descriptor of the particles’
arrangements, one searches for patterns and regularities in the statis-
tics of the descriptor. Unsupervised methods typically comprise two
steps: (i) dimensionality reduction, to project the high-dimensional
descriptor on a smaller subspace while retaining most of the orig-
inal information, and (ii) clustering, to identify groups of points
in the dataset that share similar values of the (reduced) descrip-
tor. This approach has been recently applied, for instance, to crystal
structure identification in colloidal suspensions17,18 and the study
of partially ordered systems.16,19 Recent studies have also tackled
challenging problems of structural analysis in bulk disordered mate-
rials, such as simple models of supercooled liquids and glasses,20,21

amorphous carbon,16,22 and liquid water in normal and supercooled
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conditions.23,24 However, some of these extensions employ high-
dimensional structural descriptors, which are not always easy to
interpret, and involve nonlinear reduction methods, which mostly
act as black boxes.

In this work, we focus on the first step of unsupervised learn-
ing, i.e., dimensionality reduction, and explore its role as a heuristic
tool for structural analysis of binary glassy mixtures. Our analysis is
based on smooth structural descriptors that account for both den-
sity and bond-order fluctuations. We apply principal component
analysis (PCA), which is possibly the simplest linear dimension-
ality reduction method, to several descriptors and find evidence
of a varying degree of structural heterogeneity across glassy mix-
tures. The first few principal components, which capture the largest
variance of the original descriptor’s distribution, are closely con-
nected to physically motivated measures of local order as well as
to dynamic heterogeneities. Finally, we show that a neural net-
work autoencoder (AE), which is a more complex dimensional-
ity reduction method, provides nearly identical results to PCA.
Since linear methods have the advantage of being easily inter-
pretable, they should be preferred when studying simple glassy
systems.

The structure of this paper is as follows: Sec. II introduces our
models and methods, including five different model systems, and
several different descriptors that are used to characterize the local
structure. Sections III–V present our key findings. Section VI gives a
critical discussion and an outlook on the methodology.

II. METHODS
We consider a pool of five computational models of binary

glass-forming liquids, characterized by different types and degrees
of local order: two canonical computer models, the Kob-Andersen25

(KA) mixture and the Wahnström26 (Wahn) mixture, two Lennard-
Jones models that mimic the structure of amorphous Ni33Y67

27

and SiO2,28 respectively, and a realistic embedded-atom model of
Cu64Zr36.29 We analyze statistically uncorrelated configurations,
separated by at least one structural relaxation time τα, obtained
from classical molecular dynamics simulations. As usual, τα is
defined by the condition Fs(k∗, τ) = 1/e, where Fs(k∗, t) is the
self-intermediate scattering of the system at a wave-vector k∗

corresponding to the first peak of the structure factor. To pro-
vide a consistent comparison, all the systems are studied under
equilibrium conditions at temperatures close to their respective
mode-coupling theory (MCT) crossover temperatures, empirically
identified by a power law fit of the structural relaxation time
data.30 Around the MCT crossover, the structural relaxation times
are typically about 3 orders of magnitude larger than at the
onset of slow dynamics. Full details about the models are given
in Appendix A.

For each of these models, we analyze several structural descrip-
tors, ranging from simple bond-order (BO) parameters and their
smooth variants, to higher-dimensional descriptors that account for
both orientational and radial correlations. To reduce the dimension-
ality of these descriptors, we use both linear (PCA) and nonlinear
(AE) methods. In this section, we present a synthesis of these
methods and ideas. Readers already familiar with characterizations
of local structure and dimensionality reduction may want to skip
directly to Sec. III.

A. Structural descriptors
1. Bond order

Bond-order parameters are standard measures of structure in
the first coordination shell. Let ri be the position of particle i
and define rij = rj − ri and rij = ∣rij∣. Then, consider the weighted
microscopic density around particle i,

ρ(r; i) =
Nb(i)

∑
j=1

wjδ(r − rij), (1)

where wj is a particle-dependent weight and the sum involves a set
of Nb(i) particles, which defines the coordination shell of interest
for particle i.

We project the microscopic density on a unit-radius sphere,
that is, ρ̂(r̂; i) = ∑Nb(i)

j=1 wjδ(r − r̂ij), where r̂ = r/∣r∣ and similarly
r̂ij = rij/∣rij∣. Expanding in spherical harmonics yields

ρ̂(r̂; i) =
∞

∑
l=0

l

∑
m=−l

clm(i)Ylm(r̂), (2)

with coefficients

clm(i) = ∫ drρ(r; i)Ylm(r̂). (3)

In the conventional bond-order analysis, one sets the weights
to unity and considers the normalized complex coefficients,

qlm(i) =
1

Nb(i)
∫ drρ(r; i)Ylm(r̂)

=
1

Nb(i)

Nb(i)

∑
j=1

Ylm(r̂ij). (4)

The rotational invariants,

Ql(i) = (
4π

2l + 1

l

∑
m=−l
∣qlm(i)∣

2
)

1/2

, (5)

provide a detailed structural description of the local environment
around particle i. By truncating the expansion to order lmax, we
obtain the simplest BO descriptor of an arbitrary particle i,

X BO
(i) = (Q0(i), . . . , Qlmax(i)). (6)

In the machine learning context, such a sequence is usually referred
to as a “feature vector.”

We note that the complex coefficients can be averaged over
nearest neighbors, as suggested by Lechner and Dellago,31 to pro-
vide an improved descriptor for crystal structure detection. We have
tested this approach, but we do not use it in this work because we
found that the additional average tends to smear the differences
between disordered structural environments in the systems of our
interest.

2. Neighbor definition and smoothed BO parameters
In the following, we mostly focus on the structural heterogene-

ity (or diversity of local arrangements) within the first coordination

J. Chem. Phys. 157, 204503 (2022); doi: 10.1063/5.0128265 157, 204503-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

shell. It is therefore important to discuss how this coordination shell
is defined.

The most common approach is to define the neighbors on
the basis of a fixed cutoff distance rc

αβ, where α and β are species
indices. The cutoff distance is equal to the first minimum of the cor-
responding partial radial distribution functions gαβ(r). Alternative
definitions include setting the neighbors on the basis of a (radi-
cal) Voronoi tessellation6 or using the solid angle nearest neighbor
(SANN) approach,32 which is parameter-free.

Irrespective of this choice, the coefficients Ql will change dis-
continuously whenever a particle leaves the coordination shell. The
fact that the descriptor’s components are not smooth functions of
particles’ coordinates is a concern.33 The issue becomes particularly
serious at low temperatures, when thermal fluctuations are small and
discontinuities may affect the distribution of the BO parameters. An
obvious approach to counter this issue is to use a smeared local den-
sity, in which the Dirac deltas are replaced by Gaussians,34,35 see
Sec. II A 3. Alternatively, or even in addition to Gaussian smear-
ing, one can consider a smooth version of the descriptor, in which
the coefficients qlm are multiplied by a weighting function f (r) that
depends on the radial distance r between the central particle and its
neighbors,

qS
lm(i) =

1
Z(i)

N

∑
j=1

f (rij)Ylm(r̂ij), (7)

where Z(i) = ∑N
j=1 f (rij) is a normalization constant and the super-

script S indicates the smooth nature of the descriptor. In the
following, we use

f (rij) = exp[−(rij/rc
αβ)

γ
]H(Rc

αβ − rij), (8)

where rc
αβ is the first minimum of the corresponding partial radial

distribution function for the pair (i, j) and γ is an integer whose
value is given in Sec. III. Moreover, H is the Heaviside step function,
which ensures, for efficiency reasons, that the descriptor only has
contributions from particles within a distance Rc

αβ = 1.3 × rc
αβ from

the central one.
The rotational invariants are defined similar to Eq. (5) and

the corresponding “smooth” bond-order (SBO) descriptor of an
arbitrary particle i is given by

X SBO
(i) = (QS

0(i), . . . , QS
lmax
(i)). (9)

We note that in network-forming systems, such as amorphous silica,
the first coordination shell is sharply defined at low temperatures. In
these systems, the breakage of a bond leads to a “genuine” disconti-
nuity in the BO parameters. This suggests to use a smoothing func-
tion that decays rapidly around rc

αβ, i.e., a high value of γ, to avoid a
too strong smearing of the local environment. Moreover, in mixtures
with strong chemical order due to covalent bonding, it is appro-
priate to compute separate descriptors depending on the species
of the neighboring particles.16 For the silica model introduced in
Appendix A 3, we therefore restrict the sum in Eq. (7) to particles
whose species is distinct from the one of the central particle i.

3. Radial dependence of bond order: SOAP
By projecting the local density on a unit-radius sphere, the con-

ventional BO order analysis treats the first coordination shell as a

whole and ignores any radial dependence. Modern machine learning
descriptors, used for instance to fit potential energy surfaces, provide
instead a systematic expansion of the local density.36 Here, we will
focus on the smooth overlap of atomic positions (SOAP) descrip-
tor,34 which complements the spherical harmonics with a radial
basis gn(r). One can thus analyze the BO at different length scales
as well as correlations between BO orders at different distances.34

We will use the implementation of the SOAP descriptor provided by
the DScribe package,37 whose documentation provides a wealth of
related information.

Within the SOAP descriptor, the microscopic density is
smeared with Gaussians of width σ,

ρ(r; i) =
Nb(i)

∑
j=1

wj exp(−
∣r − rij∣

2

2σ2 ), (10)

and wj is set to 1. Assuming that the radial basis functions gn(r) are
orthonormal, the expansion reads

ρ(r; i) =
nmax

∑
n=1

lmax

∑
l=0

−l

∑
m=−l

cnlm(i) gn(r)Ylm(r̂), (11)

with

cnlm(i) = ∫ drρ(r; i)gn(r)Ylm(r̂). (12)

Notice that, contrary to the conventional BO descriptor—see
Eq. (4)—the coefficients cnlm(i) are not normalized by the number
of neighbors. This means that the descriptor explicitly accounts for
the “coordination number” Nb(i) around a particle, i.e., how dense
is the local coordination shell. We will further discuss this point in
Sec. III C.

The basic SOAP descriptor is then defined by the power spec-
trum pnl(i) = ∑l

m=−l c∗nlm(i)cnlm(i).34 However, this quantity is not
very sensitive to angular correlations between particles at differ-
ent distances, so that a faithful description of the local particle
environment requires a more general descriptor that includes such
correlations explicitly.34 A suitable choice is given in Ref. 38,

Qnn′ l(i) = (
8π2

2l + 1
)

1/2 l

∑
m=−l

c∗nlm(i)cn′ lm(i). (13)

This descriptor retains a lot more information than the single power
spectrum pln(i), which only includes the diagonal terms in the
radial basis expansion, but is of course also computationally more
expensive.

To sum up, the full SOAP descriptor of an arbitrary particle i is
defined by the following feature tensor:

(. . . , Qnn′ l(i), . . .), (14)

with 0 ≤ l ≤ lmax, 1 ≤ n ≤ nmax, and n′ ≥ n, i.e., dropping the terms
that are identical by symmetry. In the following, we will flatten this
tensor as a vector to form the descriptor XSOAP

(i) of an arbitrary
particle i. We will use the original radial basis suggested in Ref. 34,

gn(r) =
nmax

∑
n′=1

βnn′(r − r cut)
n′+2, (15)
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where the coefficients βnn′ ensure orthonormality. These basis func-
tions are not associated with neighbors at specific distances: This
helps to ensure a faithful description of the local environment at
the cost of reducing the interpretability of the descriptor. Note that
choosing nmax = 1 provides a smooth version of the conventional
BO descriptor, which differs nonetheless from the SBO descriptor
because of the Gaussian smoothing of the local density and the lack
of normalization.

4. Radial dependence of bond order: A simpler
Gaussian basis

It is interesting to connect the SOAP descriptor to the one used
by Boattini et al.39 in a recent supervised learning study of dynamic
heterogeneity. We will refer to their descriptor as radial bond-order
(RBO) descriptor because it captures the radial dependence of bond
order in the most straightforward way. This descriptor does not
involve any smoothing of the local density. As a radial basis, Boat-
tini et al. used Gaussian functions of width δ centered on a grid of
distances {dn}n=1...nmax ,

Gn(r) = exp(−
(dn − r)2

2δ2 ). (16)

As noted above, such descriptors are not very sensitive to angu-
lar correlations between particles at different distances.34 It is
unclear a priori to what extent this issue will affect supervised and
unsupervised learning of structure and dynamics via this descriptor.

The complex radial bond-order coefficients are defined as

qR
lmn(i) =

1
Z(i)

N

∑
j=1

Gn(rij)Ylm(r̂ij), (17)

where Z(i) = ∑N
j=1 Gn(rij) is a normalization constant and the super-

script R indicates the radial dependence of the descriptor. In the
following, we actually use

Gn(rij) = exp(−
(dn − rij)

2

2δ2 )H(Rmax − rij), (18)

where H is the Heaviside step function, which allows us once again
to neglect the contributions of particles further than a distance
Rmax = dnmax + 2.5δ from the central particle, where dnmax is the
largest distance in the grid of points {dn}. Then, only the diagonal
coefficients of the power spectrum, i.e.,

QR
ln(i) = (

4π
2l + 1

l

∑
m=−l
∣qR

lmn(i)∣
2
)

1/2

, (19)

are retained to form the descriptor of particle i as (. . . , QR
ln(i), . . .),

which is again flattened as a vector XRBO
(i), composed of lmax × nmax

structural features. The choice for the grid of points {dn} is discussed
in Secs. III D and IV C.

One key advantage of the RBO descriptor is that it is easily
interpretable: It describes the bond order of thin spherical shells at
increasing distance from the central particle. The radial basis con-
sidered within SOAP are much less interpretable and the descriptor
involves the full power spectrum, pnn′ l. This provides a wealth
of information, but it is unclear a priori whether this is actually

relevant for a specific problem. We will come back to this issue
in Sec. IV A.

Finally, we note that the RBO descriptor does not explicitly
account for the local coordination number (i.e., how dense is the
shell of neighbors) because the projected density does not scale with
the number of neighbors. To include this information, Boattini et al.
have complemented their structural descriptor with a measure of the
local density in successive shells centered around a given particle.
Interestingly, however, we will find that the normalized BO descrip-
tors are correlated with the local density of the first coordination
shell (Sec. III C).

B. Dimensionality reduction
We have described the construction of several structural

descriptors X(i) that characterize the first coordination shell of par-
ticle i as given in Eqs. (6), (9), and (19). Let the dimension of X(i)
be M. For a sample of Ntot = N × nconf particles, this means that the
coordination shells of all particles can be summarized in a matrix of
size Ntot ×M, whose rows are the X(i),

X =

⎛
⎜
⎜
⎜
⎜
⎝

X(1)

⋮

X(N tot)

⎞
⎟
⎟
⎟
⎟
⎠

. (20)

In a liquid, each row of the matrix is different, which reflects the
heterogeneity of the local structure. However, correlations within
the coordination shell mean that the row vectors have a nontrivial
probability distribution, with correlations among their components.
The goals of dimensionality reduction are (i) to find out in a
generic way to what extent the components are correlated, (ii) to
extract a reduced descriptor of lower dimension, which embod-
ies most of the “relevant” fluctuations, and (iii) to provide quick
insight into structural heterogeneity, such as multimodality and
non-Gaussianity.

In simple systems and with simple descriptors, such as XBO,
one may always reduce the dimensionality of X by focusing on
selected components, e.g., Q4 and Q6, perhaps motivated by some
physical intuition about the local structure. One may then use the
low-dimensional distributions of the chosen components to char-
acterize structural heterogeneity. The aim of unsupervised learning
is to avoid assumptions on the most important components17,18

and to identify them using statistical methods. This is particularly
advantageous when M is large and even more so when applying
unsupervised learning methods that require computing distances
between datapoints.40

Dimensionality reduction is a valuable tool to gather the rel-
evant components into “reduced descriptors.” It involves mapping
the high-dimensional descriptors into a lower-dimensional space,

VX : X ↦ X̃, (21)

where VX is a function that maps the original M-dimensional
descriptor [e.g., X(i)] to a reduced P-dimensional descriptor [here
X̃(i)], with P <M. The method exploits the full matrix X to con-
struct the mapping, typically by optimizing some cost function;
hence, VX carries an implicit dependence on X. The main difference
between the various dimensionality reduction methods lies in the
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nature of the mapping: We talk about linear or nonlinear dimension-
ality reduction depending on the linearity of VX, as will be discussed
further in the next paragraphs.

Note that the dataset is often normalized before performing
dimensionality reduction.15 This normalization, known as feature
scaling, is necessary if the dataset is heterogeneous, with different
features having different physical dimensions. In this work, the fea-
tures have the same dimensions, so scaling is not strictly necessary.
In some cases, we perform a simple Z-score scaling: Each feature is
normalized by subtracting the average and dividing by the standard
deviation evaluated over all the particles. We indicate whether or not
feature scaling is applied for each descriptor.

1. Principal component analysis
Principal component analysis (PCA)41 is a linear dimensional-

ity reduction method that aims to transform each descriptor X into
X̃ by retaining directions associated with the largest variance of the
dataset. Since the transformation is linear, this is easily performed at
the level of the data matrix X, which is first transformed as

X̃ = XV, (22)

where V is a M ×M matrix whose columns {V( j)
}j=1...M are called

the principal component (PC) directions of X.42 They correspond
to the eigenvectors of the features’ covariance matrix, whose entry
( j, k) is

cov(Xj, Xk) = ⟨(Xj − ⟨Xj⟩)(Xk − ⟨Xk⟩)⟩, (23)

where ⟨. . .⟩ denotes an average over the Ntot particles of the sam-
ple. This covariance matrix measures correlations between different
elements of the descriptor. The eigenvectors {V( j)

}j=1...M corre-
spond to the directions of the new feature space. Their associated
eigenvalues {λj}j=1...M indicate the variance of the data along the
corresponding eigenvector, and the explained variance ratio (EVR)
of the j-th principal component is thus given by

EVR(PCj) =
λj

∑
M
k=1 λk

. (24)

By convention, the principal components are sorted in descending
order according to their EVR.

Dimensionality reduction is performed by considering a trun-
cated transformation, which retains only the first P <M eigenvectors
in the matrix V. Equivalently, we retain only the first P columns of
the transformed matrix X̃, yielding P reduced features, X̃1, . . . , X̃P.
As a rule of thumb, one keeps as many PC directions as needed to
explain to a significant fraction, say 80%, of the total variance of the
dataset, see also Sec. III C. Alternatively, one can inspect the EVR as
a function of the component index and look for an inflection point,
which defines empirically an optimal P for dimensionality reduc-
tion. The notion of intrinsic dimension43,44 of a dataset provides a
more robust and objective criterion. This kind of analysis is, how-
ever, beyond the scope of the present work and is left for a future
study. Note that within PCA, the reduced features are linearly related
to the original ones. Thus, one can directly identify the main sources
of variance in the data, e.g., which features are most responsible for
the observed structural heterogeneity of the sample.

2. Neural network autoencoder
An autoencoder is an artificial neural network that learns an

efficient coding of a dataset X in an unsupervised way.42 It is trained
to reproduce its own M-dimensional input as output by forcing the
input data through a lower P-dimensional bottleneck in the hidden
layers. An autoencoder is separated into two parts: (i) an encoder
(the first half of the hidden layers up to the bottleneck) that forces
a compression of the input data and (ii) a decoder (the second half
of the hidden layers), tasked to reconstruct the input X as output
XR with the highest accuracy. This reduction method is nonlinear
since, in feed-forward neural networks, nonlinear functions are gen-
erally used to control neuron activations between successive hidden
layers.

Once the network has been optimized to minimize the recon-
struction error, cutting it at the level of the encoder yields a mapping
VX from the original high-dimensional data to a low-dimensional
representation X̃. The nonlinearity of the method makes it pos-
sible to provide low-dimensional representations of datasets with
intricate structures. However, an autoencoder also requires tun-
ing a large number of parameters, such as the dimensions of
the network (i.e., number and sizes of the hidden layers), choos-
ing the activation functions, the cost function and regularization
term, the solver, etc. Moreover, training the neural network is a
stochastic procedure that may yield very different outcomes and
must be repeated until the optimal reconstruction error on X is
reached.

The EVR can be determined by computing the mean squared
error on the reconstruction rescaled by the mean squared deviation
of the input vectors,20

EVR = 1 − ∑
N tot
i=1 ∥X(i) − XR

(i)∥2

∑
N tot
i=1 ∥X(i) − ⟨X⟩∥2

, (25)

where XR
(i) is the i-th row of the reconstructed input and ⟨X⟩ is the

mean input vector. Note that this EVR is the fraction of the variance
that is captured by the reduced dataset X̃ of the AE, while the corre-
sponding quantity, Eq. (24), for PCA is the variance captured along
a single PC direction.

III. DIMENSIONALITY REDUCTION
OF LOCAL STRUCTURE

In this section, we discuss some of the key features that emerge
from dimensionality reduction of bond order in glassy binary mix-
tures. The computation of descriptors and most of the dimen-
sionality reduction analysis reported in the following sections were
performed using the partycls package.45 Data analysis has been
carried out using a reproducible workflow, deposited in the Zenodo
public repository.46

We focus here on the local structure around the small parti-
cles of the “close-packed” mixtures (Wahn, KA, Ni33Y67, Cu64Zr36)
and on the Si particles of the SiO2 model. Local order around par-
ticles of these species becomes well-defined at low temperature. We
present some results for the other species in Appendix B. We mostly
limit ourselves to the first coordination shell and we set the weights
wj to unity in Eq. (1). We work at temperatures that correspond to
moderate supercooling, i.e., close to the MCT crossover tempera-
ture, and we analyze instantaneous configurations from dynamical
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simulations. (At these temperatures, analysis of energy-minimized
and instantaneous configurations differ only marginally.)

A. Illustrative example: Icosahedral local order
in the Wahn model

To illustrate the key features of the PCA approach to dimen-
sionality reduction, we start by analyzing the Wahn mixture. This
model serves as a useful benchmark because its local structure has
been characterized in depth and is known to display strong icosa-
hedral order.10,11 Its structural features should thus stand out most
clearly.

We consider the SBO descriptor, which avoids the discontin-
uous dependence of the features on the particle coordinates, taking
lmax = 8 and γ = 8 for the smoothing function f (r) in Eq. (8). Using
PCA for dimensional reduction, we write X̃j(i) as the j-th element
of X̃(i), which represents the projection of particle i’s descriptor
on the j-th PC direction. By considering all the particles in the sys-
tem, we form a joint probability distribution of the PCs (X̃1, X̃2, . . .).
Figure 1(a) shows the probability density function p(X̃1, X̃2) of the
projections on the two first PCs’ directions. Since the values of QS

l
(and Ql) are directly comparable in terms of both amplitudes and
ranges, we do not perform feature scaling.

By visual inspection, we recognize two modes in the distribu-
tion: a central diffuse region and a more localized lobe for larger
values of X̃1. To illustrate the physical meaning of these modes,
we compare in Fig. 1(b) the marginal distributions p(X̃1) and
p(X̃1∣LFS), the latter being restricted to particles at the center of the
LFS as identified from a radical Voronoi tessellation.21 It is clear
that the secondary lobe is due to local icosahedral order. These
observations suggest the presence of two distinct amorphous struc-
tural “states” in this model, similar to what found in polyamorphic
materials.47

FIG. 1. Overview of the results of PCA of the SBO descriptor for the small particles
in the Wahn mixture. (a) Probability density p(X̃1, X̃2). (b) Marginal distribution
p(X̃1) and p(X̃1∣LFS). (c) Components of the eigenvector V (1). (d) Distribution
p(X̃ j) for j > 1 (black) and p(X̃1) (red). The light blue curve is a Gaussian with
variance equal to the one of X̃8. The horizontal line indicates increasing PC index.

Analyzing the results in more detail, the first PC identifies the
direction in feature space having the largest structural heterogene-
ity of the SBO parameters and accounts for about 62% of the total
variance. One may expect that this component gives a strong weight
to Q6. This is confirmed by Fig. 1(c), which shows the individual
components of the first eigenvector V (1) of the covariance matrix,
see Sec. II B 1. We also see that V (1) couples several bond-order
invariants and has large contributions also from Q5, Q7, Q8, with
a sign opposite to Q6. In other words, particles with large Q6 (and
icosahedral local environments) tend to have small projections on
spherical harmonics of order 5,7,8, while lower order invariants are
statistically uncorrelated to Q6.

Turning to higher principal components, we found that PC2
gives strong and opposite weights to Q5 and Q7 (not shown) but
the corresponding EVR is already fairly small (18%). Interestingly,
principal components with even smaller EVR are characterized by
marginal distributions p(Xj) that are only slightly asymmetric and
are rather well described by Gaussians, see Fig. 1(d). These obser-
vations suggest that it may be possible to schematically represent
the feature space of the SBO descriptor of the Wahn mixture as
having a single “relevant” direction, which captures the bulk of the
structural heterogeneity, on top of a background of “trivial,” nearly
Gaussian directions. Interestingly, this kind of simplified picture
of high-dimensional datasets defines one of the simplest models of
unsupervised statistical learning48 and is also amenable to analytical
treatments.

B. From weak to strong structural heterogeneity
in glassy binary mixtures

We now proceed with a more systematic comparison of the
reduced structural features of glassy binary mixtures. When analyz-
ing bond order, the vast majority of previous studies have focused on
rotational invariants of order 4 and 6, which are assumed to reflect
the relevant symmetries of close-packed local structures.49 The pre-
vious example shows that PCA identifies indeed Q6 as the most
relevant parameter in the Wahn mixture. Here, however, we also
consider systems for which the relevant symmetries are not obvi-
ous from physical intuition, so that unsupervised learning of local
structure is useful.

As in Sec. III A, we use the SBO descriptor with lmax = 8 and
γ = 8 for the smoothing function. We checked that inclusion of
higher order spherical harmonics (lmax = 16) does not appreciably
change the results. We focus on the two PC directions with the
largest eigenvalues, further analysis of the remaining components is
given in Sec. III C below. In Fig. 2, we show the probability density
functions p(X̃1, X̃2) for all the studied systems. We start by analyz-
ing the KA mixture and the Ni33Y67 model. In these systems, the
first two PCs capture 37% + 31% (KA) and 39% + 29% (Ni33Y67) of
the total variance. The eigenvectors V (1) and V (2) of each model are
given in Appendix B. Even though the invariants Q4 and Q6 feature
prominently in the first two PC directions, the fluctuations of other
invariants are more relevant in some models. For instance, in the KA
mixture and Ni33Y67 model, Q5 has the largest contribution to PC1.
As can be seen in Figs. 2(a) and 2(b), these two models display a
broad but unimodal distribution of the reduced descriptor (X̃1, X̃2).
These results can be contrasted to what we found in the Wahn mix-
ture and the Cu64Zr36 model, which display instead a nearly bimodal
p(X̃1, X̃2).
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FIG. 2. Probability density p(X̃1, X̃2) from the PCA of the SBO descriptor in all the studied models. Results are shown for the small particles in panels (a)–(d) and for Si
particles in (e). The bottom panels show the marginal distributions of X̃1.

It is interesting to compare these results to those obtained with-
out smoothing the descriptor, i.e., with the bare BO descriptor of
Eq. (6), see Fig. 3. This descriptor has been used in a recent unsuper-
vised learning analysis of glassy systems.20 The PCA of XBO reveals
clear banding in the probability density of the reduced descrip-
tor of all the studied models. As shown in Fig. 4, these bands are
associated with different coordination numbers and disappear at
high temperature, when thermal noise is large enough to smear the

discontinuities of the descriptors.50 Note that small signs of discon-
tinuities are visible at the level of the distributions of the individual
invariants, but they become much more visible after dimensionality
reduction.

The fact that the reduced BO descriptor is strongly modu-
lated by coordination number may impact the cluster analysis of
these structural descriptors. However, we think these findings differ
from “structure from chance” artifacts that may affect unsupervised

FIG. 3. Same as Fig. 2 but panels (a)–(e) correspond to the BO descriptor.

FIG. 4. Scatter plot of (X̃1, X̃2) obtained from the PCA of the BO descriptor, color-coded by coordination number z. Results are shown for the small particles in panels
(a)–(d) and for Si particles in (e). For clarity, only 3000 datapoints are shown for each system.
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learning.48 The fact that bond order depends on the coordination
number (or more generally local density) makes physical sense.
Interestingly, as we shall see in Sec. III C, a strong correlation
between the first few PCs and coordination number persists even
after smoothing the descriptor.

Finally, we analyze the simple model of amorphous silica.
The local structure of this system can be easily characterized by
the coordination number z, which equals 4 for ideal tetrahedral
structures around Si particles. At the studied density and tem-
perature, defects appear mostly in the form of undercoordinated
structures, i.e., Si particles with z = 3 and 2. We note that such
defects would be almost completely removed by energy minimiza-
tion at the studied temperature. In Figs. 2(e) and 3(e), we show the
distributions p(X̃1, X̃2) obtained by applying PCA to XSBO and XBO

of Si particles, respectively. As anticipated in Sec. II A 2, we use a
sharper γ = 18 exponent to smear the SBO descriptor for this model
because the first coordination shell is more sharply defined than in
the other mixtures, and we also restrict the calculation to oxygen
neighbors.

As expected from the low coordination of the local structure, we
find that the first two PC directions give strong weights to invariants
with small l. The PCs obtained from the bare BO descriptor display
multiple sharp bands along which X̃1 and X̃2 are strongly correlated.
The bands are associated with distinct coordination numbers, i.e.,
z = 4, 3, 2 from left to right. We found that, along a given band, the
local environments around Si particles are also characterized by a
marked gradient of tetrahedrality, i.e., how ideal is the local tetrahe-
dral environment, see Sec. III C. On the other hand, the projections
on the PCs obtained from X̃ SBO have a much more diffuse charac-
ter. The scattered region at large X̃1 values is associated with defects
in the network structure. Thus, the relevant information about the
local structure of this system is somehow washed out when using
the smoothed descriptor.

C. Connection of reduced structural features
to other structural measures

The results discussed in Sec. III B provide some evidence of a
varying degree of heterogeneity of the local structure of the studied
systems. The distribution p(X̃1, X̃2) ranges from broad but uni-
modal (KA, Ni33Y67) to nearly bimodal (Wahn, Cu64Zr36) or even
possibly multimodal (SiO2). In this section, we analyze the PCs of
the SBO descriptor in detail and identify its connection with known
measures of local order. This analysis will corroborate the idea that
the first few PCs are indeed sufficient to grasp relevant information
about local order.

First, we analyze the EVR of all the PC directions in the top
panel of Fig. 5. All systems display a drop in the EVR after a few
PCs: This occurs already after PC1 in the Wahn, Cu64Zr36 and SiO2
models, while a little gap is visible after PC2 in the more weakly het-
erogeneous systems. This supports the view that the first two PCs
alone are providing significant information about the underlying
feature space. Close inspection of Fig. 5(e) suggests the existence of
an additional gap after PC3 in the amorphous silica model, see also
below.

We also confirmed that none of the low-EVR variables have
strongly bimodal distributions. We did so by employing Hartigans’
dip test,51 which provides a rather stringent criterion for the mul-
timodality of a distribution. The output of the dip test is a value

between 0 (unimodal distribution) and 1 (multimodal distribu-
tion). We found that the marginal distributions p(X̃1) of the SBO
descriptor in the Wahn mixture and in the Cu64Zr36 model have a
significantly bimodal character, with dip test values close to 1. For
all the other marginal distributions, the dip test value indicates a
unimodal character.

We now connect the reduced structural variables X̃j to selected
measures of local order. That is, we compute the Pearson correla-
tion coefficient R between the PCs and (i) the coordination number
z, measured by integrating the partial correlation function gα(r),
where α is the species of interest, up to its first minimum; (ii) the
Θ parameter introduced by Tong and Tanaka,52 which measures the
compactness of local environment; as in the original implementa-
tion, we used radical Voronoi neighbors for this calculation53 and
we employed the positions of the first peak of the gαα(r) radial distri-
bution functions as measures of the effective particle diameters; for
the SiO2 model, we use instead a simple measure of tetrahedrality,
i.e., Θ is defined as the average deviation of the bond angles from the
ideal tetrahedral angle 109.5○; (iii) the LFS index ℓ, which equals 1
if the Voronoi polyhedron surrounding the particle corresponds to
the system’s LFS and 0 otherwise; the LFS has been identified from a
radical Voronoi tessellation in previous work;10,13 in the SiO2 model,
ℓ is defined as 1 if the coordination number is z = 4 for Si particles
and 0 otherwise; (iv) local potential energy u.

The bottom panels of Fig. 5 provide an overview of these cor-
relation coefficients for all the studied mixtures. Interestingly, the
first few PCs are quite strongly connected to the local order para-
meters (Θ, ℓ), local potential energy (u), or coordination number
(z). The degree of correlation depends on the PC and on whether
the mixture is weakly or strongly heterogeneous. In particular, we
notice that the correlation between PC1 and the LFS determined
from the Voronoi tessellation is significant in systems with marked
structural heterogeneity (Wahn, Cu64Zr36, SiO2) and less so in the
other models (KA, Ni33Y67). Even in systems with weak structural
heterogeneity, however, the projections on the first two PCs are cor-
related with measures of local structure, despite the more uniform
spectrum of features. Interestingly, PC2 and PC3 in the SiO2 model
display a higher correlation than the remaining low-EVR compo-
nents, confirming the above observations that these variables are
structurally relevant.

We also found that these conventional structural measures are
all somewhat correlated with one another (with cross-correlations
in the range 0.2–0.6), capturing slightly different aspects of struc-
tural heterogeneity. The PCA of XSBO allows one to capture all
these features through a few collective variables, defined on the basis
of structural heterogeneity alone. This suggests that the intrinsic
dimension of the SBO feature space is indeed low—a more precise
determination would require additional work.44 A somewhat strik-
ing feature is that, even though the bond-order coefficients do not
scale with the number of neighbors [see Eq. (4)], the first PCs are
still strongly correlated with the local coordination number, z. Thus,
smoothing the coefficients removes the discontinuities in the stan-
dard BO descriptor, but it does not wash out the correlation with
local density evidenced in Fig. 3.

To further illustrate the advantage of considering a few PCs
instead of selected SBO parameters {Q S

l }, we computed the same
structural indicators as in Fig. 5 for the bare SBO descriptor. These
results are shown in Fig. 6, along with the standard deviation of each
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FIG. 5. Properties of the PC of the SBO descriptor for small particles in (a)–(d) and Si particles in (e). The top figures show the explained variance ratio (EVR) of each PC
and the tables show the Pearson correlation coefficient R between each X̃ j and other structural measures: LFS index (ℓ), local compactness (Θ), coordination number
(z) and local potential energy (u). See the main text for a detailed description of these quantities.

FIG. 6. Properties of the individual SBO parameters, Q S
l , for small particles in (a)–(d) and Si particles in (e). The top panels show the standard deviation on the distributions

of each parameter Q S
l and the tables show the Pearson correlation coefficients R between the individual values of Ql and the same structural measures featured in Fig. 5.

marginal distribution p(Q S
l ). They demonstrate that, for any given

system, it is difficult to pinpoint a small subset of SBO parameters
that capture the bulk of structural heterogeneity. Instead, all the SBO
parameters are to some extent correlated or anticorrelated to mea-
sures of local order and to local density. We note that a trivial source
of correlation between z and XBO (or XSBO) arises from the reduc-
tion (in magnitude) of Ql as the number of neighboring particles
increases. This leads to negative correlations between most of the Ql
and z. However, in mixtures with strong icosahedral local order, Q6
has a non-monotonic dependence with z: It peaks at z = 12 before
dropping off at larger z. Thus, Q6 and Q S

l display a very weak correla-
tion with z. Finally, we note that in the SiO2 model, the first two PCs
are both strongly and positively correlated with Θ. Indeed, we found
a marked gradient of Θ along each of the bands visible in Fig. 3(e)
(not shown).

To summarize, PCA applied to the SBO descriptor provides
a few collective structural variables that aggregate information
on local order. These variables are simple linear combinations of
smooth BO parameters and capture the largest fraction of struc-
tural fluctuations. Our analysis has been restricted to the small
particles of the close-packed mixtures, building on the insight that
local order is less pronounced around the big particles (see Figs. 15
and 16 in Appendix B for analogous results for these particles).
For the small particles, the first few PCs are strongly connected to
well-known measures of local order and gather a signal that would

otherwise be scattered across almost all the individual BO para-
meters. Even though some low-variance components may retain
relevant information (see also Sec. IV A), our results suggest that
the first PCs suffice to characterize structural heterogeneity in glassy
binary mixtures, within the first coordination shell.

D. Fine-grained local structure: Using the SOAP
descriptor to analyze radial dependence
of bond order

Can we gain additional insight into the local structure by
considering a finer-grained expansion of the local density? The
SOAP descriptor provides a natural framework for this extended
analysis since it performs a systematic expansion of the local density
up to a distance rcut from a central particle. The cost is a reduced
interpretability of the descriptor and a larger hyper-parameter space
to explore. Indeed, structural analysis using the SOAP descriptor
must be combined with chemical and physical intuition to grasp
the key results.24 In this section, we summarize the few robust
trends we have identified as well as the shortcomings of this kind of
analysis.

The SOAP descriptor depends on two hyper-parameters: the
smearing parameter σ in Eq. (10), which sets the length scale
on which the particles are localized, and the cutoff distance rcut,
used to define the coordination shells of interest. In addition, it
depends on the number of radial and angular basis functions nmax
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and lmax, which control the radial and angular resolution, respec-
tively, and on feature scaling. Unsurprisingly, we found that all
these hyper-parameters have a significant impact on the outcome of
dimensionality reduction, see also Ref. 16 for a discussion on SOAP
hyper-parameter tuning. In this section, we again limit ourselves
to the first coordination shell and we set rc

αβ = r cut = 1.6, slightly
larger than the minimum of the total g(r). This effectively ignores
slight differences between coordination shells defined by particles of
different species. As in the previous sections, we used lmax = 8 ori-
entational basis functions and varied the largest number of radial
basis functions from nmax = 1 to 8. The qualitative features discussed
below are rather insensitive to this parameter for large enough nmax.
We use nmax = 6 in the plots that follow. As a guideline, σ should
be around σ ≈ rcut/nmax and, in thermal systems, larger than the
typical vibrational amplitude of the particles. We chose σ = 0.2.
Note that perturbations around σ = 0.2 may change the outcomes
of dimensionality reduction, we quantify these effects later in this
section.

We consider the KA and Wahn mixtures, which are repre-
sentative of close-packed mixtures with weak and strong structural
heterogeneity, respectively. For this analysis, we focus on a smaller
dataset composed of ten configurations for each model system. In
Fig. 7, we show the probability density p(X̃1, X̃2) of the first two
PCs of the SOAP descriptor for these two systems. In both cases,
feature scaling is applied to adsorb the lack of normalization of the
power spectrum.54 The qualitative features observed in Fig. 7 are
similar to those discussed in Sec. III B: p(X̃1, X̃2) is nearly bimodal
in the Wahn mixture, while it is unimodal in the KA mixture. Com-
pared to the SBO descriptor, however, the EVR is now distributed
more evenly among the PC directions and the first two capture a
much smaller fraction of the total variance, see Fig. 8. This may be
expected in view of the larger feature space of SOAP.55 However,
we can still appreciate from Fig. 8 the presence of gaps between the
EVRs of the first two PCs and the bulk in the Wahn mixture: Beyond
PC2, the shape of the EVR as a function of component index evolves
smoothly. In the KA mixture, a similar change is observed after
4–5 PCs, which still suggest a relatively low intrinsic dimension.44

FIG. 7. Probability density p(X̃1, X̃2) from the PCA of the SOAP descriptor for the
small particles of (a) the Wahn mixture and (b) the KA mixture. The bottom panels
show the marginal distribution p(X̃1).

FIG. 8. EVR along the first 60 PC directions of the SOAP descriptor for the small
particles of (a) the Wahn mixture and (b) the KA mixture.

However, compared to the low-dimensional SBO descriptor, these
gaps are small enough to be perturbed by noise and small changes in
the descriptor’s hyper-parameters.

To address this point more systematically, we assessed the sim-
ilarity between the reductions obtained using different choices of
hyper-parameters, σ and rcut. We computed the Pearson correlation
coefficient R between the variable X̃1 obtained using the reference
values, σ = 0.2, rcut = 1.6, and the ones obtained for small perturba-
tions of these hyper-parameters. From the results collected in Fig. 9,
we observe that the results are relatively stable for the Wahn mixture,
as expected, but the outcome of the reduction deviates significantly
from the reference when rcut is increased. Even more dramatic are
the changes observed for the KA mixture: In this case, X̃1 may
change significantly and erratically as a function of σ and rcut. We
attribute part of this effect to the dependence of nearest neighbor
distances on the chemical composition of the first coordination shell
of the KA model. It is also a general feature that smaller gaps in
EVR between PCs lead to increased sensitivity of PC directions to
small perturbations in the parameters or the data. This is consistent
with the trend between Wahn and KA mixtures. The second PC dis-
plays an even stronger variability for both models, as expected (not
shown).

Note that across the range of hyper-parameters spanned in
Fig. 9, the distributions p(X̃1, X̃2) maintain the same qualitative
differences between the two models observed in Fig. 7. However,

FIG. 9. Pearson correlation coefficient between the feature X̃1 of the SOAP
descriptor (obtained for σ = 0.2, rcut = 1.6) and X̃1(σ, r cut) (obtained for differ-
ent values of the parameters σ and rcut, as indicated in the figure). Results are
shown for the small particles of (a) the Wahn mixture and (b) the KA mixture.
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specific choices of the parameters may enhance or suppress the
bimodal character of p(X̃1, X̃2) for the Wahn mixture. Given the
large hyper-parameter space associated with the descriptor, our
results call for a principled approach to hyper-parameter tuning for
unsupervised learning of glassy materials, where the relevant length
scales cannot be determined in a simple way.16

We note one possible shortcoming of the radial basis for the
present analysis: As is clear from Fig. 3 of Ref. 34, the first radial
functions are nonzero over a range of distances that are depleted in
our range of temperatures and they vary only mildly over the first
coordination shell.56 This basis may thus require a large value of nmax
to properly account for correlations within the first coordination
shell. To test whether this could be an issue, we also used a different
basis formed by Gaussian-type orbitals,57 which effectively suppress
contributions from close-contact distances. We found qualitatively
similar results to those already discussed in this section. An alter-
native route to provide a fine-grained description of correlations
within the first shell is to use the RBO descriptor, Eq. (19), which
we tailored to cover the first coordination shell using nmax = 5 Gaus-
sians of width δ = 0.2 centered at (0.9, 1.0, 1.1, 1.2, 1.3), and lmax = 8.
This choice of hyper-parameters leads to PCA maps that are again
qualitatively similar to those of Figs. 2(a), 2(c), and 7, but the under-
lying PC directions are again sensitive to addition or removal of one
Gaussian (not shown here).

To sum up, SOAP has proven to be a good descriptor for
supervised and unsupervised learning studies of materials and
molecules,16 in particular for fitting macroscopic properties and
potential energy surfaces.58 As we shall see in Sec. IV C, the
SOAP descriptor also provides a good fit to dynamic heterogene-
ity, from purely structural information. Its application in the context
of unsupervised learning of disordered materials is more recent
and focused so far on systems with highly directional correlations,
such as amorphous carbon,16,22 or normal and supercooled liquid
water.23,24 Even in such systems with low coordination numbers
and sharp orientational correlations, interpreting the results requires
some physical and chemical intuition. In our opinion, the util-
ity of this descriptor for unsupervised learning of the structure
of glassy materials with close-packed local structures, like metal-
lic glasses, remains to be clarified. Our results indicate that, for
the first coordination shell of these systems, the fine radial basis
of SOAP does not reveal qualitatively new geometrical features,
compared with the much simpler SBO descriptor. We also found
that even the first few PC directions are sensitive to the choice of
hyper-parameters and also to thermal noise in the particle config-
urations.59 We expect that studying the mixtures at much lower
temperature and combining separate descriptors for neighbors of
different species, as done in Ref. 24, will provide more insight into
this issue.

IV. CORRELATIONS OF STRUCTURE WITH DYNAMICS
Having identified a few collective variables that capture struc-

tural heterogeneity, one obvious question is whether they are related
to dynamic heterogeneity. To address this point, we follow the usual
approach of measuring the particles’ square displacements in the
iso-configurational ensemble.60 Given an initial equilibrium config-
uration sampled at a temperature T, the propensity for motion of
particle i after a time interval t is

μi(t) = ⟨∣ri(t) − ri(0)∣2⟩ic,

where ⟨. . .⟩ic denotes an average over an ensemble of independent
trajectories that start from the initial positions {ri(0)}i=1,...,N with
initial velocities drawn from the Maxwell–Boltzmann distribution
at temperature T. Hereafter, we refer to the propensity for motion
simply as the propensity. Data for the propensity in this section
were obtained in Ref. 21, to which we direct the reader for further
details.

Spatial fluctuations of the propensity are directly connected to
the structure of the initial configuration. Thus, by construction, the
propensity captures the structural component of dynamic hetero-
geneities.61 The key issue is then to identify which aspects of structure
correlate with the propensity. This challenge is closely related to
the task of predicting localized plastic events in sheared amorphous
solids using only structural data.62

A. On the relationship between structural
and dynamic heterogeneity: Insights from PCA

To assess this, we computed the absolute value of the Pear-
son correlation coefficient between the propensity and each of the
reduced features obtained from PCA. Our analysis focuses on two
reference models: the KA and Wahn mixtures. Since the small and
big particles of these systems have quite different dynamics, the
calculation is carried out separately for each species, yielding dis-
tinct correlation coefficients RA and RB for big and small particles,
respectively. We emphasize that this correlation is computed at the
single-particle level as a correlation between μi and X̃j, contrary
to the majority of recent studies on this topic where the struc-
tural descriptor is averaged over some length scale.13,21,39,52,63 Since
there is no physically motivated choice for this length scale yet, our
approach allows a simple comparison between different structural
observables, even though larger absolute values for the correlation
coefficient would be obtained if local averaging were performed.
This increase is particularly strong at long times, due to a coupling
with the local density.64

We start by analyzing the small particles, on which our analysis
has focused so far. In the top panels of Fig. 10, we show the absolute
values of the correlation coefficient, ∣RB∣, between the propensity at
time t and each of the reduced features X̃j obtained from the PCA
of the SBO descriptor. The first PC gives the strongest correlation.
For both models, the correlation displays a flat maximum and starts
decaying around the structural relaxation time τα, which is measured
from the decay of the total self-intermediate scattering function.21

The values of τα are 1.6 × 102 and 9 × 102 for the Wahn and KA
mixtures, respectively. The maximum of the correlation coefficient
is around 0.5 in the Wahn mixture. For the KA mixture, the first PC
still carries significant information about the dynamics, but the cor-
relation is weaker (max. ≈ 0.35). In both models, these results show
that a single structural variable, X̃1, obtained without any supervi-
sion, has a significant correlation with the dynamics of the small
particles. Comparing the two models, correlations between structure
and dynamics are stronger in the Wahn mixture, consistent with
previous work.13,21 For the higher PCs, individual correlations with
dynamics are weaker than PC1.

Corresponding results for big particles are shown in the bottom
panels of Fig. 10. Compared to the small particles, the correlations
are much weaker and there is no clear separation between the first
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FIG. 10. Pearson correlation coefficients between the propensity at time t and
each of the reduced feature X̃ j obtained from the PCA of the SBO descriptor, for
the Wahn mixture [(a) and (c)] and the KA mixture [(b) and (d)]. Results are shown
separately for the small particles [∣RB∣, (a) and (b)] and the big particles [∣RA∣, (c)
and (d)].

PC and the rest. This points to a more complicated relationship
between structure and dynamics, in this case.

B. Multiple linear regression of the propensity
of motion using structural data

To characterize more complex structure–dynamics relation-
ships, one must go beyond correlations between individual PCs
and propensity. Supervised learning methods provide a data-driven
route to identify such relationships in supercooled liquids and
they have been used quite intensively in the recent years.39,65–68

In the absence of a physically motivated framework for such an
analysis, we follow the simplest approach and perform a multi-
ple linear regression (LR) to connect the propensity to structural
data.39

Consider a generic set of P structural features: X1, . . . , XP. We
least-square fitted the propensity after time t to a linear combination
of structural features by defining, for each particle i,

μX
i (t; β1, . . . , βP) = β1X1(i) + ⋅ ⋅ ⋅ + βPXP(i), (26)

where β1, . . . , βP are fitting parameters. The optimal parameters
β̂1, . . . , β̂P are determined by minimizing the cost function

χ =
1

Nα

Nα

∑
i=1
∣μX

i (t; β1, . . . , βP) − μi(t)∣2, (27)

where the sum is restricted to all the particles of species α in
the sample. The fit was performed using the LinearRegression

function of the scikit-learn package.69 We also tested the effect
of weight regularization in the cost function (the Ridge method42), as
done in Ref. 39, but this did not lead to any significant change in the
results.

For each particle i, the fit yields an interpolated value of the
propensity μ̂i = μX

i (t; β̂1, . . . , β̂P), which can be interpreted as a data-
driven prediction for the propensity, based on the structure. To
assess the quality of these predictions, we use Pearson correlation
coefficients R between the interpolated and the actual propensity,
which can be obtained by normalizing and shifting the optimal
cost χ.

We performed this test for three different structural descrip-
tors. As a reference, we first consider the full SBO descriptor:
Xj = X SBO

j with j = 1–8. Second, we consider principal component
regression (PCR),42 in which we fit a linear combination of X̃ SBO

1
and X̃ SBO

2 . Third, we considered the physically motivated struc-
tural measures introduced in Sec. III C: X1 = z, X2 = ℓ, X3 = Θ,
X4 = u (coordination, LFS membership, tetrahedrality parameter,
local potential energy).

Results are shown in Fig. 11. For small particles, very similar
results are obtained for all three descriptors. We conclude that the
two most relevant PCs capture almost all of the correlations between
the SBO descriptor and the dynamics and that these descriptors
predict the dynamics just as well as the structural measurements.
That is, two PCs are enough, in these cases, to capture the bulk
of the correlations. For big particles (lower panels of Fig. 11), the
correlations are weaker, as observed for individual PCs in Fig. 10.
There are larger differences between the LR results for full SBO
and the PCR, indicating that the structure–dynamics correlation is

FIG. 11. Pearson correlation coefficients between the propensity at time t and a
multiple linear regression of different structural measures, for the Wahn mixture
[(a) and (c)] and the KA mixture [(b) and (d)]. Results are shown separately for the
small particles [∣RB∣, (a) and (b)] and the big particles [∣RA∣, (c) and (d)]. The three
sets of features used for fitting are described in the main text.
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spread over more than two PCs. For the Wahn mixture, the SBO
correlation is similar to that of the physically motivated structural
correlators, while the KA mixture shows that the SBO correla-
tion is somewhat weaker. In this latter case, it appears that bond
order misses some aspects of local structure that are important for
dynamics.

Overall, the picture that emerges from Figs. 10 and 11 is that
the small-particle dynamics have significant correlations with local
bond order. Hence, this aspect of structure has significant predic-
tive power for dynamics, which can be captured through one or two
PCs. For the big particles, the correlations are weaker and are spread
over more PCs. In all cases, the correlations for the KA mixture
are weaker than those of the Wahn mixture, consistent with earlier
work.13

C. Fitting the propensity of motion using extended
structural descriptors: SOAP and RBO

We now resolve the local structure in more detail, using the
extended descriptors defined in Secs. II A 3 and II A 4. Adding more
structural information in this way will reduce the residual cost χ,
corresponding to an improved fit of the dynamics. We start with the
SOAP descriptor focusing on the first coordination shell, choosing
rcut close to the first minimum of the total g(r) and using nmax = 6
radial components, giving 189 independent structural features in
total. Here, we only fit the full descriptor, without any dimension-
ality reduction, because we found that the results of PCA for this
descriptor are sensitive to the choice of the hyper-parameters and are
anyway difficult to interpret. We do not expect any overfitting within
our simple linear regression model as the number of datapoints
greatly exceeds the number of parameters to fit.

From Fig. 12, we see that the SOAP descriptor does indeed
lead to stronger correlations with the dynamics compared to the
SBO descriptor. This is especially true for short times in the Wahn
mixture and longer times in the KA mixture. The values of the corre-
lation coefficients are also in line with those obtained in supervised
learning studies,68 using support vector machine,66 graph neural
networks,67 or linear regression of the coarse-grained RBO descrip-
tor with an L2 regularization.39 The improvement over the SBO
descriptor, however, comes at the expense of a lack of interpretabil-
ity of the results: SOAP involves a much larger number of features
and it is difficult to understand which are responsible for the cor-
relation with the dynamics. At any rate, these results indicate that
subtle features of the local density within the first coordination shell
are responsible for a part of the dynamic fluctuations within the
iso-configurational ensemble.

Finally, to capture structural correlations beyond the first coor-
dination shell, we employed the SOAP and RBO descriptors—see
Eq. (19)—using a larger cutoff distance rcut. For the SOAP descrip-
tor, we used rcut = 2.2 and nmax = 8, to maintain approximately the
same radial resolution, yielding 324 structural features. For the RBO
descriptor, we used Gaussians of width 0.2, centered on a grid {dn}

from r = 0.9 to 2.2 with spacing 0.1, yielding 104 structural features.
From Fig. 12, we see that extending the descriptors to include the
second coordination shell increases slightly the correlations with the
propensity. We do not observe significant differences in the correla-
tions obtained using the SOAP and RBO either, the former leading
to marginally higher correlations than the latter. This indicates that

FIG. 12. Pearson correlation coefficients between the propensity at time t and the
linear regression of SOAP (blue) and RBO (red) for the Wahn mixture [(a) and
(c)] and the KA mixture [(b) and (d)]. Results are shown separately for the small
particles [∣RB∣, (a) and (b)] and the big particles [∣RA∣, (c) and (d)]. The light colors
are for the first coordination shell only, the dark ones up to the second shell.

the additional information retained by the SOAP descriptor, which
accounts for couplings between different radial orders in the power
spectrum (see Sec. II A 3), is not useful for fitting the propensity. The
simpler RBO descriptor seems to retain all the necessary informa-
tion that can be exploited to fit the dynamics within a simple linear
regression model. Overall, our results show that including structural
correlation beyond the first coordination shell increases the correla-
tion with the dynamics only slightly, and the origin of the increase is
difficult to pinpoint.

V. COMPARISON OF DIMENSIONALITY REDUCTION
BY PCA AND NEURAL NETWORK AE

Our analysis so far used PCA, which is possibly the sim-
plest dimensionality reduction method. As emphasized in Sec. II B,
nonlinear reduction methods provide superior performance when
it comes to mapping complex high-dimensional data on a low-
dimensional manifold. However, this is often achieved at the cost
of a lack of interpretability or the need to fine-tune a large num-
ber of free parameters. For instance, the exploration of parameter
space and the training process of neural network AEs can quickly
become slow and tedious, and the results may not easily general-
ize. Moreover, while the explainability of machine learning methods
recently started to emerge as a separate research field to tackle the
problem of the interpretation of their results,70,71 neural networks
are still generally regarded as black boxes.

In this section, we directly compare the results obtained using
PCA and the neural network AE, using the SBO descriptor for both
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the Wahn and KA mixtures. Our model for the AE was developed
using TensorFlow,72 following Boattini et al.20 for the choice of free
parameters, since the descriptor and the studied physical systems
are similar. The neural network is composed of three hidden layers
with dimensions (5M, P, 5M), where M is the number of features
in the SBO descriptor and P is the dimension of the bottleneck that
we set to 2. The input and output layers thus have a dimension of
M. Activation functions are the hyperbolic tangent for the encod-
ing and decoding layers and a linear function for the bottleneck and
output layers. We use mini-batch stochastic gradient descent with
momentum, with a batch size of 200 and a momentum of 0.2, and the
learning rate is set to α = 5 × 10−2. We use the mean squared error
as loss function, with an L2 penalty term λ = 10−5 on the weights for
regularization. Weights and biases are initialized using the Glorot
method.73 The network is then trained for 250 iterations (“epochs”
in the data science jargon) for the Wahn mixture and 500 itera-
tions for the KA mixture on 70% of the dataset, while the remaining
30% are used to evaluate the loss function at the end of each iter-
ation. See Ref. 46 for full details about the parametrization of the
network.

For both models, we process the full datasets X using both
PCA and the AE in order to reduce their dimension to P = 2 and
obtain two datasets X̃ PCA and X̃ AE. Since there is no constraint
on the range and directions of variance of the data in the reduced
space found by the AE, we transform X̃ AE by rotating the reduced
descriptors. In terms of the data matrix, this corresponds to

X̃ AE
T = X̃ AE

⎛
⎜
⎝

cos(θ) − sin(θ)

sin(θ) cos θ

⎞
⎟
⎠

, (28)

which yields a new data matrix X̃ AE
T (the subscript T indicates the

additional transformation). The angle of rotation θ is chosen so as
to rectify the alignment of the reduced features yielded by the AE to
match with those from PCA. In practice, we iteratively rotated X̃ AE

T
by steps of θ = 5○ to maximize

SR = ∣R(X̃ AE
T,1 , X̃ PCA

1 )∣ + ∣R(X̃ AE
T,2 , X̃ PCA

2 )∣, (29)

where R(X̃ AE
T,j , X̃ PCA

j ) is the Pearson correlation coefficient between
the j-th feature of each dataset. This additional transformation on
X̃AE does not affect qualitatively the output distribution of the AE
but facilitates the comparison with X̃PCA.

To illustrate this process, Fig. 13 shows an example of the prob-
ability densities of the reduced descriptor obtained by the AE for
the Wahn mixture, before and after rotation of the dataset. We see
that the distribution yielded by the AE is qualitatively similar to
those shown for PCA in Fig. 2(c). The only significant difference is
a linear transformation (scale and shift), as shown in Fig. 14. This
already suggests that the AE does not identify any additional source
of structural heterogeneity, beyond what is found in PCA.

Since the training process of the AE has a stochastic nature,
we repeated it ten times. We identify the “best” solution by min-
imizing the loss on the validation set, among the ten repetitions.
For each repetition, we also keep track of the EVR and the value
of the loss on the validation set at the end of each training, allow-
ing us to assess the variability and robustness of the results. Table I
(a and b) shows the absolute value of the average Pearson correlation

FIG. 13. (a) Probability density p(X̃ AE
1 , X̃ AE

2 ) from a representative solution
obtained by the AE with the SBO descriptor in the Wahn model (small particles).
(b) Probability density p(X̃ AE

T ,1, X̃ AE
T ,2) after a rotation of the reduced descriptor by

an angle θ = 225○, which maximizes SR.

coefficient between different pairs of features in the reduced descrip-
tors, as well as the average EVR and validation loss, for small and big
particles, respectively.

For all the models and types of particles, the variability is
extremely low, as shown by the small standard deviation on the
correlation. Remarkably, the correlations between “related” features
(X̃ AE

T,j , X̃ PCA
j ) are very close to 1, while the correlations between

“opposite” features (X̃ AE
T,j , X̃ PCA

k , j ≠ k) are close to 0. Moreover, the
average EVR of the AE is identical to that of PCA, which shows that
the AE and PCA effectively keep the same amount of information
from the original data. We obtained very similar results for the bare
BO descriptor (not shown). There is almost no difference between
the validation losses of the various training iterations, which sug-
gests that they all approach the same minimum of the loss function.
We note that the validation loss is largest for the small particles
of the KA mixture, possibly because the number of such particles
is 2.5 times lower than the corresponding number for the Wahn
mixture.

In conclusion, we found that the output of PCA and AE is
almost identical, supporting the idea that the bond-order descriptors

FIG. 14. Scatter plots of X̃ PCA
j against the reduced features from the AE after

rotation, X̃ AE
T ,j for (a) j = 1 and (b) j = 2. The distribution considered for the AE is

the same as in Fig. 13. Apart from a shift, the two distributions are almost identical,
as confirmed by the Pearson correlation coefficients ∣R∣. Results are shown for the
SBO descriptor in the Wahn model (small particles). For visualization purposes,
only a subset of 1000 datapoints are shown.
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TABLE I. Comparison between the reduced descriptor yielded by PCA, (X̃ PCA
1 , X̃ PCA

2 ), and the reduced descriptor yielded

by the AE, (X̃ AE
T ,2, X̃ AE

T ,2), rotated so as to maximize SR. The first two rows show the absolute value of the Pearson correlation
coefficient between the first and second features of both methods, the third row shows the total EVR, and the fourth row
shows the loss on the validation set of the AE at the end of the training procedure. Errors are the standard deviation of each
quantity over ten repetitions of the AE.

(a) Small particles

Wahn KA

X̃ PCA
1 X̃ PCA

2 X̃ PCA
1 X̃ PCA

2

X̃ AE
T,1 0.998 ± 0.003 0.03 ± 0.02 0.998 ± 0.003 0.05 ± 0.03

X̃ AE
T,2 0.06 ± 0.04 0.999 ± 0.001 0.05 ± 0.04 0.998 ± 0.003

EVR 0.801 6 ± 0.000 6 (0.800 9 for PCA) 0.680 ± 0.001 (0.681 for PCA)
Validation loss 0.000 73 ± 0.000 01 0.001 01 ± 0.000 01

(b) Big particles

Wahn KA

X̃ PCA
1 X̃ PCA

2 X̃ PCA
1 X̃ PCA

2

X̃ AE
T,1 0.999 ± 0.001 0.03 ± 0.01 1.000 ± 0.001 0.03 ± 0.02

X̃ AE
T,2 0.05 ± 0.02 0.999 ± 0.001 0.02 ± 0.01 0.999 ± 0.001

EVR 0.750 1 ± 0.000 6 (0.750 3 for PCA) 0.699 3± 0.000 8 (0.699 5 for PCA)
Validation loss 0.000 594 ± 0.000 009 0.000 551± 0.000 004

do not have a complex distribution that would benefit from a
nonlinear dimensionality reduction method. Indeed, the explained
variance ratio of the AE is not larger than that of PCA, suggest-
ing that it does not capture any additional information compared
to PCA, at least in dimension P = 2 where the majority of the vari-
ance is already restored by both methods. It appears that PCA is able
to capture the key structural features just as accurately as the AE,
both in systems with strong and weak structural heterogeneity. In
the context of this study on simple binary mixtures, it appears that
the reward of using a complex machine learning method such as the
AE does not justify the difficulty in setting it up. This conclusion is
broadly consistent with the findings of recent work on supervised
learning of glassy dynamics.39,68

VI. DISCUSSION AND PERSPECTIVES
We close with a broad view of the context of these results and

open problems left for future studies.

A. Toward a robust operational definition
of locally favored structures

As noted in the Introduction, a central motivation for unsu-
pervised learning in glassy binary mixtures is to pursue a robust
definition of locally favored structures, without reference to dynamic
properties nor prior knowledge of the relevant symmetries of
the particles’ arrangements. Conventional classification methods5–9

yield a large discrete set of distinct local structures, but many of

these are easily transformed into one another by thermal distortions.
Our analysis focused instead on dimensionality reduction of smooth
high-dimensional descriptors, as a step toward a coarse-grained
notion of LFS.

Among the systems studied, the Wahn and Cu36Zr64 models
have pronounced icosahedral order at low temperatures, which has
a clear signature in the probability density of the reduced descrip-
tors. This allows identification of the LFS, as a distinct “mode” in
the distribution of the reduced descriptor. Indeed, one might use
the PC1 defined here as a smooth measure of icosahedral order in
these systems. Similarly, the SiO2 model has directional bonding,
which leads to an heterogeneous feature space in which the pre-
ferred tetrahedral arrangements are clearly distinguished from other
defective structures. For other systems, i.e., the KA mixture and
Ni33Y67 model, the structural feature space appears rather homoge-
neous and the putative LFS, determined from the largest occurrence
of cell signatures in the Voronoi tessellation,10 does not stand out
from the background of irregular local structures. Given the range
of dimensionality reduction methods and descriptors that we tried,
we suspect that this is not a technical limitation but rather an intrin-
sic property of these amorphous systems. Note that the results may
be qualitatively different with descriptors that treat separately par-
ticles of different species,16 which provide a richer description of
compositional fluctuations.24

Overall, it seems that some glassy mixtures do have well-
defined LFS, while others continue to explore a broad spectrum
of disordered local structures, even at relatively low tempera-
tures. The latter situation is assumed in mean-field theories of
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the glass transition,74,75 while the first is central to structure-
based approaches.1,76 It would be interesting to extend this anal-
ysis to more complex glassy systems, like polymers and organic
glasses, to understand the extent to which LFSs appear there
and whether they can be detected by unsupervised methods.
Finally, a robust operational definition of LFS requires careful
consideration of two additional aspects, viz., modality and tem-
perature dependence of the feature space, to which we turn in
Sec. VI B.

B. Modality and temperature dependence
of structural heterogeneity

While the results for the glassy models with strong icosahe-
dral order in Fig. 2 indicate a population of LFS that is distinct
from the rest of the liquid, it would be interesting to understand
more precisely if the higher-dimensional structural descriptor can
be decomposed into a large number of structural states (or modes).
A related problem arises in studies of polydisperse colloidal sus-
pensions, when looking for an effective description of structure
and thermodynamics in terms of a discrete number of families of
particles.77,78 Identifying the number of distinct modes of a high-
dimensional distribution is a delicate task in unsupervised learning42

and even well-established tests used in cluster analysis (such as the
Bayesian information criterion, used for instance in Ref. 20) may fail
under some conditions.79

In this work, we have avoided the question of how many modes
best fit the distribution of the structural descriptors, but we did
attempt a global assessment of the modality of the distribution p(X̃),
to tell whether it is better described by one or multiple modes. Specif-
ically, we tested a recently proposed statistical criterion called the
folding test of unimodality,79 which can also be applied to high-
dimensional datasets. The test outputs a nonnegative folding ratio
parameter Φ, which is normalized such that Φ < 1 for multimodal
distributions. The normalization considers the approximate fold-
ing statistics of the uniform random vector in dimension d,79 but
we found that this normalization leads to a trivial scaling with the
dimensionality of our datasets, which makes it unreliable. It would
be interesting to test a suitably modified version of this metric in a
future study.

When distinguishing systems that display a well-defined LFS
from those with a uniform spectrum of disordered structures, it is
important to consider the role of temperature. One might expect
a broad range of structures at high temperature, with LFSs emerg-
ing on cooling. Previous work21 suggested different degrees of
structural fragility in the KA and Wahn model, in that the struc-
tural heterogeneity of Wahn has a stronger temperature depen-
dence. We performed a preliminary assessment of the temperature
evolution of the EVR, the variance of the PCs, and the non-
Gaussianity of their distributions. The results (not shown here)
broadly support the idea that the models with icosahedral order
studied here have a higher structural fragility than the others. Finally,
we note that while the current unsupervised learning approach
can be used to identify structural modes at any given tempera-
ture, it is unclear how the corresponding directions in the high-
dimensional feature space evolve with temperature. This should
be taken into account by a robust and transparent definition of
LFS.

C. Beyond the first coordination shell: How
heterogeneous is medium range order?

In most of the previous sections, we probed structural hetero-
geneity over a length scale corresponding to the first coordination
shell, i.e., we focused on local order. However, in the analysis car-
ried in Sec. IV C, we extended the range of the SOAP descriptor
to include the second coordination shell. The results shown in
Fig. 12 indicate that this brings only a marginal contribution to
the structure–dynamics relationship, hence the dominant source of
structural heterogeneity comes from the first coordination shell.

A recent study by Zhang and Kob showed that bond order
persists even at large distances in liquids, both under normal and
supercooled conditions,80 suggesting that there is interesting struc-
tural heterogeneity beyond the first shell. For instance, the KA
mixture is characterized by alternating icosahedral and dodecahe-
dral order in successive coordination shells around big particles. To
characterize the heterogeneity of such order beyond the first coor-
dination shell, we analyzed the local structure of the Wahn mixture
using the RBO descriptor, restricting ourselves this time only to the
second coordination shell. We used the following two grids of dis-
tances for the descriptor: (i) {dn} = (0.9, 1.0, 1.1, 1.2, 1.3) and (ii)
{dn} = (1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2), using Gaussians of width
δ = 0.2. We found that the probability densities p(X̃1, X̃2) changed
from bimodal to unimodal, when switching from (i) to (ii), indicat-
ing either that our current methodology is not sufficient to capture
the heterogeneities in this longer-ranged order or perhaps that there
is little heterogeneity on such scales, even if there is significant
ordering. Similarly, the distributions of the reduced descriptors that
characterize the second coordination shell appeared unimodal in the
KA mixture. We defer to a future study a more in-depth analysis of
higher order coordination shells, in both close-packed and network-
forming systems, as well as of the temperature dependence of the
heterogeneity of medium range order.

D. A critical assessment of unsupervised learning
methods for glassy systems

The words “unsupervised machine learning” might suggest a
procedure where the user passes some input configurations to an
algorithm, which automatically returns a characterization of the
local structure, without requiring any assumption as to the dominant
structural motifs. However, this picture is too simplistic because
it neglects at least two places in which the user’s assumptions are
baked into the method: the choice of the descriptor and of its hyper-
parameters. We have emphasized throughout this work that the
results depend on these choices: It is essential to keep in mind that
they can strongly influence the results.

To illustrate this, we briefly mention two pitfalls that we
encountered in this study. First, it may seem natural to use descrip-
tors that include as much information as possible to avoid biasing
the algorithm toward any particular form of order. However, in the
current context, this hinders interpretability of the results, making it
necessary to relate a posteriori the reduced variables to other physi-
cally motivated quantities. Moreover, a high-dimensional descriptor
such as SOAP contains much more information than the simple SBO
descriptor, but the dimensionality reduction yields qualitatively sim-
ilar structural features in both cases, compare Figs. 2 and 7. The
reduced descriptors extracted from SOAP also depend sensitively
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on its hyper-parameters, see Fig. 9, whose choice depend on the
identification of the relevant length scales in the system.

The second pitfall is that a bad choice of descriptor can lead
to detection of erroneous structure, even in a disordered system.
This can be appreciated from Fig. 3, which appears to show com-
plex distributions of the first two PCs in all the models considered,
hinting at the existence of different local structures. In fact, these
structures appear because the descriptor detects neighboring parti-
cles according to a fixed cutoff, which splits a continuous family of
local structures into distinct subpopulations. A more reliable repre-
sentation of the data is obtained by using a smoothed cutoff (Fig. 2),
which reveals the underlying continuous family.

Based on these observations, our conclusion is that unsuper-
vised learning provides a powerful tool in this context, but its
application and interpretation still requires care, as with all methods.
It should not be surprising that an algorithm requires some guidance
to identify the aspects of local structure that are physically relevant in
glasses. Providing appropriate guidance requires in turn some phys-
ical insight from the user as well as an understanding of how the data
will be used within the algorithm.
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APPENDIX A: MODELS
1. Wahn mixture

The Wahn model, introduced by Wahnström in Ref. 26, is a
two-component Lennard-Jones mixture composed of type-A (big)
and type-B (small) particles with chemical fractions xA = xB = 0.5.
Particles interact via a Lennard-Jones potential,

uαβ(r) = 4ϵαβ[(
σαβ

r
)

12
− (

σαβ

r
)

6
], (A1)

where α and β are species indices. The values for the interac-
tion parameters are given in the original paper.26 Quantities are
expressed in the following system of units: The unit of length is
σAA, the unit of energy is ϵAA, and the unit of time is

√
mAσ2

AA/ϵAA,
this is also valid for the other models presented in the next

paragraphs except for the one in Appendix A 5. The number density
is ρ = N/V = 1.297, where V is the volume of the cubic simulation
cell. We consider molecular dynamics simulation data, produced
in the context of Ref. 21, for a system of N = 20 000 particles. In
the following, we analyze nconf = 10 statistically uncorrelated con-
figurations at temperature T = 0.58. The estimated mode-coupling
crossover temperature is TMCT ≈ 0.56.

2. KA mixture
The Kob-Andersen (KA) mixture25 is loosely designed to

reproduce the structure of the Ni80P20 metallic glass former using
Lennard-Jones interactions. It is composed of type-A (big) and type-
B (small) particles with chemical fractions xA = 0.8 and xB = 0.2, and
the number density is set to ρ = 1.2. As for the Wahn mixture, we
consider molecular dynamics simulation data, produced in the con-
text of Ref. 21, for a system of N = 20 000 particles. We consider
nconf = 10 statistically uncorrelated configurations at temperature
T = 0.45 (TMCT ≈ 0.435).

3. SiO2 model
We also study a simple binary model, based on short-range

interactions, that mimics the structure and dynamics of amorphous
silica.28 The chemical fractions are xSi = 0.33 and xO = 0.67. The
interaction potential between Si and O particles is of the Lennard-
Jones type, as in Eq. (A1), while the one between identical species is
a simple inverse power law,

uαα = 4ϵαα(
σαα

r
)

12
. (A2)

The interaction parameters are given in the original paper. The
simulation data analyzed in this work were obtained in Ref. 30.
The number of particles is N = 2000. We consider nconf = 20 sta-
tistically uncorrelated configurations at temperature T = 0.3397
(TMCT ≈ 0.31).

4. Ni33Y67 model
We consider a parametrization of the LJ potential that provides

a realistic description of the structure of amorphous alloys of Ni
and Y atoms.27 This model is characterized by a single energy scale
and diameters σαβ, determined by fitting structural data on exper-
imental Ni–Y alloys at several compositions. As in Ref. 27, we use
chemical fractions xNi = 0.33 and xY = 0.67. In the following, we will
refer to Ni and Y atoms in this mixture as small and big particles,
respectively. We carried out molecular dynamics simulations for a
system composed of 4000 particles, which we cooled at constant den-
sity ρ = 1.5. This corresponds approximately to the highest densities
reached along an isobaric path at P = 10 in Ref. 10. The system is
then equilibrated and simulated at T = 0.55 (TMCT ≈ 0.52) and we
collect nconf = 40 statistically uncorrelated configurations.

5. Cu64Zr36 model
We simulate with the LAMMPS molecular dynamics code81

an embedded-atom model for CuZr alloys using the interatomic
potentials developed in Ref. 29. We use a model system of size
N = 16 000 with chemical fractions xCu = 0.64 and xZr = 0.36,
which displays a pronounced icosahedral local order at low
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temperatures.82,83 Note that such local order develops prominently
around the (small) Cu particles. The model is also prone to crystal-
lization into a CuMg2 Laves phase84 and we confirmed this kind of
instability at zero pressure for temperatures in the range between
800 and 900 K. We could, however, equilibrate and simulate the
system for 0.12 ns at zero pressure and temperature T = 800 K,
while observing only a modest minor drift of the potential energy.

At this temperature, the structural relaxation time τα is about 3 ps
and we consider nconf = 11 statistically uncorrelated configurations.
Given that it is difficult to avoid crystallization for temperatures
above 800 K, we do not have a precise estimate of the MCT
crossover temperature for this model. However, inspection of the
data reported in Refs. 82 and 83 suggests that it may lie in the range
750–800 K.

TABLE II. Eigenvectors V (1) and V (2) of the covariance matrix, corresponding to the two largest eigenvalues of the SBO
descriptor for the small particles of the close-packed mixtures and for the Si particles in the SiO2 models.

EVR Q S
1 Q S

2 Q S
3 Q S

4 Q S
5 Q S

6 Q S
7 Q S

8

KA

PC1 37% +0.06 +0.07 +0.19 +0.66 −0.51 +0.05 +0.49 +0.12
PC2 31% +0.07 +0.01 +0.02 −0.39 −0.50 +0.65 +0.01 −0.40

Ni33Y67

PC1 38% +0.09 +0.06 +0.06 +0.25 −0.82 +0.31 +0.40 −0.03
PC2 29% −0.02 −0.00 +0.10 +0.78 +0.12 −0.41 +0.10 +0.43

Wahn

PC1 61% −0.03 −0.04 −0.06 −0.13 −0.41 +0.68 −0.50 −0.31
PC2 20% −0.05 +0.01 +0.03 +0.12 +0.72 +0.09 −0.64 +0.22

Cu64Zr36

PC1 65% −0.03 −0.04 −0.05 −0.16 −0.53 +0.65 −0.42 −0.31
PC2 18% +0.03 −0.01 −0.01 −0.07 −0.69 −0.16 +0.70 −0.09

SiO2

PC1 65% +0.25 +0.61 −0.05 +0.04 +0.60 −0.08 −0.02 +0.44
PC2 16% +0.11 −0.41 −0.34 +0.29 +0.04 −0.71 +0.17 +0.28

TABLE III. Eigenvectors V (1) and V (2) of the covariance matrix, corresponding to the two largest eigenvalues of the SBO
descriptor for the big particles of the close-packed mixtures.

EVR Q S
1 Q S

2 Q S
3 Q S

4 Q S
5 Q S

6 Q S
7 Q S

8

KA

PC1 48% −0.01 −0.01 +0.00 +0.04 +0.12 +0.75 −0.64 +0.07
PC2 22% +0.06 +0.03 +0.03 +0.06 +0.06 −0.43 −0.40 +0.80

Ni33Y67

PC1 46% −0.02 −0.02 −0.01 +0.04 +0.19 +0.87 −0.42 −0.12
PC2 25% +0.07 +0.02 +0.03 +0.02 −0.01 −0.21 −0.65 +0.72

Wahn

PC1 49% −0.00 −0.00 +0.02 +0.07 +0.20 +0.74 −0.63 −0.06
PC2 26% +0.04 +0.01 +0.04 +0.09 +0.22 −0.39 −0.44 +0.77

Cu64Zr36

PC1 41% +0.07 +0.04 +0.01 +0.08 +0.24 +0.41 −0.82 +0.31
PC2 36% +0.00 +0.02 −0.01 +0.01 +0.07 +0.73 +0.13 −0.67
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FIG. 15. Same as Fig. 2 but for the large particles of the close-packed mixtures: (a) KA, (b) Ni33Y67, (c) Wahn, (d) Cu64Zr36.

FIG. 16. Same as Fig. 5 but for the large particles of the close-packed mixtures: (a) KA, (b) Ni33Y67, (c) Wahn, (d) Cu64Zr36. Note that no well-defined LFS can be identified
from the Voronoi tessellation around these particles; therefore, the correlation with ℓ is not considered.

APPENDIX B: ADDITIONAL RESULTS
ON THE SBO DESCRIPTOR

We provide here supplementary information and results on the
PCA of the SBO descriptor in the studied models. Tables II and
III show the eigenvectors V (1) and V (2), i.e., the first two PC direc-
tions. We also show additional results for the big particles of the
close-packed mixtures: Fig. 15 presents the distributions p(X̃1, X̃2)

obtained from PCA of the SBO descriptor, while Fig. 16 shows the
EVR and the correlation of each PC with the physically motivated
structural measures introduced in Sec. III C. Note the little bump in
the distribution p(X̃1, X̃2) for Cu64Zr36 in Fig. 15(d), which could be
due to the presence of a small crystallite in the sample.
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