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a b s t r a c t

We present a theoretical framework for new structural metamaterials we refer to as liquid structures:
a topology of bistable mechanisms made up of a high number of cells that are sub-mechanisms
composed of pseudo-rigid links and joints. The name liquid structures comes from the similarities they
present with the kinematics of the constant flow of incompressible fluids they are inspired by in a
limited domain. The layout of the cells are obtained through a two-step process where: (i) the node
displacements are computed by means of a Computational Fluid Dynamics tool feeding and (ii) the
kinematic synthesis of each cell that is subsequently performed. We report two illustrative examples
where star- and diamond-type cells are employed. The paper concludes with a detailed discussion
about future theoretical and manufacturing challenges arising from this new metamaterial paradigm.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Metamaterials are materials engineered to show global prop-
rties (mechanical, electrical, optical, etc.) that are not found
n naturally bulk materials [1–4]. They present unconventional
ehaviors, both for 2D and 3D applications [5–7]. Among these,
etamaterials based on lattice structures have been deeply stud-

ed, especially for their mechanical properties (for example, nega-
ive Poisson’s ratio and bistability [8,9]), or for their performance
n dynamics [10–13]. Their versatility has facilitated their use in
ther scientific fields such as biology (e.g., knotted proteins and
NA [14], higher genus membranes [15]) and physics (e.g. topo-
ogical study of the behavior of defects in liquid crystals [16]).

Generally, lattice-based metamaterials can be seen as a net-
ork of nodes (with or without mass) connected by spring-like
lastic elements that can act either as a strut (in compression)
r a tie (in tension) [17,18]. Such elastic elements may also
onsist of pseudo-elastic links [19] –a review on pseudo-elastic
igid bodies can be found in [20]. It is intuitive that the overall
igidity of the structure is on average related to the number of
odes that are connected to each single node. On the one hand,
educing the number of links makes the structure less rigid, until
critical point is reached at which the overall assembly can be

nfinitesimally deformed without any relevant energy cost, i.e. the
tructure loses rigidity. On the other, a not-carefully checked
istribution of a sufficient number of nodes and links may still

∗ Corresponding author.
E-mail address: massimiliano.gei@dia.units.it (M. Gei).
display internal Degrees of Freedom (shortened henceforth as
#DoF) or, as recently defined, soft modes. In other words, the
stability of a structure cannot be evaluated by considering exclu-
sively topological aspects. This is the reason why, as far as linkage
mechanisms are concerned, the Grubler’s equation that provides
the number #DoF of a mechanism fails if exceptions are not taken
into account [21].

For example, with reference to Kagome lattices, Vitelli ex-
plained in a clear way how topology is not everything: ‘‘The
character of the soft modes depends sensitively on boundary
conditions and network architecture (e.g., on the relative angle
between bonds and not merely on the average coordination num-
ber)’’ [18]. This principle is also exploited in providing mobility
in MEMS (Micro Electro-Mechanical Systems) since, at the mi-
croscopic scale, it is not possible to realize complex mechanical
transmissions by gears or shafts. In some cases, it is feasible to
build complex structures that, for small displacements, allow the
synchronized motion of several bodies using a single actuator.
For example, Gallina et al. have realized a platform for biologi-
cal cell tests (multiaxial stretcher), actuated by an electrostatic
comb [22]. The upgrade of the system was a multi-axis actuator
consisting of an apparently redundant structure. In this case, the
mobility was guaranteed by a special linkage that provided a soft
mode [23]. Paulose et al. were able to create topological isolated
soft modes positioned at desired locations in a metamaterial
composed of either Kagome or square lattices. Their structures
are robust against structural deformations [24] and this relies on
the concept of topological polarization. A topologically polarized

lattice can realize soft modes of self-stress at sample edges [25].
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Fig. 1. Sketch of the volume Ω × ρ that is occupied by the liquid structure.
hen A = I × ρ is pressed, the distant surface B = O × ρ is deformed.

We propose here a different approach for the design and con-
rol of soft modes that combines techniques used in mechanisms
ynthesis (linkage synthesis) with Computational Fluid Dynamics
CFD). These tools allow us to link one boundary location of a
attice structure to a far away one through paths where lattice
isplacements are ‘‘channeled’’ to ensure the required actuation.
Therefore, the paper is devoted to a new family of metamate-

ial linkages we refer to as liquid structures. In order to describe
he principle of operation, we introduce the following mechanical
roblem: consider a simply connected domain Ω in the plane
x, y⟩, bounded by a perimeter p, as in Fig. 1. In the example, Ω

s a rectangle and Ω × ρ a volume, where ρ is a given thickness.
he parallelepiped is occupied by a complex indeterminate me-
hanical system that must exhibit the following property: if one
ortion of its lateral surface is deformed by applying a load, the
ystem must react by deforming a distant surface. In Fig. 1 the
load, equivalent to the force F , is applied to A = I × ρ (I ⊂ p)
whereas the remote surface is B = O × ρ (O ⊂ p). To fulfill the
objective, A and B must be related by a sort of mechanical link, so
that a concave deformation of A causes the convex deformation
of B. How can such a system be implemented?

One possibility to achieve the goal is to create a hydraulic
press: an empty parallelepiped filled with incompressible fluid,
provided with rigid walls except at surfaces A and B; A and B
are equipped with two deformable and sealed membranes to
prevent the liquid from leaking. In this way, if membrane A is
pressed, due to the incompressibility of the fluid, the membrane
B deforms accordingly to maintain the deformation isochoric. The
question that inspired this research work is: is it possible to create
a mechanism composed of compliant links and joints, as general as
possible, able to behave like the liquid system, at least for small
displacements?

To provide a positive answer, a new family of mechanisms,
that of liquid structures, is conceived: a liquid structure is made
up of links and (revolute and prismatic) joints that connect the
displacements of some points (on the face A in Fig. 1) to those of
other points located at a different spot (on the face B).

We prefer the definition of liquid structure instead of liquid
mechanism since this new linkage allows only small displace-
ments and the majority of its points on the border are fixed to
the reference frame. The parallelism between the behavior of a
box filled with liquid and our linkage explains the metaphorical
term liquid employed to address this new family of mechanisms.
2

To the best of our knowledge, this is the first study that
proposes the synthesis of a lattice to create a ‘‘mechanical trans-
mission’’ within the network. It is also the first work that takes
advantage of CFD techniques to perform the kinematic synthesis.
The great availability of CFD codes allows to set in a simple way
the input data of the problem and get an insight into a possible
solution.

In the next section of the paper a general theoretical frame-
work is given where star- and diamond-type cells are also in-
troduced. Sections 3 and 4 show how to apply the method to a
couple of case studies. In Section 5, open questions and future
developments are presented. Eventually, concluding remarks are
drawn in Section 6.

2. Mathematical framework

2.1. Model framework and definitions

To illustrate the theoretical framework, we refer our develop-
ments to the two-dimensional case; therefore, the thickness ρ is
not taken into account. Consider the area Ω ∈ R2 of Fig. 2 that
can be ‘‘filled’’ with a complex linkage mechanism made up of
revolute and prismatic joints.1 to form a complex lattice that can
be split into sub-mechanisms we refer to as cells.

Each cell, regarded as not connected to the rest of the linkage,
may have 3, 4 or even more than 4 DoF, and is connected to the
adjacent ones through points that are called nodes. Cells with 3
DoF are rigid and have null mobility: they can freely move in
the plane as a rigid body (by translating along axes x and y and
rotating about axis z), but do not deform internally. Those with
4 DoF possess an internal degree of freedom in addition to the
possibility of rigid motion.

The number of nodes for each cell is nj,2 where the subscript j
indicates the jth cell. We define four different kinds of nodes, the
first three of which belong to the boundary of Ω:

• Wall nodes: nodes that constitute the fixed part of the
boundary of the domain which is in turn fixed to the inertial
frame ⟨x, y⟩. They are indicated with the symbol Pwall and
nwall is their number.

• Inlet nodes: nodes that can displace inwardly in Ω . They are
indicated with the symbol Pinlet and ninlet is their number.

• Outlet nodes: nodes that can displace outwardly in Ω . They
are indicated with the symbol Poutlet . noutlet is the number of
outlet nodes.

• Internal nodes: they are inner points belonging to Ω . They
are indicated with the symbol Pin. nin is their number.

In Fig. 2, just the boundaries (nodes) of the cells are rep-
resented, not their sub-mechanisms. As an example, the sub-
mechanism of cell 5 is sketched at the right-hand side. It is made
up of a combination of two 4-bar linkages and possesses 4 DoF,
as it can be easily inferred by the Gruebler’s equation:

nDoFj = 3 nlj − 2 ncj = 3 × 8 − 2 × 10 = 4, (1)

where nDoFj , nlj, and ncj represent the #DoF, the number of links
and the number of nodes of the jth cell, respectively. In this
specific case, j = 5. As observed in Fig. 2, cell 2 is internally rigid,
since

nDoF2 = 3 nl2 − 2 nc2 = 3 × 7 − 2 × 9 = 3. (2)

1 ‘Hinges’ and ‘sliders’ can be used as an alternative of ‘revolute’ and
prismatic’ joints, respectively.
2 It is worth pointing out that the same node may also belong to an adjacent

ell.
 2
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Fig. 2. Schematic representation of the cell partition of a 2D liquid structure occupying the domain Ω . z is the out-of-plane axis, pointing outward. The internal
rrangements of two representative cells are displayed on the right. Cell 2 is internally rigid whereas cell 5 possesses an internal DoF.
S
t
t
g
m
T
b
o
m
s
a

l

v

a

v

w

The goal of the theory is to make the synthesis of each cell
ub-mechanism to create a kinematic relationship between inlet
nd outlet nodes, as explained in the next sub-section.
The problem is defined as follows: given the displacements

inlet j (j ∈ {1, . . . , ninlet}) imposed to the inlet nodes Pinlet j and the
isplacements δoutlet j (j ∈ {1, . . . , noutlet}) imposed to the outlet
odes Poutlet j, calculate the displacements δin j (j ∈ {1, . . . , nin})
f the internal nodes Pin j and perform the kinematic synthesis of
ach cell.

.2. Kinematic synthesis procedure

The procedure to perform the kinematic synthesis of the entire
iquid structure is split into two steps as detailed in the next two
ub-sections. In STEP 1 the node displacements are calculated,
hereas STEP 2 provides the kinematic synthesis of each cell.

.2.1. STEP 1: node displacements calculation
Let us assume that the liquid structure has nP = nwall +ninlet +

outlet + nin nodes and nc cells. Input of the STEP 1 problem is:

• the initial coordinates of each point Pj of the domain, where
j ∈ {1, . . . , nP };

• the inlet node displacements δinlet j (j ∈ {1, . . . , ninlet});
• the outlet displacements δoutlet j, where j ∈ {1, . . . , noutlet}.

he output of the problem is the calculation of the internal node
isplacements δin j (j ∈ {1, . . . , nin}).
To reach the goal, different strategies can be pursued. Speaking

n qualitative terms, whatever the approach, it must be ensured
hat the displacements δin j progressively and smoothly change
long a ‘‘corridor area’’ that joins the inlet boundary to the outlet
ne (see Fig. 3). What should be the shape of this corridor and
hich criterion to use to calculate the displacements remain an

nteresting and challenging open problem.
We solve the issue by exploiting a sort of parallelism between

iquid structures and the dynamic behavior of fluid flow inside
he domain Ω characterized by an inlet and an outlet. In fact, it
s possible to perform a CFD computation – CFD resolves Navier–
tokes equations – in order to derive the node displacements.
ore details will be provided in Section 3.
It is assumed that:
3

• the fluid is water (however, similar results can be obtained
with other fluids);

• the flow regime is steady state;
• the process is isothermal;
• the flow is laminar.

till in the 2D framework, the domain of the CFD problem is Ω ,
he inlet is given by segment I and the outlet by segment O. Given
he geometry, a mesh is generated (as illustrated in Fig. 4). A
eneric node of the mesh is named Pm. Let us assume that the
esh nodes are distributed equispatially along the perimeter p.
he mesh density has to be higher than that of physical nodes
elonging to the liquid structure. Moreover, the set of the nodes
f the liquid structure has to be a subset of the nodes of the CFD
esh. In other words, for each point Pin there exists a point Pm
uch that Pin = Pm; the same condition is required for the inlet
nd the outlet points Pinlet and Poutlet , respectively.
The boundary conditions of the CFD problem are:

• wall condition: vi = 0 for each Pm belonging to the boundary
of Ω except for segments I and O, where vi is the vector fluid
velocity;

• inlet condition: normal velocity component vinlet at each
point Pm belonging to I;

• outlet condition: normal velocity component voutlet at each
point Pm belonging to O.

Velocities vinlet and voutlet are set in such a way that they are
inearly related to the liquid structure displacements, namely

inlet j = k δinlet j (j ∈ {1, . . . , ninlet}) (3)

nd

outlet j = k δoutlet j (j ∈ {1, . . . , noutlet}), (4)

here k is a constant to be chosen arbitrarily.
On the one hand, Eqs. (3) and (4) provide the velocity bound-

ary conditions for just a subset of inlet and outlet Pm points since
the physical node density is lower than the density of the mesh.
On the other hand, to solve the CFD problem, a complete set of
inlet and outlet boundary velocities is required at all nodes of
 3
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Fig. 3. Sketch illustrating how the displacements of nodes within the liquid structure smoothly change along a ‘‘corridor area’’ joining inlet and outlet segments.
Fig. 4. (a) Sketch of the physical model of liquid structure. (b) Mesh generated by the CFD computation tool that involves a larger number of nodes than that of
the physical ones.
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the mesh. In other words, values for vinlet and voutlet have to be
provided for each point Pm belonging to the boundary.

One possibility to achieve the goal consists in interpolating the
values of the boundary velocity in between two consecutive cell
nodes as shown in Fig. 5.

Referring to Fig. 5, let us assume that vinlet j−1, vinlet j and
vinlet j+1 are three consecutive boundary velocities calculated by
means of Eqs. (3) and (4). The coordinate s is the 1-D local ref-
erence frame with the origin on the node where vinlet j is applied
to. Therefore, the positions of these liquid structure nodes on the
⟨s⟩ frame are respectively sj−1, 0 and sj+1. The other boundary
velocities for the mesh nodes can be interpolated by a cubic
function, namely

v =

∏
(s) def

= a0 + a1s + a2s2 + a3s3, (5)

where the constants a0, a1, a2 and a3 are computed by imposing
he following constraints:

(sj) = vinlet j,

(sj+1) = vinlet j+1,

d
ds

∏
(sj) =

ainlet j + ainlet j+1

2
,

d
ds

∏
(sj+1) =

ainlet j+1 + ainlet j+2

2
, (6)

where ainlet j = (vinlet j − vinlet j−1)/(sj − sj−1).
4

It turns out that the interpolated velocity for the mesh border
nodes are given by

vl =

∏
(sl), (7)

where sl represents the mesh node position along the ⟨s⟩ frame.
A similar interpolation procedure has to be applied to the outlet
boundary velocities voutlet j. When j = 1 or j = ninlet , the condi-
tions on ainlet j cannot be applied. For these cases it is possible to
impose the constraint

d
ds

∏
(sj) = 0. (8)

A cubic polynomial function is chosen since it allows one to
impose constraints on the first-order derivative of the bound-
ary velocities for the mesh nodes. The method could be further
extended to a higher-order polynomial function, as for instance
five-degree law, as well as to spline functions. In these cases, C2

continuity at the interpolating points can be achieved.
If the CFD analysis is performed with an incompressible fluid,

the continuity equation (▽·v = 0) has to be guaranteed: the total
inlet flow has to match the outlet one, namely∫

I
vinlet⊥ ds =

∫
O
voutlet⊥ ds, (9)

here the symbol ⊥ refers to the velocity component perpen-
icular to the boundary. If the displacements δinlet and δoutlet are
 4
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Fig. 5. Interpolation of the inlet velocities in the inlet segment I .
Fig. 6. Possible layout of cell linkages: (a) Watt’s chain, (b) Stephenson’s chain.

chosen in such a way to be perpendicular to the boundaries and
discretization is considered, Eq. (9) becomes∑ninlet

j=1 vinlet j

ninlet
=

∑noutlet
j=1 voutlet j

noutlet
. (10)

By using Eqs. (3) and (4) into (10), it is possible to carry out
the relationship between the inlet and the outlet displacements∑ninlet

j=1 δinlet j

ninlet
=

∑noutlet
j=1 δoutlet j

noutlet
. (11)

Therefore, the inlet and the outlet displacements cannot be cho-
sen arbitrarily, at least if an incompressible fluid is employed.

Now that all the boundary conditions are defined, it is possible
to carry out the CFD analysis using available CFD numerical tools.
The results of the numerical analysis is the set of velocities
vin j (j ∈ {1, . . . , nin}) for each point Pin j. Given the velocities,
the displacement assigned to each node is calculated by the
relationship

δin j = 1/k vin j (j ∈ {1, . . . , nin}). (12)

2.2.2. STEP 2: cell kinematic synthesis
Now that the displacement of each cell node is assigned, the

kinematic synthesis for each cell can be performed.
A liquid structure can be made up of different cells possessing

different number of links and joints, and topology. In the fol-
lowing, to show the flexibility of the liquid structure philosophy,
two different kinds of cells are introduced, namely star cell and
diamond cell.

As an alternative, other cell layouts that can be adopted, all
based on the well known linkage topologies. For example, good
candidates are either Watt linkages of kind I, II [26] or Stephen-
son I, II and III [27]. Such linkages are based on the Watt and
Stephenson chains (see Fig. 6).
5

Fig. 7. Sketch of a star cell and relevant nomenclature.

2.3. Star cell

Fig. 7 represents the sketch of a 4-node star cell. Points
Q1, Q2, Q3 and Q4 are the nodes of the cell. To simplify the no-
tation, the subscript that relates the points to the cell jth has not
been displayed. Moreover, the point coordinates are expressed
with respect to a local reference frame with the origin in Q1.
Basically, the cell is made up of a 4-bar linkage connected to 4
rigid triangles. It has 4 DoF, since

nDoFj = 3 nlj − 2 ncj = 3 × 12 − 2 × 16 = 4. (13)

Without losing any generality, the star cell can be of dimen-
sions such that it can be inscribed in a square of unitary side. A
complex variable notation is adopted to describe the kinematics:
real and imaginary values are associated with x and y coordinates,
respectively. Therefore, the coordinates of the points with respect
to the local reference frame are Q1 = 0, Q2 = 1, Q3 = 1 + i and
Q4 = i.

Vector zk is aligned along the rigid link. By introducing the
symbols h := 1 and u := i, the geometrical kinematic constrains
for the star cell in its initial configuration are:

−z1 + z2 = h, −z3 + z4 = u,
−z6 + z5 = h, −z8 + z7 = u (14)
 5
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nd, after introducing the displacements:

δin 1 + h + δin 2 = −z1 e∆β1 + z2 e∆β2 ,

δin 2 + u + δin 3 = −z3 e∆β2 + z4 e∆β3 ,

δin 3 − h + δin 4 = −z5 e∆β3 + z6 e∆β4 ,

−δin 4 − u + δin 1 = −z7 e∆β4 + z7 e∆β1 . (15)

The notation ∆β1 represents the angular rotation of the rigid
triangle Q1, Q5, Q8 that occurs when the cell nodes moves from
locations Q1, Q2, Q3, Q4 to locations Q1 + δin 1,Q2 + δin 2,Q3 +

in 3,Q4 + δin 4, respectively. Note that δin 1, δin 2, δin 3 and δin 4 are
he node displacements obtained at the end of STEP 1.

The quantity z1 e∆β1 represents the vector z1 after the rigid
otation. In other words, e∆β1 plays the role of an angular op-
rator. Same considerations apply for the other angular rotation
arameters ∆βk.
In matrix notation, the combination of Eqs. (14) and (15) leads

o the system

szs = us, (16)

here As, zs and us are defined in Appendix A. The system has
complex unknowns (z1, z2, z3, z4, z5, z6, z7, z8) and 4 scalar un-
nowns (∆β1, ∆β2, ∆β3, ∆β4). Therefore, it is underdetermined.
linear solution of the system is provided, but it is a function of

he parameters ∆β1, ∆β2, ∆β3, ∆β4, namely

s = A−1
s us = f (∆β1, ∆β2, ∆β3, ∆β4). (17)

he four parameters can be chosen so as to minimize a cost
unction related to the kinematic configuration of the cell. In
articular, the following cost function is introduced:

C = fC (∆β1, ∆β2, ∆β3, ∆β4) = w1 + w2, (18)

here w1 = 1/∥detAs∥ and w2 = dist(Q5)+dist(Q6)+dist(Q7)+
ist(Q8). In the latter, dist(Ql) = distx(Ql) + disty(Ql), where

istx(Ql) =

{ 0 if 0 ≤ real(Ql) ≤ 1
−real(Ql) if real(Ql) < 0

real(Ql) − 1 if real(Ql) > 1
(19)

nd

isty(Ql) =

{ 0 if 0 ≤ imag(Ql) ≤ 1
−imag(Ql) if imag(Ql) < 0

imag(Ql) − 1 if imag(Ql) > 1
(20)

n the one hand, the presence of weight w1 in the cost function
18) prevents the matrix As from becoming singular at the solu-
ion; on the other hand, w2 tends to find solutions for which the
oints Q1,Q2,Q3,Q4 do not exit the unitary square of the star
ell. This is desirable in order to avoid that mechanisms of two
djacent cells interfere with each other (outside the unitary side
quare) (see Fig. 8).

.4. Diamond cell

In Fig. 9 the sketch of a diamond cell is shown. Q1,Q2,Q3 and
4 are the nodes of the cell. As for the previous cell, the subscript
hat relates the points to the jth cell has not been displayed and
he point coordinates are expressed in a local reference frame
ith the origin in Q1. The cell is made up of a rigid irregular
uadrilateral connected to the three nodes by means of rockers.
t has 6 DoF, since (the revolute joints on the nodes are not
onsidered since they are used just to connect the cell to the
djacent ones)

DoFj = 3 nlj − 2 ncj = 3 × 4 − 2 × 3 = 6. (21)

Also in this case, the cell dimensions are such that it can
e inscribed within a square of unitary side and in the initial
6

Fig. 8. Graphical representation of distx(Ql) and disty(Ql) for nodes Q6 and Q5 ,
espectively.

Fig. 9. Sketch of a diamond cell and relevant nomenclature.

configuration, the coordinates of the points are Q1 = 0,Q2 =

1,Q3 = 1 + i,Q4 = i.
The geometrical kinematic constraints for the diamond cell in

the initial configuration are

z1 + z4 = h, −z4 + z2 + z5 = u, −z6 − z3 + z5 = h (22)

that, after having made explicit the displacement, can be written
as

−δin 1 + h + δin 2 = z1 e∆β1 + z4 e∆β4 ,

−δin 2 + u + δin 3 = −z4 e∆β4 + z2 e∆β1 + z5 e∆β5 ,

−δin 3 − h + δin 4 = z6 e∆β6 + z3 e∆β1 − z5 e∆β5 . (23)

The phase ∆β1 represents now the angular rotation of the
rigid quadrilateral Q1,Q5,Q6,Q7 that takes place when the nodes
move from locations Q1,Q2,Q3,Q4 to Q1 + δin 1,Q2 + δin 2,Q3 +

δin 3,Q4 + δin 4, respectively. In matrix notation, the combination
of Eqs. (22) and (23) leads to the system (see Appendix A)

Adzd = ud. (24)
 6
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For the diamond cell the system has 6 complex unknowns
(z1, z2, z3, z4, z5, z6) and 4 scalar unknowns (∆β1, ∆β4, ∆β5,

β6), and is, therefore, underdetermined. A linear solution of the
ystem is provided, but is a function of the four parameters listed
n the latter bracket, namely

d = A−1
d ud = f (∆β1, ∆β4, ∆β5, ∆β6). (25)

Similarly to the star cell, the four parameters are chosen to
inimize the cost function fC = w1+w2, where w1 = 1/∥detAd∥

nd w2 = dist(Q5) + dist(Q6) + dist(Q7).
It should be emphasized that both star and diamond cells rep-

esent just two of the possible topologies that could be employed
o assemble a liquid structure. We believe that depending on the
ype of structure at hand, there could exist more effective cells
han those we proposed. To this regard, as it will be pointed out
n Section 5, several aspects should be explored and taken into
account in order to select the proper cell, such as the energy
required to allow soft modes, the occurring of either singular
configurations or link crossing. The selection and study of the
properties of such optimized cells represent an interesting future
research field since the linkage combinations are numerous and
not always the kinematic properties are easy to predict.

2.5. Liquid structures are made of bistable mechanisms

A mechanism is bistable when it has two different stable equi-
ibrium configurations. A cell of a liquid structure is conceived to
e a bistable mechanism. The first equilibrium configuration, say
1, corresponds to the reference one, with cell nodes located at

points Qj. The second equilibrium configuration, say C2, is reached
hen nodes are at positions Qj+δj. The common ground is that in

these two configurations all the link lengths are the same, how-
ever, during the transition from one configuration to the other,
the structure must exhibit a certain degree of compliance in order
to compensate for the momentary closeness and relocation of the
nodes.

Fig. 10 exemplifies the concept. For the sake of simplicity, in-
stead of two star/diamond cells, a simpler topology is introduced,
composed of three pseudo-rigid links and possessing one DoF,
i.e. the angle θ . Let us consider the point Q1. If the two cells
were decoupled, to get C2 from C1 the point Q1, considered as
n element of the cell on the left, would move along the path
l. On the contrary, the same point, seen from the cell on the

right, would move along the path pr . As a consequence, when
he two cells are connected, symmetry reasons suggest that the
ctual path is a straight segment. It is clear that each cell must
ave some compliant elements in order to allow link shortenings.
An equilibrium and stability investigation can be performed

ssuming the least number of elastic links to illustrate how the
echanism can switch from C1 to C2. We assume that links
1Q5 and Q2Q6 are axially linear elastic with stiffness K while
igid under both bending and shear. The cell occupies the square
hose side is unitary and is designed to achieve δ1 = 2δ2 = 0.4.
pon application of an upward vertical load F to Q1 (other loading
onditions respecting the symmetry can also be imposed to the
echanism), the cell displaces and the elastic links shorten. With

eference to the detailed information reported in Appendix B, the
otal potential energy W (θ ) of the cell takes the form

(θ ) =
1
2
Kη2

1(θ ) +
1
2
Kη2

2(θ ) − Fs1(θ ), (26)

here η1(θ ) and η2(θ ) represent the axial deformations of the
two springs and s1(θ ) the displacement of point Q1. Equilibrium
onfigurations correspond to solution θ̄ such that W ′(θ )|θ̄ = 0.
Three solutions are detected for F = 0, namely the two with the
links undeformed, i.e. θ̄ = 0, θ̄ = 0.3948, and the intermediate
7

one, θ̄ = 0.1995, in which the elastic links are compressed, but
equilibrium of the cell is still guaranteed. While the first two are
stable configurations, i.e. W ′′(θ ) > 0, the third one turns out to
be unstable.

The foregoing analysis is typical of snap-through structures,
however if the kinematics of the cell required more than one DoF
the energy landscape would become much more complex, but
still allowing the two zero-strain energy stable modes obtained
from the synthesis.

2.6. Degrees of freedom of a cell

Maxwell [28] was one of the first that studied the stability
of lattice structures. In particular, he introduced the concept of
minimum connectivity. If we indicate with hn the average num-
ber of nodes each node is connected to, there exists a value
hnl below which the structure displays soft modes or, in other
words, deformations at zero cost energy. For a large 2D network
composed of N nodes, the critical connectivity is hnl = 4. This
result was obtained by balancing the number of translational DoF
of all nodes (2N) with the number of constraints or bonds.

Following a similar approach (still based on balancing the
overall number of DoF with internal and boundary constraints)
a new structure stability criterion is presented. In our case, the
stability is guaranteed in terms of cell #DoF.

In the previous two Subsections, we introduced two different
cells: the star cell and the diamond one, with 4 and 6 DoF,
respectively. For a liquid structure it is impossible to have all cells
with less than 4 DoF (3 DoF or less) because they would not be
able to deform. In fact, a cell with just 3 DoF has zero internal
mobility, or equivalently, it is a simple rigid body, and a liquid
structure made up of just rigid bodies cannot display soft modes.

Less evident is the largest #DoF the cells can have. To answer
this question we propose the following theorem:

Given a rectangular liquid structure made up of cells with
identical topology, there exists always a sufficiently large
number of cells for which the liquid structure mobility is
null (soft modes are not considered) when the wall nodes
are fixed to the reference frame. Such claim is true if the
#DoF of each single cell is lower than 6.

Proof. Let be r and l the number of cells along the horizontal and
the vertical axis, respectively (see Fig. 11). Let be g the #DoF of
a single cell. Applying the Grubler’s equation to the entire liquid
structure, and considering that the wall nodes are fixed to the
reference frame by means to revolute joints, the total #DoF of
the liquid structure is

LSDoF = grl − 2(4 + 2(l − 1) + 2(r − 1) + 3(l − 1)(r − 1)), (27)

here the product grl represents the total #DoF of all the cells
ithout constraints (not connected to the others); 4 are the
orners, each of one has a revolute joint; (l−1) and (r−1) are the
onstraints on each side (excluding the corners) and (l−1)(r −1)
re the internal nodes, each one connects the 3 adjacent cells by
eans of 3 revolute joints.
The liquid structure has mobility null if LSDoF ⩽ 0. This

ondition leads to

⩽ 6 +
6
rl

−
2
r

−
2
l
. (28)

y taking the limr,l→∞ of the right-hand side, the inequality
ecomes

⩽ 6. □ (29)

7
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Fig. 10. Analysis of bistability of two symmetric cells composed of three pseudo-rigid links. Each cell occupies a square whose side is unitary. Left: reference
configuration (C1). Right: generic deformed configuration; angles β and γ and displacements s1 and s2 are functions of the degree of freedom θ . Links Q1Q5 and
2Q6 are axially linear elastic.
Fig. 11. Schema related to a matrix of equal cells inside a rectangular area.
. An example of liquid structure

In order to show how to apply the described procedure, a
rototype case is analyzed and discussed. The area of the sim-
lated liquid structure is a rectangle whose dimensions, in non-
imensional units, are 15 × 10 (see Fig. 12 where the boundaries
f the internal cells are not sketched). The goal is to create a soft
ode such that small displacements imposed on the nodes of the

nlet at the bottom left (sketched in red) produce a deformation
f the outlet (sketched in blue).
The liquid structure can be ‘‘filled’’ with different cells; some

f them could be star cells. We decided to locate the nodes
f the cells Pin at the corners of the unitary edge squares that
asselate the rectangular domain. Therefore, according to the
rotocol defined in STEP 1, the initial coordinates Pj are given by
he vertices of the 15 × 10 rectangular grid. The fluid boundary
elocity v is set to 0 at the wall nodes Pwall. For the sake of
implicity, instead of using the cubic interpolation of Eq. (5) as
nlet boundary condition, a velocity vinlet = [0, 1] is assigned to
ll the nodes of the inlet segment Pinlet . The velocities of the outlet
order have not been fixed a priori at the points belonging to
outlet . Instead, as it is customary using the features of the CFD
oftware, they are set so as to satisfy the continuity equation
▽ · v = 0).

The software used to perform the CFD analysis is EasyCFD,
mplemented at the University of Coimbra, Portugal [29]. Param-
ters set are density (= 1000 kg/m3), dynamic viscosity (= 10−3
8

Fig. 12. Rectangular domain (15 × 10 in dimensionless units) of the example
of liquid structure analyzed via CFD where inlet and outlet boundaries, whose
dimensionless lengths are 6 and 7, respectively, are displayed. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Ns/m2), pressure coefficient (= 4182 J/kg) and Prandtl number

(= 7.01). The analysis is isothermal, the flow type is laminar and

the regime is set to steady state.
 8
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Fig. 13. Velocity field computed by the CFD analysis. The inlet velocity is set as
the vector [0, 1].

Instead of inlet velocity boundary conditions, it is possible to
se the inlet pressure boundary conditions. Generally, pressure
oundary conditions are used when the inlet pressure is known,
ut the flow rate and/or velocity is not known. This situation may
rise in many practical fluid dynamics situations. In any case, the
oal of our CFD analysis is not the simulation of a real case. It is
ust a numerical abstraction useful to generate a continuous field
f displacements.
The velocity field computed by the CFD analysis for the se-

ected geometry is shown in Fig. 13. The convergence of the
olution has been verified by mesh refining.
Now that all the node velocities are known, the node dis-

lacements δin are calculated by means of Eq. (12), where k was
et to 0.4. Fig. 14 shows the cells (just the nodes) in the initial
onfiguration (red dashed line) and the soft mode (black solid
ine).

Given the values of the internal node displacements, following
TEP 2, the synthesis of each single cell can be performed. In
ig. 14(a), the initial (dashed red line) and deformed (solid black
ine) configurations of the liquid structure are presented. As an
9

example, the result of the synthesis of a star cell on position 8
(from the left) and 4 (from the bottom) is sketched in Fig. 14(b). In
Fig. 14(c), the result of the synthesis of a diamond cell on position
10 (from the left) and 1 (from the bottom) is sketched as well.
The deformed configuration of the former cell is also sketched in
black in Fig. 15 where it is evident that all four nodes initially in
the corners of the square are subjected to displacements.

4. A liquid structure implementation of a disk brake system

To show the industrial exploitation potential of liquid struc-
tures, we propose the use of the new paradigm in the design of
a disk brake system. Usually the pads are squeezed against the
disc through hydraulic actuation. A liquid structure can produce
an equivalent squeezing action without the need of pistons and
cylinders. The calipers are realized by a liquid structure mechan-
ical fork (a sort of jaw) that squeezes the disk when a force is
applied to the fork collar (see the rendering of the disk brake in
Fig. 16(a)). In Fig. 16(b), it is shown the velocity field calculated
by the CFD software. The inlet (fork collar located at the bottom
of the image) is the area where the actuation force is applied
to. The two symmetric outlets are the areas where the proposed
concept displaces toward the disk surfaces. The velocity field is
employed to calculate the cell node displacements according to
STEP 1. Results are shown in Fig. 17.

This solution is innovative because the actuation system is in-
tegrated within the caliper structure and it is possible, in this way,
to remarkably reduce the number of mechanical components. In
Fig. 16(a), the rendering of the disk and of the liquid structure
caliper is shown.

5. Open questions and future developments

The work presented in this paper constitutes a pioneering and
unconventional use of CFD codes for the design of a new family of
metamaterials. It has the merit of providing a general theoretical
framework for the new concept of liquid structures, but before
putting them into practice in some concrete applications (e.g. in
the field of MEMS and 3D printing) it is necessary to deepen some
theoretical and implementation aspects. Due to the vastness of
the topic, it is not possible to go into every single facet of the
Fig. 14. Liquid structure. In (a) the unitary square cells making up the structure are shown; black solid lines refer to the cells at their initial positions; red dashed
lines refer to the displaced configuration. A detailed view is shown for two cells located in the domain: (b) a star cell and (c) a diamond cell. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
9
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Fig. 15. Sketch of the reference (red) and deformed (black) configurations of the
tar cell displayed in Fig. 14(b). (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)

Fig. 16. A disk brake system conceived as a liquid structure. (a) Sketch of the
rake system. (b) Velocity profile computed by the CFD software.

roblem. However, it is necessary to identify some directions of
nvestigation that may be useful for the studies that will follow.
herefore, in this section, some open questions and problems are
resented.

• Extension to the 3D case
As far as star cells are concerned, the extension to the 3D
case is not so trivial. The cell should have 8 nodes (the ver-
tices of the cube that inscribes it) where 8 pyramids should
point at, each of them composed of 3 links. It remains to be
identified, however, the internal topology able to introduce
the #DoF necessary to provide the required mobility (see
Fig. 18).
The task is even more difficult if one wants to obtain a
cell with only 4 DoF. In any case, our intuition is that it is
necessary to sacrifice the topological symmetry that the 2D
star cells possess.

• Study of the kinematic properties of different cell topologies
As shown in the previous sections, there are many types
of cell that can be used (as examples we introduced the
10
Fig. 17. A disk brake system conceived as a liquid structure. Sketch of the
arrangement of mechanism cells to ensure mechanical transmission and the
designed braking performance. Red solid lines represent initial configurations
of the cells; black solid lines represent the final configurations of the cells.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 18. Sketch of a star cell in 3D with undetermined internal topology.

synthesis of star and diamond cells). It would also be in-

teresting to use different typologies for the same structure,

choosing locally the more appropriate one according to the

displacements that are imposed to the nodes of the cell.
 10
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Fig. 19. Two examples of star cells with different inner joints (revolute (R) and prismatic (P)).
As far as the star cell is concerned, we notice that the
mobility is guaranteed by a RRRR linkage (a 1 DoF four-
bar linkage). We could have the same mobility (1 DoF) by
exchanging a revolute joint for a prismatic one. For example,
in Fig. 19, the mechanism is a RPRR. On a theoretical basis,
all R-P permutations are allowed, although very likely not
all of them have the same kinematic efficiency.

• Energy required to allow the soft mode
Since liquid structures are de facto bistable mechanisms, it
is necessary to calculate the value of the maximum elastic
energy stored by the system during the transition (soft
mode). If this energy is too high, motion difficulties may
emerge. To achieve the goal, once the kinematic synthesis is
completed, it is necessary to implement a static equilibrium
model that takes into account the elasticity of each single
link.
It is intuitive that the larger the movements at the nodes of
the cells, the more energy will be stored by the mechanism
during the transition. This statement suggests that alterna-
tive strategies can be investigated to mitigate this problem
or to achieve overall compromises or optimizations.

• Alternatives to fluid flow equivalence for the calculation of node
displacements
In STEP 1 (Section 2.2.1), the nodes displacements have been
calculated by exploiting the fluid flow equivalence, namely
solving numerically a Navier–Stokes steady-state partial dif-
ferential equation problem. This method ensures a gradual
and continuous variation of the nodes displacements along
the corridor area that connects the inlet nodes to the out-
let ones. However, alternative strategies can be pursued.
Promising directions of investigation could be topological
optimizations through genetic algorithms [30–32], heuristic
algorithms or path-planning techniques [33].

• Singular configurations
In the theory of mechanisms, the problem of singular con-
figurations is well known [34,35]. It occurs when the deter-
minant of the associated Jacobian is null.
Singular configurations must be avoided both because they
make very difficult to operate the mechanism and because
they introduce an indeterminateness in the calculation of
the inverse kinematic solution. In liquid structures this is
a very serious problem, since the occurrence of a singular
configuration in a cell can affect the functionality of the
whole structure.
It is not so easy to deal with the problem in a gener-
alized perspective. In fact, singular configurations depend
on the generalized coordinates of the whole problem. Each
individual cell cannot be analyzed separately, but must be
11
considered within the context of the whole mechanism.
Moreover, the issues pertinent to the intrinsic elasticity of
links complicate the model to be used for the analysis.

• How to prevent the cell links from crossing each other?
The synthesis of the cell, although correct from a kinematic
point of view (the imposed constraints are fulfilled), could
lead to unacceptable solutions from the construction point
of view. Two problems may occur: (1) For a star cell, some
links of the central 4-bar linkage could cross each other; this
is an issue because the mechanism must be realized on two
different layers to prevent the links to interfere each other;
(2) some links could come out the square area defined by
the four internal nodes. The latter is not desirable because
the cell could intersect with the adjacent ones.

• Is it possible to have more than just a single soft mode on the
same liquid structure?
The proposed theory considers a single corridor, with a
unique inlet and unique outlet. But the same liquid structure
could have more inlets and more outlets. It is not trivial to
determine whether criss-crossing corridors can be made.

• Is there a strategy to place the internal nodes in a more efficient
way?
In the provided examples, nodes are arranged along a regu-
lar grid. However, they could be placed in to make the liquid
structure more efficient. For example, the nodes could be
aligned along flow lines.

6. Conclusions

In this paper, we presented the new concept of liquid struc-
ture, inspired by the kinematics of constant flow of an incom-
pressible fluid within a limited domain. A liquid structure is
composed of several bistable assemblies of pseudo-rigid links and
joints called cells that are able to show soft modes and transmit
a mechanical input between two distant portions of the domain.
To achieve this goal, the classical synthesis of mechanisms has
been used in combination with CFD analysis methods. The aim
of the work was twofold: on the one hand, a solid baseline
framework in which the kinematics synthesis is grounded on
a two-step process has been defined; on the other hand, open
questions related to theoretical and manufacturing aspects, and
future research directions that deserve to be investigated have
been clearly presented for the benefit of the scientific community.

Our work defines the guidelines for a research program aim-
ing at optimizing and realizing effective liquid structures for
multi-scale applications in mechanical engineering.
 11
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ppendix A. Matrix equation terms related to star and dia-
ond cell synthesis

As far as the star cell is concerned, the system matrix, the
nknowns vector and the constant term are

s =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1
−e∆ β1 e∆ β2 0 0 0 0 0 0
0 0 −e∆ β2 e∆ β3 0 0 0 0
0 0 0 0 −e∆ β3 e∆ β4 0 0
0 0 0 0 0 0 −e∆ β4 e∆ β1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

zs =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1
z2
z3
z4
z5
z6
z7
z8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, and us =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h
u
h
u

h + δin 2 − δin 1
u + δin 3 − δin 2

−h + δin 4 − δin 3
−u + δin 1 − δin 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, respectively. (A.1)

For the diamond cell the same quantities are

d =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 1 0 0
0 1 0 −1 1 0
0 0 −1 0 1 −1

−e∆ β1 0 0 e∆ β4 0 0
0 e∆ β1 0 −e∆ β4 e∆ β5 0
0 0 −e∆ β1 0 e∆ β5 −e∆ β6

⎤⎥⎥⎥⎥⎥⎦ ,

zd =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

z1
z2
z3
z4
z5
z6

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, and ud =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h
u
h

h − δin 1 + δin 2
u − δin 2 + δin 3

−h − δin 3 + δin 4

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (A.2)

ppendix B. Bistability of a prototype cell

The cell sketched in Fig. 10 is designed to achieve δ1 = 2δ2 =

.4. Coordinates of its points are Q1 = (0, 1), Q2 = (1, 1), Q3 =

0.65, 0), Q4 = (0.2, 0), Q5 = (0.1, 0.5) and Q6 = (0.55, 0.75).
engths of rigid bars are a = Q4Q5 = Q1Q5, b = Q5Q6 and

= Q3Q6, and their values can be easily inferred from the
coordinates just introduced. Representative angles of the initial
configuration C1 take the values α = arctan(5), αb = arctan(5/9),
αc = arctan(7.5) while β and γ , on the right of the figure, are
connected to θ through the set of equations

− a cos(α + θ ) + b cos(αb + β) + c cos(αc + γ ) = 0.45, (B.1)

a sin(α + θ ) + b sin(αb + β) − c sin(αc + γ ) = 0. (B.2)
12
Shortenings of springs can be written as η1(θ ) = a − l15(θ ) and
η2(θ ) = d − l26(θ ), where

l15(θ ) =
1

sin(α + θ )
− a, l26(θ ) =

1 − a sin(α + θ )
sin(αb + β(θ ))

− b. (B.3)

It may be finally interesting to note that the displacements of the
nodes Q1, Q2 along the axis of symmetry, namely s1(θ ) and s2(θ ),
are

s1(θ ) = 0.2 −
1

tan(α + θ )
, (B.4)

s2(θ ) = l26(θ ) cos(αb + β(θ )) − 0.35 − c cos(αc + γ (θ )). (B.5)
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