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Summary. — I present a new method to remove detector noise from gravitational-
wave (GW) interferometer data in the framework of unmodeled analyses, with
special reference to coherent WaveBurst pipeline. The method introduces a pixel
selection rule in the time-frequency representation of multidetector data to exclude
noisy time-frequency components: this is performed multiplying each pixel by a
weight function ranging from 0 to 1 and based on the coherence of the data among
the detectors. Preliminary simulations indicate an improved suppression of noise
with better reconstruction of both polarization components of detected GW signals.

1. – Introduction

To date, compact binary coalescences (CBC) are the only gravitational-wave sources
that have been detected by the interferometers of the LIGO/Virgo/KAGRA (LVK) Col-
laboration, with both modeled and unmodeled pipelines [1]. Modeled pipelines [2,3] use
matched-filters and large template banks to detect gravitational-wave signals from CBCs
with optimal efficiency (highest signal-to-noise ratio), but also unmodeled pipelines can
detect these signals [4]. Moreover, unmodeled (or, better, weakly modeled) pipelines
are essential when searching for other sources of gravitational waves —like supernovae,
neutron star glitches, cosmic strings and more [5]— where precise waveform models are
missing. Although unmodeled pipelines cannot output the intrinsic model parameters,
e.g. black hole spin, they can still be used to estimate some of the extrinsic parameters
of the detected waves, such as their polarization content and sky localization, even when
the signal source is unknown or theoretically not well understood.

In LVK Collaboration, the main unmodeled pipeline is coherent WaveBurst (cWB) [6].
Very schematically, cWB first decomposes each interferometer data into time-frequency
(TF) representation using Wilson-Daubechies-Meyer (WDM) wavelets, and next it com-
bines coherently these data into a likelihood function which is maximized with respect
to sky location to detect the presence of a GW signal and, if so, to reconstruct it [7].
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2. – The likelihood function

Having a network of K detectors, using xk[i] to denote the amplitude from the k-th
detector of the i-th pixel in the two dimensional TF representation, the vector of detector
responses is

(1) x[i] = F+(θ, φ)h+[i] + F×(θ, φ)h×[i] +N[i],

where h+,× are the strains associated with the + and × polarizations of the GW,
F+,×(θ, φ) are the corresponding vectors of antenna patterns which depend on the
source location (θ, φ), and N is the vector of detector noises. Data are whitened
by dividing them by the amplitude spectral density σk[i]. A further simplification is
achieved with a rotation in polarization space so that the normalized antenna patterns
f+,×[i] (fk+,×[i] = Fk+,×/σk[i]) are mapped to f +,×[i], which are orthogonal with respect
to each other, i.e., f +[i] · f ×[i] = 0; this defines the so-called Dominant Polarization
Frame (DPF)(1)

(2) w [i] = f +[i]h+[i] + f ×[i]h×[i] + n [i],

where n [i] is the whitened noise. The whitened response w [i] is used to define a Gaussian
likelihood function. cWB is based on the maximization of the log-likelihood ratio between
signal (S) and background (B) hypothesis

(3) 2 lnΛcWB(s[i]) = ln [p(x[i]|S)/p(x[i]|B)] = w [i]2 − (w [i]− s[i])2,

where s[i] is the whitened reconstructed signal. The maximization of eq. (3) leads to the
solution s̃[i] = P[i]w [i], where P[i] is the projector into the subspace defined by f +,×[i].
Then h+,×[i] can be obtained from s̃[i] solving the inverse problem, as done in [8].

The maximum of the likelihood ratio defines the main statistic used by cWB:

(4) L[i] = 2 lnΛcWB(s̃[i]) = w [i]2 − (w [i]− P[i]w [i])2 = w [i]†P[i]w [i].

Two related quantities, the coherent energy

(5) Ec[i] =
∑
a �=b

w∗
a[i]Pab[i]wb[i] a, b = 1, ..., K

and the null energy

(6) En[i] = (w [i]− s̃[i])2 = (w [i]− P[i]w [i])2 = w [i]†(I − P[i])w [i],

where I is the identity matrix, are used to define the correlation coefficient

(7) cc[i] = |Ec[i]|/ (|Ec[i]|+ En[i])

(1) Note that the polarizations are rotated as well, while each detector response and detector
noise are rotation-invariant.



STUDY FOR A COHERENT DENOISING 3

which estimates the coherence among different detectors: when cc[i] � 1 (|Ec[i]| � En[i])
there is a high coherence and it is likely that signal is present in the i-th pixel, while
when cc[i] � 0 (En[i] � |Ec[i]|) data are incoherent.

3. – Coherent pixel selection for improved denoising

cWB implements a computationally fast denoising by selecting only pixels with suffi-
ciently large energy w [i]2 [9]. I propose to take all the pixels, while weighting them with
a function of an approximate likelihood ratio(2). Assuming that the average correlation
coefficient cc[i] over a small group of pixels surrounding [i] in the TF map can be de-
scribed as a (truncated) Gaussian random variable, I take 〈cc[i]〉 = 0 for the background
hypothesis, and 〈cc[i]〉 = 1 for the signal hypothesis. So the two distributions are

p(cc[i]|B) = 1√
2πσB [i]2

[
1

2
erf

(
1√

2σB [i]

)]−1

exp
(
− (cc[i])2

2σB [i]2

)
,(8a)

p(cc[i]|S) = 1√
2πσS [i]2

[
1

2
erf

(
1√

2σS [i]

)]−1

exp
(
− (cc[i]−1)2

2σS [i]2

)
,(8b)

where the variances are σS [i]
2 = (1/n)

∑
j∈N (cc[j]−1)2 and σB [i]

2 = (1/n)
∑

j∈N cc[j]2,

N is the set of neighboring pixels surrounding [i] and n is their number. It is easy
to see that the logarithm of the likelihood ratio K[i] = log10 Λcc[i], where Λcc[i] =
p(cc[i]|S)/p(cc[i]|B), is a roughly linear function of cc[i] so that the following sigmoid
function:

(9) λ(K[i]) =
1

2
(1 + erf [α(K[i]− β)])

is closely related to the cumulative distribution function of cc[i]; I then use λ(K) to
assign a weight to each pixel, utilizing the α, β parameters to fine-tune the selection.
This method of pixel weighting is not yet implemented in cWB, however I have coded a
toy implementation which performs well in simple tests, where a signal corresponding to
a binary black hole coalescence(3) from a known source location is injected in simulated
Gaussian noise for a three-detector network (i.e., LIGO Livingston, LIGO Hanford,
Virgo). Results are reported in fig. 1: after a basic tuning of α and β the proposed
pixel selection rejects more noise than straightforward cWB-likelihood maximization.
The improved quality of the reconstruction is quantified in the figure by the overlap
between the injected and the reconstructed signals in time domain, defined by

(10) O+,×
[
h
(in)
+,×, h

(re)
+,×

]
= (h

(in)
+,×, h

(re)
+,×)

/√
(h

(in)
+,×, h

(in)
+,×)(h

(re)
+,×, h

(re)
+,×),

where (a, b) =
∫
trs

a(t)b(t)dt is calculated over the time of the reconstructed signal trs.

(2) In a Bayesian frame with a uniform prior, the likelihood ratio is proportional to the posterior
probability density function that the pixel contains energy from a true signal.
(3) I used the SEOBNRv4 opt approximant implemented within PyCBC to generate a GW170814-
like event.
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Fig. 1. – Comparison between injected polarizations (first column), polarizations reconstructed
with no pixel selection (second column) and polarizations reconstructed with the pixel selection
proposed in this work (third column). Here the weight function parameters are taken as α =
6, β = 0.4. The method proposed here gives better overlaps (0.972 for h+, 0.985 for h×) between
injected and reconstructed polarizations compared to no pixel selection (i.e., maximized ΛcWB

only, 0.805 for h+, 0.787 for h×).

4. – Conclusions

This new proposed method performs well in ideal conditions, i.e., with simulations
involving Gaussian noise only, known source location of the detected signal and fine
tuned parameters of the weight function. Future work will be devoted to test the method
performances with respect to the current hard cuts: further tests will include larger set of
signals from many different sky locations and real data. These tests should also provide
guidance for an appropriate tuning of the weight function parameters.
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