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An intersection-theoretic proof

of the Harer–Zagier formula

Alessandro Giacchetto, Danilo Lewański and Paul Norbury

Abstract

We provide an intersection-theoretic formula for the Euler characteristic of the moduli
space of smooth curves. This formula reads purely in terms of Hodge integrals, and,
as a corollary, the standard calculus of tautological classes gives a new short proof of
the Harer–Zagier formula. Our result is based on the Gauss–Bonnet formula, and on
the observation that a certain parametrisation of the Ω-class – the Chern class of the
universal rth root of the twisted log canonical bundle – provides the Chern class of
the log tangent bundle to the moduli space of smooth curves. These Ω-classes have
been recently employed in a great variety of enumerative problems. We produce a list
of their properties, proving new ones, collecting the properties already in the literature
or only known to the experts, and extending some of them.

1. Introduction and results

Let Mg,n be the moduli space of smooth curves of genus g with n labelled and distinct marked
points. Moduli spaces of curves are a topic of great interest both within pure algebraic geometry
and, arguably even more charmingly, in the relation between algebraic geometry and different
branches of mathematics and physics: string theory, mirror symmetry, Gromov–Witten theory,
random matrix models, integrable systems and integrable hierarchies, as well as recent methods
such as topological recursion in the sense of Eynard and Orantin.

The (orbifold) Euler characteristic χg,n of Mg,n represents one of the most fundamental
invariants of these spaces and is computed by the famous Harer–Zagier formula.

Received 31 May 2022, accepted in final form 11 July 2022.
2020 Mathematics Subject Classification 14N10 (primary), 14H10, 14H60, 05A15 (secondary).
Keywords: moduli of curves, Euler characteristic, Harer–Zagier formula, intersection theory, omega-classes
This journal is © Foundation Compositio Mathematica 2023. This article is distributed with Open Access under
the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial reuse,
distribution, and reproduction in any medium, provided that the original work is properly cited. For commercial
re-use, please contact the Foundation Compositio Mathematica.

This work is partly a result of the ERC-SyG project, Recursive and Exact New Quantum Theory (ReNewQuan-
tum) which received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme under grant agreement No 810573. A.G. has been supported by the
Max-Planck-Gesellschaft and the Institut de Physique Théorique (IPhT), CEA, Université Paris-Saclay. D.L. has
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Harer–Zagier via intersection theory

Theorem 1.1 (Harer–Zagier formula, [HZ86]). The Euler characteristic of Mg,n is given by

χg,n =


(−1)n−3(n− 3)! , g = 0 , n ⩾ 3 ,

(−1)n
(n− 1)!

12
, g = 1 , n ⩾ 1 ,

(−1)n(2g − 3 + n)!
B2g

2g(2g − 2)!
, g ⩾ 2 , n ⩾ 0 ,

where the B2g are Bernoulli numbers.

This formula has been proved with quite different methods: via the combinatorics of poly-
gons/graphs on surfaces and random matrix models, via representation theory, via topological
recursion, via semi-infinite wedge formalism; see for instance [Lew19, MPS21] and references
therein.

We provide the first expression of χg,n in terms of intersection theory of explicit tautological
classes on the moduli spaces of stable curves, which is the main result of the paper.

Theorem 1.2. The Euler characteristic χg,n is given by the following Hodge integrals:

χg,n = (−1)3g−3+n
∑
ℓ⩾0

1

ℓ!

g∑
i=0

∫
Mg,n+ℓ

λi∏ℓ
j=1(1 + ψn+j)

ψ2
n+1 · · ·ψ2

n+ℓ . (1.1)

The product in the integrand is 1 when ℓ = 0. Beginning with this formula, a short manipu-
lation of linear Hodge integrals provides the Harer–Zagier formula.

Corollary 1.3. The Harer–Zagier formula holds true.

The techniques used by Harer and Zagier in [HZ86] required n > 0, and they deduced the
n = 0 case via an exact sequence. The formula (1.1) applies equally for all n ⩾ 0.

1.1 Strategy of the proof

In fact, Theorem 1.2 relies on an application of the Gauss–Bonnet theorem: the Euler charac-
teristic of Mg,n is the integral over Mg,n of the Chern class of the logarithmic tangent bundle.
Such a Chern class is a specific instance of the Ω-classes that we now describe.

Let Ω(r, s; a) be the total Chern class of the direct image of the universal rth root of the
twisted log canonical bundle ω⊗s

log

(
−
∑

i aipi
)
(see Section 2 for a precise definition). A formula for

these Ω-classes in terms of ψ-classes, κ-classes, and boundary divisors was given by Bini [Bin03]
for r = 1 and by Chiodo [Chi08] for any r. The Ω-class Ω(r, s; a) is shown to form a semisimple
cohomological field theory of rank r in [LPSZ17]. In the case r = 1, the class Ω(1, s; 0) can
be simply expressed using the Givental action (for an overview on cohomological field theories
and the definition of the Givental group action, we refer to [Pan19]). We give here their form
explicitly.

Lemma 1.4. For V = Q, the vector space underlying the Frobenius algebra with metric η(1, 1)=1,
consider the R-matrix and translation given by

R(u) = exp

(∑
m⩾1

Bm+1

m(m+ 1)
um

)
,
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T (u) =



u

[
1−

s−1∏
j=1

(1 + ju)

]
= −

∑
ℓ⩾1

s(s, s− ℓ)uℓ+1 if s > 1 ,

0 if s = 0 or 1 ,

u

[
1−

−s∏
j=1

1

(1− ju)

]
= −

∑
ℓ⩾1

S(ℓ− s,−s)uℓ+1 if s < 0 .

Here s(n,m) and S(n,m) are Stirling numbers of the first and second kind, respectively, and the
Bm+1 are Bernoulli numbers. The class Ω(1, s; 0) is then obtained by applying the unit-preserving
R-matrix and the translation T on the trivial cohomological field theory 1 ∈ H0

(
Mg,n

)
:

Ω(1, s; 0) = TR.1 ,

where all classes are evaluated on the generator 1 ∈ V . Equivalently, Ω(1, s; 0) is obtained by
applying the translation T on the Hodge cohomological field theory Λ(−1) =

∑g
i=1(−1)iλi ∈

H•(Mg,n

)
:

Ω(1, s; 0) = TΛ(−1) .

The class Ω(1,−1; 0) is the Chern class of the log tangent bundle toMg,n. Thus, an application
of the Gauss–Bonnet theorem leads to the following formula.

Proposition 1.5. The Euler characteristic χg,n is given by the following integral over the moduli
space of stable curves:

χg,n =

∫
Mg,n

Ω(1,−1; 0) . (1.2)

In particular, notice that for s = −1, the translation for Ω(1, s; 0) reads

T (u) = −
(
u2 + u3 + u4 + · · ·

)
.

Expanding the Ω-class in this form provides the statement of Theorem 1.2.

1.2 A parallel with Masur–Veech volumes via Ω-classes

We would like here to make a brief parallel with a slightly different story. Masur–Veech volumes
π−(6g−6+2n)MVg,n ∈ Q of the principal stratum of the moduli space of quadratic differentials have
been shown to have a cohomological representation, given by the Segre class – as opposed to the
Chern class – of the logarithmic tangent bundle (to make the comparison cleaner, we ignore the
normalisation constant 22g+1(4g− 4+n)!/(6g− 7+ 2n)! due to the labelling of simple poles and
zeros of the quadratic differentials, and the normalisation of the Masur–Veech measure).

Theorem 1.6 ([CMS19]). The Masur–Veech volume MVg,n is given by the following Ω-integral:

MVg,n

π6g−6+2n
= (−1)3g−3+n

∫
Mg,n

Ω(1, 2; 0) =

∫
Mg,n

(
Ω(1,−1; 0)

)−1
. (1.3)

The integrand is a Segre class instead of a Chern class, which produces a shift in the parame-
ters of the Ω-class (see Remark 4.3 for a more general relation). In a similar fashion, by expanding
the Chern characters of the Ω-class, one can express the Masur–Veech volumes MVg,n as an ex-
plicit finite linear combination of Hodge integrals. In other words, χg,n and MVg,n are obtained
up to prefactors by integrating the Hodge cohomological field theory Λ(−1), on which one applies
the translation T for sχ = −1 in the first case, and its dual translation T for sMV = 1− sχ = 2
in the second case.
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Harer–Zagier via intersection theory

In the same way, equation (1.3) is a dual statement to equation (1.2); the following statement
corresponds to our result for the Euler characteristic in Theorem 1.2.

Theorem 1.7 ([CMS19]). The Masur–Veech volume MVg,n is given by the following Hodge
integrals:

MVg,n

π6g−6+2n
=
∑
ℓ⩾0

1

ℓ!

g∑
i=0

∫
Mg,n+ℓ

λiψ
2
n+1 · · ·ψ2

n+ℓ .

In fact, this result had tremendous consequences for the study of Masur–Veech volumes of
quadratic differentials. First, the statement settled two conjectures on the large n behaviour of the
Masur–Veech volumes and their relative Siegel–Veech constants elaborated in [ABC+22]. Then, in
two different works, Kazarian and Yang–Zagier produced fast recursive methods to compute these
Masur–Veech volumes by exploiting, respectively, KP-type and ILW-type integrability properties
of such linear Hodge integrals.

To conclude the parallelism, we point out that both enumerative problems MVg,n and χg,n

are generated by topological recursion in the sense of Eynard and Orantin [ABC+22, DN11].

1.3 Properties of the Ω-classes

Lately, Ω-classes have been employed in a great variety of enumerative problems. We produce
a list of their properties by collecting those in the literature and the ones known to experts;
moreover, we extend some of these properties and prove new ones. The main new result is
a pullback property that holds when the cohomological field theories given by the Ω-classes do
not have a flat unit. We employ this property to prove new vanishings of the integrals of these
classes.

Outline of the paper

In Section 2 we provide the necessary background on Ω-classes. In Section 3 we provide the proofs
of the statements presented in the introduction. In Section 4 we establish a list of properties of
the Ω-classes and prove them and also apply some of these properties to prove the vanishing
of integrals of Ω-classes. Finally, in Section 5 we mention a curious coincidence observed by
Pandharipande.

2. Background on Ω-classes

In [Mum83], Mumford derived a formula for the Chern character of the Hodge bundle on the
moduli space of curves Mg,n in terms of tautological classes and Bernoulli numbers. Among
various applications, such a class appears in the celebrated ELSV formula [ELSV01], named
after its four authors Ekedahl, Lando, Shapiro, Vainshtein, that is an equality between a simple
Hurwitz number and an integral over the moduli space of stable curves.

A generalisation of Mumford’s formula was found by Chiodo in [Chi08]. The moduli space
Mg,n is replaced by the proper moduli stack Mr,s

g;a of rth roots of the line bundle

ω⊗s
log

(
−

n∑
i=1

aipi

)
,

where ωlog = ω
(∑

i pi
)
is the log canonical bundle, r and s are integers with r positive, and
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a1, . . . , an are integers satisfying the modular constraint

a1 + a2 + · · ·+ an ≡ (2g − 2 + n)s (mod r) .

This condition guarantees the existence of a line bundle whose rth tensor power is isomorphic to
ω⊗s
log

(
−
∑

i aipi
)
. The value ai (mod r) is called the type of the marked point pi. Let π : C

r,s
g;a →

Mr,s
g;a be the universal curve and L → Cr,s

g;a the universal rth root. The lower strata of Mr,s
g;a

consist of moduli spaces Mr,s
g′;a′ of lower dimension, and in particular a node of a stable curve

has type a and r − a, again (mod r), at the two branches. In complete analogy with the case
of moduli spaces of stable curves, one can define ψ-classes and κ-classes. There is, moreover,
a natural forgetful morphism

ϵ : Mr,s
g;a −→ Mg,n ,

which forgets the line bundle, otherwise known as the spin structure. It can be turned into an
unramified covering (in the orbifold sense) of degree r2g−1 by slightly modifying the structure
of Mg,n, introducing an extra Z/rZ-stabiliser for each node of each stable curve (see [JPPZ17]).

Let Bm(x) denote the mth Bernoulli polynomial, that is, the polynomial defined by the
generating series

tetx

et − 1
=

∞∑
m=0

Bm(x)
tm

m!
.

The evaluations Bm(0) = (−1)mBm(1) = Bm recover the usual Bernoulli numbers. Chiodo’s
formula provides an explicit formula for the Chern characters of the derived pushforward of the
universal rth root chm(r, s; a) = chm(R•π∗L).

Theorem 2.1 ([Chi08]). The Chern characters chm(r, s; a) of the derived pushforward of the
universal rth root have the following explicit expression in terms of ψ-classes, κ-classes, and
boundary divisors:

chm(r, s; a) =
Bm+1(s/r)

(m+ 1)!
κm −

n∑
i=1

Bm+1(ai/r)

(m+ 1)!
ψm
i +

r

2

r−1∑
a=0

Bm+1(a/r)

(m+ 1)!
ja,∗

(ψ′)m − (−ψ′′)m

ψ′ + ψ′′ .

(2.1)
Here ja is the boundary morphism that represents the boundary divisor such that the two
branches of the corresponding node are of type a and r − a, and ψ′ and ψ′′ are the ψ-classes at
the two branches of the node.

We can then consider the pushforward to the moduli space of stable curves of the family of
Chern classes

Ω[x]
g,n(r, s; a) = ϵ∗ exp

( ∞∑
m=1

(−x)m(m− 1)!chm(r, s; a)

)
∈ Heven(Mg,n) .

We will omit the degree variable x when x = 1 and the indices (g, n) whenever they are clear from
the context. Notice that one recovers Mumford’s formula for the Hodge class when r = s = 1
and a = (1, . . . , 1). For r = 1, general s, and a = (s, . . . , s), we get the generalised Hodge classes
considered by Bini in [Bin03]. For any r ∈ Z+ and s ∈ Z, we refer to these classes as Ω-classes,
or an Ω-CohFT when referring to them as a collection or when exploiting some of their features
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Harer–Zagier via intersection theory

as a cohomological field theory (CohFT), based on the following statement.

Theorem 2.2 ([LPSZ17], Ω-classes form a CohFT). Let r be a positive integer, and let V =
⟨v1, . . . , vr⟩Q be a vector space. For any s ∈ Z, the collection of maps

Ωg,n(r, s; •) : V ⊗n −→ Heven
(
Mg,n

)
associating with a vector (va1 , . . . , van) the cohomology class Ωg,n(r, s; a1, . . . , an), and extended
by multilinearity, forms a cohomological field theory with associated V -metric η defined by

η(va, vb) =
1

r
δa+b≡0 (mod r)

and whose unit is flat whenever s belongs to the set { 0, . . . , r }.

Notice that the above result is restricted to 1 ⩽ a1, . . . , an ⩽ r. A relation among Ω-classes
with ai possibly outside this range will be given in Section 4.

2.1 Ω-classes as a sum over stable graphs

By expanding the exponential (2.1), we find an expression for the Ω-classes as a sum over deco-
rated stable graphs in which vertices, leaves, and edges carry cohomology classes multiplied by
sums of products of Bernoulli polynomials. However, a correct expansion of (2.1) into an expres-
sion in terms of stable graphs has to carefully take into account all possible self-intersections and
re-expand each self-intersected edge into the Chern class of its normal bundle. The result of this
procedure is written down in clean form in the following statement.

Corollary 2.3 ([JPPZ17, Corollary 4]). The class Ω
[x]
g,n(r, s; a) is equal to∑

Γ∈Gg,n

∑
w∈WΓ,r,s

r2g−1−h1(Γ)

|Aut (Γ)|
ξΓ,∗

∏
v∈V (Γ)

exp

(∑
m⩾1

(−x)mBm+1(s/r)

m(m+ 1)
κm(v)

)

×
∏

e∈E(Γ)
e=(h,h′)

1− exp
(
−
∑
m⩾1

(−x)mBm+1(w(h)/r)
m(m+1)

(
(ψh)

m − (−ψh′)m
))

ψh + ψh′

×
n∏

i=1

exp

(
−
∑
m⩾1

(−x)mBm+1(ai/r)

m(m+ 1)
ψm
i

)
.

Here Gg,n is the finite set of stable graphs of genus g with n legs, WΓ,r,s is the finite set of
half-edges decorations with an integer in {0, . . . , r− 1} in such a way that the leaf i is decorated
by ai, decorations of half-edges forming the same edge e ∈ E(Γ) sum up to r, and locally on each
vertex v ∈ V (Γ) the sum of all decorations is congruent to (2g − 2 + n)s modulo r.

2.2 Riemann–Roch for Ω-classes

The Riemann–Roch theorem for an rth root L of ω⊗s
log

(
−
∑

i aipi
)
provides the following relation:

(2g − 2 + n)s−
∑

i ai
r

− g + 1 = h0(C,L)− h1(C,L) .

In some cases, that is, for particular parametrisations of r, s, ai and for topologies (g, n), it can
happen that either h0 or h1 vanishes, turning the derived pushforward R•π∗L into a vector bun-
dle. If that happens, the Riemann–Roch formula provides a bound for the complex cohomological
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degree of Ω:

[degC = k].Ωg,n(r, s; a) = 0 for k > rank(R•π∗L) ,
where [degC = k].Ω extracts the homogeneous component of complex cohomological degree k
from Ω. These relations are non-trivial whenever the rank is less than 3g − 3 + n.

(1) One of these instances is provided in genus zero by the following result of Jarvis, Kimura,
and Vaintrob.

Theorem 2.4 ([JKV01, Proposition 4.4]). Let g = 0, n ⩾ 3, s = 0, and consider ai all strictly
positive except for at most a single aj which can be positive, or zero, or equal to −1. Then no
rth root of ω⊗s

log

(
−
∑

i aipi
)
does has global sections; that is, we have h0 = 0.

Under the condition of the theorem above, the rank of R•π∗L equals h1, and therefore one
gets

[degC = k].Ω0,n(r, 0; a) = 0 for k >

∑
i ai
r

− 1 .

(2) Another instance is provided by the negative s case with the ai all positive. Let s = −s′
for s′ a positive integer. In this case, ω⊗−s′

C,log

(
−
∑
ai
)
has strictly negative degree on all connected

components of every stratum, therefore implying again that h0 = 0. Thus, the rank equals h1,
and one gets

[degC = k].Ωg,n(r, s; a) = 0 for k >
(2g − 2 + n)s′ + r(g − 1) +

∑
i ai

r
,

which is interesting when (2g− 2+n)s′ + r(g− 1)+
∑

i ai < (3g− 3+n)r. For instance, if r = 2
and all ai = s′ = 1, one gets that Ωg,n(2,−1; 1n) has top complex degree equal to 2g−2+n, and
that top degree in fact defines (up to prefactors) a cohomological field theory Θg,n with beautiful
properties [CGG22, Nor17] (its intersection numbers are generated by topological recursion in
the sense of Eynard and Orantin, the associated partition function is a solution of the Korteweg–
de Vries hierarchy which arises from the Brézin–Gross–Witten random matrix model, and it is
related to the volumes of the moduli spaces of super Riemann surfaces).

3. Proofs

In this section we provide the proofs of the statements in the introduction.

Proof of Theorem 1.2. Firstly, let us recall a generalised Gauss–Bonnet formula expressing the
orbifold Euler characteristic of certain open orbifolds as integrals of the Chern class of the
logarithmic cotangent bundle. A proof of the formula can be found in [CMZ22].

Proposition 3.1 (Gauss–Bonnet for open orbifolds). LetM be a compact smooth k-dimensional
orbifold, and let D be a normal crossing divisor and M = M \ D. Then the orbifold Euler
characteristic of M can be computed as

χ(M) = (−1)k
∫
M
ck
(
Ω1
M
(logD)

)
,

where ck
(
Ω1
M
(logD)

)
is the kth Chern class of the logarithmic cotangent bundle.

Let us apply the above proposition to compute the Euler characteristic χg,n = χ(Mg,n). The
fibre of the logarithmic cotangent bundle of Mg,n over a curve (C, p1, . . . , pn) is given by the
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space of quadratic differentials on C with simple poles at the marked points, that is,

H0
(
C,ω⊗2

C

(∑
ipi
))
.

On the other hand, consider the Ω-class with parameters r = 1 and s = −1 and all ai = 0. As
explained in Section 2.2, the class Ω is the Chern class of an actual bundle whose fibre over a
curve (C, p1, . . . , pn) is isomorphic to H1

(
C, (ωC,log)

−1
)
. By Serre duality,

H1
(
C, (ωC,log)

−1
) ∼= H0

(
C,ω⊗2

C

(∑
ipi
))∨

.

Thus, we deduce Proposition 1.5:

χg,n =

∫
Mg,n

Ωg,n(1,−1; 0) .

Specialising formula (2.1), we get Ωg,n(1,−1; 0) = Λ(−1) exp
(
−
∑

m⩾1(1/m)κm
)
. This is a simple

consequence of the identity Bm(−1) = Bm + (−1)mm, together with Mumford’s formula for
λ-classes. Here Λ(−1) =

∑g
i=1(−1)iλi is the total Chern class of the dual of the Hodge bundle.

We can convert the evaluation of the above class into a combination of simple Hodge integrals
using Lemma A.1: the values vk = −1 are given by um = −1/m through equation (A.1). In turn,
we find

χg,n =

∫
Mg,n

Λ(−1) exp

(
−
∑
m⩾1

1

m
κm

)

=

∫
Mg,n

Λ(−1) +
∑
ℓ⩾1

(−1)ℓ

ℓ!

∑
µ1,...,µℓ⩾1

∫
Mg,n+ℓ

Λ(−1)
ℓ∏

j=1

ψ
µj+1
n+j .

Notice that the sum over ℓ terminates at ℓ = 3g − 3 + n, and the sum over the µ is also finite
since we have µ1 + · · · + µℓ ⩽ 3g − 3 + n. We also observe that the first summand vanishes for
degree reasons, unless (g, n) = (0, 3) or (1, 1). In these cases,∫

M0,3

Λ(−1) =

∫
M0,3

1 = 1 ,

∫
M1,1

Λ(−1) = −
∫
M1,1

λ1 = − 1

24
.

Collapsing geometric series into their compact form allows a re-arranging of signs leading to the
statement

χg,n =
∑
ℓ⩾0

(−1)ℓ

ℓ!

∫
Mg,n+ℓ

Λ(−1)
ℓ∏

j=1
1− ψn+j

ψ2
n+1 · · ·ψ2

n+ℓ

= (−1)3g−3+n
∑
ℓ⩾0

1

ℓ!

∫
Mg,n+ℓ

Λ(1)
ℓ∏

j=1
1 + ψn+j

ψ2
n+1 · · ·ψ2

n+ℓ .

This concludes the proof of Theorem 1.2.

Proof of Corollary 1.3. Thanks to the intersection-theoretic expression of the Euler character-
istic, together with an explicit formula for Hodge integrals due to Dubrovin–Yang–Zagier (see
[DYZ17, Section 1.3]), we are able to give a new proof of the Harer–Zagier formula.

Claim 1. The Euler characteristic satisfies1 χg,n+1 = −(2g − 2 + n)χg,n.

1The relation χg,n+1 = −(2g−2+n)χg,n easily follows from a short exact sequence involving mapping class groups

137



A. Giacchetto, D. Lewański and P. Norbury

Indeed, denoting the forgetful morphism by π : Mg,n+1 → Mg,n, we have

χg,n+1 =

∫
Mg,n+1

Λ(−1) exp

(
−
∑
m⩾1

1

m
κm

)

=

∫
Mg,n+1

π∗Λ(−1) exp

(
−
∑
m⩾1

1

m
(π∗κm + ψm

n+1)

)

=

∫
Mg,n+1

exp

(
−
∑
m⩾1

1

m
ψm
n+1

)
π∗Λ(−1)π∗ exp

(
−
∑
m⩾1

1

m
κm

)

=

∫
Mg,n+1

(1− ψn+1)π
∗Λ(−1)π∗ exp

(
−
∑
m⩾1

1

m
κm

)
.

Here we used the property π∗Λ(−1) = Λ(−1) and the relation π∗κm = κm−ψm
n+1, together with

the fact that π∗ is a ring homomorphism. Now applying the projection formula and the relation
π∗ψn+1 = 2g − 2 + n, we find

χg,n+1 = −
∫
Mg,n

(π∗ψn+1)Λ(−1) exp

(
−
∑
m⩾1

1

m
κm

)

= −(2g − 2 + n)

∫
Mg,n

Λ(−1) exp

(
−
∑
m⩾1

1

m
κm

)
= −(2g − 2 + n)χg,n .

Claim 2. The Harer–Zagier relation holds true.

Indeed, as a consequence of Claim 1, we just have to compute χ0,3, χ1,1 and χg,0 for g ⩾ 2.

The genus zero case is straightforward. Since χ0,3 = 1, we have χ0,n = (−1)n−3(n− 3)!. The
genus one case follows from the computation

χ1,1 =

∫
M1,1

Λ(−1)−
∫
M1,2

Λ(−1)ψ2
2 = − 1

12
,

which implies χ1,n = (−1)n(n− 1)!/12.

The genus g ⩾ 2 case instead relies on a beautiful chain of results, which we summarise
here. The main equation from which it follows is the Toda equation for simple Hurwitz numbers,
which was conjectured by Pandharipande [Pan00] and proved shortly after by Okounkov [Oko00].
On the other hand, simple Hurwitz numbers are expressed in terms of Hodge integrals via the
well-known ELSV formula [ELSV01]. The Toda equation for Hurwitz numbers with only simple
ramifications has been conveniently rearranged into a simpler quadratic equation by Dubrovin,
Yang, and Zagier, which is then employed to understand two different asymptotic behaviours
of the generating series of these Hurwitz numbers [DYZ17, Section 1.3]. Combining the ELSV
formula and the asymptotic behaviour of the generating series results in the following new identity
involving Hodge integrals:∑

ℓ⩾1

1

ℓ!

∑
µ1,...,µℓ⩾1

∫
Mg,ℓ

Λ(−1)

ℓ∏
i=1

ψµi+1
i =

B2g

2g(2g − 2)
.

(see [HZ86, Section 6]). It moreover follows from the Givental action of the translation T , given in explicit form
in the introduction. We mention here yet another (substantially equivalent) form of the same argument, that uses
the particular intersection-theoretic expression for χg,n.
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Conveniently enough, this is exactly the relation needed to conclude the proof, as the left-hand
side equals χg,0 by Theorem 1.2.

4. Properties, symmetries, and parameter shifts of the Ω-CohFT

Mainly within the past five years, applications of Ω-classes in enumerative geometry have been
blooming in the literature. Interestingly enough, these applications arise from quite different
contexts and with different motivations. A complete list of recent papers employing Ω-classes is
out of the scope of this work and, as far as we know, would likely be outdated soon. Instead,
the aim of this section is to investigate, prove, extend, and collect properties of Ω-classes as
a reference tool for interested mathematicians in the field.

Theorem 4.1. Fix integers g, n ⩾ 0 such that 2g − 2 + n > 0. Let r and s be integers with r
positive and 1 ⩽ a1, . . . , an ⩽ r integers satisfying the modular constraint

a1 + a2 + · · ·+ an ≡ (2g − 2 + n)s (mod r) .

The Ω-classes satisfy the following properties:

(i) Shift of s:

Ω[x](r, s+ r; a1, . . . , an) = Ω[x](r, s; a1, . . . , an) · exp

(∑
m⩾1

(−x)m

m

(s
r

)m
κm

)
.

(ii) Shift of ai:

Ω[x](r, s; a1, . . . , ai + r, . . . , an) = Ω[x](r, s; a1, . . . , an) ·
(
1 + x

ai
r
ψi

)
.

(iii) Zero and r symmetry:

Ω(r, 0; a1, . . . , an) = Ω(r, r; a1, . . . , an) ,

Ω(r, s; a1, . . . , 0, . . . , an) = Ω(r, s; a1, . . . , r, . . . , an) .

(iv) Pullback property:

Ω(r, s; a1, . . . , an, s) = π∗Ω(r, s; a1, . . . , an) ,

where π : Mg,n+1 → Mg,n is the forgetful map.

(v) (String equation). For formal variables x1, . . . , xn+1, we have∫
Mg,n+1

Ω(r, s; a1, . . . , an, an+1 = s)∏n+1
i=1 (1− xiψi)

∣∣∣∣∣
xn+1=0

= (x1 + · · ·+ xn)

∫
Mg,n

Ω(r, s; a1, . . . , an)∏n
i=1(1− xiψi)

.

(vi) (Dilaton equation). For formal variables x1, . . . , xn+1, we have

∂

∂xn+1

∫
Mg,n+1

Ω(r, s; a1, . . . , an, an+1 = s)∏n+1
i=1 (1− xiψi)

∣∣∣∣∣
xn+1=0

= (2g − 2 + n)

∫
Mg,n

Ω(r, s; a1, . . . , an)∏n
i=1(1− xiψi)

.

Iterating the first two properties above, one finds:
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(I) Multiple shifts of s:

Ω[x](r, s+Nr; a1, . . . , an)

= Ω[x](r, s; a1, . . . , an) · exp

(∑
m⩾1

(−x)m

m
pm

(s
r
, . . . ,

s

r
+N − 1

)
κm

)
,

where pm is the power-sum symmetric polynomial of degree m.

(II) Multiple shifts of ai:

Ω[x](r, s; a1, . . . , ai +Nr, . . . , an) = Ω[x](r, s; a1, . . . , an) ·
N−1∏
t=0

(
1 + x

(ai
r
+ t
)
ψi

)
.

Remark 4.2. Property (i) was employed in [CMS19, Appendix A] for the case r = 1; we extend
it to general r. Property (ii) was observed by Chiodo via geometric arguments for s < 0; we
extend it to general s. Property (iii) is obvious; we list it here for completeness. Property (iv)
was proved in [LPSZ17] for 0 ⩽ s ⩽ r; we extend it to an arbitrary integer s, and it constitutes
the strongest statement of the list. Properties (v) and (vi) have been proved in [DLN16] for s = 0
via topological recursion techniques; we extend them here to an arbitrary integer s. The other
properties are new, to the best of our knowledge.

Remark 4.3. Another interesting property, which only holds for r = 1, is a relation between two
different parametrisations of Ω-classes, which we refer to as Segre and Chern:2

Ω[−x](1, 1− s; 0, . . . , 0) =
(
Ω[x](1, s; 0, . . . , 0)

)−1
.

It has been proved and employed in [CMS19].

Proof of Theorem 4.1. Most equations can be proved exploiting properties of Bernoulli polyno-
mials tuned in the right way. We proceed by grouping similar properties.

Proof of properties (I) and (II), which specialise to properties (i) and (ii). Let us recall a
few basic facts from the theory of symmetric functions. Let pm, σl, and hl be the following three
bases of symmetric polynomials: power sums, elementary symmetric polynomials, and complete
homogeneous polynomials. Explicitly, for a set of variables X = (X1, . . . , XN ), we have

pm(X) =

N∑
i=1

Xm
i , σl(X) =

∑
1⩽i1<···<il⩽N

Xi1 · · ·Xil , hl(X) =
∑

1⩽i1⩽···⩽il⩽N

Xi1 · · ·Xil .

The generating series of the σl and of the hl read∑
l⩾0

σl(X)ul =

N∏
i=1

(1 +Xiu) ,
∑
l⩾0

hl(X)ul =

N∏
i=1

1

(1−Xiu)
(4.1)

2The relation that one might expect from Serre duality applied to an rth root of ω⊗s
log(−

∑
i aipi), that is,

Ω[−x](r, r − s; r − a1, . . . , r − an) =
(
Ω[x](r, s; a1, . . . , an)

)−1
,

is in fact false. As an explicit counterexample, in (g, n) = (1, 2), we have Ω[x](2, 1; 0, 2)Ω[−x](2, 1; 2, 0) = 1− 3
4
x2κ2.

However, experimentally we find the vanishing [degC = k].Ω[−x](r, r− s; r−a1, . . . , r−an)Ω
[x](r, s; a1, . . . , an) = 0

for k odd.

140



Harer–Zagier via intersection theory

and are related to the power sums by Newton’s identities:

exp

(∑
m⩾1

(−1)m+1

m
pmu

m

)
=
∑
l⩾0

σlu
l , exp

(∑
m⩾1

1

m
pmu

m

)
=
∑
l⩾0

hlu
l . (4.2)

Let us, moreover, recall that the Bernoulli polynomials satisfyBm+1(x+1) = Bm+1(x)+(m+1)xm

for any non-negative integer m and any complex variable x. For a positive integer N , we can
iterate this property N times to obtain

Bm+1(x+N) = Bm+1(x) + (m+ 1)pm(x, x+ 1, . . . , x+N − 1) .

We can apply the property above for x = s/r, obtaining

Bm+1

(
(s+Nr)/r

)
m(m+ 1)

=
Bm+1(s/r)

m(m+ 1)
+

1

m
pm

(s
r
,
s

r
+ 1, . . . ,

s

r
+N − 1

)
.

As a consequence, we find that the Ω-classes before pushforward to Mg,n (that is, Ω′
g,n(r, s; a)

on Mr,s
g,a) satisfy the shifting property

Ω′[x]
g,n(r, s+Nr; a) = Ω′[x]

g,n(r, s; a) · exp

(∑
m⩾1

(−x)m

m
pm

(s
r
,
s

r
+ 1, . . . ,

s

r
+N − 1

)
κm

)
.

Notice that we can now apply the pushforward ϵ∗ on both sides and obtain the statement (I): in
fact, writing the above class as a sum over stable graphs Γ (cf. Section 2), we see that ϵ∗ simply
acts by multiplication of the factor r2g−1−h1(Γ) which for fixed g depends only on the first Betti
number h1(Γ) of each of the stable graphs produced, which is left unchanged by the decoration
of ψ- or κ-classes. In other words, we find

Ω[x]
g,n(r, s+Nr; a) = Ω[x]

g,n(r, s; a) · exp

(∑
m⩾1

(−x)m

m
pm

(s
r
,
s

r
+ 1, . . . ,

s

r
+N − 1

)
κm

)

in Heven(Mg,n). This proves property (I), which restricts to property (i) for N = 1. Property (II)
is proved similarly, but this time employing instead equations (4.1) and (4.2) for elementary
symmetric polynomials. Property (II) specialises to property (ii).

Proof of property (iii). Property (iii) is obvious from equation (2.1) and the identity for
Bernoulli polynomials Bm+1(1) = Bm+1(0) = Bm+1.

Proof of property (iv). Whenever s lies within the range 0 ⩽ s < r, by [LPSZ17] the Ω-
classes form a CohFT with flat unit, which can be restated precisely as

π∗Ωg,n(r, s; a1, . . . , an) = Ωg,n+1(r, s; a1, . . . , an, s) .

The case s = r is handled by property (iii). We need to perform the extension of s outside
the range [0, r] and show that the statement keeps holding true. For this purpose, we start
with s outside the range, and we shift s by adding or subtracting r the required number of
times, controlling the shift process by property (i). At this point, we perform the pullback of
the correction produced and recognise that it gets perfectly reabsorbed this time by means of
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property (ii):

Ωg,n(r, s; a) =


Ωg,n(r, ⟨s⟩ ; a) exp

(∑
m⩾1

(−1)m

m
pm

(
⟨s⟩
r
,
⟨s⟩
r

+ 1, . . . ,
s

r
− 1

)
κm

)
if s ⩾ r,

Ωg,n(r, ⟨s⟩ ; a) exp

(
−
∑
m⩾1

1

m
pm

(
1− ⟨s⟩

r
, 2− ⟨s⟩

r
, . . . ,−s

r

)
κm

)
if s < 0 .

Here we wrote s = r[s] + ⟨s⟩ for the Euclidean division of s by r. Let us focus on the case s ⩾ r.
Pulling back by the forgetful map, we find

π∗Ωg,n(r, s; a1, . . . , an)

= π∗Ωg,n(r, ⟨s⟩ ; a1, . . . , an) exp

(∑
m⩾1

(−1)m

m
pm

(
⟨s⟩
r
,
⟨s⟩
r

+ 1, . . . ,
s

r
− 1

)
π∗κm

)

= Ωg,n+1(r, ⟨s⟩ ; a1, . . . , an, ⟨s⟩) exp

(∑
m⩾1

(−1)m

m
pm

(
⟨s⟩
r
,
⟨s⟩
r

+ 1, . . . ,
s

r
− 1

)(
κm − ψm

n+1

))
.

Here we used the fact that π∗ is a ring homomorphism, together with the flat unit property for
Ωg,n(r, ⟨s⟩) and the relation π∗κm = κm−ψm

n+1. We can now absorb the exponential of κ-classes,
shifting the Ω-class from ⟨s⟩ back to s, then apply Newton’s identity (4.2) and the generating
series for elementary symmetric polynomials (4.1):

π∗Ωg,n(r, s; a1, . . . , an)

= Ωg,n+1(r, s; a1, . . . , an, ⟨s⟩) exp

(∑
m⩾1

(−1)m+1

m
pm

(
⟨s⟩
r
,
⟨s⟩
r

+ 1, . . . ,
s

r
− 1

)
ψm
n+1

)

= Ωg,n+1(r, s; a1, . . . , an, ⟨s⟩)
∑
l⩾0

σl

(
⟨s⟩
r
,
⟨s⟩
r

+ 1, . . . ,
s

r
− 1

)
ψl
n+1

= Ωg,n+1(r, s; a1, . . . , an, ⟨s⟩)
[s]∏
t=1

(
1 +

(s
r
− t
)
ψn+1

)
= Ωg,n+1(r, s; a1, . . . , an, s) .

In the last equation we again used property (ii). This proves the case s > r. The case s < 0
is obtained by applying Newton’s identity for the generating series for complete homogeneous
polynomials hl. This concludes the proof of property (iv).

Proof of properties (v) and (vi): String and dilaton equations. These are essentially corollar-
ies of property (iv) applied in the standard way of proving string and dilaton equations through
the projection formula. For instance, the dilaton equation can be proved as

∂

∂xn+1

∫
Mg,n+1

Ω(r, s; a1, . . . , an, s)
n+1∏
i=1

(1− xiψi)

∣∣∣∣∣
xn+1=0

=

∫
Mg,n+1

Ω(r, s; a1, . . . , an, s)
n∏

i=1
(1− xiψi)

ψn+1

=

∫
Mg,n+1

π∗
[
Ω(r, s; a1, . . . , an)

] n∏
i=1

∑
di⩾0

xdii ψ
di
i · ψn+1
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=

∫
Mg,n+1

π∗
[
Ω(r, s; a1, . . . , an)

] n∏
i=1

∑
di⩾0

xdii (π∗ψi −Di,n+1)
di · ψn+1

=

∫
Mg,n+1

π∗
[
Ω(r, s; a1, . . . , an)

] n∏
i=1

∑
di⩾0

xdii
(
π∗
(
ψdi
i

)
−Di,n+1π

∗(ψdi−1
i

))
· ψn+1

=

∫
Mg,n+1

π∗
[
Ω(r, s; a1, . . . , an)

] n∏
i=1

∑
di⩾0

xdii π
∗(ψdi

i

)
· ψn+1

=

∫
Mg,n+1

π∗

[
Ω(r, s; a1, . . . , an)

n∏
i=1

∑
di⩾0

xdii ψ
di
i

]
· ψn+1 =

∫
Mg,n

Ω(r, s; a1, . . . , an)∏n
i=1(1− xiψi)

π∗ψn+1

= (2g − 2 + n)

∫
Mg,n

Ω(r, s; a1, . . . , an)∏n
i=1(1− xiψi)

.

Here Di,n+1 is the divisor given by the locus of curves with a rational component attached
by a single node and containing the two marked points i and n + 1, satisfying the constraints
Di,n+1Dj,n+1 = Di,n+1ψn+1 = 0. Here the convention that negative powers of ψ-classes are zero
is used. This concludes the proof of property (vi). The string equation or property (v) is proved
in a similar way. This concludes the proof of the theorem.

4.1 Some vanishing of the Ω-integrals

As an application of the properties above, we provide several vanishing results for integrals of
Ω-classes with weighted ψ-classes. Again, we will write s = r[s] + ⟨s⟩ for the Euclidean division
of an integer s by a natural number r.

Theorem 4.4. Fix integers g, n ⩾ 0 such that 2g − 2 + n > 0. Let r and s be integers with r
positive, and 1 ⩽ a1, . . . , an ⩽ r integers satisfying the modular constraint

ca1 + a2 + · · ·+ an ≡ (2g − 2 + n)s (mod r) .

We have ∫
Mg,n+1

Ω
[x]
g,n+1(r, s; a1, . . . , an, s) = 0 for any s ∈ Z .

Proof. The proof is an immediate consequence of property (iv) of Theorem 4.1, as the pullback π∗

preserves the cohomological degree, whereas the target moduli space is higher in dimension.

By employing properties (I) and (II) of Theorem 4.1, we obtain the following vanishing
properties.

Corollary 4.5. (i) If s ⩾ r, we have∫
Mg,n+1

Ω
[x]
g,n+1(r, s; a1, . . . , an, ⟨s⟩)

[s]∏
t=1

(
1 +

(s
r
− t
)
ψn+1x

)
= 0 ,∫

Mg,n+1

Ω
[x]
g,n+1(r, ⟨s⟩ ; a1, . . . , an, s) exp

(∑
m⩾1

(−1)m

m
pm

(
⟨s⟩
r
,
⟨s⟩
r

+ 1, . . . ,
s

r
− 1

)
κmx

m

)
= 0 .
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(ii) If s < 0, we have∫
Mg,n+1

Ω
[x]
g,n+1(r, s; a1, . . . , an, ⟨s⟩)

−[s]−1∏
t=0

(
1 +

(s
r
+ t
)
ψn+1x

)−1
= 0 ,∫

Mg,n+1

Ω
[x]
g,n+1(r, ⟨s⟩ ; a1, . . . , an, s)

× exp

(
−
∑
m⩾1

(−1)m

m
pm

(
⟨s⟩
r
,
⟨s⟩
r

+ 1, . . . ,
s

r
− 1

)
κmx

m

)
= 0 .

Remark 4.6. The statements of Corollary 4.5 can be expressed in terms of the generalised Stirling
numbers s and S of first and second type, respectively (see, for example, [Cha02]):∫

Mg,n+1

Ωg,n+1(r, s; a1, . . . , an, ⟨s⟩)
∑
m⩾0

(−1)[s]s

(
[s], [s]−m,

⟨s⟩
r

)
ψm
n+1 = 0 for s > r ,∫

Mg,n+1

Ωg,n+1(r, s; a1, . . . , an, ⟨s⟩)
∑
m⩾0

S

(
[s] +m, [s],

⟨s⟩
r

)
ψm
n+1 = 0 for s < 0 .

By [Cha02], we have the following expression in terms of the usual Stirling numbers s(a, b) and
S(a, b) of first and second type, respectively:

(−1)ks
(
k, k −m,x

)
=

m∑
i=0

(
k + i−m

i

)
s(k, k −m+ i)xi for s > r ,

S
(
k +m, k, x

)
=

m∑
i=0

(
m− k − 1

i

)
(−1)iS(m− i− k,−k)xi for s < 0 .

5. A curious coincidence

We conclude the paper with a question raised by Rahul Pandharipande. In [FP00, Theorem 3]
the following evaluation is established. For g ⩾ 2,∫

[Mg,0(P1,d)]vir
ctop

(
R1π∗µ

∗(O(−1)⊕O(−1))
)
=

d2g−3

2g(2g − 2)!
|B2g| =

d2g−3

(2g − 3)!
|χg,0| .

This formula has an application in the Gromov–Witten theory of Calabi–Yau 3-folds of multiple
covers of a fixed rational curve with normal bundle N = O(−1)⊕O(−1). We refer to the original
paper for more details. The question is whether the appearance of χg,0 has some deeper geometric
meaning.

One can see that, since integrating over the moduli space of stable maps with n fixed points
produces an extra global factor of dn, a straightforward rescaling confirms that the statement
above holds for general n in the following sense:∫

[Mg,n(P1,d)]vir
ctop

(
R1π∗µ

∗(O(−1)⊕O(−1))
) n∏
i=1

ev∗i ([pt]) =
d2g−3+n

(2g − 3 + n)!
|χg,n| . (5.1)

On the other hand, by Lemma 1.4, we have

1

dg

∫
Mg,n

Ω[−d](1,−1; 0, . . . , 0) =
1

dg

∫
Mg,n

Λ(d) exp

(
−

∞∑
m=1

(−d)mκm
m

)
= d2g−3+n|χg,n| . (5.2)
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It would be insightful if there existed some connection, already at the level of classes, between
the integrands in the left-hand sides of equations (5.1) and (5.2). One way to go about it could
be to choose a good parametrisation for the virtual localisation calculation.

Appendix. A technical lemma

The following lemma appears in some form in the literature; see for instance [Pix13, Lemma 2.3].
We nevertheless provide a proof here for the reader’s convenience.

Lemma A.1. Let g ⩾ 0 and n > 0 be integers such that 2g − 2 + n > 0. Then for any class
α ∈ Heven

(
Mg,n

)
and any sequence (um)m⩾1 of complex numbers, we find∫

Mg,n

α ·
n∏

i=1

ψdi
i exp

(∑
m⩾1

umκm

)

=

∫
Mg,n

α ·
n∏

i=1

ψdi
i +

∑
ℓ⩾1

1

ℓ!

∑
µ1,...,µℓ⩾1

∫
Mg,n+ℓ

π∗ℓα ·
n∏

i=1

ψdi
i

ℓ∏
j=1

vµjψ
µj+1
n+j ,

where the map πℓ : Mg,n+ℓ → Mg,n is the morphism forgetting the last ℓ marked points, and
the sequence (vk)k⩾1 is obtained from (um)m⩾1 from the expansion

exp

(
−
∑
m⩾1

umx
m

)
= 1−

∑
k⩾1

vkx
k . (A.1)

Proof. Let us first recall that multi-indexes κ-classes and single-index κ-classes are related by

exp

(∑
m⩾1

umκm

)
= 1 +

∑
ℓ⩾1

1

ℓ!

∑
µ1,...,µℓ⩾1

(
ℓ∏

j=1

vµj

)
κµ1,...,µℓ

,

where um and vk are related by the expansion (A.1). As by definition

κµ1,...,µℓ
= πℓ,∗

(
ψµ1+1
n+1 · · ·ψµℓ+1

n+ℓ

)
,

the projection formula implies that∫
Mg,n

α ·
n∏

i=1

ψdi
i exp

(∑
m⩾1

umκm

)

=

∫
Mg,n

α ·
n∏

i=1

ψdi
i +

∑
ℓ⩾1

1

ℓ!

∑
µ1,...,µℓ⩾1

∫
Mg,n+ℓ

π∗ℓ

(
α ·

n∏
i=1

ψdi
i

)
ℓ∏

j=1

vµjψ
µj+1
n+j .

Observe that

π∗ℓ

(
α ·

n∏
i=1

ψdi
i

)
= π∗ℓxα ·

n∏
i=1

(
π∗ℓψi

)di ,
and moreover recall that if π : Mg,n+1 → Mg,n is the forgetful map forgetting the (n + 1)th
marked point, then π∗(ψi) = ψi − Di,n+1 on Mg,n+1, where Di,n+1 is the Poincaré dual of
the divisor represented by the curves with a single node separating a rational component with
exactly two leaves marked i and n + 1 from the other component. As a consequence, π∗ℓ (ψi) =
ψi − D̄i,n+1, where D̄i,n+1 is the Poincaré dual of the divisor represented by the curves with a
single node separating a rational component decorated by the leaf i and leaves in a non-empty
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subset I ⊂ {n+ 1, . . . , n+ ℓ } from the other component, summing over all such subsets I. The
important observation is the following: because we are interested in κ-classes, all the new leaves
n + 1, . . . , n + ℓ obtained by applying the projection formula are decorated by a ψ-class to the
power at least one. By a dimension argument, a rational component attached to a single node
and decorated by the leaves i and I has dimension |I| − 1, whereas the ψ-classes decorating that
component have total degree at least |I|. This proves that the terms involving the classes D̄i,n+1

vanish in the integral, therefore proving the statement.
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