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ABSTRACT
Organisations have seen a rise in the volume of data corresponding
to business processes being recorded. Handling process data is a
meaningful way to extract relevant information from business pro-
cesses with impact on the company’s values. Nonetheless, business
processes are subject to changes during their executions, adding
complexity to their analysis. This paper aims at evaluating cur-
rently available Process Mining tools that handle concept drifts, i.e.
changes over time of the statistical properties of the events occur-
ring in a process. We provide an in-depth analysis of these tools
briefly comparing their differences, advantages, and disadvantages.

CCS CONCEPTS
•Applied computing→Business processmanagement;Busi-
ness process modeling; • Information systems→ Data stream
mining;

KEYWORDS
Process Mining, Online, Concept Drift
ACM Reference format:
Nicolas JashchenkoOmori, GabrielMarques Tavares, Paolo Ceravolo, and Sylvio
Barbon Jr.. 2019. Comparing Concept Drift Detection with Process Mining
Tools. In Proceedings of XV Brazilian Symposium on Information Systems,
Aracaju, Brazil, May 20–24, 2019 (SBSI’19), 8 pages.
https://doi.org/10.1145/3330204.3330240

1 INTRODUCTION
Concerned about their success, organisations are interested in hav-
ing precise control over their processes and rapidly reacting to
relevant events recorded in their information systems during pro-
cess execution. Data stream analysis may offer new opportunities
for these organisations but at the same time impose new challenges
[12]. Among them, Concept Drift (CD) detection is crucial, as it
identifies if the patterns followed by data are changing and, by
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consequence, if the models adopted to interpret them stay valid or
require an update [8].

Recently, process mining (PM) techniques have arisen as a valu-
able tool to interpret business process data generated by organisa-
tions. PM uses process modelling and analysis as well as notions
from data mining (DM) and machine learning (ML) [26]. In tra-
ditional PM techniques, one has access to data from event logs
recorded by systems controlling the execution of processes [20].
Thus, models are constructed based on historical series. However,
CD in PM may be as common as in other areas, giving the fact that
the entire historical series may not be appropriately significant of
a running execution [19]. Identifying a drift, a point in time where
there is a statistical difference between the process behaviour be-
fore and after the said point is then decisive to guide the update of
models [14].

In recent years the implementation of CD techniques for PM has
received attention. Particularly, two algorithms [4, 15] for concept
drift detection are widely available on popular PM software.

The first method was proposed by Bose et al. [4] and a plu-
gin, named Concept Drift, implements it for the Process Mining
Workbench (ProM) package manager. The method consists in ex-
tracting and selecting the features of the event log, generating a set
of control populations used for comparisons. Then, displaying an
interactive visualisation of the drifts detected.

The second method, ProDrift, is proposed by Ostovar et al.
[15] and is provided for the Advanced Process Analytics Platform
(Apromore). The method uses two adjacent adaptive windows and
performs statistical tests over distributions of behavioural relation-
ships between events.

Bose et al. [4] and Ostovar et al. [15] techniques focus on the
same goal: detecting CD. However, each algorithm carries on par-
ticularities such as hyper parametrisation, visualisation capabilities,
and other specific functions. Selecting the most suitable solution
is not an easy task, as well as configuring the hyperparameters to
support desirable CD detection. This main hindrance is related to
the different behaviour of each real-life process which requires ad-
hoc settings [10]. In other words, the demand for a PM tool capable
of supporting accurate CD analysis with a straightforward setup
process and offering human-friendly interpretations is increasing.

The goal of this work is to evaluate available process drift so-
lutions using a real-life event log, offering an in-depth analysis of
such methods based on sensitivity, hyperparameters dependence
and software interface. More specifically, we compared the ProM’s
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Concept Drift plugin and ProDrift from Apromore over a dataset
of a Process Control System composed of four years of event logs.

The rest of this paper attends the following organisation: Sec-
tion 2 revises the main concepts about process mining. Section
3 presents an in-depth overview of the Process Control System
event log, the software used in the experiments and our evaluation
criteria. Section 4 discusses the obtained results and compare them
over the dataset experiment. Lastly, Section 5 concludes the paper,
emphasising open avenues for future work.

2 PROCESS MINING
In our globalised world, new technologies emerge at high rates and
the production of data has been in a constant rise. A significant
amount of the produced data regards business processes executions
recorded as event logs. To tie organisations needs and process data,
PM offers a set of techniques that retrieves information from event
logs and gives companies a better understanding of their processes,
further supporting business decisions by making clear how the
processes are developing according to event log data.

This relatively new field merges knowledge from business pro-
cess management (BPM), which studies operational business pro-
cesses from the information technology and management sciences
standpoint, with data mining and machine learning (ML), which
focus on data analysis [26]. PM main focus is to discover, monitor
and enhance business processes towards a clear understanding of
the process [25].

Traditional process discovery techniques aim at extracting an
abstract representation of an event log, i.e. a processmodel, that best
describes the recorded behaviour [7]. There are several notations
which serve as models, and it is important to notice that there is no
perfect model representation, meaning that there is a wide variety
of algorithms (alpha-algorithm [23], the inductive miner [13], the
heuristic miner [28], among others) for model extraction and the
final model may be different within different discovery techniques.

Monitoring processes is commonly referred to as conformance
checking techniques, which aims at detecting inconsistencies amongst
a process model and an event log corresponding to the same process
[18]. Moreover, conformance may provide a means for quantifying
the deviations, posing as an essential tool for noise identification.
Finally, process enhancement uses previous analysis as the basis for
process improvement by changing or extending the original model
[1]. An enhancement technique may either repair the model by up-
dating its relations or extend the model by adding new information,
such as timestamps [26].

Table 1 shows an example of an event log. Each row of the table
represents one event, which is an execution of an activity at a certain
time. Moreover, each activity corresponds to a specific case, where
a case is an instance of process execution. Furthermore, a trace is a
sequence of activities from the same case, implying that different
cases may have the same trace. We can, then, infer that cases 3 and
5 are executions of the same process even though they are distinct
instances and may run differently. From Table 1, we can conclude
that cases 5 and 7 have the same trace and that the group of cases 1,
3, 5 and 7 is a set of recorded events generated by the same business
process.

For event log processing, it is expected that the log is time or-
dered, respecting the real sequence of events. Since an event is a
recording of an activity belonging to a process instance, the re-
quired attributes of an event are the case identification, an activity
name, and a timestamp, as seen in Table 1.

Table 1: Event log example

Case ID Activity Timestamp
Case 5 Solicitação 2018/02/09 11:00:00
Case 7 Solicitação 2018/02/09 11:45:20
Case 1 Solicitação 2018/02/09 11:55:47
Case 7 Autorização 2018/02/10 16:27:36
Case 5 Autorização 2018/02/10 16:27:45
Case 5 Distr. Diretoria 2018/02/10 17:13:27
Case 1 Distr. Setor 2018/02/10 17:13:56
Case 3 Distr. Diretoria 2018/02/13 12:00:50
Case 3 Em Execução 2018/02/17 09:10:20
Case 3 Cancelamento 2018/02/17 10:30:00
Case 7 Distr. Diretoria 2018/02/20 11:00:00
Case 1 Conclusão 2018/02/20 17:00:00

Definition 1 (Event, attribute, trace [26]). Let Σ be the event
universe, i.e., the set of all possible event identifiers. Eventsmay have
various attributes, such as timestamp, activity, resource, associated
cost, among others. Let AN be the set of attribute names. For any
event e ∈ Σ and name n ∈ AN, then #n(e) is the value of attribute n
for event e, if event e has an attribute n, else #n(e) is null. A trace is
a non-empty sequence of events σ ∈ Σ∗ where each event appears
only once and time is non-decreasing, i.e., for 1 ≤ i < j ≤ |σ |:
σ (i) , σ (j).

Definition 2 (Case, event log [22]). Let C be the case universe,
that is, the set of all possible case identifiers. An event log is a set
of cases L ⊆ C where each event appears only once in the log, i.e.,
for any two different cases, the intersection of their set of events is
empty.

In this work, Causal nets (C-net) are used as the process mod-
elling notation as they offer a human-readable representation of
the process as well as they are often used in PM works.

Definition 3 (Causal net [21]). A Causal Net is a tuple C =
(A,ai ,ao ,D, I ,O) where A is a finite set of activities, ai is the start
activity, ao is the end activity,D ⊆ A×A is the dependency relation,
AS = {X ⊆ P(A)|X = {∅} ∨ ∅ < X }, I ∈ A → AS defines the set of
possible input bindings per activity and O ∈ A → AS defines the
set of possible output bindings per activity.

2.1 Current Issues in PM
Previously, we have discussed traditional PM fundamentals and
techniques which are applied in scenarios where one has access
to all event log data produced by a process that has already run
for some period. The consequences are that traditional algorithms
deal with an event log with complete cases, that is, cases that went
through its final activity.

In real life environments though, organisations interests are fo-
cused on the instant feedback of their processes since old event
logs are mostly deprecated versions of the current process and not
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capable of representing the current state. Moreover, traditional PM
methods are not suitable solutions in environments where process-
ing time is limited, immediate responses to anomaly detection are
required, and event logs are too large. Thus, the need for on the
fly analysis is rising, making event stream solutions more relevant
today [3].

One of the implications when dealing with data streams is that
the stream is potentially infinite, consequently limiting the usage
of processing resources, such as memory and time [8]. Moreover,
the assumption of all training data being available to create a model
is not valid, that is, different time periods may imply different
distributions of data, requiring the learning system adaptation.
However, data stream mining solutions cannot be directly applied
in event streams since there is a mismatch at the representation
level, where stream analysis is usually set at the tuple level while
PM is set at the business case level, i.e., multiple recorded events
compose a case, representing the sequence of activities in a process
instance.

Definition 4 (Stream [12]). A stream S is defined in the format
S = {i1, i2, i3, ..., in , ...}, where i corresponds to a pair P(®x ,y)when
the ground truth for that instance is known or simply ®x when it is
not, with ®x being the feature vector of that instance and y being its
label, and n is possibly infinite.

Additionally, learning from data streams requires continuous
adaptation since data behaviour can change over time, producing
different data distributions [8, 12]. This phenomenon is known as
concept drift, and its occurrence is common in process environ-
ments where organisational changes and hidden contexts influence
the process execution, as underlined in the Process Mining Mani-
festo [24]. The utmost consequence of drift is an outdated model,
incapacitating its capability of recognising the new behaviour.

Maaradji et al. [14] define process drift as a point in time where
there is a statistical difference between the process behaviour be-
fore and after the said point. According to Seelinger et al. [19], a
significant behavioural change of the process execution over time
is characterised as process drift, exemplifying that almost all traces
after a process change follow the new data distribution. Towards
adaptation, the model must use newly observed data to update its
representation always balancing the influence of old and new data.

Definition 5 (Concept drift [8, 12]). Given the sequence of streams
⟨S1,S2, ...,Si , ...⟩ where Si is a set of examples generated by some
distribution Di . Given P t (®x ,y), at each timestamp t , the feature
vector ®xt corresponds to a class yt . Given two distinct points in
time t and t + ∆, given Dt , Dt+∆, if there is a ®x that satisfies
P t (®x ,y) , P t+∆(®x ,y), then a concept drift has happened.

Bose et al. [5] further distinguish two types of drift, online and
offline. The first refers to the real-time identification of drift while
the later indicates scenarios where drift is detected after a process
has ended.

2.1.1 ProM’s Concept Drift plugin.
Bose et al. [4] method, available in ProM’s Concept Drift plugin, is
grounded on the premise that event logs can be characterised by
the relationship between activities, mainly the dependencies are
used in the feature extraction and selection part of the framework.
The dependencies can be explained as a follows (or precedes) rela-
tion, such as, for a pair of activities a, b ∈ L can be determined if

either a always, never or sometimes follows (or precedes) b. Event
log features are then defined based on these relationships. There
are four types of features proposed, Relation Type Count, Relation
Entropy, Window Count and J-measure, being the first two global
and the two latter being local features. After that, the features are
used to transform the event log in a data stream, which in itself is
used to define the sample populations that will be compared using
the statistical tests. The populations are generated using sliding
windows, with the windows either having fixed or adaptive size,
being continuous or non-continuous (there can be a gap between
populations), and the windows can or cannot overlap. Then, the
populations are compared using one of the three available statisti-
cal tests: Kolmogorov-Smirnov test, Mann-Whitney test, and the
HotellingT 2 test, each of those having different meanings for decid-
ing if two populations differ from each other. At this step, concept
drift detection is performed, and the next steps are done to pro-
vide an analyst with an intuitive visualisation of the significance
probabilities as a drift plot.

2.1.2 Apromore ProDrift plugin.
Ostovar et al. [15] implementation, in Apromore, assume that a
business process drift detectionmay identify a time point before and
after which there is a statistically significant difference between the
observed process behaviour. With that, they propose to represent
the process behaviour using the α+ relations [2], which are a set of
rules to represent different relations between activities. Thus, each
sliding window contains events creating a sub-log, from which
the α+ relations and their frequencies are extracted, building a
so-called contingency matrix. When a new event arrives, the G-test
of independence [9] is applied in the contingency matrices, and
if the significance probability is below a defined threshold, then
the α+ relations in the windows come from different distributions,
meaning a process drift has occurred.

3 MATERIALS AND METHODS
3.1 Process Control System Event Log
Process Control System is concerned with monitoring the progress
of an order, consisting of the three applications: feedback control,
in-process control and feed-forward control [6]. Process Control
System often exhibit regular and predictable events, but some dy-
namic changes in improving the quality of services delivered are
required. In this scenario, dealing with CD in Process Control Sys-
tem demand attention, mainly in the detection of drift points to
clarify some aspects such as novel procedures, security politics and
service portfolio expansion.

Motivated by these facts, as a case study to compare CD de-
tection techniques, an event log with recorded activities from the
process control system of a software house was extracted. The ex-
tracted business process comes from the Department of Information
and Communications Technology (DICT) from a public university,
whose role is to support the university providing software solutions
and the infrastructure for them.

The DICT event log records the execution of inner processes
as services are requested. Those services may vary depending on
the applicant’s goal, that is, an applicant may ask for a software
solution for their department or a correction of an internet node, for
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instance. Independently to the requested service, the DICT has a set
of activities which are used to process the request. Figure 1 shows
the resulting Causal net by applying the Data-aware Heuristic
Miner with standard parameters. The extracted event log contains
process instances from January 2014 through August 2018, and the
Causal net represents all the process behaviour in this period.

Figure 1: Causal net that represents the event log

All traces in the event log start with activity SOLICITAÇÃO, which
represents the request of a service, i.e., the starting point of ev-
ery process instance. Also, all traces end in either CONCLUSÃO or
CANCELAMENTO, which mean the service was concluded or cancelled,
respectively. Therefore, we can assume that all processes start with
a request which is later either responded or cancelled.

Table 2 shows the number of appearances of each activity through
the log. The most evident pattern is a group of activities occurring
over ten thousand times, thus showing the most common flow of
execution in DICT. First, a request is registered, then authorised and
distributed for production, after that, the request is executed and fi-
nally concluded. This set of activities is connected in a standard flow
inside the organisation. However, a DICT business process might
run into unforeseen scenarios, which results in the cancelling of a
request. This phenomenon is represented in the next group of activ-
ities (e.g. CANCELAMENTO, DESAUTORIZAÇÃO, DEVOLUÇÃO), which is
less common but as relevant as the previous group. Ultimately, the
most uncommon activities are shown in Table’s 2 tail, representing
rare cases where the process flow is odd.

As an extension of the previous analysis, we have selected the
two most common traces in the event log. The trace ⟨SOLICITAÇÃO,
AUTORIZAÇÃO, DISTR. DIRETORIA, DISTR. SETOR, ALT. SITUAÇÃO
P/ EM EXECUÇÃO, CONCLUSÃO⟩ occurs 9308 times, representing the

Table 2: Occurrence count in DICT event log from January
2014 to August 2018

Activity Number of Occurrences
DISTR. DIRETORIA 10701

AUTORIZAÇÃO 10558
DISTR. SETOR 10527
SOLICITAÇÃO 10434
CONCLUSÃO 10014

ALT. SITUAÇÃO P/ EM EXECUÇÃO 10013
CANCELAMENTO 439

REDISTR. ÓRGÃO 381
DESAUTORIZAÇÃO 229

DEVOLUÇÃO 176
ALT. PREV. DURAÇÃO 65

AVALIAÇÃO TÉCNICA CONCLUÍDA 17
EVENTO 12

ALT. SITUAÇÃO P/ SUSPENSO 8
AGUARDANDO AVALIAÇÃO TÉCNICA 4
ALT. SITUAÇÃO P/ AG. MATERIAL 1
ALT. SITUAÇÃO P/ AG. SUBSOLIC 1

regular execution flow of answered requests. The second most oc-
curring one is ⟨SOLICITAÇÃO, AUTORIZAÇÃO, DISTR. DIRETORIA,
DISTR. SETOR, CANCELAMENTO⟩, which occurs 166, representing
cancelled traces. It can be inducted that cancelled requests are a mi-
nority; moreover, the cancelling pattern may vary more commonly
than the concluded one, which shows that a cancelled request is a
representation of an unusual request.

Process statistics can be further examined for a complete view of
the process; thus Table 3 shows several metrics regarding case, trace
and time characteristics. Upon initial inspection, the number of
mean cases per day (24.49) manifests a busy process for a medium-
sized organisation (around forty people are involved in the process).
Complementarily, the mean number of events is also affected by
the high number of requests every day. Regarding trace length,
the mean is around 6 since the majority of cases have either 5, 6
or 7 activities for both concluded and cancelled requests. Finally,
the mean duration is around three weeks, which is reasonable in a
university environment with different inner organisations involved
in the business process, raising the processing time.

Table 3: Statistics from DICT event log

Statistics Value
Total cases 10430

Mean cases per day 24.49
Max cases per day 103

Total events 63580
Mean events per day 57.85
Max events per day 256
Mean trace length 6.09
Max trace length 40

Mean case duration (in days) 22.84
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The selection of this dataset was made on behalf of changing the
behaviour of its execution. Regulated by laws that influence finan-
cial budget affecting the service activities, and frequent new service
politics owing to improve its quality (mainly in IT perspectives)
the DICT present several CD to be analysed.

3.2 Process Mining Softwares
Despite being a recent field of research, process mining has already
shown a wide range of techniques during recent years. However,
access to these proposed techniques is not always a simple task.
Thus, a necessity arises for a framework that integrates various
techniques and methods practically. Inspired by that, Dongen et al.
[27] proposed ProM, an open-source, extensible, process mining
framework, with the objective of providing a set of techniques for
exploring event logs. ProM is widely used in the process mining
community, as evidenced by a number of publications [11, 16],
and there is a lot of support from the community on their site’s
discussion forum. The various techniques available in ProM are
distributed in plugins, which are available at the ProM package
manager or in jar packages that can be installed manually.

Also inspired by the need of PM framework, Apromore1 was
launched firstly as an advanced process model repository [17] but
rapidly became an open-source business process analytics platform
that merges state-of-the-art process mining research with the man-
agement of process model collections, serving both academic and
enterprises needs. As well as ProM, Apromore offers a varied set of
PM techniques ranging from automated process discovery to pro-
cess prediction and drift detection. The currently employed process
drift detection technique [14, 15], known as ProDrift version 4.5, is
also available as a standalone tool, facilitating the use outside of
Apromore’s interface. Apromore is licensed under LGPL version
3.0, and its source code is available publicly2.

ProDrift provides the detection and characterisation of process
drifts accepting as input an event log in the XES or MXML format.
Furthermore, ProDrift considers two types of stream processing:
event-based and trace-based. The first one handles the stream con-
suming one event at a time, which is more relatable to real envi-
ronments and is considered an online solution for drift detection.
On the other hand, the trace-based solution groups the cases be-
fore processing and creates a stream of traces, such technique is
considered an offline one since it only deals with complete event
logs.

For drift detection, statistical tests are performed over the distri-
butions of process runs (when dealing with a stream of traces) or
α+ relations (when dealing with a stream of events). Both detection
types are capable of handling sudden drifts, i.e., drifts where the
concept change is abrupt along the stream, consequently meaning
that there is one specific drift point. Moreover, the trace stream
method also deals with gradual drifts, i.e. drifts where a new con-
cept appears rather slowly but becomes more frequent along the
stream while the initial concept fades away.

Beyond ProM and Apromore, there is some other software that
employs process mining techniques, such as Disco3, Minit4 and
1http://apromore.org/
2https://github.com/apromore/ApromoreCode
3https://fluxicon.com/disco/
4https://www.minit.io/

QPR5, all of those being commercial solutions. In this research,
only ProM and Apromore were used, as the concept drift detection
capabilities are not present on the other software. Moreover, when
searching the strings "ProM process mining" and "Apromore" in
the Google Scholar database, 67.600 and 419 results are retrieved,
respectively, showing the high relevance of those PM frameworks
in the community.

3.3 Comparison
Both drifting detection methods provide a diverse set of parameters,
and varying those configurations may impact directly in the drift-
ing results. Regarding ProDrift, we have conducted experiments
considering the event-based method since it offers an online solu-
tion by handling a stream of events, approximating itself to real
scenarios where each event is recorded at a time. The following
parameters and values assumed for testing were:

• Drift detection mechanism: events;
• Window size: an integer representing the window size. We
have used 58, 263, 1135 and 2270. The reason behind is that
we computed the mean number of DICT events per day,
week, month and bimester, representing cycles within the
organisation. Thus, the method can provide feedback on the
process depending on the stakeholder’s needs;

• Fixed window mode: controls if the window size can or
cannot change throughout the stream. For each window
size according to the previous parameter, a mode with fixed
window size was also applied;

• Noise filter threshold: specifies the noise threshold to filter
noisy α+ relations and ranges from 0 to 1. ProDrift’s doc-
umentation recommends 0 for artificial datasets and 1 for
real ones. For our experiments, the noise threshold was set
to 0.0, 0.1, 0.2 and 0.3;

• Drift detection sensitivity: specifies how sensible the algo-
rithm is to drift. Since the main focus of this research is to
experiment with drift, we have used all possible configura-
tions in this parameter, which are verylow, low,medium, high
and veryhigh.

The parameters values described previously were applied in
a grid methodology, i.e. all possible arrangements between said
parameters were tested, resulting in 160 different tests. Thus, by ex-
tensively exploring the method we can later infer what parameters
influence in the results.

Regarding ProM’s Concept Drift plugin, there is a variety of
parameters that modify the behaviour of the drift detection. Only
the local features were used, as the options using the global features
did not work properly, i.e. crashed. Therefore, the parameters and
values used for testing were as follows:

• Log Configuration Step: defines if the log will be split or not.
We ran without splitting and with a split every 100 instances;

• Feature Scope: selects the scope of global and local features.
Only the local features were used, with all the activities
selected;

• Feature Type: chooses if the features will be based on follows,
precedes or both relations. All three options were used;

5https://www.qpr.com/solutions/process-mining
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• Relations Counts: There is only one option, Numeric Value;
• Metric Type: the choice of the two local features, Window
Count and J-Measure, is available. Both types of metrics were
used;

• Drift Detection Method: Three methods for drift detection
are available (Gamma Test is shown, but it cannot be se-
lected). Tests were run with Kolmogorov-Smirnov andMann-
Whittney options;

• Population Options: generates the populations that will be
compared. There are three pairs of options, Fixed-Window
or ADWIN (Adaptive Windows), Sudden or Gradual drift
search and Trace Amount or Time Periods. The first pair
defines if the window will be of fixed or adaptive size. The
second pair defines if the type of drift detected will be a
Sudden Drift or a Gradual Drift. The last pair defines the
way that the window size will be calculated, in regards to
the amount of traces or in regards to a time period.

The same grid methodology was used, resulting in 108 different
tests, as some pairs of options are invalid, i.e. Fixed-Sized popula-
tions cannot be selected along the time period option.

There is a need for measuring the drifts found by the algorithms.
Thus, in order to check if the drift points are real, we applied a
process discovery algorithm (discover graph) both before and after
the drift point. This way, we can compare graphs of the process
and check if its behaviour is affected by the drift. When the process
graphs before and after the drift are equal, then a drift has not
occurred, and the method indicated a false drift point.

Moreover, to add on the evaluation, the number of detected
drifts is tracked as much as the number of unique drifts. Thus, the
precision of the methods can be measured and their sensitivity
compared. Furthermore, their interface is evaluated, showing their
usability. Finally, a table is presented summarising both methods
and highlighting their differences.

4 RESULTS AND DISCUSSION
4.1 Concept Drift Sensitivity
For the 160 different tests submitted to ProDrift, a total of 5182 drift
points were found, being 678 of them unique. Considering that the
event log contains 63580 events and 10430 cases, the number of
unique drift points is reasonable. Moreover, many of the tested con-
figurations are very sensible, thus the high number of found drifts.
However, 40 tests found no drift points in the event log, showing
that the parameters configuration directly affects the results of the
algorithm.

The most common drift point, found in 35 different tests, was
the event 6607, which happened on May 22, 2014. To verify this
drift’s veracity, we divided the event log before and after said point
and submitted to a traditional process discovery algorithm, the
Interactive Data-aware Heuristic Miner, which is available as a
plugin in ProM. The output of this discovery algorithm is in the
form of a Causal net. Figures 2a and 2b show the Causal nets before
and after the found drift point. It is clear that the Causal net from
Figure 2a is more complex than the one in Figure 2b, presenting
more arcs and connections within activities. One example is that
both CANCELAMENTO and ALT. PREV. DURAÇÃO activities are present
in the first Causal net and not in the latter. From a PM perspective,

we can interpret both models as different processes since they are
composed of a different set of activities and arcs. Thus, this can be
considered a drift point since the behaviour observed before and
after the point is different, meaning the process has changed during
its execution.

(a) Before drift point

(b) After drift point

Figure 2: Process model before (a) and after (b) found drift
point on May 22: CANCELAMENTO and ALT. PREV. DURAÇÃO did
not occur after the CD point.

As of ProM’s Concept Drift plugin, we used the same testing
method and, for the 104 tested configurations, the 42 configurations
with detected drifts have found 1317 drift points, a mean of 11.41
drift points per configuration. Of the total 1317 points, only 187
points are unique (14% of the total), indicating consistency in the
points that are detected as drifts.

4.2 Hyperparameters dependence
Table 4 presents the hyperparameters related to each tool used. By
comparing the two approaches, ProM contains more hyperparam-
eters and options within them. Having more parameters enables
numerous configurations of setups to explore the event log more in-
depth. However, a high number of parameters makes the approach
more complex, decreasing its usability. Thus, ProDrift’s approach is
more user-friendly parameter wise, making it easier for non-experts
to use the tool.

In regards to ProM’s hyperparameters, the drift detectionmethod
strongly affects the drift detection sensitivity, as tests using the
Kolmogorov-Smirnov drift detect an average of 1 drift point per
configuration while tests with Mann-Whittney drift detection algo-
rithm average 21.83 drifts per configuration. Other hyperparame-
ters, such as choosing between Window Count or J-Measure, did
not affect the number and locations of the found drift points, with
other settings being equal.
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Table 4: Comparison Summary

Characteristic ProM ProDrift

Detection Method Kolmogorov-Smirnov Test, Mann-Whittney Test or t-
Test G-Test

Windowing
Fixed Size and Adaptive Window, parameters: Trace
amount or Time Periods, Pop Size, Step Size, Min size,
Max Size

Fixed Size or Adaptive Window, parameter: Window
Size

Feature Selection
J-measure, a pair of activities and Window Count met-
ric types, parameters: Feature type, Relation Counts,
Metric Type

α+, parameters: none.

Sensitivity p-value, parameters: p-value threshold. Very Low, Low, Medium, High and Very High, parame-
ters: Cumulative change (%), Drift detection sensitivity.

Noise - Filtering, parameters: Relation noise filter (%)

Drift Characterization Sudden Drifts and Gradual Drifts All drift points, parameter: Drift Characterization (on
or off)

Stream Type Only a stream of traces can be used. Parameters: none Both streams of events and traces can be used. Parame-
ters: Trace-based (Runs) or Event-based (α+)

For ProDrift, the most influential hyperparameter is window
size. Setting up a small window highly increases the number of
detected drift points since the sub log size is too small and any new
deviation results in a detected drift. Higher window sizes make the
detection less sensitive, once the populations are larger and more
new behaviour must be observed to trigger a drift alert.

Furthermore, selecting the fixed window size hyperparameter
plaster the algorithm since it disables its adaptation maneuver. The
noise filter threshold depends on the characteristics of the event
log since it filters away less frequent traces. It is recommended that
for real event logs the noise should be set to 0.1 or 0.2 while for
artificial event logs, the ideal value for noise is 0. The same goes for
the drift detection sensitivity, lower sensitivities find more drifts
and are recommended for real-life logs, and higher sensitivities
trigger fewer drifts and are advised for artificial logs.

4.3 Software Interface
ProM’s Concept Drift plugin is integrated into the ProM framework.
As such, its entire operation is done through the ProM framework’s
graphical user interface. It uses an XLog as the input, which is
pretty convenient, as ProM can import a variety of types of files,
such as CSV, XML, XES, and convert them to an XLog. There are
4 windows of options that are used for setting the parameters for
the plugin. Then, after running, the output is shown in Figure 3.
The red dots in the graph indicates a drift point, and there is a list
of drift points in the right side of the image. Although the drift
points are shown in this screen, the dates in which the drift points
have happened are outputted only on the system’s standard output.
Thus, the program must be run from the command line to retrieve
the drift points. Though some ProM plugins can be used on the
command line without interaction with the graphical user interface,

the Concept Drift cannot. This way, it is not possible to run multiple
tests in batches.

Figure 3: ProM’s Concept Drift graphical interface

Though being integrated into the Apromore framework, ProDrift
is also available as a standalone tool that can be run from the
command line. The Apromore framework is a web server that
provides access to all of its tools, and to use it, one can deploy
the server locally or access a remote server6. To use the ProDrift
plugin, the event log have to be imported to the server in the
following formats: CSV, XML,MXML or XES. There is only one page
of configurations to be chosen, which is pretty straightforward. The
output is then displayed as a graph that shows the p-values of the
population comparisons and, below that, a list of drifts points found,
as shown in Figure 4. Despite having a command line version, it
is still difficult to automate the tests, as every test outputs to the
6http://apromore.org/platform/cloud
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system’s standard output and a window have to be manually closed
every time. That being said, both tools provide a good and easy use
of the graphical interface.

Figure 4: ProDrift output graphical interface

5 CONCLUSION
The amount of data that organisations have to handle nowadays
is steadily growing. In addition to this growth, data is also con-
stantly changing, which means organisation’s processes have to
keep changing themselves to adapt to the new requirements created
by those changes.

This paper discusses and analyses the available tools that can
help one detect and react to an unexpected change of behaviour in a
certain process, by applying those tools in a real-life environment. In
future works, we should try and propose new methods for concept
drift detection, applying the knowledge acquired in this research.
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