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Finding necessary conditions for the geometry of flexible polyhedra is 

a classical problem that has received attention also in recent times. For 

flexible polyhedra with triangular faces, we showed in a previous work the 

existence of cycles with a sign assignment for their edges, such that the 

signed sum of the edge lengths along the cycle is zero. In this work, we 

extend this result to flexible non-triangular polyhedra. 

 

Introduction 
 

This work is a generalization of the results in  [GGLS21].  There,  we  considered the case 

of flexible triangular polyhedra, namely polyhedra whose faces are triangles. We 

showed that, for each edge whose dihedral angle changes during the flex, there exists 

a cycle passing through this edge and a sign assignment for the cycle edges such that the 

signed sum of their lengths is zero. More precisely, we proved the following result. 

Theorem 0.1.  Consider  a polyhedron  with  triangular  faces  that  admits  a  flex, i. e., a 

continuous deformation preserving the shapes of all faces. Let {w1, w2} be an edge, and 

let s and n be the two vertices adjacent to both w1 and w2. If the dihedral angle between 

the faces {w1, w2, s} and {w1, w2, n} is not constant along the flex, then there is an 

induced cycle of edges containing {w1, w2} but neither the vertex s nor n and 
there is a sign assignment such that the signed sum of lengths of the edges in the cycle 

is zero. 

Here, we generalize this theorem to non-triangular flexible polyhedra. To do so, we 

first prove that in the triangular case the cycle can be chosen so that it only passes 
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through edges whose dihedral angle changes during the flex (Proposition 2.1).  Once we 

have this, it is enough to triangulate the faces of the polyhedron to obtain the final 

result. 

We refer to [GGLS21] for a description of the background of the problem, related results, 

and the corresponding bibliography. Moreover, we rely on [GGLS21] for several results 

that are used in this paper. Section 1 recalls all important aspects of [GGLS21] and can 

be skipped when the reader is familiar with that paper. The main result of this paper 

(Theorem 2.10) is proven in Section 2. 

 

1 Preliminaries 
 

We recall the main definitions and results from [GGLS21] about flexes of polyhedra. 
 

Definition 1.1. Let G = (V, E) be the 1-skeleton of a triangular polyhedron. 

⊲ A realization of the polyhedron is a map ρ: V  −→ R3 with ρ(u) /= ρ(v) for every 

{u, v} ∈ E. 

⊲ We define edge lengths induced by a given a realization ρ by λ{i,j} := ǁρ(i) − ρ(j)ǁ ∈ 

R>0 for {i, j} ∈ E. 

⊲ We say that two realizations ρ1 and ρ2 are congruent if there exists an isometry σ 

of R3 such that ρ1 = σ ◦ ρ2. 

⊲ A flex of a realization ρ is a continuous map f : [0, 1) −→ (R3)V such that 

– f(0) is the given realization ρ; 

– for any t ∈ [0, 1), the realizations f(t) and f(0) induce the same edge 

lengths; 

– for any two distinct t1, t2 ∈ [0, 1), the realizations f(t1) and f(t2) are not 
congruent. 

 

To understand the proofs in the next section, we need to recall the setting from [GGLS21]. 

We briefly introduce the notions and the results, so we refer to [GGLS21] for a more 

precise account. From now on, we fix G = (V, E) to be the 1-skeleton of a triangular 

polyhedron. We suppose that there is a realization ρ0 that admits a flex, and that the 

dihedral angle at the edge {w1, w2} changes during the flex. The two neighbors of w1 

and w2 are the vertices s and n. 

We encode realizations of the polyhedron as follows. We consider the three-dimensional 

variety M ⊂ P4 defined by the equation 

x2 + y2 + 𝑥2 − rh = 0 . 



3  

{v1 ,v  }2 

 
 

The  variety  M  contains  a  copy  of  R3,  namely  the  image  of  (x, y, 𝑥)  ›→ (x : y : 𝑥 : 

x2 + y2 + 𝑥2 : 1). Hence, a realization of the polyhedron is given by an element in M V . 

Since M is an algebraic variety, we can consider its extension to the complex numbers. 

From now on, we also take into account complex realizations of the polyhedron. 

Given a vector of edge lengths λ, we consider the complex extension of the variety of 

real realizations inducing λ. Namely, we define W to be the set of maps ρ: V −→ C3 such 

that, if we write ρ(vi) = (xi, yi, 𝑥i), 
 

(x1 − x2)2 + (y1 − y2)2 + (𝑥1 − 𝑥2)2 = λ2 
 

for all {v1, v2} ∈ E. Whenever a realization belongs to W  then all its congruent ones also 

belong to W . To select representatives for each congruence class in W , we pin the 

triangle w1, w2, n to the initial realization ρ0 and so we define 

  } 
Z :=  ρ ∈ W | ρ(w1) = ρ0(w1),  ρ(w2) = ρ0(w2),  ρ(n) = ρ0(n)   . 

Then no two elements in this new set Z differ by a direct isometry. We define Y to be 

the image of Z under the embedding (C3)V −→ M V . The existence of a flex implies that 

Y has positive dimension. Since we are assuming that the dihedral angle at the edge {w1, 

w2} changes during the flex, the projection Ys of Y onto the s-coordinate of M V is 

positive-dimensional. Therefore, Ys intersects the hyperplane {h = 0} ⊂ P4 non-trivially. 

The main argument in [GGLS21] relies on  fixing  an  element  ρ∞ ∈ Y such that ρ∞(s) ∈ 

Ys ∩ {h = 0}. Here, having extended the setting to the complex numbers proves to be 
crucial. 

We define M∞ to be M ∩ {h = 0}. Then ρ∞(s) belongs to M∞.  Using ρ∞ one defines 

a coloring of the vertices of G (see [GGLS21, Definition 2.6]), where a vertex v ∈ V is 
colored: 

⊲ red if ρ∞(v) ∈ M \ M∞; 

⊲ blue if ρ∞(v) = (xs : ys : 𝑥s : rv : 0) where ρ∞(s) = (xs : ys : 𝑥s : rs : 0); 

⊲ gold otherwise. 

By construction, the vertices w1, w2, and n are red, while s is blue. From the coloring, 

we define a blue walk and a red walk as follows. We define an equivalence relation on 

edges with one blue vertex and one red vertex: two edges are in relation if they belong 

to the same triangle (and then we take the reflexive-transitive closure). Now, the red 

vertices, respectively the blue vertices, in the equivalence class of {w1, s} create a 

red walk, respectively blue walk.  These walks respectively contain {w1, w2} and s. 

Within the red walks, it is possible to find a cycle containing {w1, w2} (see [GGLS21, 

Lemma 2.10]). 
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The importance of these two walks derives from the fact that we can prove ([GGLS21, 

Lemma 2.9]) that for the vertices v in the  red walk  we have ρ∞(v) ∈ Finρ∞(s), where for 

p = (xp : yp : 𝑥p : rp : hp) ∈ P4 we define 

1 
Finp := {(x: y : 𝑥 : r : h) ∈ M | h /= 0 and x xp + y yp + 𝑥 𝑥p − 

2 
(r hp + h rp) = 0} . 

The set Finp can be also thought as the intersection of M \ M∞ with the embedded 

tangent space of M at p. The remarkable property of Finp, when p ∈ M∞, is that 
for its points, the analogue of the Euclidean distance behaves like a distance on a 

one-dimensional space (see [GGLS21, Lemma 1.11]); from the proof of [GGLS21, The- 

orem 2.2], we get the following result, which ensures that the zero-sum property holds 

for cycles of red vertices. 

Lemma 1.2. Let D = (v1, . . . , vk, vk+1 = v1) be a cycle such that ρ∞(vj) ∈ Finρ∞(s) 

for all j ∈ {1, . . . , k}. There exist ηj ∈ {−1, 1} for j ∈ {1, . . . , k} such that 

Σk 

 
j=1 

ηj λ{vj,vj+1 } = 0 , 

where λ{vj,vj+1 } are the edge lengths induced by the realizations in the flex. 

 

2 Cycles in polyhedra 
 

We start strengthening the main result in [GGLS21], by showing that if the dihedral angle 

at one edge changes during a flex, then it is possible to find a cycle that contains this 

edge but avoids all edges whose dihedral angles stay constant (Proposition 2.1). To 

obtain this, we have to sacrifice the property of the cycle to be induced. In this way, we 

can extend our result to polyhedra that are not necessarily triangular (Theorem 2.10). 

Proposition 2.1. Let G be the 1-skeleton of a triangular polyhedron with a realization 

that admits a flex. Suppose that all triangles in the realization are non-degenerate, 

i.e., the vertices of each triangle are non-collinear. Then, for every edge of G whose 

dihedral angle changes along the flex, there is a cycle in G containing that edge and 

a sign assignment such that the signed sum of the lengths of the edges in the cycle is 

zero. The cycle can be chosen so that it consists only of edges whose dihedral angle 

changes along the flex. 

To prove Proposition 2.1, we need to have better control on the constructions we made 

in [GGLS21].   In doing this,  we employ the following notation, which is compatible with 

the one in [GGLS21, Section 2] and in Section 1: 
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⊲ let ρ0 be the realization of G = (V, E) that admits a flex f; 

⊲ let Econst be the set of all edges in E whose dihedral angle does not change along 

the flex f; 

⊲ let {w1, w2} be an edge for which the dihedral angle is not constant, and let s 

and n be the two opposite vertices of the two triangles containing {w1, w2}. 

The idea is that if an edge belongs to Econst, then we can locally modify the triangu- 

lation of the polyhedron, without changing the set of realizations, so that the edge is 

avoided by the cycle we construct. To do this, we introduce the operation of a flip. 
 

Definition 2.2.  Let H = (VH , EH ) be the 1-skeleton of a triangular polyhedron. Let 

{v1, v2} ∈ EH and let u1, u2 ∈ VH be the two opposite vertices of the two triangles 

in H containing the edge {v1, v2} as in Figure 1. The flip  of  H  on  the  edge  {v1, v2} is the 

1-skeleton obtained from H by replacing the edge {v1, v2} by {u1, u2}, and leaving 
everything else unchanged.  Once a sequence of edges is fixed, we speak of a flip on 

the sequence by iteratively applying flips. If the sequence is empty, then the flip is the 

graph itself. 

 
v1 

 

 

 
u1 u2 

 
~flip 

v1 

 

 

 
u1 u2 

 
v2 v2 

 

Figure 1: The flip on the edge {v1, v2}. 

 
To illustrate the idea of the proof, suppose that {v1, v2} ∈ Econst  and let G′ be  the flip of 

G on the edge {v1, v2}.  The  realization ρ0  is a realization of G′ as well.  Moreover, the 

assumption that the dihedral angle at {v1, v2} is constant along the flex guarantees that 
the flex f  of (G, ρ0) is also a flex of (G′, ρ0).   In particular, we can obtain the 

same element ρ∞, as in Section 1, for both G and G′ and hence the same coloring of 

vertices. Clearly, the edge sets of G and G′ are different and so are the triangles with red 

and blue vertices.  Hence, we may get different red and blue walks.  If the edge 

{v1, v2} is in the red walk in G, and hence possibly in the zero-sum cycle, we can flip 

to G′, where v1 and v2 are non-adjacent, and obtain a red walk avoiding {v1, v2}. 

We start to give more details following the blueprint we have just presented. The first 

aim is to construct an element ρ∞ valid for all flips on edges in Econst (Lemma 2.5). 
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In order to do that, we augment the graph G = (V, E) with edges between pairs of 

vertices whose distance is fixed in the flex. 

 

Definition 2.3. Let Gaug be the graph with the vertex set V and edge set 

  
Eaug := E ∪ {u, v} | u, v ∈ V, u 

} 
v and ǁρ(u) − ρ(v)ǁ is constant along f    . 

 

Lemma 2.4. Let G′ be the flip of G on any sequence of edges in Econst. Then 

(a) ρ0 is a realization of G′; 

(b) f is a flex of (G′, ρ0); 

(c) the dihedral angle at any edge in Econst that is an edge in G′ is constant along f ; 

(d) G′ is a subgraph of Gaug. 
 

Proof. The fact that ρ0 is a realization of G′ follows immediately from the fact that the 

vertices of G and G′ are the same. We now show the last three properties by induction 

on the number of flips. The base case of the induction (no flips) is trivial. Suppose 

we performed flips on e1, . . . , ek ∈ Econst (in this order), obtaining G′ , and now we 

perform a further flip on ek+1 = {v1, v2} ∈ Econst, obtaining G′ . In particular, this 

means that ek+1 is an edge in G′ . Let u1, u2 be the two opposite vertices in the two 

triangles in G′ containing ek+1. Notice that to show that f is a flex of (G′ , ρ0), 

we only have to prove that all realizations of f determine the same lengths of the 

edge {u1, u2}. By inductive  assumption,  we  know  that  f  is  a  flex  of  (G′ , ρ0)  and that 

the dihedral angle at ek+1 is constant along f. Then, we know that the distance 

between u1 and u2 is constant along f. Therefore, f is a flex of G′ and G′ is 

a subgraph of Gaug.  We are left to show that all edges in Econst that are also edges 
′ 
k+1 have constant dihedral angle along f. The induction hypothesis covers all 

those edges that are not in the 4-cycle (v1, u1, v2, u2, v1). Without loss of generality, it 

is enough to prove that the property holds for {v1, u2}. Let v be the vertex such that 

v and v2 are the opposite vertices of the two triangles in G′ containing {v1, u2}. Since 

the dihedral angles at {v1, v2} and {v1, u2} are constant along the flex f  of (G′ , ρ0), 

the distance between u1 and v is constant along the flex f. Hence, the dihedral angle 

between  the  faces  {v1, u2, u1} and  {v1, u2, v} in  G′ is constant along the flex f 

of (G′ , ρ0). 
 

Lemma 2.5. There  exists an  element ρ∞ ∈ M V such  that  for  any  flip  G′ of  G  on any 

of G 



7 

 

sequence of edges in Econst, we have that ρ∞ ∈ Y ′ and ρ∞(s) ∈ M∞, where Y ′ is the 
subvariety of M V obtained from G′ and ρ0 as in Section 1. 
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Proof. Let W aug be the set of realizations ρ: V  −→ C3 such that 

(xu − xv)2 + (yu − yv)2 + (𝑥u − 𝑥v)2 = ǁρ0(u) − ρ0(v)ǁ2  for all {u, v} in Eaug , 

where (xu, yu, 𝑥u) are the coordinates of the point ρ(u), and similarly for ρ(v). Pick any 

flip G′ of G on any sequence of edges in Econst. Let W ′ be the algebraic set constructed 

starting from G′ as in Section 1. From Lemma 2.4(d), we know that W aug ⊂ W ′. 

Starting from W aug, we can construct Zaug ⊂ Z′ and Y aug ⊂ Y ′ as in Section 1 since 

ρ0 is a realization of Gaug.  Because of the definition of W aug and the existence of the flex 

f, the projection Y aug of Y aug on the copy of M indexed by the vertex s is still 

positive-dimensional; in fact, the extra constraints of W aug  are introduced only for pairs 

of vertices whose distance is constant during the flex. 

Therefore, we can pick an element ρ∞ in Y aug so that ρ∞(s) ∈ M∞. This element ρ∞ 

satisfies then the requirements of the statement. 
 

We use ρ∞ from Lemma 2.5 to color the vertices of G according to Section 1. For 

any flip G′ of G on a sequence of edges in Econst,  we  get the  blue  and red walk in  G′ via 

ρ∞. 

Definition 2.6. A red vertex v of G is called red-achievable if there exists a flip G′ 

of G on a sequence of edges in Econst such that v is in the red walk in G′ via ρ∞. 

By [GGLS21, Lemma 2.9], we get the following statement. 

Corollary 2.7. If v is a red-achievable vertex of G, then ρ∞(v) ∈ Finρ∞(s). 

The last tool we need to prove Proposition 2.1 is a result that ensures that performing 

flips allows us to get rid of edges with constant dihedral angles in the zero-sum cycle we 

are looking for. 

Lemma 2.8. Let {v1, v2} be an edge in Econst. Let u1, u2 be the two opposite vertices of 

the two triangles in G containing the edge {v1, v2}. If v1 and v2 are red-achievable, then 
neither u1 nor u2 is red-achievable. 

 

Proof. Suppose that ui is red-achievable. By Corollary 2.7 and Lemma 1.2, the tri- 

angle {v1, v2, ui} in G would be degenerate in the realizations of the flex f, which 

contradicts the assumption of Proposition 2.1. 
 

Proposition 2.1. Our goal is  to  find  a  cycle  of G  containing {w1, w2} such that  none of 

its edges is in Econst  and for each of its  vertices v  we have ρ∞(v) ∈ Finρ∞(s).  Then the 
statement follows from Lemma 1.2. We do so using flips. 
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red 
const be  the  set  of  all  edges  {v1, v2} ∈ Econst  such  that  v1  and  v2  are  red- 

achievable.  By Lemma 2.8, every edge {v1, v2} ∈ Ered is a diagonal of a 4-cycle in G 

consisting of edges avoiding Ered . This implies that there is a unique graph G′ that 

is the flip of G on any permutation of the edges in Ered  . None of the edges in Ered 

is an edge of G′ and no edge introduced by the flips has vertices that are both red- 

achievable by Lemma 2.8. Let R′ be the red walk in G′ via ρ∞ constructed as in 

Section  1.  Since all vertices of R′ are red-achievable by definition, no edge in Econst  is in 

R′ and all edges of R′ are edges of G. Following the argument in [GGLS21, Lemma 2.10], 

there is a cycle in G′ containing {w1, w2} such that all its edges are in R′, i.e., it is a 

cycle in G. By Lemma 1.2, it is a zero-sum cycle. 
 

This stronger result allows us to extend the result of [GGLS21] to polyhedra whose faces 

are not  necessarily  triangles.  The  notion  of  realization  extends  immediately to this 

new setting. The notion of flex, instead, requires a little bit of care: what we are 

interested in here are, in fact, flexes for which the faces do not change their shapes. 

Notice that, by a well-know theorem of Cauchy, with this notion of flex convex 

realizations of polyhedra do not admit flexes. 

 

Definition 2.9.  Let H  = (V, E, F) be the 2-skeleton of a polyhedron, namely, (V, E) is 

a graph and F  is a set faces, i.e., cycles in (V, E), such that every edge in E  is in exactly 

two faces. A realization of H is a map ρ: V  −→ R3 such that ρ(u) /= ρ(v) for 

every {u, v} ∈ E. A flex of a realization ρ of H is a continuous map f : [0, 1) −→ (R3)V 
such that 

⊲ f(0) is the given realization ρ; 

⊲ for any t ∈ [0, 1) and for every face g ∈ F , the images of g under the realiza- 

tions f(0) and f(t) are congruent; 

⊲ for any two distinct t1, t2 ∈ [0, 1), the realizations f(t1) and f(t2) are not con- 
gruent. 

 
Theorem 2.10. Let H be the 2-skeleton of a polyhedron with a realization that admits 

a flex.  Suppose that there is a triangulation of the faces of the polyhedron  such that the 

vertex set of the triangulation is the same as the one of H and all triangles in the 

realization are non-degenerate, i.e., the vertices of each triangle are non-collinear. Then, 

for every edge of H whose two incident faces change their relative position along the 

flex, there is a cycle in H containing that edge and a sign assignment such that the signed 

sum of the lengths of the edges in the cycle is zero. Moreover, the two incident faces of 

every edge in the cycle change their relative position along the flex. 

Let E 
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Proof. Let G be the 1-skeleton of the triangulation of the polyhedron in the statement. 

Let f  be the flex of H.  By construction, f is also a flex of G.  Now, G and f  satisfy the 

assumptions of Proposition 2.1. Moreover, by construction all edges in G that are 

diagonals of faces of H have constant dihedral angle along the flex. Thus, the cycle 

provided by Proposition 2.1 consists only of edges in H and it can be chosen so that 

the dihedral angles of all its edges change along the flex. Hence, this cycle fulfills the 

requirements of the statement. 
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