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a b s t r a c t

Reducing risky behaviour and/or avoiding sites where the risk of infection is perceived
as higher (by social and/or spatial distancing) represent the two main forms of non-
pharmaceutical behavioural responses of humans to the threats of infectious diseases.
Here we investigate, within a reaction–diffusion setting, a family of new models for an
endemic SIR (susceptible–infective–removed) infectious disease for which no vaccine is
available and individuals’ responses to the infection threat are entirely based on changes
either in their social behaviour or in their mobility behaviour, that is avoiding to visit
sites with a large infection prevalence.

First, we derive general conditions for the onset of Turing patterns for a general
family of spatially inhomogeneous SIR models with a prevalence-dependent contact rate
and constant recruitment. Then, we characterize our main family of models where the
behavioural response also includes a spatial component, and show the condition bringing
to the mitigation, or even the destruction, of Turing patterns. The same conditions can
allow the transition from Turing–Hopf spatio-temporal patterns to pure Hopf temporal
patterns. The same is also done for two SIS models. These results bring an inference of
interest: the reduction of spatial clustering typically observed during the course of an
epidemics might be related to a combination of agents’ spontaneous social and spatial
distancing. To validate our theoretical results and further explore other spatio-temporal
effects of the proposed spatial behavioural responses, numerical simulations of a specific
instance of the above-mentioned family of SIR models have been performed.

© 2019 Published by Elsevier B.V.

1. Introduction

The effects of spatial mobility and spatial diffusion on the spread of infectious diseases have been investigated in
many specific models described by different mathematical tools ranging from simple deterministic, spatially implicit,
ODE models, to spatially explicit reaction–diffusion PDE models, up to fully stochastic models, ranging from network up
to Individual Based Models (IBMs), and a wide body of results is now available [1–6]. Though some recent models are
sophisticated and include several structural details on the underlying population (e.g. the IBM models used for pandemic
prediction [7–9]) they suffer the shortcoming of most mathematical epidemiology literature, namely the fact they treat

∗ Corresponding author.
E-mail address: alberto.donofrio@i-pri.org (A. d’Onofrio).

1

https://doi.org/10.1016/j.physa.2019.123773
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2019.123773&domain=pdf
mailto:alberto.donofrio@i-pri.org
https://doi.org/10.1016/j.physa.2019.123773


2 A. d’Onofrio, M. Banerjee and P. Manfredi / Physica A 545 (2020) 123773

humans as passive actors keeping the same behaviour regardless of the state of the epidemics. This fact, possibly already
untrue in the pre-scientific period, is fully denied in the current days by a large body of evidence [10,11]. Important
contemporary examples are constituted by the recent Ebola epidemics [12–14] and by 2009 H1N1 flu pandemics [15–17].
However, analysis of Spanish flu data have shown that even one century ago the spread and control of that devastating
pandemics were deeply influenced by spontaneous as well as enforced behaviour changes [18–20]. This was shown both
for Europe [18,19] and for the USA [20]. This dramatic change of perspective in the relation between humans and infectious
diseases has led, during the last 15 years, to the development of the behavioural epidemiology of infectious diseases (BE),
a new branch of mathematical epidemiology (see [10,11] and references therein) using a range of multidisciplinary tools
to investigate how humans can adapt their behaviour to respond to the threats brought by infections.

However, given that a large part of the behavioural epidemiology research carried out so far has been based on simple
models, little work has been done yet to incorporate the agents’ behavioural within spatially structured epidemiological
models, especially with regard to the area of epidemic models within reaction–diffusion PDE settings. In this area the few
attempts to include – mostly indirectly – behavioural components, have followed two main separate directions.

The first one is represented by those efforts including nonlinear cross diffusion terms initiated by [21,22], where
susceptible individuals are assumed to be repelled away by the gradient of the function representing the (spatial)
prevalence of infective individuals. This area has seen a number of more recent contributions [23–26].

The second direction is represented by those works considering nonlinear incidence rates [27–33], and which
extended to reaction–diffusion settings the pioneering paper by Capasso and Serio [34]and later studies [35–37]. The
works [27–33] focused on the search for the conditions leading to the onset of Turing bifurcations [2,3,5,38] and of
Turing–Hopf instabilities [39]. Turing bifurcations are a hallmark of system complexity that capture a fundamental trait
of communicable infectious, namely the tendency of cases to aggregate into spatially clusters [27]. Instead, Turing–Hopf
instability [5], characterized by both a temporal and a spatial symmetry breaking, may sometime represent a higher
degree of complexity such as spatio-temporal chaos [40]. And chaotic time-series are very frequent in epidemiology of
childhood infectious diseases [41]. Very importantly, beside classical models where continuous or regular lattice spaces
were considered, many recent epidemiological works have been conducted on network-based structures [11,42–46].

Though the adoption of nonlinear contact rates is indeed a main avenue to incorporate the agents’ behavioural
responses (see [10,11] and references therein) in no one of previous paper explicit mention of behavioural hypotheses
was actually made.

In this work we introduce, within a reaction–diffusion setting, a family of new models for an endemic SIR (susceptible–
infective–removed) infectious disease for which no vaccine (or pharmaceutical treatment either) is available and in-
dividuals’ responses to the infection threat are entirely based on changes in either their social behaviour, or in their
mobility behaviour, as in [21,22]. The underlying intuition is that – once awareness of the infection has been acquired
– aware individuals respond to the infection by increasing their ‘‘‘social distancing’’’ i.e., reducing their contact and
transmission rates, and/or by increasing ‘‘‘spatial distancing’’’ i.e., avoiding to visit those spatial sites where the local
infective prevalence is perceived as relatively larger, as in [21,22]. Arguably, combinations of ‘‘‘social’’’ and ‘‘‘spatial’’’
distancing have represented the two key forms of humans’ behavioural responses to the threats of infectious diseases
in mankind history before the advent of pharmaceutical interventions such as vaccination and treatments, as reviewed
in [11,47]. Important historical examples are the social and spatial distancing enacted during various plague epidemics, as
documented in [48] and in fundamental literary works [49]. For example, the Decameron by Giovanni Boccaccio, the Diary
by Samuel Pepys and various works by William Shakespeare. Moreover, in the absence of pharmaceutical interventions,
both forms of distancing remain two main options even in modern societies as documented e.g., by the dramatic decline
of travels to Far-East during the SARS crisis – as an example of avoidance of movements towards area perceived as ‘‘‘high
risk’’’ [50]. Similar large-scale phenomena were also evidenced, although to a lesser extent, during the 2009 H1N1 flu
pandemics [51].

In particular our model for behaviour is ‘‘‘simple’’’ i.e., we do not include a specific layer for modelling the acquisition
of awareness. Therefore, our formulation of social behaviour change is implicit i.e, it is based on a phenomenological
relation between the contact (or transmission rate) and the infective prevalence.

Our analysis focuses, from both the biophysics and the public health viewpoints, on a specific problem of epidemiolog-
ical relevance: the suppression of Turing patterns induced by the spatial behavioural reaction modelled by (2). To achieve
this aim, we analyse the proposed family of models in a hierarchical manner. First, we analyse a spatially homogeneous
family of SIR models with a general nonlinear contagion rate. Then we re-analyse this family of models by including the
spatial structure under the classical hypotheses on diffusion and derive general conditions for Turing instability around the
endemic equilibrium. Finally, we include in our family of models also a spatial component in the behavioural response, and
provide the conditions ensuring the mitigation, or even the destruction, of Turing patterns. Indeed, a further motivation
for the present work based on a general family of models was that all the above cited contributions using nonlinear
infection rates [27–33] exhibited – despite their specificity – many similarities, especially in the derivation of the onset
of Turing patterns.

The manuscript is organized as follows. Section 2 provides a review of the literature on epidemiological models in
reaction diffusion settings including behavioural effects. Section 3 presents and analyses a family of models for an endemic
infectious diseases with spontaneous agents’ behaviour responses in the absence of spatial structure. The analysis of the
basic spatial version of the model is reported in section four. In section five the full model also including spatial distancing
is reported. Sections six and seven extend the analysis to the case of an SIS (susceptible–infective–susceptible) infection.
In Section 8 we propose and numerically investigate a specific SIR behavioural model belonging to the above-mentioned
family in order to verify and fine-tune our theoretical results and obtain further results. Concluding remarks follow.
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2. Spatial epidemiological models with behavioural responses: a review of the literature

Milner and coworkers introduced [21,22] a modification of the spatial version of Kermack and McKendrick SIR
model [1] where they added to the ‘‘‘classical’’’ term repelling individuals (irrespective of their epidemiological state)
away from crowded areas, a truly behavioural term repelling susceptible individuals from sites characterized by large
prevalence of infective individuals. Consequently they modelled the spatial flux of susceptible individuals including the
gradient of infectives [21,22]

JS = −aS∇N − cS∇I (1)

where S(x, t) denotes the density of susceptible subjects, N(x, t) the population density, a > 0 and c > 0.
Here we assume that only the second phenomenon is enacted as a spatial component of the behavioural response of

healthy subjects to which one has to add the diffusive flow of the susceptible:

JS = −DS∇S − cS∇I, (2)

where I(x, t) is the density of infectious subjects.
Given a compartmental population model u fluxes of the type

Ji = −

n∑
j=1

D(0)
i,j ∇uj − ui

∑
j̸=i

Di,j∇uj, (3)

where Di,j > 0 and D(0)
i,j > 0, first introduced in mathematical epidemiology by Capasso and coworkers [52] are termed

in the literature non linear cross-diffusion fluxes.
At the best of our knowledge the current mathematical epidemiology literature has only focused on problems

of existence, uniqueness and positiveness of the solution of the resulting dynamical systems. For example, in [23]
Bendhamane and Langlais provided, under some parametric constraints, existence results for nonnegative solutions of
a SIR epidemic model characterized by nonlinear cross–diffusion for all the three epidemic classes and by absence of
births (but presence of death). However, no justification was given for the presence of nonlinear cross diffusion.

As far as the non-negativity of solutions of models where our behavioural assumption (2) is concerned, we provide in
the appendix a mesoscopic derivation showing that S(x, t) cannot become negative. Our aim is to focus on the physics of
the phenomenon, thus we will use informal mathematical derivation.

The following nonlinear cross diffusion flux in the susceptible:

JS = −a(S, I)∇S − c(S, I)∇I

(2) was introduced first by Berres and Ruiz–Baier in [24] (see also [25,26]), who also gave an implicit behavioural
description of the flux, in the context of a specific SI model. They investigated two specific cases: c(S, I) = c0 > 0
(i.e. classical linear cross-diffusion) and c(S, I) = c0SI(c1 − S − I)+ with c1 > 0. The focus of their investigation was
on defining new numerical methods and, from the modelling viewpoint, on the cross-diffusion driven onset of spatial
patterns.

Finally, recent research in ecology and eco-epidemiology has proposed models where an animal behaviour effect was
included to mirror a population (for example of predators or of male animals) following another population (for example
of preys or female animals) over space [53–55]. This would correspond, in the simple framework of our model to the case
of c < 0. By adopting (with abuse of meaning) a terminology of theoretical cellular biology [56] our model describe
a chemorepulsion-like phenomenon, whereas models [53–55] are chemotaxis-like model. Two opposite phenomena.
Moreover, in our model the chemorepulsion-like behaviour is aimed at reducing the contagion of the disease, whereas
in [53–55] the chemotaxis-like behaviour is caused by disease-unrelated bio-phenomena.

In the forthcoming sections we propose a general family of models combining nonlinear cross diffusion – mimicking
a behaviour – related reduced mobility of at risk individuals, with an appropriate functional specification of the infection
incidence, mimicking social-distancing — to represent the overall behavioural response to the infection threat in a situation
where no vaccination or treatments are available.

3. A general family of SIR models for behaviour change: the space-homogeneous case

Our general formulation considers an SIR-type infection which is endemic in a stationary population and for which
neither prevention through vaccination nor pharmaceutical control measures are available. To make our presentation as
smooth as possible we depart from the space-homogeneous case in the absence of any behavioural responses.

3.1. General SIR models for behaviour change: the space-homogeneous case without behavioural response

Let S∗, I∗, R∗ denoted the numbers of individuals who at time t are susceptible, infectious, and recovered respectively.
Our formulation reads as follows:

d
dt

S∗ = ζ − µS∗ − C∗(S∗, I∗) (4)

3
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d
dt

I∗ = C∗(S∗, I∗) − (ν + µ)I∗ (5)

d
dt

R∗ = νI∗ − µR∗ (6)

where ν > 0 is the (constant) recovery rate, µ > 0 is the (constant) mortality rate, ζ > 0 the (constant) recruitment rate,
and finally C∗(S∗, I∗) > 0 is the overall infection rate, also termed the infection incidence rate.

The overall population N = S + I + R obeys
d
dt

N = ζ − µN

In what follows we assume that the population has achieved its steady state

Nss =
ζ

µ

and normalize the state variables and the infection rate as follows

(S, I, R) =
1
Nss

(S∗, I∗, R∗)

C(S, I) =
1
Nss

(NssS,NssI).

Given that R = 1 − Sss − Iss we can disregard the R variable obtaining the system:
d
dt

S = µ(1 − S) − C(S, I) (7)

d
dt

I = C(S, I) − (ν + µ)I (8)

As regards the (normalized) infection rate C(S, I), we assume it is a continuous function with the following properties:
(i) no flux from the susceptible to the infectious compartments exists in absence of infectious subjects (no epidemics) or
of susceptible (theoretical removal by quarantine or vaccination of all the healthy population)

C(S, 0) = C(0, S) = 0;

(ii) the larger is the infectious prevalence the larger is the infection rate

∂IC(S, I) > 0;

(iii) the larger is S the larger is the infection rate

∂SC(S, I) > 0.

3.2. General SIR models for behaviour change: the space-homogeneous case with behaviour response

To include the behavioural component we next suppose that the population is able to enact measures to reduce the
risk to acquire the infection. In the practise, individuals can achieve this by reducing their social contact rate (i.e., the
average number of social contacts per unit of time) and/or by reducing the transmission probability per single social
contact. In our general formulation, which does not specify these parameters in an explicit manner, the risk reduction
will be represented by a suitable continuous and decreasing function of prevalence φ(I) multiplying the incidence rate.
The transmission model has to be modified as follows:

d
dt

S = µ(1 − S) − φ(I)C(S, I) (9)

d
dt

I = φ(I)C(S, I) − (ν + µ)I (10)

where the function φ(I), 0 ≤ φ(I) ≤ 1 is such that: (i) no risk reduction is observed at very low prevalence levels:

φ(0) = 1

(ii) the function is decreasing:

φ′(I) < 0.

Henceforward we will call the incidence rate in absence of behavioural response, C(S, I), the baseline, or normal incidence
rate (NIR), while we will call the incidence rate

Ψ (S, I) = φ(I)C(S, I)

4
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the behavioural incidence rate (BIR).
Note that the introduction of the behavioural response affects the infection transmission because the sign of ∂IΨ is

no more determined a priori. This happens in situations where I is sufficiently large so that the decrease of φ is able to
compensate the increase of C thus giving ∂IΨ < 0.

Model (9)–(10) always admits a disease free equilibrium DFE = (1, 0). Setting

(S, I) = (1 − u, v)

with 0 < u ≪ 1 and 0 < v ≪ 1 and writing

Ψ (1 − u, v) ≈ avp

the equation for I at the DFE reads:

v′
= avp − (µ+ ν)v,

implying that for p < 1 then the DFE is unstable, for p > 1 then the DFE is always stable. Note that for p = 1 the condition
for the LAS of the DFE is

a
µ+ ν

< 1.

which allows to give the parameter a/(µ + ν) the interpretation of basic reproduction number (BRN) of the infection
considered. From the differential inequality:

dI
dt

= Ψ (S, I) − (ν + µ)I ≤ Ψ (1 − I, I) − (ν + µ)I,

it follows that if for I > 0

Ψ (1 − I, I) < (ν + µ)I

then the DFE is Globally stable.
As regards the existence of endemic equilibria EE = (Se, Ie) > (0, 0), from (S + I)′ = 0 it follows that

S = 1 − (1 + ρ)I,

where ρ = (ν/µ) ≫ 1. As a consequence, I ′ = 0 implies that:

Ψ (1 − (1 + ρ)I, I) = (ν + µ)I (11)

Eq. (11) is generic, and it can have none, one or more than one (typically two) positive solutions. In other words, the
system can have none, one or multiple endemic equilibria.

The Jacobian matrix J at an endemic equilibrium is such that

J11 = −µ− ∂SΨ (Se, Ie), J12 = −∂IΨ (Se, Ie), J21 = ∂SΨ (Se, Ie), J22 = ∂IΨ (Se, Ie) − (µ+ ν)

Remark. In the following, for the sake of notational simplicity we will write ∂SΨ and ∂SΨ instead of, respectively,
∂SΨ (Se, Ie) and ∂IΨ (Se, Ie).

From the characteristic polynomial

λ2 − (J11 + J22)λ+ J11J22 − J12J21

the standard conditions for the local stability are: (i) −(J11 + J22) > 0, i.e.

2µ+ ν + ∂SΨ − ∂IΨ > 0 (12)

and J11J22 − J12J21 > 0, i.e.

µ(µ+ ν − ∂IΨ ) + (µ+ ν)∂SΨ > 0 (13)

If at an endemic equilibrium point EE the previous conditions are not fulfilled, then the EE is unstable.
The global behaviour of the system can be quite complex, and needs to consider specific examples of Ψ (S, I). In other

words we ought to renounce to work at level of the entire family of models to move to the study of specific subcases.
There is nonetheless one important case where the analysis remains fully general which is the case where the EE is unique
and the DFE is unstable. In this case Yakubovich theorem [57] implies that the solutions of the system will be oscillating
(either periodically or aperiodically: the type of oscillations depends on the specific model and it cannot be predicted
analytically).

Since we want both to keep our analysis at level of meta-models and to focus on spatial patterning, in this work we
will not proceed further in the investigation of specific subcases.
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4. The spatially structured case with behaviour change and turing patterns

In this section we will consider the baseline spatial version of the model of the previous section where the agents’
behavioural responses do not involve their mobility patterns i.e., individuals keep the same mobility regardless of their
epidemiological status. The model then reads as follows:

∂tS = DS∆S + µ(1 − S) − Ψ (S, I) (14)

∂t I = DI∆I + Ψ (S, I) − (ν + µ)I (15)

∂nI|∂Ω = ∂nS|∂Ω= 0 (16)

Many complex phenomena can of course arise, but here we are mainly interested to the onset of Turing patterning
around a spatially homogeneous locally stable endemic equilibrium EE. By linearizing spatio-temporally around the endemic
equilibrium, and applying the Fourier’s transform one gets the following spatio–temporal Jacobian matrix [3]

JST (k) = J(EE) + Diag(−DSk2,−DIk2)

whose characteristic polynomial reads

λ2 + a1(k)λ+ a0(k) = 0

where

a1(k) = (DS + DI )k2 − (J11 + J22) > 0

a0(k) = DSDIk4 − (DI J11 + DS J22)k2 + (J11J22 − J12J21)
Thus, since (due to the postulated local stability of the endemic equilibrium) it holds a1(k) > 0 and a0(0) > 0, then the
condition to have spatial frequencies that can destabilize EE is constituted by the following two inequalities [3,27]

DI J11 + DS J22 > 0 (17)

(DI J11 + DS J22)2 > 4DSDI (J11J22 − J12J21) (18)

It is easy to show that conditions (17)–(18) can be summarized into the following constraint:

DI J11 + DS J22 > 2
√
DSDIa0(0) (19)

Since the r.h.s. of (19) automatically implies the LAS condition (13), otherwise one would have an imaginary number, it
follows that (19) must only be complemented by (12).

Despite the fact we are considering a family of models, the above conditions provide interpretable and useful
information. For example by rewriting (19) as follows:

DS (∂IΨ − (µ+ ν)) > DI (µ+ ∂SΨ ) + 2
√
DSDIa0(0) (20)

we obtain two results: (i) if ∂IΨ ≤ (µ + ν) then no Turing patterns can occur; (ii) since from (12) (J22 < −J11), it holds
that

∂IΨ − (µ+ ν) < µ+ ∂SΨ ⇒ ∂IΨ − (µ+ ν) = (µ+ ∂SΨ )(1 − F 2)

then one can rewrite (20) in the following form:

DS >
DI

1 − F 2 + α2
0 (21)

i.e. the Turing pattern can only occur for diffusion coefficients of susceptible individuals that are larger than the diffusion
coefficients of the Infectious, which is what we obviously expect in normal conditions.

By resorting to specific subcases of function Ψ (S, I) one can study the ensuing specific type of patterns by the method
of the amplitude equation [3,58].

5. Spatial distancing and its impact on spatial patterning

Model (14)–(15), although including the individuals’ behavioural response - i.e., what we nowadays term ‘‘‘social-
distancing’’’ - in the presence of spatial movements, is incomplete as it lacks a spatial component in the behavioural
response, what we previously termed ‘‘‘spatial distancing’’’. We therefore now amend model (14)–(15) by adding to the
spatial flow ψ of susceptible subjects a component that goes in direction opposite to the gradient of the spatial density
of infectious individuals. This yields:

ψ = −D∇S − ĀS∇I,
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where Ā > 0. This modelling of spatial behavioural response is remindful of the phenomenon of chemorepulsion, which
is the opposite of chemotaxis. The resulting model reads:

∂tS = DS∆S + div(ĀS∇I) + µ(1 − S) − Ψ (S, I) (22)

∂t I = DI∆I + Ψ (S, I) − (ν + µ)I (23)

∂nI|∂Ω = ∂nS|∂Ω= 0 (24)

After linearizing around a space-homogeneous stable but spatially-patterned endemic state, and applying the Fourier
transform, we obtain the following spatio-temporal jacobian matrix:

J∗ST =

[
J11 − DSk2 J12 − Ak2

J21 J22 − DIk2

]
(25)

where A = ĀSEE . The characteristic polynomial associated to J∗ST is

λ2 + b1(k)λ+ b0(k) = 0

where b1(k) = a1(k) and b0(k) = a0(k) + J21Ak2 yielding:

b0(k) = DSDIk4 + (J21A − (DI J11 + DS J22)) k2 + (J11J22 − J12J21) (26)

Since J21 > 0 it immediately follows that if

A > Acr :=
DI J11 + DS J22 − 2

√
DSDIb0(0)

J21
(27)

then the homogeneous endemic equilibrium is LAS.
The previous result is very clear. In words, if the behavioural spatial response, summarized by coefficient A is

sufficiently large, then the Turing pattern disappears.
For A < Acr in the Fourier space there exists an interval of frequencies (k1(A), k2(A)) such that the system is unstable.

Setting

h0 =
b0(0)
DSDI

, h1 =
DI J11 + DS J22

DSDI
, B =

J21A
DSDI

we have

k21(B) =
h1 − B

2
−

1
2

√
(B − h1)2 − 4h0 (28)

thus

∂Bk21(B) = −
1
2

−
1
2

(B − h1)√
(b − h1)2 − 4h0

=
1
2

1√
(B − h1)2 − 4h0

(
(h1 − B) −

√
(b − h1)2 − 4h0

)
> 0 (29)

and

k22(B) =
h1 − B

2
+

1
2

√
(B − h1)2 − 4h0 (30)

thus

∂Bk22(B) = −
1
2

+
1
2

(B − h1)√
(b − h1)2 − 4h0

=
1
2

1√
(B − h1)2 − 4h0

(
(−h1 + B) −

√
(b − h1)2 − 4h0

)
< 0 (31)

In other words, as it was expected, if the bifurcation parameter A approaches Acr then the size of the instability interval
reduces. This means that if A increases but remains lower than Acr then the range of spatial frequencies composing the
Turing pattern reduces. At A lower but close to Acr , let us say at A = Acr (1−ε) with 0 < ε ≪ 1, the pattern is approximately
formed in 1D by a single frequency, in 2D by a circle of frequencies etc... As a consequence varying A ∈ (0, Acr ) induces a
pattern transitions.

6. Spatial distancing annihilation of Hopf–Turing instabilities

In the previous sections we assumed that the spatially uniform endemic equilibrium was LAS. Thus it was a1(k) > 0
and we had, in absence of spatial distancing, only two scenarios: (Sc1) a0(k) > 0 for all k, meaning that the spatially
uniform endemic equilibrium remained LAS; (Sc2) a0(k) < 0 for some k, i.e. onset of Turing instability.

Suppose now that the spatially uniform model is such that, depending on some parameter ζ , instability of the endemic
state arises through a Hopf bifurcation at ζ = ζHopf . At least for sufficiently close values of ζHopf the determinant of J
remains positive so that we can write:

λ2 − 2zω0λ+ ω2
0

7
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where ω0 > 0 is the damped oscillation pulsation and z ∈ (0, 1) is the damping coefficient. It follows that

a1(k) = (DS + DI )k2 − 2zω0.

This yields two additional scenarios. The first one (Sc3) is characterized by the fact that, although a a0(k) > 0 for all k it
is a1(k) < 0 for

0 ≤ k2 < k2H =
2zω0

DS + DI

The resulting Instability is termed spatio-temporal Hopf instability. Often it is said that (Sc3) is characterized by oscillations
in time and uniformity in space, however this only approximately holds if kH ≪ 1. In the second additional scenario
(Sc4), it occurs a a1(k) < 0 for some k but also a0(k) can be negative for some k. The scenario (Sc4) is termed Hopf–Turing
instability and it is characterized by the breaking of both the temporal and the spatial symmetry.

As we have seen the impact of the social distancing in the characteristic polynomial is null w.r.t. the first order degree:
b1(k) = a1(k) but it is important on the zero degree term: b0(k; A) = a0(k)+J12Ak2. Thus social distancing cannot eliminate
scenario (Sc3). On the contrary the social distancing term can destroy the Turing–Hopf instability – i.e. (Sc4)– by making
b0(k; A) > 0 provided that A > Acr , i.e. that (27) holds.

7. SIS model with constant recruitment

Here we briefly investigate the case of the SIS model with constant recruitment of susceptible subjects and spatial
behavioural response, which reads as follows:

∂tS = θ I + DS∆S + div(ĀS∇I) + µ(1 − S) − Ψ (S, I) (32)

∂t I = DI∆I + Ψ (S, I) − (µ+ θ )I (33)

∂nI|∂Ω = ∂nS|∂Ω= 0 (34)

Proceeding as in the previous section, we get the following characteristic polynomial for the spatio–temporal Jacobian
matrix:

λ2 + a1(k)λ+ a0(k) (35)

where:

a1(k) = (DS + DI )k2 + 2µ+ θ + ∂SΨ − ∂IΨ

a0(k) = b2k4 + b1k2 + b0 = DSDIk4 + (∂SΨ A + (µ+ ∂SΨ )DI + (µ+ θ − ∂IΨ )DS) k2 + µ(µ+ θ + ∂SΨ − ∂IΨ )

As a consequence, the conditions to have a Turing pattern are:

2µ+ θ + ∂SΨ − ∂IΨ > 0 (36)

µ+ θ + ∂SΨ − ∂IΨ > 0 (37)

(µ+ ∂SΨ )DI + (µ+ θ − ∂IΨ )DS + ∂SΨ A < −2
√
DSDIb0 (38)

However, note that condition (37) implies condition (36), implying that: (i) in absence or presence of behavioural response
there cannot be a Hopf (or a Hopf–Turing) bifurcation; (ii) the condition for Turing pattern existence in absence of
behavioural response is given by (37) and

(µ+ ∂SΨ )DI + (µ+ θ − ∂IΨ )DS < −2
√
DSDIb0. (39)

Condition (39) can be rewritten as follows:

(µ+ ∂SΨ )(DI − DS) + (∂SΨ + 2µ+ θ − ∂IΨ )DS < −2
√
DSDIb0,

which implies that if DI ≥ DS then condition (39) is never fulfilled; (iii) the condition of pattern presence if A > 0 is given
by (37) and (38); (iv) The condition for the suppression of the Turing pattern is given by (37) and (39) and

A > Acr =
−(µ+ ∂SΨ )DI + (−µ− θ + ∂IΨ )DS − 2

√
DSDIb0

∂SΨ
(40)

8
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8. A SIS model with vital dynamics

In the previous sections we considered models with constant recruitment of susceptible. Here we briefly consider the
case of a SIS model with equal birth and death rates and no recruitment:

∂tS = DS∆S + div(ĀS∇I) + µI − Ψ (S, I) + θ I (41)

∂t I = DI∆I + Ψ (S, I) − (µ+ θ )I (42)

∂nI|∂Ω = ∂nS|∂Ω= 0 (43)

The non-spatial version of the model has the following conserved quantity:

S + I = S(0) + I(0) = N(0),

which is the population size, which we again assume normalized at one, yielding:

I ′ = Ψ (1 − I, I) − (µ+ θ )I (44)

So the endemic equilibrium points Ie of (44) are of the type

EE∗∗ = (1 − Ie, Ie).

At the endemic equilibrium point of (44) the linearized equation reads as follows:

i′ = −i(µ+ θ + ∂SΨ − ∂IΨ )

So that the local stability condition in absence of spatial diffusion reads:

µ+ θ + ∂SΨ − ∂IΨ > 0 (45)

The spatio-temporal Jacobian matrix at EE∗∗ has a characteristic polynomial such that

a1(k) = (DS + DI )k2 + µ+ θ + ∂SΨ − ∂IΨ

a0(k) = DsDIk4 + (∂SΨ (A + DI ) + DS(µ+ θ − ∂IΨ )) k2

Consequently, the condition to have Turing instability reads as follows:

∂SΨ (A + DI ) + DS(µ+ θ − ∂IΨ ) < 0

which (taking into account the condition (45) is convenient to rewrite as follows:

∂SΨ (A + DI − DS) + DS(∂SΨ + µ+ θ − ∂IΨ ) < 0 (46)

It follows that: (i) if A = 0 then to have Turing instability it must hold (45) and (DS,DI ) must be so that

∂SΨ (DI − DS) + DS(∂SΨ + µ+ θ − ∂IΨ ) < 0, (47)

implying that also for this family of models Turing instability never occur if DI ≥ DS ; (ii) in presence of behavioural spatial
response (A > 0) to have a Turing instability it must hold (45) and (46); (iii) to destroy the Turing instability observed in
absence of A it must hold (45) and

∂SΨ (A + DI ) + DS(µ+ θ − ∂IΨ ) > 0 (48)

9. Numerical simulations

In this section we numerically we investigate and extend a specific SIR model to corroborate and further expand our
theoretical results.

9.1. The Sun model: pattern analysis in absence and presence of spatial behavioural response

For the sake of the comparison, we start considering the SIR model proposed by Sun in [31] and further investigated
in [27], which is a spatio-temporal version of a specific sub-case of the well-known family of models proposed by Liu,
Hetcothe and Levin in 1987 [59]. The Sun model, which is in turn a particular instance of the family of models (9)–
(10), does not depend on human behaviour, so that φ(I) = 1. The contagion rate reads as follows: C(S, I) = βSI2, and
ψ(S, I) = C(S, I) = βSI2, which yields:

∂tS = DS∆S + µ(1 − S) − βI2S (49)

∂t I = DI∆I + βI2S − (µ+ ν)I (50)

with Neumann boundary conditions.

9
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Fig. 1. Model (49)–(50) and its behavioural extension (51)–(50). Impact of (DS ,DI ) on Turing Instability vs Local Stability for A = 0 (left and central
panels) and A > 0 (right panel). Local Stability regions are dark, Turing instability regions in light colours. Right Panel: Stability Region with respect
to the parameter r = Ds/DI and to the spatial frequency |k|; Central Panel Stability Region with respect to the parameter DS and to the spatial
frequency |k|; Right Panel: Stability Region (for DS/DI = 10) with respect to the parameter A and to the spatial frequency |k|.

Fig. 2. Model (49)–(50): Turing patterns dependence on DS for DI = 1. Left panel : DS = 3.5; Central panel: DS = 5; Right panel: DS = 10; Other
parameters: see the text.

We start with the baseline case of absence of spatial behavioural reaction, i.e. Ā = 0. In [27,31] the author performs a
complete bifurcation analysis assuming as key parameters the transmission rate β and the recovery rate ν for fixed values
of the diffusion coefficients: DS = 6, DI = 1.

Here, instead we go further than the analysis of [27,31]. Namely, by setting β = 35, µ = 1 and ν = 1.8 (as in the main
case of [31]) we performed a bifurcation analysis where the bifurcation parameters are the two diffusion coefficients DS
and DI . We obtained that the Turing bifurcation occur provided that the ratio r = DS/DI is r > 3.11 about, as shown in
left panel of Fig. 1.

Moreover, in the limit case DI = 0 a Turing-like bifurcation always occurs, since it exists a k̄(DS) such that for k > k̄
the endemic equilibrium is unstable (see right panel of Fig. 1).

As in [31], we considered Ω = [0, 200] × [0, 200] however, we used a smaller spatial step of ∆x = ∆y = 0.5 and a
much smaller timestep ∆t = 0.001 than the ones used in [31]. We adopted as initial condition the following perturbation
of the endemic equilibrium

(S(0, x, y), I(0, x, y)) = (SEE(1 + ρS(x, y)), IEE(1 + ρI (x, y)), )

where ρS(x, y) and ρI (x, y) are two piecewise constant bounded stochastic processes, which in each square of the
discretization mesh assume a random value uniformly distributed in (−0.01, 0.01). We used as IC the same single instance
of the above-described stochastic process for all simulations. In our simulations we set DI = 1 and, as final time, we
generally used values tf such that tf ≫ 1/(µ+ ν).

The simulation of the model (49)–(50), i.e. at A = 0, for DI = 1 is shown in Fig. 2 for three different values of DS . With
the increase in magnitude of DS we can see that the resulting pattern changes from cold spot to hot spot pattern through
labyrinthine pattern. The population density within a patch increases significantly if we compare the range of colour bars
in Fig. 2(c) with that of Fig. 2(d).

A consolidated pattern diagram for susceptible and infected population for a range of values of DS and DI is presented
in Fig. 3.

10
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Fig. 3. Model (49)–(50). Visual Summary of Spatial Turing patterns exhibited by S (panel(a)) and I (panel(b)) for a range of values of DS and DI .

Fig. 4. Model (51)–(50). Spatial impact of social–distancing parameter A on the steady state I . Left and central panel: density and mesh plots of
I(tf , x, y) for A ≈ 0.97Acr . Right panel: mesh plot of I(tf , x, y) for A ≈ 1.03Acr . Initial conditions and other parameters as specified in the text.

Then we modified the model by adding the social-distancing term div(ĀS∇I), yielding the following modified PDE for
S:

∂tS = DS∆S + µ(1 − S) + div
(
ĀS∇I

)
− βI2S (51)

The stability region for r = 10 is shown in right panel of Fig. 1. With the above specified parametrization, the threshold
value for the Turing bifurcation is Acr ≈ 7.54 for r = 10.

The left and central panels of Fig. 4 shows that for A ≈ 0.97Acr the endemic equilibrium is unstable, whereas, as shown
in the right panel of Fig. 4, for A ≈ 1.03Acr the local stability is recovered, and I(tf , x, y) ≈ IEE . Note that for values of
A close to Acr we expected (and observed) a critical slowing down, so that a large final time was set. For example, for
A = 1.02Acr we set tf = 2000.

The behaviour of the system for 0 < A < Acr is of interest. We mentioned that we observed a spotted steady state
pattern for I at both A = 0 (right panel of Fig. 2) and A = 0.97 (left panel of Fig. 4). One could think, thus, that the effect
of A was simply of reducing the range of spatial frequencies of the specturm of such type of pattern. On the contrary,
at intermediate values of A we observed a transition to labyrinth-like patterns, followed by a transition back to spotted
patterns as shown in Fig. 5.

9.2. Including a behavioural reduction of contacts at risk

We have seen that the strength A of the social distancing deeply impacts on patterns, even when A < Acr . However, we
verified that the overall size of the endemic prevalence remains close to Ie. Indeed, the above simulations, where φ(I) = 1,
were mainly aimed at showing the effect of the addition of pure spatial behavioural changes on the model (49)–(50). In
the reality, spatial behavioural changes are in all cases paired with changes of behaviour that reduce the contacts at risks.
This is modelled by means of a decreasing function φ(I) such that φ(0) = 1. For this specific SIR model belonging to our
family, we set as in [36,37,60–62]:

φ(I) =
1

1 + qhIh
, (52)

Note that defining θh = (qh)−h if I = θh it is φ(θh) = 0.5. In other word qh measures the reactivity of the target population
to the disease: the larger qh is the higher is the behavioural reactivity to the spread of the infectious disease. The resulting
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Fig. 5. Model (51)–(50). Role of the parameter A for 0 < A < Acr . Left panel: a mixed pattern with many residual spots and many ’labyrinth walls’
of short length is observed at A ≈ 0.3Ac r . Central panel: a labyrinth-like pattern is observed at A ≈ 0.5Ac r Right panel: a transition pattern were
spots are re-emerging is observed at A ≈ 0.78Ac r . Initial conditions and other parameters as specified in the text.

full model reads as follows:

∂tS = DS∆S + div(ĀS∇I) + µ(1 − S) −
β

1 + qhIh
I2S (53)

∂t I = DI∆I +
β

1 + qhIh
I2S − (µ+ ν)I (54)

∂nI|∂Ω = ∂nS|∂Ω= 0 (55)

At (Ā, qh) = (0, 0) one recovers the spatio-temporal model by Sun. In the spatially homogeneous setting (DS = Ā =

DI = 0). The case h = 2 is a particular case of the SIRS model proposed and investigated in [35–37] and extended in
the spatio-temporal setting (i.e. Ā = 0, DS ̸= 0, DI ̸= 0) by [29], whereas for h = 1 it is an example of the non–spatial
(DS = Ā = DI = 0) family of models proposed in [35].

9.2.1. Endemic equilibria and their spatio-temporal stability
Here we concisely illustrate some key features of the model for a generic value of h. At variance with [36,37,60–62],

here we will focus as bifurcation parameter on qh, which modulates the behavioural reactivity of the target population
and as a consequence is biophysically the most specific parameter.

The analytical investigations are facilitated by setting

g(I) =
σ

β

1 + qhIh

I
.

The homogeneous endemic equilibrium point solves the following system:

S = 1 − σ I (56)

S = g(I) (57)

yielding:

βI2 −
β

σ
I + 1 = −qhIh.

It is easy to verify that for all h > 0 there are two endemic equilibria provided that

0 < qh < q∗

h

and no endemic equilibria if qh > q∗

h , where q∗

h is an increasing function of h. In other words: there is a minimal reaction
threshold θ∗

h = (q∗

h)
(−h) such that if θh < θ∗

h then the behavioural reaction suppress the possibility of endemic permanence
of the disease in the population.

For h ∈ {1, 2, 3, 4} q∗

h can be analytically computed. For example: q∗

1 = β/σ − 2
√
β and q∗

2 = 0.25 (β/σ)2 − β . We
denote the two endemic equilibria as follows: E(h)

1 and E(h)
2 . They are such that (i) IEh1 < IEh2 ; (ii) ∂hE

(h)
2 < 0 and ∂hE

(h)
1 > 0.

For β = 35.0 and σ = 2.8, for example, one has that: q∗

1 ≈ 0.6677 and q∗

2 ≈ 4.0625.
At an equilibrium point the Jacobian matrix J of the non–spatial system reads as follows:

J11 = −

(
1 + σ

Ie
Se

)
< 0, J12 = σ

(
−1 + σ

Ie
Se

g ′(Ie)
)

J21 = σ
Ie
Se
, J22 = −σ

Ie
Se

g ′(Ie).

12
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Fig. 6. Model (53)–(54). Spatial patterns exhibited by I for A = 0, h = 2, q2 = 2. Left panel: DS = 5; Central Panel: DS = 10; Right Panel: DS = 15.

the characteristic polynomial reads as follows

λ2 +

(
1 + σ

Ie
Se

(
1 + g ′(Ie)

))
λ+ σ

Ie
Se

(
σ + g ′(Ie)

)
= 0.

Since, thanks to (56)–(57), it is g ′(IE(h)1
) < −σ then Eh

1 is unstable. Concerning E(h)
1 , taking into the account that – again,

thanks to (56)–(57) – g ′(IE(h)2
) > −σ holds it follows that if:

g ′(Ie) > Max
(

−σ ,−1 −
Se
σ Ie

)
then E(h)

2 is LAS.
Furthermore, if it is:

−σ < −1 −
Se
σ Ie

then even for

−σ < g ′(Ie) < −1 −
Se
σ Ie

the equilibrium point is unstable.
Note that if for some value q∗∗

h of qh is

1 + σ
Ie
Se

(
1 + g ′(Ie)

)
= 0

then at qh = q∗∗

h a Hopf bifurcation occur and in the right neighbour of q∗∗

h a small harmonic periodic solution arises with
pulsation

ωHopf =

√
σ
Ie
Se
(σ + g ′(Ie)),

and period THopf = 2π/ωHopf .
For example, setting β = 35, σ = 2.8 and h = 2 and assuming η = q2 then this yields that E(2)

2 is LAS for 0 < q2 < q∗∗

2
≈ 2.34, at q2 = q∗∗

2 a Hopf bifurcation occur and for q∗∗

2 < q2 < q∗

2 the equilibrium point E(2)
2 is unstable. In other words

it exists a behavioural reaction threshold θ∗∗

h = 1/
√
q2 such that if θ∗

2 < θ2 < θ∗∗

2 then E(2)
2 is unstable.

As far as the onset of Turing bifurcations and of Turing–Hopf instability are concerned: (i) for h = 1, it follows that
in absence of spatial distancing (A = 0) Turing bifurcations occur provided that DS/DI exceeds a threshold ρ∗. In such
a case it also exists a strength of spatial behavioural reaction A(h=1)

cr such that the E(1)
2 recovers its local stability; (ii) for

h ≥ 2, g ′(IE(2)2
) > 0 then no Turing bifurcation occur since DI J11 + DS J22 would be negative. Instead, if g ′(IE(2)2

) < 0 then:
(a) in absence of Hopf instability there onset of a Turing bifurcation for a sufficiently large DS/DI and its destruction for a
sufficiently large A; (b) if additionally a Hopf instability is present (as illustrated above), then for a sufficiently large DS/DI
a Turing–Hopf spatio-temporal instability occur and for sufficiently large A it is converted in a simple Hopf instability.

9.2.2. Turing patterning and its interplay with spatial behavioural response
Setting β = 35, σ = 2.8, h = 2, q2 = 2, and A = 0, yielded that the Turing patterns occur for DS/DI > rBeCTuring ≈ 2.76.

This threshold is lower than the one observed in absence of behavioural impact on the contagion rate. Examples of spatial
stationary patterns exhibited by the infectious are shown in Fig. 6 for three different values of DS and DI = 1.

13
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Fig. 7. Model (53)–(54). Visual summary of spatial patterns exhibited by S (panel(a)) and I (panel(b)) for a range of values of DS and DI .

Fig. 8. Model (53)–(54). Heterogeneous distribution of susceptibles and infected individuals for DI = 0. Other parameters: h = 2, q2 = 2, DS = 10.

Fig. 9. Model (53)–(54). Impact of A: spatial patterns exhibited by I . Left Panel: A = 0.3Acr ; Central Panel: A = 0.6Acr ; Right Panel: A = 0.9Acr .

A consolidated pattern diagram for susceptible and infected population for a range of values of DS and DI is presented
in Fig. 7.

For DI = 0 we find, as expected, an heterogeneous distribution of susceptibles and infected individuals with no
particular pattern emerging. (see Fig. 8, where DS = 10). The range of variation of population density is determined
by the diffusivity of susceptibles.

Setting DS = 10 and DI = 1 yields that Acr ≈ 9.57, a value higher than the one of the case where behavioural
dependence of the contagion rate was absent. Stationary patterns are presented in Fig. 9 for three values of A ∈ (0, Acr ).
Also here, slowing down occurred. For example the left and central patterns presented in Fig. 9 are obtained at t = 200
whereas the stationary pattern presented in the right panel of Fig. 9 is at t = 500.

Fig. 10 shows a consolidated pattern diagram for a range of values of DS and A.
Patterns shown in Fig. 9 are all visually dissimilar from the pattern at A = 0. An useful tool to compare the similarity

of lattice-based maps is the bivariate moran index (BMI) [63]. We applied BMI to make a quantitative comparison of each
pf the pattern shown in Fig. 9 and the pattern with A = 0. In all case there was no mutual spatial correlation between
the maps BMI ≈ 0.

The spatio-temporal pattern at DI = 0 is very much sensitive with respect to the choice of DS and we need to choose
∆x and ∆t judiciously in order to avoid numerical artefacts. An interesting phenomenon is observed for the parameter
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Fig. 10. Model (53)–(54). Visual summary of spatial patterns exhibited by S (panel(a)) and I (panel(b)) for a range of values of DS and A.

Fig. 11. Model (53)–(54). Spatio-temporal oscillations for DI = 0, DS = 2, A = 7.66. Left panel: S(x, y, 1000); right panel: plot of
(mean(S)(t),mean(I)(t)).

Fig. 12. Model (53)–(54). Turing–Hopf induced stationary spatial patterns of I for A = 0 and DS = 1. Left panel: DS = 3; Right panel: DS = 8.

values DS = 2, A = 7.66: spatio-temporally oscillating patterns with very mildly damped oscillations were observed with
very small damping. Left panel of Fig. 11 show the spatial pattern of S at t = 1000, whereas its right panel shows the
time evolution of spatial averages of S and I .

9.2.3. Turing–Hopf instability and its interplay with spatial behavioural response
Now we consider the spatio-temporal pattern formation for parameter values chosen from temporal Hopf domain,

i.e. in the case q2 > q∗∗

2 = 2.34.
We first assumed q2 = 1.1q∗∗

2 , i.e. a value of q2 close to the temporal Hopf bifurcation. For A = 0 and DI = 1 we got
that Turing–Hopf instability onsets for DS > 2.54. Stationary spatial patterns for DS = 3 and DS = 8 are shown in Fig. 12.

In this case Acr = 9.57 and spatial patterns for infected population are presented in Fig. 13 for three values of A.
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Fig. 13. Model (53)–(54). Turing–Hopf induced stationary spatial patterns for q2 = 1.1q∗∗

2 , DS = 10, DI = 1. Left panel: A = 0.8Acr ; Central panel:
A = 0.6Acr ; Right Panel: A = 0.3Acr .

Fig. 14. Model (53)–(54). Plots of time evolution of spatial average of I starting with two different initial conditions and qh ≈ 2.574, A = 0.8Acr .
Blue curve is for the special IC and red curve is for random perturbation around homogeneous steady-state.

Additionally, we wanted to assess up to which extent the patterns are dependent on the initial conditions. Namely,
we defined the following initial conditions:

S(x, y, 0) = SE2 (1.01 + 0.01 cos(kay) + 0.01 cos(kbx) + 0.01γ (x, y)) (58)

I(x, y, 0) = IE2 (1.01 + 0.01 cos(kax) + 0.01 cos(kby) + 0.01η(x, y)) (59)

where

ka = 0.01, kb = 1

and η(x, y) and γ (x, y) at each point of the discretization mesh are random variables uniformly distributed in (−1, 1). The
spatial frequencies ka and kb were chosen as follows: kb is such that b1(kb) < 0 and δ(kb) < 0, and kb is close to the
minimum of b0(k) < 0.

We obtained stationary patterns that are different but qualitatively similar to those shown in Fig. 13.
However, for A = 0.8Acr the plot of ⟨I⟩(x,y)(t) shows (see Fig. 14) that if one adopts the initial conditions (58)–(59) or the

above mentioned random perturbation of E(2)
2 one gets close stationary values (and, as we have mentioned even the spatial

pattern are qualitatively similar) but very different transients. Indeed, in the former case the transient is characterized by
damped oscillations of relevant amplitude, in the latter case oscillations are small and far more damped. Note that the
duration of the transient in both case is quite long w.r.t to the dynamics of the system since it is much larger than 1/σ .

Finally, we further explored the domain q2 ∈ (q∗∗

2 , q
∗

2) by setting q2 = 3.6. In this case Acr = 15.053 and spatial
patterns for infected population are presented in upper panels of Fig. 15 for three values of A, including A = 0. Also here
computing the BMIs evidenced a total lack of mutual spatial correlation between the patterns.

At variance with the case q2 = 1.1q∗∗

2 , here the patterns are strongly dependent on the initial conditions. For example,
assuming the initial conditions (58)–(59) with ka = 0.05, we obtained for A = 0.8Acr a very different stationary pattern
(see lower panels of Fig. 15 and compare with its upper panels). Moreover, the plot of ⟨I⟩(x,y)(t) shows clearly that if one
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Fig. 15. Model (53)–(54). Turing–Hopf instability: impact of initial conditions and A onto stationary patterns. Upper panels: IC: random perturbations
of E2; Lower panels: special initial conditions with ka = 0.05. Left panels: A = 0.8Acr ; Central panels: A = 0.6Acr ; Right Panels: A = 0.

Fig. 16. Model (53)–(54). Plots of time evolution of spatial average of I starting with two different initial conditions and A = 0.8Acr . Blue curve is
for the special IC and red curve is for random perturbation around homogeneous steady-state.

adopts the initial conditions (58)–(59) the stationary average is much smaller than in the case of random initial conditions
(see Fig. 16).

10. Concluding remarks

This work aimed to fill a gap in the current behavioural epidemiology literature by studying the effects of behavioural
responses to epidemics threats within a reaction–diffusion setting. In particular, we investigated the combined impact
of a localized ‘‘‘social distancing’’’ response jointly with a spatial behavioural response, on the endemic pattern of a
broad family of SIR and SIS infectious disease models. This was done by systematically benchmarking our results against
two types of simpler models namely, (i) space homogeneous models including only a social distancing response by
a prevalence-dependent contact rate, and (ii) spatially structured models with spatial movement and localized social
distancing but not including a spatial behavioural response.

The analysis of the spatial model without spatial behavioural response provided a general relationship for the
occurrence of Turing patterns, which can arise only when the diffusion of susceptible is faster than that of infectious
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people. The analysis of the principal family of modela, also including the spatial behavioural response, provided conditions
for the destruction of Turing pattern, which occurs in the presence of an adequately large strength A of spatial response
(A > Acr ).

We also stressed that for A ∈ (0, Acr ) the increase of A induces transitions of the Turing pattern, due to the reduction of
the interval of unstable frequencies. It is indeed well known that the content of the Fourier spectrum of a pattern influence
its shape, see for example [64]. Reversing the viewpoint, a transition of patterns of an endemic disease (a phenomenon
of paramount relevance, as stressed in [27]) could be due to changes in behaviour of the population.

In case of presence of Hopf–Turing spatio-temporal instability, we showed that if the ‘force’ of the spatial response is
adequately large, then (due to the suppression of the Turing patterning) the system has a transition towards a pure Hopf
instability, where the temporal symmetry breaking is prevalent. As it is well–known the Hopf–Turing instability is often
associated to the onset of spatio-temporal chaos. This implies that the spatial behavioural response we have introduced
here can have the effect of controlling spatio-temporal chaos.

In order to corroborate our theoretical inferences and to show possible nonlinear and transitory effects depending
on A, we performed extensive numerical simulations on a behavioural SIR spatio-temporal model. To this aim we have
initially considered the model proposed in [31] and investigated its bifurcation structure in dependence of the diffusion
coefficients of S and I . Then we added the spatial behavioural component Ādiv(S∇I) and finally a behavioural component
of reduction of contagion. In all cases, our simulations not only confirmed our theoretical analysis but they allowed
to go further. Namely, they showed that the theoretically predicted ‘generic’ impact of varying A under its threshold
Acr on pattern transitions produces in the specific analysed models a transition from labyrinth-like patterns to spotted
patterns. Moreover, in the case of presence of Hopf–Turing spatio-temporal instability we showed that the impact of
initial conditions although not leading to chaos in the example we considered (very likely due to the bistable nature of
the model) is important: two close initial conditions can lead either to spatially similar but temporally dissimilar solutions,
or to solutions that are both spatially and temporally dissimilar.

The main limitation of this work is that the spatial diffusion model under its classical hypotheses represents a
crude approximation to real-world human mobility, which is qualitatively appropriate for nomadic populations only.
More realistic modelling of human mobility behaviour are therefore needed to develop appropriate models of spatial
responses to diseases threats pass to quantitative prediction , models that take into the account the inherent recurrent
component of real spatial mobility – mainly daily commuting – of humans [8,9,65,66]. Another important point that
we will investigate in the near future is related to the fact that the social–distancing phenomena we described here
depends on the information individuals have of the spatial spread of the disease. Here we implicitly assumed that agents
only use (or only dispose of) local information. However, information is most often of non-local nature and has its own
dynamics [67]. The inclusion of the nonlocality of the information would lead to more sophisticated models of the flux JS
of susceptible subjects.

These two are the main challenge we will undertake in the future and it is questionable whether the reaction–diffusion
partial differential equations settings might be the appropriate one to tackle this complexity so far preferably modelled by
alternative paradigms such as large scale individual based models, metapopulation approaches [68,69] or network based
modelling of the disease spread [11,42–44]. Importantly, both in network-based [45] and in metapopulation-based [46]
epidemic models Turing patterning can occur in a network in a topology-dependent manner.

Nonetheless the concept of a spatial behavioural response remains a key one in behavioural epidemiology, and we feel
that the present work represents a useful departure point.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

We would like to thank the two anonymous referees since their suggestions helped us to very significantly improve
this work.

Appendix. Positiveness of S(x, t)

Here we mesoscopically derive the flux (2) and we show that the density S(x, t) of susceptible subjects cannot become
negative because of out behavioural assumption.

For the sake of the simplicity of notation, we will suppose to be in 1D. Let us consider a point x and an infinitesimal
spatial interval (x, x + h) and a temporal interval (t, t + δ). We have that

S(x, t + δ) − S(t) = δϕepidemo + ϕin
Fickian − ϕout

Fickian − ϕ
out,R
behav + ϕ

in,R
behav − ϕ

out,L
behav + ϕ

in,L
behav.

We have that δϕepidemo are the in and out fluxes due to the demography and to the contagion, the fluxes ϕin
Fickian > 0 and

−ϕout
Fickian are the Fickian input and output fluxes due to random walk and they are such that

ϕin
Fickian − ϕout

Fickian = h2DS∂
2
xxS + O(h3).
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All the above-listed fluxes are well-known. Let us now consider the in and out fluxes due to the spatial behavioural
response. To start, ϕout,R

behav is the flux of susceptible subjects that decide to move in (x+h, x+2h) if and only if in (x+h, x+2h)
the density of infectious subjects is smaller. Thus

ϕ
out,R
behav = ĀS(x, t)Max (I(x, t) − I(x + h, t), 0) ≥ 0

Note that if S(x, t) = 0 then ϕout,R
behav .

Symmetrically, ϕin,R
behav is the influx of susceptible subjects of (x + h, x + 2h) that move to (x, x + h) if and only if the

density of infectious subjects in (x, x + h) is smaller. This yields

ϕ
in,R
behav = ĀS(x + h, t)Max (I(x + h, t) − I(x, t), 0) ≥ 0.

Similarly, we have:

ϕ
out,L
behav = ĀS(x, t)Max (I(x, t) − I(x − h, t), 0) ≥ 0

ϕ
in,L
behav = ĀS(x − h, t)Max (I(x − h, t) − I(x, t), 0) ≥ 0.

thus out microscopic model is well defined and such that it preserves the non–negativity of S(x, t).
Developing S(x + ±h, t) and I(x + ±h, t) and neglecting the terms in O(h3), we get

∂tSδ = δϕepidemo + h2 (
Ss∂2xxS + Ā∂xS∂xI + ĀS∂2xx

)
.

Proceeding to the limit δ → 0, h → 0 under the usual diffusion restriction (δ/h2) → 1 we get

∂tS + div(JS) = ϕepidemo.
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