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We present a reformulation of gauge theories in terms of gauge
invariant fields. Focusing on abelian theories, we show that
the gauge and matter covariant fields can be recombined to
introduce new gauge invariant degrees of freedom. Starting from
the (1 + 1) dimensional case on the lattice, with both periodic
and open boundary conditions, we then generalize to higher
dimensions and to the continuum limit. To show explicit and
physically relevant examples of the reformulation, we apply it to
the Hamiltonian of a single particle in a (static) magnetic field, to
pure abelian lattice gauge theories, to the Lagrangian of quantum
electrodynamics in (3+1) dimensions and to the Hamiltonian of
the 2d and the 3d Hofstadter model. In the latter, we show that
the particular construction used to eliminate the gauge covariant
fields enters the definition of the magnetic Brillouin zone. Finally,
we briefly comment on relevance of the presented reformulation
to the study of interacting gauge theories.
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1. Introduction

Due to their broad applicability, gauge theories have a key importance in physics that can be
ardly overstated [1–3]. In the field of particle physics they are at the basis of the Standard Model, a
on-abelian gauge theory with gauge group U(1)×SU(2)×SU(3), where the first two groups refer to
he electroweak sector and the last to quantum chromodynamics (QCD). They also play an important
ole in condensed matter physics, where gauge fields may emerge from the effective description
f strongly correlated phenomena at low energies, like quantum Hall systems and quantum spin
iquids [4].

The analysis of gauge theories in the strong coupling regime is an arduous problem where
erturbative approaches typically fail. One way to deal with this problem is to work under
he framework of lattice gauge theories (LGT) [5–8]. The lattice formulation at finite volume
rovides natural infrared and ultraviolet cut-offs that regularize the theory. Moreover, within this
ormulation, numerical approaches to the problem are possible using Monte Carlo methods [7,8]
nd crucial results have been obtained, e.g. for lattice QCD. Despite this success, there are various
uestions which remain intractable within the importance sampling Monte Carlo approach due to
he well known sign or complex action problems. Examples include the study of high baryon density
CD or out of equilibrium real time evolution [9,10].
Recent developments in the field of the quantum simulation of many-body physics have brought

ttention to the Hamiltonian formulation of LGT [6]. In principle, by engineering suitable local
amiltonians, quantum simulators can be used to investigate problems that remain unsolved by
lassical computers. This, however, is still a complicated task: gauge theories entail a redundant
escription of nature where superfluous degrees of freedom are included in the model. This is
anifested through the existence of local symmetries ensuring that the non-physical degrees of

reedom decouple from the physical ones. The engineering of these symmetries is one of the great
hallenges of present day quantum simulators [11–16].
The methodologies typically used to study gauge theories rely on the study of Lagrangians (or

amiltonians) whose fundamental objects, i.e. the gauge and matter fields, are not inherently gauge
nvariant. Nonetheless, they are combined in a way such that the Lagrangian (or the Hamiltonian)
tself is gauge invariant. A reformulation of these theories in terms of gauge invariant quantities
llows a description purely in terms of physical degrees of freedom, even though the treatment
an get more complicated from the computational point of view, as commented in [2] for example.
mong several possible advantages, a crucial point is that this can be particularly helpful for the
onstruction of consistent approximation schemes.
To accomplish this, various attempts are present in literature, either on the lattice or in the

ontinuum. In the first case, scalar quantum electrodynamics (QED) and SU(2) LGT in presence of
osonic matter fields were investigated in [17]. The main idea consists in introducing the gauge
nvariants of the corresponding continuum theories to rewrite the Lagrangians and derive the
ssociated dynamics. In the continuum, this change of variables was applied to bosonic matter
ields [18] and later to classical [19] and quantum [20,21] electrodynamics. In particular, the matter
ields are combined into bosonic fields. In the case of 1+1 dimensions, the Schwinger model, it was
hown [22] that the construction is related to the bosonization of the original theory (see [23,24]).
ore recently, SU(2) LGT with fundamental fermions were studied and reformulated via the so-
alled loop-string-hadron formulation [25]: this allows for a description of the dynamics of the
heory in terms of local and physical observables, using strictly SU(2) gauge invariant variables
t the cost of introducing extra lattice links and an Abelian Gauss law. In [26–28] the problem is
ddressed making use of dual formulations for the case of U (1) gauge symmetry and having as a

particular motivation the implementation of gauge theories in quantum devices.
The aim of the present paper is to set up a formalism allowing to reformulate abelian gauge

theories in terms of gauge invariant fields (GIF). We look for a reformulation satisfying the following
requirements: (i) it should naturally extend to continuum theories; (ii) it should allow to investigate
the dependence on the particular construction used to eliminate the gauge covariant quantities;
(iii) in presence of matter fields (generically denoted with ψ), it should allow to straightforwardly
determine a gauge invariant combination (denoted with ψ ′) of the original matter and gauge
variables.
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Fulfilling the last requirement (iii) is the key point of the formalism presented here, since once
he GIF ψ ′ has been constructed it can be used as a new gauge invariant degree of freedom
f the theory. While generic expectation values of functions of ψ are not gauge invariant, the
orresponding expectation values of ψ ′ are fully physical. This is particularly relevant for finding
uitable order parameters in light of Elitzur’s theorem, which states that gauge symmetry cannot
e spontaneously broken [29]. For this reason, we think that the present formalism could be useful
o analyze the phase diagram of gauge theories using approximate methods, such as the mean-field
ne, since it gives information on possible – gauge invariant – order parameters of the theory.
We observe that the choice of the GIF is not unique: other combinations of the initial gauge and

atter covariant operators can be gauge invariant. A choice for the definition of ψ ′ should emerge
rom the procedure. Our procedure leads to a simple expression for ψ ′ in the form ψ ′

∼ Eψ , where
E is an operator depending only on the gauge field. Once the choice has been done, one can perform
the elimination of the initial matter and gauge fields with different geometrical constructions,
whose role is explicitly discussed in the following Sections. This structure of the GIF is analogous to
the one already introduced by Dirac in [30], where the proper gauge invariant operator creates the
electron along with a ‘‘photon cloud’’ around it. A similar structure is also present in [31], where
gauge invariance is traded by a path-dependent choice of gauge invariant variables.

Regarding (ii), we present two different constructions to split the gauge field into its gauge
invariant and gauge covariant part. The gauge invariant part is taken as a new variable, while
the gauge covariant part can be combined with matter to obtain, as anticipated, a new GIF. These
constructions are presented – keeping the size of the system finite – both on the lattice and in the
continuum for arbitrary dimension and for two kinds of boundary conditions: periodic and open.
Finally, to show the effects that different constructions may have on physical models, we consider
the Hofstadter model in 2d and 3d, rewriting the Hamiltonian using both the procedures. This
modifies the structure of the problem in momentum space, entering the definition of the so-called
magnetic Brillouin zone (MBZ).

The paper is organized as follows. In Section 2 we briefly remind the concept of abelian gauge
invariance in field theory, defining the various quantities and explaining the main ideas behind our
constructions. In Section 3 we present our construction for a (1+1) dimensional square lattice and
discuss how to properly enforce open (OBC) and periodic (PBC) boundary conditions. In Section 4
we present a second construction for the (1 + 1) dimensional case, alongside the one showed in
Section 3. In Section 5 we extend the reformulation to higher dimensions, firstly on the lattice and
hen taking the continuum limit. In Section 6 we show how to reconstruct the lattice action for
ure abelian gauge theories on the lattice, focusing on the particular example of gauge theories in
2+1) dimensions. In Section 7 we apply the formalism to the Hamiltonian of a single particle in a
agnetic field and to the Lagrangian of QED. In Section 8 we consider the Hofstadter Hamiltonian in
d and 3d, showing how they are written in terms of the new gauge invariant variables. In Section 9
e comment about the applications of the reformulation. In Section 10 we summarize our results
nd present our conclusions.

. Abelian gauge theories

In quantum field theory, a gauge theory is generically described by a Lagrangian L[ψ, ψ̄, Aµ],
epending on some matter fields ψ , ψ̄ and on a gauge field Aµ. The theory is gauge invariant if the
bove Lagrangian does not change under local transformations G(x) ∈ G, where G is the gauge group
f the theory [1–3]. From now on we will consider the specific case of abelian groups, referring to
he abelian gauge theories. Formally, the previous local transformations can be written as

ψ(x) → G(x)ψ(x), ψ(x) → ψ(x)G−1(x) (1)

or the matter fields and

Aµ → Aµ −
i
[∂µG(x)]G−1(x) (2)
q
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for the gauge field. The field strength tensor Fµν takes the form

Fµν ≡ ∂µAν − ∂νAµ. (3)

nder a gauge transformation, this quantity is left unchanged, i.e. Fµν → Fµν , therefore it represents
gauge invariant of the theory. For (d+1) dimensions the indices µ, ν ∈ {0, . . . , d} where the index
represents time.
A prominent example of an abelian gauge theory is QED. The Lagrangian reads

L = ψ̄(i/∂ − m)ψ − eAµψ̄γ µψ −
1
4
FµνFµν . (4)

where ψ and ψ̄ are the fermionic degrees of freedom, Aµ is the gauge field and m and e are,
espectively, the fermionic mass and charge parameters. The gauge group is G = U(1) and a generic
local transformation can be written as a phase factor G(x) = exp (ieΛ(x)).

As mentioned in Section 1, this kind of theories can be regularized on the lattice, following
essentially two paths. The first one entails the discretization of the continuum theory Lagrangian.
This constitutes the Lagrangian formalism of LGT. There is also the possibility of considering
the Hamiltonian formalism, in which space dimensions are discretized but time is not. In this
formulation the theory is projected only on its physical states |Ψ ⟩, i.e. the ones satisfying Gauss’
law [6,12]. In these discretization schemes involving fermions, it is well known that particular
attention must be paid to address the fermion doubling problem [7]. This can be done by considering
different discretizations of the fermionic field (e.g. Wilson fermions, staggered fermions or domain
wall fermions). As these schemes preserve gauge invariance, our construction is largely independent
on the type of fermions one uses on the lattice.

2.1. Basic quantities on the lattice

The rewriting that will be presented can be defined both in the continuum and on the lattice,
and, in the latter case, both in the Lagrangian and Hamiltonian formalisms. We will introduce the
formalism on the lattice, in the Lagrangian formalism, where the path integral is mathematically
well defined and the procedure more transparent. In order to make the exposition clear and fix
the notation, we briefly review the basic ingredients for the standard discretization of a continuum
gauge theory.

A generic site, on a (d + 1) dimensional lattice, is denoted by (d + 1) integers n = (n0, . . . , nd),
where each component takes values between 1 and N . The gauge field Aµ is defined on the links of
the lattice, while the field strength tensor Fµν lives on the plaquettes. It is useful to define [7]

Uµ(n) = eieaAµ(n), Uµν(n) = eiea
2Fµν (n), (5)

where Uµ ∈ G are the link variables connecting the site n to the site n+ µ̂, for µ ∈ {0, . . . ,N}, and
Uµν(n) are the plaquette variables. The discretized version of the field strength tensor is written as

aFµν(n) ≡ Aν(n + µ̂) − Aν(n) − Aµ(n + ν̂) + Aµ(n). (6)

The quantities e and a are respectively the charge and the lattice spacing. We set a = 1 and we will
only recover it once we take the continuum limit.

Referring explicitly to the G = U(1) gauge group, the action is given by

S = SG[Uµν] + Sfermions[ψ, ψ̄,Uµ], (7)

where

SG =
1
e2

∑
P

[
1 −

1
2
(Uµν + U†

µν)
]

(8)

s the pure gauge contribution, with the sum extended over all the plaquettes P , and Sfermions
represents the interaction with matter, whose explicit form depends on the discretization scheme
used to treat the fermions.
4



In the Hamiltonian formalism we have again a pure gauge term plus interactions with matter

HQED = HG + Hfermions. (9)

Analogously, the latter depends on the explicit form of the fermion discretization, while the pure
gauge part is given by

HG =
e2

2

∑
n,i

E2
i (n) −

1
4e2

∑
P

(Uij + U†
ij ). (10)

The operators Ei represent the electric field and are the canonically conjugate momenta of Ai, while
Uij represent the magnetic field. In the Hamiltonian formalism, gauge symmetry is manifested by
the existence of a set of local generators that commute with the Hamiltonian[

G(n),HQED
]

= 0, ∀n. (11)

The physical states are the ones that satisfy Gauss’ law

G(n)|Ψ ⟩ = 0, ∀n (12)

where G(n) = ∇ · E(n) − ρ(n) and ρ(n) is the charge density at the site n.

2.2. Main idea

The main idea behind our formalism is to use Eq. (6) to express the gauge field Aµ as a function of
Fµν . Clearly, this is not uniquely defined, since Fµν is gauge invariant while Aµ is not. Put differently,
Fµν does not carry the gauge covariant part of Aµ, which, instead, will be carried by a new field φ.
This will amount to replacing Aµ by a combination of Fµν and φ. In turn, not all the components of
Fµν are independent. The idea is then to define independent sums of Fµν over various strips on the
lattice, which will be denoted by F̄µν . The presented formalism allows us to perform the change of
variables

Aµ → {F̄µν, φ}. (13)

We will show how to reconstruct the Lagrangian with the new variables in two ways, referred in
the following as asymmetric and symmetric constructions. One has to check, for each construction,
whether the defined F̄µν are independent, and, if not, what are the relations between them. Our
procedure bears some similarities with the path-dependent choice of gauge invariant fields in [31].
In contrast to that approach, all of our gauge invariant variables are independent and do not have
to satisfy any constraint.

We emphasize that φ is a field and it is not fixed by our procedure: in the computation of the
generating functional of the theory, we must sum over all the possible configurations of F̄µν . In turn,
we can fix φ, corresponding to choosing a specific gauge, or sum over it. The result will be the same.
Contrary to standard gauge fixing, this will not alter the form of the Lagrangian, as the non-physical
degrees of freedom were decoupled. This description holds both for OBC and PBC cases. However,
in order to correctly reproduce all the degrees of freedom, some extra care is needed for the latter.
To this end, a further new set of variables, associated with Wilson loops, will be introduced for PBC.

We anticipate that when the matter fields ψ are present, an advantage of our reformulation with
respect to other possible ones is that the introduction of φ naturally indicates how to rewrite ψ in
terms of a new gauge invariant matter field ψ ′, combining both ψ and φ. Once the integration over
φ is performed, part of the contribution of the gauge field remains through F̄µν and – as will be
clarified in the following – the theory will be expressed in terms of the fields ψ ′ and F̄µν .

3. Asymmetric construction

We start by presenting the asymmetric construction. In (1 + 1) dimensions there is only one
independent component of the strength tensor, i.e. F10. Since we want to express the gauge fields
A0 and A1 in terms of F10, we use Eq. (6) to isolate A1 for a generic site n

ˆ ˆ
A1(n) = F10(n) − A0(n + 1) + A0(n) + A1(n + 0). (14)

5
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Fig. 1. Iterative isolation of the link A1(n), the leftmost in the blue column, in terms of plaquettes. The highlighted strip
s the sum of F10 present in Eq. (15). The temporal and horizontal directions are, respectively, the horizontal and vertical
nes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)

raphically, this has a simple interpretation: it can be thought of as a plaquette with all the edges
eing removed except for A1(n). The next step is to use Eq. (14), iteratively, to express all the A1 links
ppearing on the right-hand side. This is done until the boundary n0 = N is reached, as illustrated
n Fig. 1. In the end, we are left with the following expression for the gauge field:

A1(n) =

N−n0−1∑
k=0

[
F10(n + k · 0̂) − A0(n + 1̂ + k · 0̂) + A0(n + k · 0̂)

]
+ A1(n + (N − n0) · 0̂). (15)

We now introduce the vertex variables φ(n), defined on the vertices of the lattice, as shown in Fig. 2,
nd encoding the gauge covariant part of Aµ(n). Due to the nature of the considered gauge group
= U(1), these are scalar fields. The variables φ are related to A0 through a finite derivative along

he 0̂ direction, that is

A0(n) ≡ φ(n + 0̂) − φ(n). (16)

Note that this can always be done. In turn, the choices for the values of φ are not unique, as we
an always shift them by a function with arbitrary dependence on n1 without changing the value
of any A0 (n). This freedom will be explored in what follows. Inserting this into Eq. (15) we obtain
a telescopic sum, resolving the part associated to the horizontal links

A1(n) = A1(n + (N − n0) · 0̂) − [φ(n + (N − n0) · 0̂ + 1̂) − φ(n + (N − n0) · 0̂)]

+ φ(n + 1̂) − φ(n) +

N−n0−1∑
k=0

F10(n + k · 0̂). (17)

By exploiting the aforementioned freedom for choosing the field φ, we can set

A1(nB) = φ(nB + 1̂) − φ(nB) (18)

at the boundary points nB ≡ (N, n1). For the OBC case this essentially completes the map (see
elow), while for PBC further considerations are necessary.

.1. Open boundary conditions

The OBC case is depicted in Fig. 2(a). By plugging Eq. (18) into (17) we can write

A1(n) =

N−n0−1∑
F10(n + k · 0̂) + φ(n + 1̂) − φ(n) (19)
k=0

6
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Fig. 2. Plot of a lattice with linear size N = 3. In black the original gauge field components Aµ living on the links. In
olor the representation of the new set of variables. (a) For OBC the new degrees of freedom are represented in blue
the φ’s that live on the vertices) and in red (the F̄µν ’s defined on the plaquettes). (b) For PBC the same new degrees of
reedom are present plus extra ones corresponding to the loops (the fµ in brown). (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)

hich, with (18), concludes the rewriting of the vertical links. By defining the plaquette strip

F̄10(n) ≡

N−n0−1∑
k=0

F10(n + k · 0̂), (20)

he vertical links can be written as

A1(n) = F̄10(n) + φ(n + 1̂) − φ(n). (21)

e can characterize OBC by imposing A0(N, n1) = 0 and A1(n0,N) = 0. Consequently, Eqs. (16)
and (21) summarize the mapping of Eq. (13) for the OBC case, by adopting the boundary conditions
F̄10(N, n1) = F̄10(n0,N) = 0. There is yet the residual freedom on the choice of the field φ. This is
reflected by the fact that shifting all φ (n) by a constant will leave the initial Aµ (n) invariant. This
ambiguity can be resolved by simply imposing φ (N,N) = 0, for example. We can now verify that
the number of degrees of freedom matches the original one. There is a total of N2

− 1 non-trivial
values for φ and (N−1)2 for F̄10, which sum to the original 2N(N−1) degrees of freedom associated
with the links of open boundaries.

3.2. Periodic boundary conditions

The PBC case is depicted in Fig. 2(b). In comparison to OBC, we need to map an extra set of
degrees of freedom. These correspond to links emanating from the boundary, i.e. A0(N, n1) and
A1(n0,N), as well as to specify how the fields transform under a full lattice translation, i.e. Aµ(n +

N ν̂). Regarding the first set of variables, we introduce the Wilson loops WC0 and WC1 , which are
associated to paths that wrap around the lattice along the 0̂ and 1̂ directions. We may formally
write these loops as [7]

WC0 =

N∏
ni=1

eieA0(ni,n1) ≡ eief0(n1), WC1 =

N∏
ni=1

eieA1(n0,ni) ≡ eief1(n0), (22)

where fµ(nν) corresponds to the sum of all Aµ along a straight line of constant nν (µ ̸= ν). Using
the definitions in Eqs. (16), (19) to rewrite the gauge fields for the remaining links, we can isolate
he boundary fields as functions of the introduced loops as

A0(N,n1) = f0(n1) − φ(N, n1) + φ(1, n1), A1(n0,N) = f1(n0) − φ(n0,N) + φ(n0, 1) −

N−1∑
nj=1

F̄10(n0, nj).

(23)
7
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By complementing Eqs. (16), (18) and (21) with the above expression we can see that the mapping
{A0, A1} → {φ, F̄10, f0, f1} is one-to-one. In particular, the number of degrees of freedom correctly
match. In fact, the link variables Aµ form a total of 2N2 degrees of freedom. In turn the set {φ, F̄10}
ntroduced in the OBC case has 2N(N − 1) non-trivial values and the remaining 2N degrees of
reedom are precisely given by the set of 2N loops {f0, f1}. It remains to specify how the fields
µ(n + N ν̂) are expressed in terms of the gauge invariant degrees of freedom. As PBC should only

be imposed on physical fields, the most general form of PBC on a gauge theory amounts to imposing
periodicity on Aµ up to a gauge transformation [32–35]. Explicitly this means that

Aµ(n + N ν̂) = Aµ(n) + ϕν(n + µ̂) − ϕν(n), (24)

where ϕν are called transition functions and are crucial to study non-trivial topological sectors
of the theory [35,36]. They have to satisfy a consistency condition, called the cocycle condition,
guaranteeing that certain quantities, such as Aµ(n + N 0̂ + N 1̂), are single valued. Such a condition
reads

ϕν(n + Nµ̂) + ϕµ(n) = ϕµ(n + N ν̂) + ϕν(n) + ϕνµ, (25)

where ϕµν is the twist tensor, which is antisymmetric and gauge invariant [35]. Moreover, the
ϕν ’s have to be considered as a set of new dynamical variables, i.e. physical degrees of freedom
to be integrated in the functional integrals of the theory [32]. We can show that these boundary
conditions can be incorporated within our reformulation. In fact, it follows from Eqs. (16), (21) and
(23) that the twisted boundary conditions in Eq. (24) are exactly implemented by the following
boundary conditions on φ

φ(n + N ν̂) = φ(n) + ϕν(n). (26)

The transition functions are the same in our reformulation and, consequently, the degrees of
freedom that they carry are trivially translated to our construction. Concerning the strip variables
F̄10, they are subject to PBC, i.e. F̄10(n+Nµ̂) = F̄10(n). This can be taken into account by appropriately
redefining the strips as

F̄10(n) =

(N−n0−1) mod N∑
k=0

F10(n + k · 0̂). (27)

We finally observe that the loops f0, f1 obey PBC as long as periodic gauge transformations
are considered. Indeed, the Wilson loops (22) acquire non-trivial phases under the application
of topologically non-trivial gauge transformations, i.e. transition functions that are periodic up to
integer multiples of 2π/e (sometimes such gauge transformations are called large topologically
non-trivial gauge transformations [35]). This gauge redundancy can further be lifted by suitably
combining the transition functions ϕν with the loops fν . Accordingly, we define

f̄0(n1) = f0(n1) − ϕ0(1, n1), f̄1(n0) = f1(n0) − ϕ1(n0, 1). (28)

The non-trivial phases acquired by the Wilson loops in Eq. (22) under large gauge transformations,
corresponding to translations of the fµ, are canceled by the respective gauge transformations of the
transition functions and we obtain quantities that are invariant under general gauge transforma-
tions. Under a full lattice translation, these loops are transformed by the twist tensor: f̄0(n1 +N) =

f̄0(n1) + ϕ01 and f̄1(n0 + N) = f̄1(n0) + ϕ10.

3.3. Comments about gauge fixing

We showed that the mapping presented is defined in a consistent way, as any gauge field
Aµ(n) can be expressed as a function of the new, independent, variables {φ, F̄10} through Eqs. (16),
(18) and (21) for OBC — or as a function of {φ, F̄10, f0, f1} through Eqs. (16), (21), (18) and (23)
for PBC. The price to pay is hidden in locality and translational invariance. The reformulation,
as anticipated, shifts the effect of gauge transformations G to the vertex variables, since Aµ ∼
Aµ +Λ(n + µ̂) −Λ(n), which is the lattice version of Eq. (2), implies φ(n) ∼ φ(n) +Λ(n).
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We observe that fixing a particular configuration of the vertex variables, e.g. φ = φ̃, would
e equivalent to some gauge fixing F , where one sums only over configurations that satisfy the
onstraint F

(
Aµ

)
= 0. As an example one could choose φ̃ = 0, which corresponds to a maximal

ree gauge [37].
A careful reader could object that there is no real difference between our reformulation and other

pproaches corresponding to particular choices of φ. However, the substantial difference is not that
in these approaches φ is fixed and in ours is not, since the φ at the end will be anyway integrated
out. At variance, the main difference will be clear when the matter field ψ will be introduced: we
will show that our reformulation allows for the definition of new matter variables ψ ′ expressed
in terms of the original variables ψ and the to-be-integrated variables φ. So the initial fields are
(ψ, Aµ), which are separately gauge variants, while at the end of our reformulation procedure the
theory is expressed in terms of the variables (ψ ′, F̄µν):

(ψ, Aµ) → (ψ ′, F̄µν), (29)

where the fields (ψ ′, F̄µν) are gauge invariant. In the case of PBC, new degrees of freedom are present
through transition functions. Analogously, a reformulation in terms of purely gauge invariant fields
can be achieved through (ψ, Aµ, ϕµ) → (ψ ′, F̄µν, f̄µ).

4. Symmetric construction

Here we present an alternative construction starting from the set {φ, Fµν}. As previously men-
tioned, if we choose to isolate the temporal component in Eq. (14) rather than the spatial one,
we get vertical strips instead of the horizontal ones of the previous setup. The idea of the
symmetric constructions is to remove such arbitrariness in the procedure and to combine both
these asymmetric constructions, to obtain a more symmetric result.

We proceed following the same structure of Section 3, i.e. in (1 + 1) dimensions. For the OBC
case, the gauge fields in the asymmetric construction are written in Eqs. (16) and (21) in terms of
F̄10. However, if we had chosen F01, the final formulas would have been

A1(n) ≡ φ′(n + 1̂) − φ′(n), (30)

A0(n) =

N−n1−1∑
k=0

F01(n + k · 1̂) + φ′(n + 0̂) − φ′(n) ≡ F̄01 + φ′(n + 0̂) − φ′(n). (31)

Here the fundamental variables are {φ′, F̄01}. To obtain a symmetric construction, we can define

φ̃ =
φ + φ′

2
(32)

and sum the previous relations with Eqs. (16), (19). The symmetrized gauge fields are

A0(n) = φ̃(n + 0̂) − φ̃(n) +
1
2

N−n1−1∑
k=0

F01(n + k · 1̂), (33)

A1(n) = φ̃(n + 1̂) − φ̃(n) +
1
2

N−n0−1∑
k=0

F10(n + k · 0̂). (34)

This result can be obtained from the asymmetric construction, as in Eqs. (30) and (31), by means
of the gauge transformation

φ −→ φ̃ −
1
2

N−n0−1∑
k=0

N−n1−1∑
ℓ=0

F01(n + k · 0̂ + ℓ · 1̂). (35)

The specific details pertaining to PBC trivially extend to the symmetric construction. In particular,
he boundary condition in Eq. (26) of the periodic case still holds with φ̃ in place of φ and the
9
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boundary links in Eq. (23) are symmetrized with respect to the strips F̄10 and F̄01, i.e.

A0(N,n1) = f0(n1) − φ̃(N, n1) + φ̃(1, n1) −
1
2

N−1∑
nj=1

F̄01(nj, n1), (36)

A1(n0,N) = f1(n0) − φ̃(n0,N) + φ̃(n0, 1) −
1
2

N−1∑
nj=1

F̄10(n0, nj). (37)

where the loops fµ are introduced according to the definition in Eq. (22). Finally we notice that,
within this particular construction, the strips F̄10 and F̄01 satisfy the relation F̄01(n) + F̄10(n + 0̂) −

F̄10(n) − F̄10(n + 1̂) = 0, which shows explicitly that they are not all independent variables.

5. Higher dimensions and the continuum limit

We now consider (d + 1) dimensions, generalizing the previous construction to a hypercubic
lattice of size Nd+1. We choose a reference plane to which we apply the procedure described in
Section 3. Then, given an arbitrary link, we can repeatedly apply identities of the form of Eq. (14)
until we arrive at the reference plane. We will choose the reference plane to be the 2d surface
defined by ni = N for i = 2, . . . , d.

To lighten the notation, we will denote a boundary site by

n(µ)
≡ (N, . . . ,N  

µ+1−times

, nµ+1, . . . , nd). (38)

ccordingly, n(0) represents a point at the boundary 0, n(1) a point at boundaries 0 and 1, and so
n. Moreover, we generalize the plaquette strip on the lattice as

F̄µν(n(ν−1)) ≡

N−nν−1∑
ℓ=0

Fµν(n(ν−1)
+ ℓ · ν̂). (39)

In this compact notation the rewriting of a generic component Aµ(n) of the gauge field is

Aµ(n) =

∑
ν<µ

F̄µν(n(ν−1)) + φ(n + µ̂) − φ(n). (40)

As before, there is a component written solely in terms of vertex variables, i.e. A0(n), and all the
others are built by filling the lattice with the plaquette strips. Now A0(n) fixes φ up to arbitrary
translations by functions dependent on n1, . . . , nd (but not n0), a freedom that is explored to fix the
remaining Ai at the boundaries. In agreement with (40), we can take F̄µν(n(j−1)), with µ > ν, as the
ew set of independent variables.

.1. Open boundary conditions

As in the (1 + 1) dimensional case, the considerations above are enough to establish the
transformation to the new variables for OBC. Once again, the values of the field φ are completely
fixed up to an overall shift by a constant which is used to set φ(N, . . . ,N) = 0. Furthermore the
plaquette strips, at the proper boundary, are put to zero as well

F̄µν(n(ν−1)) = 0, nµ = N or nν = N. (41)

Here, we also observe that the degrees of freedom are properly matched. There is a total of Nd+1
−1

vertex variables φ. The strips F̄ij entail Nd−1−j(N − 1)2 for any 0 ≤ j < i ≤ d, giving a total of
Nd+1

− (d+1)Nd
+1 strip variables. Summing these together we find the required (d+1)Nd(N−1)

link variables of the initial formulation.
10
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5.2. Periodic boundary conditions

For the periodic case, the rewriting of (1 + 1) dimensions also extends to higher dimensions,
including the introduction of the loops fµ defined in Eq. (22) and the corresponding gauge invariant
f̄µ. In particular, a generic boundary link Aµ(n0, . . . , nµ = N, . . . , nd) is expressed as

Aµ(n0, . . . , nµ = N, . . . , nd) = fµ(n0, . . . , nµ−1, nµ+1, . . . , nd) −

∑
ν<µ

N−1∑
nµ=1

F̄µν(n(ν−1))

− φ(n0, . . . , nµ = N, . . . , nd) + φ(n0, . . . , nµ = 1, . . . , nd). (42)

The transformation in Eq. (26) implements the periodicity on the gauge field of Eq. (40), up to a
auge transformation in exactly the same way. Once again the F̄µν are periodic and f̄µ transform
ith the twist tensor, i.e. F̄µν(n+N δ̂) = F̄µν(n) and f̄µ(n+N δ̂) = f̄µ(n)+ϕµδ . The number of degrees
f freedom can be computed by summing the ones from OBC (d+ 1)Nd(N − 1) with the number of
oops fµ introduced (d+1)Nd. This gives (d+1)Nd+1, which matches exactly the number of starting
inks Aµ.

.3. Continuum limit

So far we developed the formalism on the lattice. It is straightforward to take the continuum
imit of Eq. (40). We recover the lattice spacing a and take the limit a → 0 and N → ∞ while
eeping Na ≡ L fixed. We obtain

F̄µν(x(ν−1)) =

∫ L

xν
dyν Fµν(yν) (43)

s the continuum counterpart of the plaquette strip, while the gauge field is written as

Aµ(x) = ∂µφ(x) +

∑
ν<µ

F̄µν(x(ν−1)). (44)

n the previous expressions we have introduced

x(ν) ≡ ( L, . . . , L  
ν+1−times

, xν+1, . . . , xd), (45)

yν ≡ (L, . . . , L  
ν−times

, yν, xν+1, . . . , xd), (46)

as a shorthand notation for the real space vectors, being ν ∈ {0, . . . , d}. We remark that this com-
pletely characterizes the case of open but not of periodic boundaries, since the lattice description of
the latter relied on the special mapping of a single link, which does not generalize straightforwardly
in the continuum limit at finite size L. We do not see conceptual problems in doing it, and we leave
the explicit implementation of PBC at finite L in the continuum limit as a subject for a future work.

6. Pure abelian gauge theories on the lattice

Before discussing systems with matter fields present, we provide a more concrete example.
We consider the standard action for non-compact gauge fields, in imaginary time and in (d + 1)
dimensions

S =
β

2

∑
n

Fµν(n)2 (47)

where the sum is taken over the Nd+1 lattice points. The discussion can be translated for any action
depending solely on F . The main premise of the present paper is to rewrite the model purely in
µν
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terms of gauge invariant quantities. This is already done in Eq. (47) where the action only depends
n Fµν(n): however, they are not all independent. They satisfy the Bianchi identity in the continuum,
nd, on the lattice, a discretized version that in this case can be written as

Fµν(n + α̂) − Fµν(n) + Fαµ(n + ν̂) − Fαµ(n) + Fνα(n + µ̂) − Fνα(n) = 0. (48)

This identity is trivially satisfied when the Fµν are written in terms of the Aα . In other words, while
µν are gauge invariant but not all independent, Aα are gauge covariant but independent. With our
onstruction we are able to achieve both gauge invariance and independence on the new variables.
n fact, since the description of the theory in terms of Aα satisfies the Bianchi identity and Eq. (40)
is a rewriting of them in terms of independent quantities, the Bianchi identity will be automatically
satisfied for this case.

In order to make the discussion even more specific, let us focus on the non-trivial case of the
(2 + 1) gauge theory. Following (40) we write

A0(n) = φ(n + 0̂) − φ(n),

A1(n) = F̄10(n) + φ(n + 1̂) − φ(n),

A2(n) = F̄20(n) + F̄21(n(0)) + φ(n + 2̂) − φ(n). (49)

n these formulas F̄10 and F̄20 are defined in all lattice points. At variance, F̄21 is only defined for
oundary points where n0 = N . The plaquettes Fµν(n) in terms of these fields are given by

F10(n) = F̄10(n) − F̄10(n + 0̂),

F20(n) = F̄20(n) − F̄20(n + 0̂),

F21(n) = F̄10(n + 2̂) − F̄10(n) + F̄20(n) − F̄20(n + 1̂) + F̄21(n(0)) − F̄21(n(0)
+ 1̂), (50)

here we define any F̄10 to be zero outside of any point on the lattice.
As a further check, one can see that the Bianchi identity is trivially satisfied once the Fµν are

written in this way. To emphasize the differences with the new description of the theory, let us
denote an ≡ F̄10(n), cn ≡ F̄20(n) and bn(0) ≡ F̄21(n(0)) as a boundary field. We have, for a general
lattice point, n = (n0, n1, n2) and (n0, n1, n2)(0) = (N, n1, n2). The action takes the form

S =β
∑
n

[(
an+0̂ − an

)2
+

(
cn+0̂ − cn

)2
+

(
an+2̂ − an

)2
+

(
cn+1̂ − cn

)2]
βN

∑
n,n0=N

[(
bn+1̂ − bn

)2]
+ 2β

∑
n

[(
bn(0)+1̂ − bn(0)

) (
an+2̂ − an − cn+1̂ + cn

)]
. (51)

This is a non-isotropic, non-local model. The first two terms are purely local. The second term is a
boundary term that, nonetheless, is not predicted to be negligible in the infinite volume limit since
it has a prefactor N . The last term is non-local and couples fields in the bulk to the boundary fields
(at the boundary n0 = N). The resulting non-locality can be regarded as the integration of the gauge
covariant part of the gauge fields. Other examples of the integration of gauge fields lead naturally
to non-local interactions [38–40]. In contrast to the cited results, here the full gauge degrees of
freedom are not totally integrated out but only their non-physical part.

Despite the apparent complication of this model, it is described by fewer degrees of freedom, all
of them physical. As an example, for the case of OBC where we counted the degrees of freedom, all
the N3

− 1 vertex variables φ have decoupled from the system.

7. QED

In this Section we rewrite the Lagrangian of QED in terms of gauge invariant quantities, using
the asymmetric construction in (3+ 1) dimensions. We refer to the next Section, where we discuss
the Hofstadter model, for a discussion of the effects produced by the choice of the asymmetric vs
symmetric construction. In that example, the differences are particularly clear. Before dealing with
12
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QED case, we investigate the simple and instructive case of the Hamiltonian of a particle in the
presence of an external magnetic field, in 3d.

7.1. Single particle in a magnetic field

We consider a quantum particle in a static background magnetic field. As it is usually done in
uantum mechanics textbooks, the particle is charged (with charge −e) and we denote the size of
he system by L, taking then the thermodynamic limit L → ∞. The Hamiltonian reads

H =
(p + eA)2

2m
, (52)

here p = −i∇ and we make use of natural units h̄ = c = 1. The only non-trivial component of the
field strength tensor is F21 = B, therefore we only have the strip F̄21 in the asymmetric construction.
his results in

Ai = ∂iφ, i ̸= 2, (53)

A2 = ∂2φ + F̄21 = ∂2φ + B(L − x) (54)

here i = 1, 2, 3. The crucial point consists in transforming the wavefunction, |ψ⟩, and observables
n such a way that we deal only with gauge invariant quantities, independent of φ. This is achieved
by the unitary transformation |ψ ′

⟩ = exp (−ieφ) |ψ⟩ ≡ S|ψ⟩ and H′
= SHS−1. A closer look into

the new momenta

p′

i = SpiS−1
= pi + e∂iφ (55)

confirms that the vertex variables are reabsorbed . It is easy to verify that both |ψ ′
⟩ and p′

i are gauge
invariant. We conclude that

H′
=

1
2m

3∑
i=1

(
p′

i +
∑
j<i

F̄ij

)2

. (56)

is the correct rewriting for the Hamiltonian. Since the transformation S is unitary, the spectra of H′

and H coincide, reproducing the well-known Landau levels as expected [41].

7.2. The QED Lagrangian

Let us now consider the QED Lagrangian of Eq. (4), defined in a cubic volume with OBC, for
simplicity. It can be transformed into

L = ψ̄

[
i/∂ −m− e(∂µφ)γ µ − e

∑
ν<µ

F̄µνγ µ
]
ψ −

1
4

[∑
α<ν

∂µF̄να −

∑
α<µ

∂ν F̄µα

][∑
α<ν

∂µF̄ να −

∑
α<µ

∂ν F̄µα
]
.

(57)

sing the continuum rewriting of the gauge field of Eq. (44). Due to the presence of matter, this is
ot yet written in terms of gauge invariant fields alone. Consequently, we define

ψ ′
= exp (ieφ)ψ. (58)

he equation above is the most important result of this Section, since it provides an expression of
he GIF expressed in the form of the field operator ψ of the initial fermionic operator, which is not
auge invariant, multiplied by an operator depending on the gauge degrees of freedom. Overall, ψ ′

s gauge invariant. The term with the vertex variables is canceled from the Lagrangian, which finally
eads

L = ψ̄ ′

[
i/∂ −m− e

∑
F̄µνγ µ

]
ψ ′

−
1
4

[∑
∂µF̄να −

∑
∂ν F̄µα

][∑
∂µF̄ να −

∑
∂ν F̄µα

]
. (59)
ν<µ α<ν α<µ α<ν α<µ

13
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This completes the rewriting of the QED Lagrangian in terms of F̄µν and the new fields ψ ′, ψ̄ ′, which
are combinations of the vertex variables and the original fermionic fields. When written explicitly
we find a non-local structure of the Lagrangian both in the gauge kinetic part as well as in the
coupling to the matter fields. In principle, it is possible to derive a Hamiltonian through canonical
quantization. In practice, due to the non-locality of the kinetic term, this may be highly non-trivial.2

8. Hofstadter model

We present now the reformulation of the Hofstadter model in 2d and 3d, in terms of the new
variables. We do so by using the asymmetric and symmetric constructions, in order to discuss their
differences and to show how they reproduce the correct results for the energy spectrum.

Such a model describes a non-relativistic particle hopping on a lattice under the effect of an
external magnetic field B. The Hamiltonian, assuming the Peierls substitution to take into account
the effects of the external field [42], is

H = −t
∑
r,ĵ

c†
r+ĵ

eiθr+ĵ,rcr + h.c., (60)

where ĵ are unit vectors along the spatial directions of the lattice (ĵ = x̂, ŷ in 2d and ĵ = x̂, ŷ, ẑ in
3d), c†

r , cr are the fermionic creation and annihilation operators and

θr+ĵ,r ≡

∫ r+ĵ

r
A(x) · dx (61)

is the Peierls phase. The vector potential A(x) is associated with the external field. In order to have
an isotropic magnetic flux on each plaquette of the lattice, we consider a magnetic field whose
magnitude is

Φ =
2πm
n

(62)

where m, n are coprime integer numbers. Its direction will be specified below. In the following, we
consider cubic lattices with V = Nd sites, d being the dimension, and sizes N = κn, with κ ∈ N. The
latter is a necessary condition to solve the problem analytically in momentum space, when PBC are
imposed [43].

The 2d model was introduced in literature in [42,44] and it is a celebrated and paradigmatic
model to study commensurability effects. In 3d, its energy spectrum can be determined for generic
pairs of coprimes n and m: we refer to [43] for a review of the problem of diagonalizing the
Hofstadter Hamiltonian for general n and m in d = 3. There, it is also shown that for general

and m it is convenient to work in the so-called Hasegawa gauge, introduced in [45]. Here we
ewrite the corresponding Hamiltonians using both the asymmetric and symmetric constructions
nd not choosing any gauge, showing how the obtained expressions lead to different structures in
omentum space.
In the next two Sections we consider the 2d and 3d models, in both cases assuming PBC. Our

aim is to explicitly show how the formal constructions presented in Sections 4, 3.2 and 5.2 work
nd reproduce the known results.

.1. The 2d model

We consider a square lattice with V = N2 sites and a perpendicular commensurate magnetic
field B = Φ(0, 0, 1). We change notation with respect to Section 3, denoting a generic lattice site
y r = (r1, r2), in order to avoid confusion with the integer n appearing in Eq. (62).

2 More precisely, writing explicitly the terms involving the strips in Eq. (59) we get that the only non-trivial conjugate
omenta are associated to F̄i0, i = 1, 2, 3, the electric field components. The right way to proceed should be to introduce
set of Lagrange multipliers, associated to the vanishing conjugate momenta of the theory, i.e. F̄21,31,32 . Once done that,

t should be quantized as a constrained theory.
14
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8.1.1. Asymmetric construction
The only non-trivial component of the field strength tensor is F21. We use then Eqs. (39) and

40) to rewrite the gauge field. The only non-zero plaquette strip is F̄21 = Φ(N − r1), with r1 < N .
e have still to specify the gauge invariant loops f̄i: they can be determined by imposing that the

flux on the plaquettes of the boundary sites rB,1 = (N, r2), rB,2 = (r1,N) is equal to Φ , so we have
a uniform magnetic field through the whole lattice. Using the definitions in Eq. (23) we get

f̄1(r2) = ΦNr2 + ϑ1, f̄2(r1) = −ΦNr1 + ϑ2. (63)

The constants ϑ1, ϑ2 account for twists of the fermionic operators at the boundaries. They are
gauge invariant physical quantities that should be specified along with the magnetic field. In order
to compare our construction with the known results in the literature for PBC, we choose these
parameter to be ϑ1 = ϑ2 = 0 (for further discussion on these parameters we refer to [46]). The
Hamiltonian (60) is rewritten as

H = −t
∑
r̸=rB,i

(c†
r+1̂

ei[φ(r+1̂)−φ(r)]cr + c†
r+2̂

ei[φ(r+2̂)−φ(r)+F̄21]cr + h.c.) + HB,

here the boundary terms are

HB = −t(c†
rB,1+1̂

ei(f1(r2)−φ(N,r2)+φ(1,r2))crB,1 + c†
rB,2+2̂

ei(f2(r1)−φ(r1,N)+φ(r1,1)−(N−1)F̄21(r1))crB,2 + h.c.).

(64)

he fermionic operators at the boundaries transform as

c†
rB,1+1̂

= e−iϕ1(1,r2)c†
(1,r2)

, c†
rB,2+2̂

= e−iϕ2(r1,1)c†
(r1,1)

, (65)

hich allow us to suitably identify gauge invariant loops f̄i in the hopping phases of HB and replace
hem with their values (63). Analogously to the QED case, we define new fermionic gauge invariant
perators

dr ≡ e−iφ(r)cr, d†
r ≡ c†

r e
iφ(r). (66)

he operator dr is the equivalent of the GIF ψ ′ introduced for QED in Eq. (58). The gauge invariance
f the operator dr, as well as its fermionic nature, is explicit. A gauge transformation of function
(r) modifies the vertex variables through the shift φ(r) ∼ φ(r) + Λ(r), exactly canceled by the
hases of the gauge transformed operators cr, c†

r , see Eq. (1).
It is now immediate to check that the boundary terms in HB have the same structure of the bulk

erms. This is due to the definitions of Φ , N (since ΦN is an integer multiple of 2π ) and the chosen
alues of ϑ1 = ϑ2 = 0. Indeed we have

eif̄1(r2) = eiΦNr2 = 1, eif̄2(r1) = ei(Φ(N−N2)−Φr1) = e−iΦr1 (67)

s a consequence, the Hamiltonian in terms of the new gauge invariant variables is

H = −t
∑
r

(d†
r+2̂

e−iΦr1dr + d†
r+1̂

dr + h.c.). (68)

e remark that the above description of the physical system, which does not refer gauge covariant
perators, was achieved without ever fixing a gauge.
We now move to the momentum space, introducing the Fourier transformed operators

dr =
1

√
V

∑
k

dkeik·r, d†
r =

1
√
V

∑
k

d†
ke

−ik·r. (69)

The full Hamiltonian then becomes

H = −t
∑
k

(2 cos k1d
†
kdk + e−ik2d†

k+Φ1̂
dk + h.c.) (70)

where the momenta are chosen in the first Brillouin zone (1BZ), i.e. the square [−π, π )× [−π, π ).
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The interplay between gauge and translational invariance in presence of a commensurate
ackground magnetic field allows us to introduce the concept of magnetic Brillouin zone [47]. In
his case, it is given by

MBZ : k1 ∈

[
−
π

n
,
π

n

)
, k2 ∈

[
−π, π

)
. (71)

This enables us to split the structure of the Hamiltonian in terms of the so-called magnetic bands,
labeled by an index τ ∈ {0, 1, . . . , n − 1}:

H = −t
∑

k∈MBZ

∑
τ

[2 cos (k1 + τΦ)d†
k+τΦ1̂

dk+τΦ1̂ + e−ik2d†
k+(τ+1)Φ1̂

dk+τΦ1̂ + h.c.]. (72)

In matrix form, it can be written compactly as

H = −t
∑

k∈MBZ

(d†
k, . . . , d†

k+(n−1)Φ1̂
) Gn

⎛⎜⎝ dk
...

dk+(n−1)Φ1̂

⎞⎟⎠ , (73)

where

Gn =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 cos (k1) e−ik2 0 . . . eik2
eik2 2 cos(k1 +Φ) e−ik2 0 . . .

0 eik2
. . .

. . .
. . .

... 0
. . .

. . . e−ik2

e−ik2
...

. . . eik2 2 cos(k1 + (n − 1)Φ)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (74)

This matrix depends on the flux, it has size n × n, and its eigenvalues, for each value of k, provide
the energy spectrum of the model. It is immediate to check that the result coincides with the one
obtained using directly a gauge, such as the Landau gauge. A simple check can be done in the
so-called π-flux case, where (m, n) = (1, 2). Here the matrix is

G2

2
=

(
cos k1 − cos k2

− cos k2 − cos k1

)
(75)

and the associated spectrum

Ek = ±2t
√
cos2 k1 + cos2 k2, (76)

recovering the known 2d analytical result [44,48]. For general values of the magnetic fields, i.e. for
generic n and m, we checked that the spectrum of Gn is the correct one, e.g. by comparison with
the exact diagonalization of Eq. (60).

8.1.2. Symmetric construction
We present here the rewriting of Eq. (60) using the symmetric construction of Section 4. The

ymmetry considerations leading to the definition of the MBZ still hold, the only difference is that
ow the size of the lattice has to be N = 2κn, with κ ∈ N. The gauge field for the sites r ̸= rB,i is
ow rewritten using Eqs. (33) and (34), with

F̄12 = −Φ(N − r2), F̄21 = Φ(N − r1), ri < N. (77)

For the links at the boundary sites rB,i we use Eqs. (36), (37) with the gauge invariant loops f̄i of
Eq. (63). As in the asymmetric case, the boundary terms have the same functional form of the bulk
ones, because of the assumption on the size N . Going into momentum space, the MBZ is

MBZ :

[
−
π
,
π

)
×

[
−
π
,
π

)
. (78)
2n 2n 2n 2n
16



Introducing the gauge invariant operators d†
r , dr as in Eq. (66) and the reduced magnetic field

Φ̃ ≡ Φ/2, the Hamiltonian can be rewritten as

H = −t
∑

k∈MBZ

∑
λ,τ

[e−i(k1+τ Φ̃)d†

k+τ Φ̃1̂+(λ+1)Φ̃2̂
dk+τ Φ̃1̂+λΦ̃2̂ + e−i(k2+λΦ̃)d†

k+τ Φ̃1̂+λΦ̃2̂
dk+(τ+1)Φ̃1̂+λΦ̃2̂ + h.c.].

(79)

using the two magnetic band indices τ , λ = {0, . . . , 2n−1}. The associated matrix turns out to be of
size (2n)2×(2n)2, which has to be compared with the Gn, of size n×n, obtained with the asymmetric
construction. Being the energy spectrum the same, the main difference is in the definition of the
MBZ, as we are going to discuss at the end of the Section.

8.2. The 3d model

The analysis done in 2d can be extended to the 3d model. We consider a cubic lattice of size
V = N3, with an isotropic magnetic field B = Φ(1, 1, 1). Different orientations of the magnetic field,
such as B = Φ(1, 0, 0), produce different results, but the method is the same and for convenience
of exposition we limit ourselves to the isotropic case. In the following we will show how to retrieve
the spectrum of the model within our formalism.

8.2.1. Asymmetric construction
The non-trivial components of the field strength tensor are F21 = F32 = Φ and F31 = −Φ . We

use Eq. (40) to express the vector potential A(x). The relevant strip variables are

F̄21 = −F̄31 = Φ(N − r1), F̄32 = Φ(N − r2), ri < N. (80)

The functional form of the loops f̄i can be determined by imposing the constraints on the proper
flux per plaquette at the boundary sites, as for the 2d case. By using the definition in Eq. (42), we
obtain the loops

f̄1(r2, r3) = ΦN(r2−r3)+ϑ1, f̄2(r1, r3) = NΦ(r3−r1)+ϑ2, f̄3(r1, r2) = NΦ(r1−r2)+ϑ3.

(81)

As before, we consider the case ϑ1 = ϑ2 = ϑ3 = 0. Introducing directly the operators in Eq. (66)
and the MBZ

MBZ :

[
−
π

n
,
π

n

)
×

[
−
π

n
,
π

n

)
×

[
−π, π

)
, (82)

we split the structure of the Hamiltonian in magnetic bands, labeled by two indices λ, τ ∈

{0, 1, . . . , n − 1}:

H = −t
∑

k∈MBZ

∑
λ,τ

[
2 cos(k1 + λΦ)d†

k+λΦ1̂+τΦ2̂
dk+λΦ1̂+τΦ2̂ + e−i(k2+τΦ)d†

k+λΦ1̂+τΦ2̂
dk+(λ+1)Φ1̂+τΦ2̂

(83)

+ e−ik3d†

k+λΦ1̂+τΦ2̂
dk+(λ−1)Φ1̂+(τ+1)Φ2̂ + h.c.

]
.

The associated matrix has size n2
×n2. We verified that the spectrum of this Hamiltonian coincides

with the known one in literature [43]. A simple analytical check can be done in the π-flux case,
where (m, n) = (1, 2). Here the matrix is (factorizing an overall factor of 2)

G2 =

⎛⎜⎝cos k1 0 cos k2 cos k3
0 cos k1 cos k3 − cos k2

cos k2 cos k3 − cos k1 0
cos k3 − cos k2 0 − cos k1

⎞⎟⎠ = cos k1 σz⊗12+cos k2 σx⊗σz+cos k3 σx⊗σx
(84)
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whose eigenvalues are

λ1,2(k) = ±

√
cos2 k1 + cos2 k2 + cos2 k3. (85)

he full spectrum is related to them via

E(k)
2t

= λ1,2(k), (86)

eproducing exactly the dispersion relation in [43].

.2.2. Symmetric construction
One can proceed as in the 2d case, the only computational difference being represented by the

ize of the lattice, which now has to be N = 3κn, with κ ∈ N. The gauge field components are

A1 = φ(r + 1̂) − φ(r) +
2F̄13 + F̄12

3
, (87)

A2 = φ(r + 2̂) − φ(r) +
2F̄21 + F̄23

3
, (88)

A3 = φ(r + 3̂) − φ(r) +
2F̄32 + F̄31

3
, (89)

ith the boundary links that can be immediately obtained through the proper symmetrization of
q. (42). Going into momentum space, the resulting MBZ is

MBZ :

[
−
π

3n
,
π

3n

)
×

[
−
π

3n
,
π

3n

)
×

[
−
π

3n
,
π

3n

)
. (90)

Introducing the gauge invariant operators d†
r , dr as in Eq. (66) and the reduced magnetic field

Φ̃ ≡ Φ/3, the Hamiltonian can be rewritten as

H = −t
∑
τ ,ϵ,λ

∑
k∈MBZ

[
d†
k+τ Φ̃1̂+(ϵ+1)Φ̃2̂+(λ−2)Φ̃3̂

dk+τ Φ̃1̂+ϵΦ̃2̂+λΦ̃3̂e
−i(k1+τ Φ̃)

+ d†
k+(τ−2)Φ̃1̂+ϵΦ̃2̂+(λ+1)Φ̃3̂

dk+τ Φ̃1̂+ϵΦ̃2̂+λΦ̃3̂e
−i(k2+ϵΦ̃)

+ d†
k+(τ+1)Φ̃1̂+(ϵ−2)Φ̃2̂+λΦ̃3̂

dk+τ Φ̃1̂+ϵΦ̃2̂+λΦ̃3̂e
−i(k3+λΦ̃)

+ h.c.
]
, (91)

with the help of three magnetic band indices τ , ϵ, λ = {0, . . . , 3n − 1}. The size of the associated
matrix is (3n)3 × (3n)3, much larger than the one obtained with the asymmetric construction.
Obviously, the spectra associated to the same pair (m, n) are found to coincide.

We are now ready to compare the two constructions applied to the Hofstadter model. First,
we remind that using the Hasegawa gauge [45] in 3d (or the Landau gauge [41] in 2d) one has to
diagonalize, for each k belonging to the MBZ, a matrix n×n. If one uses a different gauge, the matrix
to be diagonalized may be of larger size, and, at the same time, the MBZ also changes. What does not
change is the energy spectrum. Let us now discuss the results obtained using our formalism in which
a choice of the gauge is not done. In 2d, with the asymmetric construction we obtained a matrix
in momentum space of size n × n, where the MBZ is Eq. (71). With the symmetric construction
we symmetrized the MBZ, as showed in Eq. (78), and the band structure of the Hamiltonian,
but the price to pay is in the dimensionality of the matrix, of size (2n)2 × (2n)2, larger than the
asymmetric one. The same considerations hold for the 3d case, with different dimensions of the
matrix, respectively n2

×n2 and (3n)3×(3n)3, and the definitions of MBZ, given by Eqs. (82) and (90).
One concludes that the MBZ depends, in our formalism, on the chosen construction. Furthermore
the most symmetric MBZ, in which the x, y, z axis enter equally – as one would expect since the
18
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magnetic field is isotropic – is given by the symmetric construction.3 Therefore, if the symmetry in
omentum space has to be preserved, it is more convenient to use the symmetric construction. If,
t variance, one wants to reduce the dimension of the matrix to be diagonalized, e.g. for numerical
urposes, then the asymmetric construction is more suitable.

. Applications of the formalism

In the previous Sections, after having introduced the main ideas of the reformulation, we applied
t to different cases: a single particle in a static magnetic field, the pure lattice gauge theory (without
ynamical matter), the Hofstadter model (where the magnetic field is static) and QED (where
here are both dynamical matter and gauge fields). The reformulation can be applied as well to
ther models, such as the Schwinger–Thirring model, where the matter is interacting with a term
int ∝ (ψ̄γ µψ)2, the Gross–Neveau model or bosonic QED [49]. For example, in the case of the
hirring interaction, the Lagrangian would be

L[F̄µν, ψ ′, ψ̄ ′] = LQED[F̄µν, ψ ′, ψ̄ ′] + g(ψ̄ ′γ µψ ′)2, (92)

where LQED[F̄µν, ψ ′, ψ̄ ′] is the reformulated Lagrangian in Eq. (59). Moreover, the reformulation
could be applied to models in ladder geometries, which are nowadays subject of considerable
attention [50–53]. The most interesting theories are the ones in which the matter is interacting in
presence of a magnetic field, or, even more, lattice and continuum gauge theories where the gauge
fields are dynamical. In the following paragraphs, we discuss how the present formalism may be
advantageous in both cases.

For fermions in a static magnetic field, interactions give rise to the so-called Hubbard–Hofstadter
model, which is considerably more difficult to analyze. Our reformulation provides an alternative
path, arguably more suitable as it preserves gauge invariance exactly, to study these models
under certain approximation schemes, like mean-field. Indeed, the order parameters that one
may introduce in the (non-magnetic) Hubbard model are clearly not gauge invariant. At variance,
using the d operators one can construct gauge invariant order parameters, whose self-consistency
has to be checked. In a similar way the correlation functions of the Hubbard model, when an
approximation is used, are expected to be gauge dependent. However, if one determines, even in an
approximate way, correlation functions of the d operators, they will be gauge invariant. We believe
this constitutes a promising line of research.

The situation is even more relevant for standard gauge theories, which have dynamical gauge
fields. The application of a naive mean-field approximation leads to a self-consistent equation for
a non gauge-invariant quantity, which is in tension with Elitzur’s theorem [5,29]. On the lattice,
subsequent efforts were able to fix these drawbacks by introducing a generalized mean-field
procedure, where several ‘‘mean-fields’’ for each gauge degree of freedom are introduced [54]. In
general, this procedure appears rather cumbersome to be implemented and not easily extendable
to the continuum. The present reformulation provides an alternative starting point for a mean-field
approximation where a self-consistent equation for the targeted order parameter can be written
in agreement with Elitzur’s theorem. The main challenge consists in identifying suitable order
parameters in terms of F̄µν, ψ ′. More work on these lines is actively being pursued.

10. Conclusions

In this paper we gave a reformulation of abelian gauge theories in terms of gauge invariant
fields (GIF). In particular, we discussed how to split the gauge field Aµ into its gauge invariant part,
represented by Fµν , and its gauge covariant one, enclosed in the vertex variables φ. From the field

3 We remark that from the textbook definition of MBZ one can see that its volume is unique for each dimensional-
ity [47]. Focusing on the 2d case, this is because, denoting with T̂ĵ the generators of the magnetic translational group, the

inimal integer doublet (a, b) such that [T̂a0̂, T̂b1̂] = 0 defines the magnetic unit cell in real space. For the asymmetric
onstruction we have (a, b) = (2, 1), while in the symmetric one (a, b) = (4, 4), therefore the minimal one is the first
ne.
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stress tensor, we have introduced the plaquette strips F̄µν in order to define a set of independent
ield variables {F̄µν, φ}, whose determination is the main goal of our reformulation. For periodic
oundary conditions, these variables are supplemented by loops f̄µ that wrap around the different
irections of space–time.
The construction was first developed on the lattice and in (1 + 1) dimensions, which provides

he basic building block for the generalization to arbitrary dimensions and to the continuum limit.
he choice of how to make these constructions is not unique and here we explored two of them,
hat we called asymmetric and symmetric constructions. All possible constructions are related by
auge transformations and, therefore, are physically equivalent. We stress, however, that a gauge
s not fixed and we deal only with fields that are independent of any possible chosen gauge. The
rocedure is performed at finite volume and we have used open (OBC) and periodic (PBC) boundary
onditions, which fit well within the formalism.
This kind of constructions arises naturally, as a change of variables, in the Lagrangian formalism.

owever, performing their canonical quantization, it is predicted to be an arduous task due to
he presence of non-local kinetic terms. Despite that, we emphasize that the non-locality of the
agrangian formalism does not break unitarity nor Lorentz invariance. Furthermore, we showed
hrough two examples, i.e. charged particle in an external magnetic field and in the Hofstadter
odel, that the same kind of construction can be applied in the Hamiltonian formalism.
From the example provided by the Hofstadter model it becomes clear that different choices on

he constructions have practical implications. The Hamiltonian diagonalization can be reduced to
he diagonalization of matrices of finite size for every value of the momentum. The asymmetric
onstruction leads to smaller matrices but an asymmetric magnetic Brillouin zone (MBZ). At
ariance, the symmetric construction implies the diagonalization of larger matrices but produces
symmetric MBZ.
In the literature, there are similar efforts of describing gauge theories solely in terms of gauge

nvariant fields. The method presented in [19–22] recombines properly the matter and gauge fields
n order to rewrite QED in terms of gauge invariants, and quantize the theory in terms of them.
ifficulties arise due to the presence of non-local quantities in the quantization procedure [20,21]. In
his aspect this is analogous to our rewriting, as the plaquette strips interact non-locally. Moreover,
he authors underline that, within their approach, the fermions and the photons are no longer
undamental fields [20]. The new degrees of freedom are the currents of the theory, regarding the
atter, and a couple of covector and complex scalar fields, regarding the gauge part. In our rewriting

he new degrees of freedom are different: we combined the vertex variables with the matter fields
o obtain degrees of freedom that remain fermionic but are also now gauge invariant. Some aspects
f our reformulation are also shared with [26–28] where the plaquettes terms, on the lattice, are
sed to replace the links associated to the gauge field Aµ. The main difference lies, again, in the
efinition of the matter variables, in Eqs. (58) and (66) as just described. In our procedure, this
eads to non-local interactions between gauge and matter fields. The removal of non-locality, of a
imilar form, was solved in [28], thanks to the introduction of new variables. A future interesting
tep would be to understand if it is possible to introduce further variables, in a similar way, in order
o make the matter-gauge interacting term of our theory local as well.

The reformulation presented here has been applied to gauge theories with an abelian symmetry
roup. We expect that the generalization to non-abelian gauge theories is possible by following the
ame lines presented here, and we do not anticipate specific problems related to the non-abelian
ature of the symmetry group. At variance, we think that the generalization to LGT on non-bipartite
attices would not be straightforward. Both issues will be subject of future studies. Moreover, in
iew of possible developments, we observe that this formalism could be useful to investigate phase
iagrams of gauge theories within a mean-field framework, both in the continuum and on the
attice.

Finally, we would like to stress that both classical and quantum simulations of gauge theories
ay considerably profit from the reformulation presented here. Clearly, reducing the number of
egrees of freedom is potentially interesting in both cases. For the case of quantum simulators there
s no longer a local symmetry to be implemented, as it was used to decouple the non-physical fields.
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From the point of view of the reduction of the number of degrees of freedom, this formalism is on a
similar footing with maximal gauge fixings [37]. The difference lies in the fact that our reformulation
allows for the identification of a newmatter field ψ ′, expressed in terms of the variables φ which are
ntegrated out, and new fields F̄µν . Both ψ ′ and F̄µν are gauge invariant and the reformulated theory
is expressed in terms of them: L = L(ψ ′, F̄µν). In this, which is for all practical purposes a trading
of difficulties, the final Lagrangian has non-local terms and the construction of the Hamiltonian
could be a non-trivial step. Depending on the form of the final theory, this may provide the starting
point of approximate methods, in which correlation functions and order parameters are gauge
invariant by construction. Ultimately, it will be the success of performing sensible approximations of
interacting lattice field theories that will show whether the reformulation presented here is useful.
More work on this topic is currently actively pursued.
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