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Abstract: The lichenized green microalga Trebouxia lynnae Barreno has been recently described and 
is considered a model organism for studying lichen chlorobionts. Its cellular ultrastructure has al-
ready been studied in detail by light, electron, and confocal microscopy, and its nuclear, chloroplast 
and mitochondrial genomes have been sequenced and annotated. Here, we investigated in detail 
the ultrastructure of in vitro grown cultures of T. lynnae observed by Low Temperature Scanning 
Electron Microscopy (LTSEM) applying a protocol with minimum intervention over the biological 
samples. This methodology allowed for the discovery of ultrastructural features previously unseen 
in Trebouxiophyceae microalgae. In addition, original Transmission Electron Microscopy (TEM) im-
ages of T. lynnae were reinterpreted based on the new information provided by LTSEM. The nucle-
olar vacuole, dictyosomes, and endoplasmic reticulum were investigated and reported for the first 
time in T. lynnae and most likely in other Trebouxia lineages. 

Keywords: axenic cultures; low temperature scanning electron microscopy; phycobiont; transmis-
sion electron microscopy 
 

1. Introduction 
Lichens are self-sustaining microecosystems formed by the interaction of a major as-

comycetous or basidiomycetous fungus (the mycobiont), photosynthetic microorganisms 
(the photobionts) comprising one or more populations of microalgae (phycobionts) 
and/or cyanobacteria (cyanobionts), and other microorganisms such as bacteria and other 
microfungi (filamentous and yeasts) [1]. In the lichen, the mycobiont builds a framework 
of hyphae enwrapping the photobionts cells, housing all the microorganisms that partic-
ipate in the symbiosis. The genus Trebouxia Puymaly (Trebouxiaceae) comprises coccoid, 
colony-forming, aero-terrestrial green microalgae [2–5]. Trebouxia species are among the 
most widespread phycobionts, associating with a variety of ascomycetous mycobionts 
[6,7]. Among them, Trebouxia lynnae Barreno has emerged as the Trebouxia research model 
because its ultrastructure has been largely analysed and its cells have been described in 
detail by different approaches [8,9]. Furthermore, its nuclear, chloroplast, and mitochon-
drial genomes have been sequenced and annotated, and more physiology information is 
gathered every year [8–15]. 

The phycobiont-mycobiont association and their reciprocal selectivity are complex 
subjects. There are plenty of examples of phycobionts switching in relation to 
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environmental and geographic variables. In particular, a diversity of Trebouxia phycobi-
onts within different lichen species has been reported across niche gradients [16–21]. In 
addition, the intrathalline coexistence of various Trebouxia species-level lineages has been 
frequently reported, and it has been suggested that the thallus morphology and growth 
stage affect the diversity of the associated phycobionts [12,17,22–28]. Inter- and in-
trathalline phycobiont diversity has been mainly assessed by molecular techniques 
[19,21,22,24–29]. The lack of additional evidence for phycobiont diversity gives rise to 
some questions: are we underestimating the phycobiont diversity by skipping photobi-
onts with abundances below the detection threshold? Are there phycobionts undetectable 
by the molecular approaches due to the primers efficiency? Are less abundant phycobi-
onts real symbionts, or rather residual cells of a former phycobiont? Are estimated phy-
cobiont abundances reliable? Supplementing molecular analysis with taxonomic identifi-
cation of microalgae inside the thalli by means of microscopy is highly desirable. To this 
end, it is essential to analyse the morphology and ultrastructure of putative species-level 
lineages and identify taxonomic relevant traits. In order to reliably identify phycobionts, 
it is important to correlate the in vitro traits with those exhibited in the symbiotic state 
within the lichen thallus [30]. 

Recently, the diversity and the evolutionary relationships of Trebouxia species-level 
lineages were reappraised by Muggia et al. [7], who assembled DNA sequence data from 
over 1600 specimens and inferred a phylogeny from multi-locus sequence data. The multi-
locus phylogenetic reconstructions confirmed four major clades within Trebouxia. In Bor-
denave et al. [9], 20 axenically grown species-level lineages of Trebouxia belonging to the 
four major clades were characterized in their morphology and ultrastructure by Confocal 
Laser Scanning Microscopy (CLSM) and Transmission Electron Microscopy (TEM). Pyre-
noid ultrastructure and chloroplast morphology were presented as reliable taxonomic 
recognition tools in the genus Trebouxia. However, it is possible to further distinguish spe-
cies-level lineages of Trebouxia by including additional traits by means of new microscopy 
approaches. 

High-end Scanning Electron Microscopy imaging of fully hydrated biological sam-
ples can be attained by cryo-fixing them freshly and maintaining the frozen condition in 
the SEM [31]. Thus, Low Temperature Scanning Electron Microscopy (LTSEM) arises as a 
powerful tool to obtain biological images with minimum intervention over the sample. 
LTSEM frequently includes additional freeze-fracture and freeze-etching steps, in which 
samples are mechanically sectioned and superficial water is removed by sublimation to 
reveal the underlying structures. For the past few decades, microalgae samples have been 
frozen and cryo-fractured to observe and analyse their morphology and ultrastructure. 
Detailed ultrastructure of microalgae [32,33], and in particular green microalgae [34–39], 
has been explored by LTSEM, yielding outstanding results. LTSEM of axenically cultured 
lichen phycobionts for cell ultrastructure has been performed only in Asterochloris glomer-
ata [40]. Although LTSEM of in vitro cultured Trebouxia phycobionts has also been per-
formed, only the cell morphology, cell wall, or extracellular substances have been ana-
lysed so far [8,13,41,42]. 

In order to find new morphological and ultrastructural traits with the potential to be 
added to the taxonomic discrimination of Trebouxia species in the future, here we explore 
the detailed ultrastructure of T. lynnae as observed by LTSEM. In addition, we reinter-
preted the original TEM images of T. lynnae, as well as those of other Trebouxia species-
level lineages, based on the new information provided by LTSEM. 
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2. Materials and Methods 
2.1. Microalgae Strains and Growth Conditions 

The analyses were performed on one strain of the lichen phycobiont Trebouxia lynnae. 
This strain was originally isolated from a thallus of Ramalina farinacea collected from the 
Sierra del Toro (39°57′ 32.34″ N–0°46′ 35.51″ W, Castellón, España). This microalga was 
both propagated several years by in vitro cultures and deposited and maintained as living 
culture at the “Symbiotic Algal collection from the University of Valencia” (ASUV, 
https://www.asuvalgae.com, accessed on 25 January 2023), and numbered as ASUV 44. 
Microalgae strains maintained in the ASUV collection have been molecularly identified 
and are routinely monitored by means of ITS amplification and sequencing as described 
in Bordenave et al. [9]. T. aggregata, T. anticipata T. arboricola, T. asymmetrica, T. australis, T. 
corticola, T. crenulata, T. crespoana, T. cretacea, T. decolorans, T. flava, T. gigantea, T. impressa, 
T. incrustata, T. jamesii, T. maresiae, T. potteri, T. showmanii, and T. simplex were used for 
TEM analyses. Additional information about Trebouxia strains is available in the supple-
mentary table (Supplementary Table S1). Microalgae strains were maintained axenically 
in Petri dishes on solid Bold’s Basal Medium (BBM) [43,44] for 21 days in a growth cham-
ber at 20 °C under a 12:12 h light:dark cycle (25 µmol photons m−2 s−1). At 21 days, entire 
colonies were scraped from the substrate, resuspended in 3N liquid BBM solution (sup-
plemented with glucose 20 g l−1 and casein 10 g l−1), counted in Neubauer’s chamber, and 
adjusted to 5.107 cells/µL. 50 µL of filtered cell suspension were applied directly over solid 
3N BBM or over acetate discs deposited on the same medium. The Petri dishes were incu-
bated in a growth chamber at 20 °C under a 12:12 h light:dark cycle (25 µmol photons m−2 
s−1). 

2.2. Low Temperature Scanning Electron Microscopy (LTSEM) 
For LTSEM, microalgal colonies plus the underlying agar medium or acetate discs 

were cut into squares of around 2 × 2 mm from the centre of the colony and attached to a 
cryo-holder using colloidal graphite. Samples were plunge frozen in LN2 slush and trans-
ferred with a transfer rod module into the cryo-preparation system (PP3010T, Quorum 
Technologies, Sussex, UK). Samples were mechanically freeze-fractured and then freeze-
etched by sublimation for 15 to 25 min at −90 °C. The time of sublimation was adjusted to 
the estimated water content of the sample and the type of structures aimed at imaging. A 
thin layer of platinum was sputtered onto the specimens for 10 s and afterward transferred 
into a Field Emission Scanning Electron Microscope (FESEM ZEISS Ultra-55, Carl ZEISS 
SMT, Oberkochen, Germany). Images were recorded at an accelerating voltage of 1.5 kV. 
The images are photographic negatives; hence, protuberant elements of the frac-
tured/etched surface are most heavily coated with platinum and appear white. 

2.3. Transmission Electron Microscopy (TEM) 
For TEM analyses, a portion of the sample of the microalgal colony of about 2 × 2 mm 

was covered with tempered low melting point agarose at 1%, fixed in Karnovsky fixative 
(with para-formaldehyde 2.5% and glutaraldehyde 0.5%) for 12 h at 4 °C, washed three 
times for 15 min with 0.01 M PBS (pH 7.4), and postfixed with 2% OsO4 in 0.01 M PBS (pH 
7.4) for 2 h at room temperature. After washing in 0.01 M PBS, pH 7.4, the samples were 
dehydrated at room temperature in a graded series of ethanol, starting at 50% and increas-
ing to 70%, 95%, and 100% for at least 20–30 min at each step. The fixed and dehydrated 
samples were embedded in LR-White resin. Finally, increasing ethanol and resin infiltra-
tions were carried out (two parts 90% ethanol plus one part resin, one part 90% ethanol 
plus two parts resin, and one part 100% ethanol plus two parts resin) until attaining 100% 
LR-White resin. Samples were then incubated at 60 °C for the resin to polymerizate. Ultra-
thin sections, 60–90 nm thick, were cut with a UC7 Leica Ultramicrotome (Leica-Biosys-
tems, Wetzlar, Germany) endowed with a diamond knife (Diatome ultra 458, Diatome, 
Switzerland), mounted on 100 mesh copper grids, and then stained with 10% uranyl 
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acetate and Reynolds solution (0.1% lead citrate) using the ‘Synaptek Grid-Stick Kit’. Sec-
tions were observed at 80 kV under a JEOL JEM-1010 microscope (Jeol, Peabody, MA, 
USA). Images were obtained using an Olympus MegaView III camera and processed with 
Fiji distribution of ImageJ [45]. 

3. Results and Discussion 
3.1. General Aspects of Axenically Cultured Trebouxia lynnae LTSEM for Cell Ultrastructure 
Analysis 

Most LTSEM protocols for microalgae were optimized for aquatic microalgae, which 
are axenically grown in liquid media [33–39]. Even when used with algae grown over 
solid media, the structure of the algal colony was not preserved [40]. Trebouxia microalgae, 
when grown over solid media, proliferate in thick colonies around 1 mm tall [7,46]. Here, 
we used square-shaped samples of 2 × 2 mm, including the underlying agar, in order to 
maintain the original colony structure of the region to be analysed (Figure 1A). As a result, 
the surface of the samples is very irregular due to the differential cell growth (Figure 1B). 
Furthermore, it is possible to apply this approach to analyse different regions of the colony 
by selecting samples according to their distance from the center of the colony (Figure 1A). 
Acetate discs over the solid media were also used. In this case, the colony and the under-
lying disc were sectioned without taking the medium below. 

 
Figure 1. (A) Sample preparation before attaching to the cryo-holder: square-shaped samples of 2 × 
2 mm of axenically cultured Trebouxia lynnae were cut, including the underlaying agar, in order to 
maintain the colony structure of the region to be analysed. (B) LTSEM of T. lynnae: general view of 
the cross-section of the colony, displaying the crests (c) and valleys (v) and the underlaying agar (a). 
Scale bar: (A) 100 µm, (B) 10 mm. 

So far, no typical biological sample preparation procedure for LTSEM is available. 
When freeze-fracture coupled with freeze-etching is used for investigating the cell con-
tents, the procedure can be divided into four main steps: first, the rapid freezing of the 
sample, second, the mechanical fracture, third, freeze etching by sublimation, and fourth, 
covering the surface with a spout to give contrast. 

The rapid freezing of the sample has many alternatives [47], but plunging the sample 
in LN2 slush yielded good results for Trebouxia, and minimum to no water crystal for-
mation was observed. The size of the sample was good for the following mechanical 
freeze-fracturing step, as just a small amount of debris remained over the fractured sam-
ple. On the contrary, freeze-etching by sublimation was unsuccessful under the most com-
mon conditions for microalgae LTSEM. Previous works with microalgae reported times 
of sublimation of 2 min [32,33,39,40] and 5 min [34,35,37]. Here, times as high as 20 min 
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were needed to reveal the Trebouxia cell ultrastructure. Times of sublimation shorter than 
15 min resulted in low contrast, the presence of ice, and an orange peel texture (Supple-
mentary Figure S1). The high water content of the underlying agar was ruled out to be the 
cause of the high time of sublimation required, as the samples grown over the acetate disc 
also needed at least 15 min of sublimation. Lichen and its phycobionts are extremely tol-
erant to dehydration [42,48–53]. Recently, Bruñas et al. [54] obtained surprising results 
applying NIRS aquaphotomics to analyse Ramalina farinacea phycobionts. They demon-
strated that T. lynnae allocates water molecules to high-bonding conformations. High-
bounding waters require significantly higher times of sublimation than other confor-
mations. Accumulation of cytoplasmic glycerol/polyol has been reported in Trebouxia. The 
sugar alcohols form hydration shells, which reduce water activity and impede water sub-
limation. Another explanation that cannot be discarded is that highly hydrated extracel-
lular substances that have an impact on the sublimation times may be present when work-
ing with sections of the thick colonies. Casano et al. [13] observed and analysed these ex-
tracellular substances both by LTSEM and biochemically, reporting the higher values of 
extracellular substances in T. lynnae among the assayed strains. 

As expected from previous reports [9], no differences were observed between the 
growing conditions (solid medium vs. acetate discs laid over the solid medium, Supple-
mentary Figure S2). 

Within the T. lynnae colony, different types of cells were recognized both by LTSEM 
and by TEM. Young cells (6 ± 2 µm; Figure 2A,B) presented shallowly lobed chloroplasts 
displaying a low number of lobes and a single pyrenoid. Mature vegetative cells (10 ± 1 
µm; Figure 2C,D) had shallowly lobed chloroplasts and a single impressa-type pyrenoid 
[9]. In both young and mature vegetative cells, a high number of vesicles was observed, 
and a moderate number of mitochondria could be distinguished, although they were in-
conspicuous. Mature vegetative cells displayed a big nucleus with a clearly distinguisha-
ble nucleolus. 
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Figure 2. LTSEM (A,C) and TEM (B,D) of Trebouxia lynnae vegetative cells. (A,B) Young vegetative 
cells. (C,D) Mature vegetative cell. Chloroplast (c), pyrenoid (p), vesicles (v), starch grains (s), mito-
chondria (m), and nucleus (n) are indicated with letters. Scale bars: (A–D) 1 µm. 

Two types of sporangia were observed (Figures 3 and 4). One in which spores with 
cell walls are symmetrically arranged (11–13 µm; Figure 3), presumably autosporangia 
(i.e., mitotic sporangia carrying cell-walled spores that resemble the morphology of vege-
tative cells). The chloroplast of the autospores was of the shallowly lobed type [9], with a 
low number of lobes (Figure 3A,B). The pyrenoid was recognizable as impressa-type (Fig-
ure 3A). Before opening, the spaces between cells are filled with an aqueous substance 
(Figure 3A,B) that is missing when the envelope is opened (Figure 3C). The autosporangia 
envelope was frequently persistent, even at the maturity of the daughter cells (Figure 
3D,E). 
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Figure 3. LTSEM (A,C,D,F) and TEM (B,E) of Trebouxia lynnae autosporangia. (A,B) Closed auto-
sporangia. (C) Open autosporangia. (D,E,F) Vegetative cells inside the persistent autosporangium 
envelope. Chloroplast (c), pyrenoid (p), vesicles (v), starch grains (s), mitochondria (m), and nucleus 
(n) are indicated with letters. A persistent autosporangium envelope is indicated by a white arrow-
head. Scale bars: (A–F) 2 µm. 

The other sporangia contained naked spores that were asymmetrically arranged (Fig-
ure 4), presumably zoosporangia (i.e., sporangia carrying naked flagellated spores). Fla-
gella were observed both by LTSEM (Figure 4A) and by TEM inside the zoosporangia 
(Figure 4B). 
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Figure 4. LTSEM (A,C,E) and TEM (B,D,F) of Trebouxia lynnae zoosporangia, zoospores, and senes-
cent cells. (A,B) Zoosporangia. (C,D) Zoospores. (E,F) Senescent cells. Chloroplast (c), vesicles (v), 
starch grains (s), and plasma membrane (pm) are indicated with letters. Flagella are indicated by a 
white arrowhead. Scale bars: (A,B) 2 µm, (C–F) 1 µm. 

Flagellated cells (around 7 µm; Figure 4), presumably zoospores (i.e., naked flagel-
lated spores), are fragile and usually suffer from cytolysis. Zoospores were observed by 
LTSEM (Figure 4C) and TEM (Figure 4D), always showing the complete absence of the 
cell wall. Chloroplasts were shallowly lobed with abundant starch grains (Figure 4D). 

Finally, cells bearing a parietal chloroplast with a central cavity, presumably senes-
cent cells, were observed both in LTSEM (Figure 4E) and TEM (Figure 4F). 

3.2. Chloroplast and Pyrenoid 
T. lynnae presents a single massive, axial chloroplast with a shallowly lobed morphol-

ogy, as reported previously (Figures 2 and 5) [8,9]. The surface of the chloroplast depicted 
shallow lobes to which the thylakoids project from the centre of the chloroplast (Figure 
5A,B,E). A chloroplast pocket is always present where the nucleus is located, tightly em-
braced by the chloroplast (Figure 5C,D). Each chloroplast usually displays a single pyre-
noid, although multiple pyrenoids per cell were occasionally observed. T. lynnae pyre-
noids belong to the impressa-type, as previously reported [8,9]. These pyrenoids are char-
acterized by radial, straight, unbranched tubules penetrating the pyrenoid matrix, appear-
ing either long or short depending on the orientation of the section, with the pyrenoid 
matrix thicker than the tubules. LTSEM allowed to clearly distinguish the thylakoid la-
mellae from which the pyrenotubules originates (Figure 5F). 
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Figure 5. LTSEM (A,C,E,F) and TEM (B,D) of Trebouxia lynnae chloroplasts. (A,B) Chloroplast shal-
low lobes. (C,D) Chloroplast pockets. (E) Chloroplast lobule. (F) Pyrenoid. Chloroplast (c), chloro-
plast envelope (ce), nucleus (n), starch granules (s), vesicles (v), and pyrenoid (p) are indicated with 
letters. Thylakoid lamellae transitioning into pyrenotubules are indicated by a white arrowhead. 
Scale bars: (A–F) 1 µm. 

3.3. Nucleus 
Vegetative cells of T. lynnae present a round nucleus, occupying a significant fraction 

of the cell volume (Figure 2C,D). The nucleus is always located in the chloroplast pocket 
(Figures 5C,D and 6A,B). When the freeze-fracture revealed the nuclear envelope surface, 
nuclear pores were distinguishable with a regular distribution (Figure 6A). Material de-
posited in the nuclear pores was observed, presumably proteins or protein complexes 
translocating through the nuclear pores (Figure 6A). When the nucleus was sectioned by 
the freeze-fracture, both membranes of the nuclear envelope could be observed (Figure 
6C–E). The nuclei of vegetative cells usually display a nucleolus (Figures 2C,D, 5C,D and 
6C–F). LTSEM revealed that the nucleolus of T. lynnae mature vegetative cells frequently 
possessed a central nucleolar vacuole (Figure 6C,E). Although nucleolar vacuole function 
is still discussed [55], it is thought that in plants it indicates a highly active nucleus [56]. 
Being aware of this feature of LTSEM, it was possible to identify the nucleolar vacuole in 
samples of T. lynnae observed with TEM (Figure 6F). Furthermore, the nucleolar vacuole 
was observed in cells of 61% of the Trebouxia species-level lineages analysed (Supplemen-
tary Figure S3). 
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Figure 6. LTSEM (A–E) and TEM (F) of Trebouxia lynnae nuclei. (A) Surface of a whole nucleus. (B) 
Nucleus inside the chloroplast pocket. (C) Double membrane of the nuclear envelope of a fractured 
nucleus. (D) Fractured nucleus with a whole nucleolus. (E,F) Nucleus with a fractured (sectioned) 
nucleolus with a nucleolar vacuole. Nucleus (n), nucleolus (nc), and nuclear envelope (e) are indi-
cated with letters. The nucleolar vacuole is indicated by a white arrowhead. Material that accumu-
lates at the surface of the nuclear pore is indicated by a black arrowhead. Inner and outer mem-
branes of the nuclear envelope are indicated by white arrows. Scale bars: (A–F) 1 µm. 

The observation of the nuclear pores and both membranes of the nuclear envelope is 
facilitated by LTSEM, whereas it is difficult, if not impossible, to achieve by standard TEM 
procedures. In addition, LTSEM allowed the observation of the nucleolar vacuole and its 
identification in TEM images of T. lynnae and other Trebouxia species, making this one of 
the few reports of nucleolar vacuoles in microalgae [57]. 

3.4. Cytosol and Cytosolic Organelles 
The cytosol of T. lynnae was revealed to be a highly crowded compartment, with a 

large amount of globular structures populating it. There were also a variety of membra-
nous structures, vesicles, and droplets, evident either by LTSEM or TEM observation (Fig-
ure 7). 

Mitochondria were observed in high numbers in LTSEM (Figure 7), although their 
internal structures were difficult to discern (Figure 7A,B). TEM images allowed us to ob-
serve the internal structures of the mitochondria in T. lynnae (Figure 7C), as already re-
ported by Casano et al. [12]. As expected, every Trebouxia species-level lineage analysed 
by TEM presented well-developed mitochondria (Supplementary Figure S4). The overall 
ultrastructure of Trebouxia mitochondria was similar to that of mitochondria observed in 
other Trebouxiophyceae algae [58,59]. For each Trebouxia analysed here, a wide range of 
shapes and sizes was observed, even within the same cell (Supplementary Figure S4). This 
was already reported decades ago in some species of microalgae [59]. In several species of 
the Chlorella genus, it has been demonstrated that each cell contains a single, tubular, 
branched mitochondrion [60–62]. 

The diversity of morphologies observed in our results indicates that Trebouxia may 
also have tubularly branched mitochondria. To assert the number of this organelle present 
in each cell of these microalgae, other microscopy approaches may be needed. 

Guo et al. [62] reported that the chloroplast and mitochondrial membranes of Chlo-
rella pyrenoidosa run parallel to each other, hypothesizing that there may exist a mecha-
nism of direct translocation of NADPH and ATP between these compartments in these 
microalgae. In T. lynnae (Figure 7B), as well as other Trebouxia species-level lineages (Sup-
plementary Figure S4), a close proximity between the membranes of these two compart-
ments is observed. How this phenomenon affects the efficiency of the Trebouxia metabo-
lism compared to other microalgae and plants having different mitochondria/chloroplast 
architectures is still unknown. 

Endoplasmic reticulum and dictyosomes are inconspicuous in T. lynnae, probably 
due to the cytosol crowding in cells with a low ratio of cytosol/chloroplast volumes, and 
have never been reported by TEM ultrastructure analyses before. Here, LTSEM allowed 
for the identification of both organelles (Figure 7C–F). Endoplasmic reticulum was ob-
served as a fenestrated system of cisternae from which trafficking vesicles sprout (Figure 
7C,D), similar to those observed in Botryococcus braunii [39]. Dictyosomes were observed 
as a group of flattened cisternae of around 0.2 × 0.5 µm (Figure 7E,F). In TEM images, we 
were able to recognise the endoplasmic reticulum as a stack of membranous structures 
with a punctuated electrodense texture, likely ribosomes (Figure 7D). Endoplasmic retic-
ulum was frequently located at the periphery of the cell, next to the widest section of the 
secretion space (Figure 7D and Supplementary Figure S5). 
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Figure 7. LTSEM (A,C,E) and TEM (B,D,F) of Trebouxia lynnae mitochondria and secretion system. 
(A,B) Mitochondria. (C,D) Fenestrated endoplasmic reticulum. (E,F) Dictyosome. Mitochondria (m), 
endoplasmic reticulum (er), secretion space (ss), and chloroplast (c) are indicated with letters. The 
dictyosome is indicated by a black arrowhead. Endoplasmic reticulum trafficking vesicles are indi-
cated by white arrowheads. Scale bars: (A–F) 1 µm. 

Both endoplasmic reticulum and dictyosomes were observed in around 28% of other 
Trebouxia species-level lineages (Supplementary Figures S5 and S6). 

Vesicles and droplets were distinguishable from each other by the presence or ab-
sence of a membrane, respectively (Figure 8A–C). However, droplets inside some vesicles 
were also observed (Figure 8B,C). Multivesicular bodies, highly packaged vesicles inside 
a membranous structure, were also identified (Figure 8D). Multivesicular bodies have 
been reported to facilitate the trafficking of a variety of cargo through both the cell mem-
brane and the cell wall [63]. 

The amount and diversity of vesicles, including multivesicular bodies, the presence 
of well-developed fenestrated endoplasmic reticulum and dictyosomes, and the location 
of the secretion system in the vicinity of the secretion space suggest that T. lynnae is se-
creting high amounts of extracellular substances, as already observed in other Trebouxiales 
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[39]. This is also in line with the results reported by González-Hourcade et al. [42,53] on 
the extracellular polysaccharides and proteins of T. lynnae. 

 
Figure 8. LTSEM (A,B,D) and TEM (C) of Trebouxia lynnae vesicles. (A) Vesicles and lipid droplets. 
(B,C) Lipid droplets inside vesicles. (D) Multivesicular body. Chloroplast (c), vesicles (v), lipid drop-
lets (d), multivesicular bodies (mb), and mitochondria (m) are indicated with letters. Scale bars: (A–
D) 1 µm. 

3.5. Cell-Wall 
T. lynnae cell wall was thick (0.25 ± 0.05 µm) and composed of at least three layers 

(Figure 9B,C). Different layers of the cell wall were already reported for T. lynnae [8,12,42] 
and are also visible in TEM micrographs (Figure 9C). The cell wall of microalgae that con-
tains a high amount of algaenan (sporopollenin) appears greasy/gummy when observed 
in LTSEM [33,40]. None of T. lynnae cell wall layers appeared greasy/gummy. This is in 
line with the observations of Gonzales-Hourcade et al. [42], in which the degree of crystal 
violet permeability in T. lynnae indicated the absence of this biopolymer in its cell wall. 
LTSEM images revealed some features of the T. lynnae cell-wall that are not evident with 
other microscopy approaches. The cell wall presents pores or cavities that seem to mean-
der through the interior of the structure (Figure 9B). LTSEM (Figure 9A,B) and TEM (Fig-
ure 9D) also revealed the presence of fibers, either on the surface or as part of the cell wall 
structure. Fibre-like structures have been observed previously in the cell walls of the Tre-
bouxia phycobiont of Cladonia macrophylla [64] and also in the phycobiont Asterochloris 
glomerata [40]. The porosity of the cell wall and the presence of fibre-like structures on its 
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surface are also in line with the hypothesis of an important traffic between the intracellular 
compartments and the extracellular space. 

 
Figure 9. LTSEM (A,B,E,F) and TEM (C,D) of Trebouxia lynnae cell wall. (A) Cell wall depicting su-
perficial fibers. (B,C) Cell wall depicting three layers, inner pores, and fibrils. (D) Fibrils on the sur-
face of the cell wall. (E,F) Eisosomes. Cell wall layers are indicated by white arrows. Eisosomes are 
indicated by black arrows. Inner pores are indicated by white arrow heads. Fibrils are indicated by 
black arrowheads. Scale bars: (A–F) 1 µm. 

When the inner face of the cell wall or the outer face of the cell membrane is exposed, 
regularly distributed, elongated eisosomes are visible (Figure 9C–F). Eisosomes are 
trough-shaped invaginations of the plasma membrane in which protein complexes nest 
and project up to the cell wall [41]. Eisosomes in the Trebouxia genus have been largely 
observed and described [40–42,65] and, although inconspicuous, can also be detected by 
TEM (Figure 9C). 

4. Conclusions 
LTSEM of Trebouxia phycobionts is presented here as a suitable method to expand 

the analysis of morphological and ultrastructural traits in lichen phycobionts. This tech-
nique contributes to reinterpreting how microalgal cell structures and compartments are 
shaped, and the results can be used to implement the taxonomic classification of lichen 
phycobionts in general. In addition, it allowed for the identification of elusive organelles 
and cell constituents that are difficult to observe by traditional microscopy approaches 
due to the nature of the procedures (steps of dehydration of the sample or affinity for the 
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dyes for different structures) or the sample itself (high levels of cytosol crowding). Once 
the elusive structures are identified, it is possible to track them back with traditional mi-
croscopy for everyday benchwork, revaluing traditional microscopy methodologies, like 
TEM. 

Our results are consistent with cell features, besides the chloroplast and the pyrenoid, 
and may be used for an integrative taxonomy of molecular and ultrastructural data in 
Trebouxia phycobionts. 

LTSEM proves to be a methodology that uses a minimum amount of intervention on 
the biological sample. Applying LTSEM to Trebouxia phycobionts opens the door to ana-
lysing and observing microalgae samples as similar as possible to their intact condition. 
This will be highly desirable to assess the physiological and morphological state of phy-
cobionts in axenic cultures or in the lichenized state, subjected to abiotic conditions such 
as desiccation, UV light, and salinity stresses, among many others. 

Supplementary Materials: The following supporting information can be downloaded at: 
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growing over different substrates; Figure S3: TEM micrographs showing the presence or absence of 
the nucleolar vacuole on Trebouxia species-level lineages; Figure S4: TEM micrographs showing mi-
tochondrial morphology on Trebouxia species-level lineages; Figure S5: TEM micrographs of Tre-
bouxia species-level lineages in which the endoplasmic reticulum was found; Figure S6: TEM micro-
graphs of Trebouxia species-level lineages in which the dictyosome was found; Table S1: list of Tre-
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